

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT THUNDERING WATERS DEVELOPMENT, EAST & NORTH OF DORCHESTER ROAD & WEST OF PROGRESS STREET, NIAGARA FALLS, ONTARIO

Submitted to:

GR (CAN) INVESTMENTS CO., LTD. 4342 Queen Street, Suite 203 Niagara Falls, Ontario L2E 7J7

Submitted by: Amec Foster Wheeler Environment & Infrastructure a Division of Amec Foster Wheeler Americas Limited 3300 Merrittville Highway, Unit #5 Thorold, Ontario L2V 4Y6

April 27, 2017

TG151118 & TG161164

Distribution:

- GR (CAN) Investments Co., Ltd. 1 copy; and
- Amec Foster Wheeler Environment & Infrastructure 1 copy.

TABLE OF CONTENTS

	1.0	EXECUTIVE SUMMARY	1		
	2.0	INTRODUCTION	5		
	2.1	Site Description	5		
	2.2	Property Ownership	5		
	2.3	Current and Proposed Future Uses	6		
	2.4	Applicable Site Condition Standard	6		
3.0	BAC	GROUND INFORMATION	8		
	3.1	Physical Setting	8		
	3.2	Past Investigations	8		
4.0	SCO	PE OF THE INVESTIGATION	10		
	4.1	Overview of Site Investigation	10		
	4.2	Media Investigated	11		
	4.3	Phase One ESA Conceptual Site Model	11		
	4.4	Deviations from Sampling and Analysis Plan	12		
	4.5	Impediments	12		
	5.1	General	13		
	5.2	Drilling	13		
	5.3	Testpitting	13		
	5.4	Soil: Sampling	14		
	5.5	Field Screening Measurements	15		
	5.6	Ground Water: Monitoring Well Installation	15		
	5.7	Ground Water: Field Measurement of Water Quality Parameters	16		
	5.8	Ground Water: Sampling	16		
	5.9	Sediment: Sampling	16		
	5.10	Analytical Testing	17		
	5.11	Residue Management Procedures	17		
	5.12	Elevation Surveying	17		
	5.13	Quality Assurance and Quality Control Measures	17		
6.0	REVI	REVIEW AND EVALUATION19			
	6.1	Geology	19		
	6.2	Ground Water: Elevations and Flow Direction	19		
	6.3	Ground Water: Hydraulic Gradients	20		
	6.4	Medium and Fine Soil Texture	21		

PAGE

6.5	Soil: Field Screening	21		
6.6	Soil Quality	22		
6.7	Ground Water Quality	24		
6.8	Sediment Quality	24		
6.9	Quality Assurance and Quality Control Results	25		
6.10	Phase Two Conceptual Site Model	27		
7.0	CONCLUSIONS	32		
7.1	Signatures	35		
REFERENC	EFERENCES			

LIST OF FIGURES

Figure 1:	Property Location Map
-----------	-----------------------

- Figure 2a: Phase Two Property Layout, Borehole/ Monitoring Well & Testpit Location Plan
- Figure 2b: Phase Two Property Layout, Borehole/ Monitoring Well & Testpit Location Plan (Southern Portion)
- Figure 2c: Phase Two Property Layout, Borehole/ Monitoring Well & Testpit Location Plan (Northern Portion)
- Figure 3: Geological Profile A-A'
- Figure 4: Geological Profile B-B'
- Figure 5a: Depth to Ground Water and Ground Water Elevation Plan
- Figure 5b: Interpreted Ground Water Flow Plan (March 1, 2016)
- Figure 6: Soil Sample Locations with Table 1 Exceedances
- Figure 7: Ground Water Sample Locations with Table 1 Exceedances
- Figure 8: Conceptual Site Model
- Figure 9: Human Health Conceptual Model
- Figure 10: Ecological Conceptual Model
- Figure 11: Area of Metals and EC Impacted Soil Above Table 1 SCS

LIST OF TABLES

- Table 1: Ground Water Elevation Data
- Table 2:
 Summary of Soil Analyses for General Inorganics and Metals
- Table 2A: Summary of Soil Analyses for EC
- Table 3:Summary of Soil Analyses for VOCs and PHCs
- Table 4: Summary of Soil Analyses for PAHs
- Table 5:
 Maximum Concentrations for Analytical Results for Soil
- Table 6
 Summary of Ground Water Analyses for Metals
- Table 7: Summary of Ground Water Analyses for VOCs and PHCs
- Table 8:Maximum Concentrations for Analytical Results for Ground Water

LIST OF APPENDICES

- Appendix A Grain Size Analysis, Borehole/Monitoring Well & Testpit Logs
- Appendix B Sampling and Analysis Plan
- Appendix C Residue Management
- Appendix D Hydraulic Conductivity Results
- Appendix E Laboratory Certificates of Analysis
- Appendix F Limitations

1.0 EXECUTIVE SUMMARY

Amec Foster Wheeler Environment & Infrastructure, a Division of Amec Foster Wheeler Americas Limited (Amec Foster Wheeler) was retained by GR (CAN) Investments Co., Ltd. (the Client), to conduct a Phase Two Environmental Site Assessment (ESA) of a property known as the Thundering Waters Development, in Niagara Falls, Ontario (the Phase Two Property; **Figure 1**). The Phase Two Property does not have a current municipal address. The Client is considering developing the Phase Two Property for proposed mixed land use. A Record of Site Condition (RSC), acknowledged by the Ministry of the Environment and Climate Change (MOECC), may be required as a condition of the planned redevelopment from vacant to mixed land use. The Client is seeking confirmation with the City of Niagara Falls and the Regional Municipality of Niagara (RMON) regarding this issue.

Amec Foster Wheeler previously completed a Phase I ESA, the findings of which were documented in the report entitled "*Phase I Environmental Site Assessment Thundering Waters Development, East & North of Dorchester Road & West of Progress Street, Niagara Falls, Ontario*" dated January 25, 2016, (Phase I ESA).

This Phase Two ESA was carried out in accordance with Amec Foster Wheeler's proposal dated October 16, 2015 and authorization to proceed, signed by the Client on November 15, 2015. A delineation testpitting and ground water sampling program was carried out in accordance with Amec Foster Wheeler's proposal dated December 2, 2016 and authorization to proceed, signed by the Client on December 3, 2016.

The primary findings of this Phase Two ESA are as follows:

- Amec Foster Wheeler drilled five boreholes, installed and monitored five monitoring wells, excavated 50 testpits, completed hydrogeological testing and an elevation survey between December 2, 2015 and January 3, 2017. The locations of the boreholes, monitoring wells and testpits were selected to address Areas of Potential Environmental Concern (APECs) and Potentially Contaminating Activities (PCAs) identified during the Phase I ESA.
- The subsurface conditions encountered at the Phase Two Property are described as follows: a layer of topsoil was present across the Phase Two Property ranging from 0 to 0.15 metres below ground surface (mbgs). Beneath the topsoil, a layer of fill was encountered in all boreholes (with the exception of BH/MW104 and BH/MW105) and testpits (with the exception of TP108, TP111, TP118 and TP120). The fill was generally dominated by reworked native silty clay material (BH/MW102, BH/MW103, BH/MW104, BH/MW105, TP102, TP103, TP104, TP105, TP106, TP107, TP109, TP110, TP112, TP113, TP114, TP115, TP116, TP117, and TP121) or layers of silty clay and silty sand (BH/MW101, TP101, and TP119) materials. The fill materials ranged in depth across the Phase Two Property from 0 (TP108, TP111, TP118 and TP120) to 4.4 mbgs (BH/MW101). A native silty clay with traces of sand and fine to medium gravel was present beneath the fill materials in all boreholes and testpits. The silty clay extended to the termination depth

of the boreholes. Trace slag was noted in TP221 (0-0.5 mbgs). Black and/or white seams (inferred organics) were noted in the fill material in TP221, TP226, TP227 and TP228. The stratigraphy in the delineation testpits was consistent with the boreholes and testpits completed in 2015.

- Bedrock was not encountered at the maximum drilled depth of the boreholes (6.1 mbgs). The bedrock is anticipated to be of the Middle and Lower Silurian Age, consisting of sandstone, shale, dolostone and siltstone of the Lockport Formation. Bedrock is anticipated to be encountered at depths ranging from 20 to 25 mbgs.
- Visual or olfactory evidence of petroleum hydrocarbon impacts was not observed by Amec Foster Wheeler during the drilling or testpitting programs.
- It is Amec Foster Wheeler's opinion that the results of the Combustible Organic Vapour (COV) and Total Organic Vapour (TOV) head space screening program suggest a low potential for the presence of significant combustible soil headspace vapour levels in the boreholes and testpits.
- On March 1, 2016 following completion of the hydraulic testing, the depth to ground water • measured from surface ranged from approximately 0.17 to 3.49 mbgs at the Phase Two Property which corresponds to geodetic elevations ranging from 171.80 to 179.62 metres above sea level (mASL). It is worth noting that BH/MW102 was not located, BH/MW105 and BH/MW200 were previously dry and were not recorded during this monitoring event. In the southern portion of the site, excluding BH/MW103 (which is located approximately 4-5 m lower than the other monitoring wells), BH/MW102 and BH/MW200 (which were not recorded), the geodetic ground water elevations ranged from 179.00 to 179.62 mASL. Using the three-point method, the horizontal ground water flow was calculated to be south towards the Welland River with a gradient of approximately 0.002 metres/metre (m/m). It is worth noting that the Phase Two Property is large, has significant changes in topography and has significant areas of fill while others are native. It is believed that generally the ground water flow direction would be towards the Welland River in the southern portion of the Phase Two Property and towards the Queenston-Chippawa Power Canal in the northern portion of the Phase Two Property.
- The assessment criteria applicable to the Phase Two Property, if a RSC was to be filed for the Phase Two Property are the Table 1 Full Depth Background Site Condition Standards for residential/parkland/institutional/industrial/commercial/community property use and medium and fine textured soils (Table 1 SCS).
- The results of the soil testing indicated exceedances of the Table 1 SCS, as follows:
 - Thallium in fill materials at BH/MW101, BH/MW103 and BH/MW104;
 - Conductivity in fill materials at TP117;

- The remaining analyses were below the Table 1 SCS, including remaining metals, mercury, hexavalent chromium, SAR, BTEX/VOCs, PHCs and PAHs.
- The results of the ground water testing indicated exceedances of the Table 1 SCS, as follows:
 - Cobalt in ground water at BH/MW103;
 - Silver in ground water at BH/MW202. During the resampling in January 2017, there was no exceedance of the Table 1 SCS for silver; and
 - Uranium in ground water at BH/MW103 and BH/MW104.

The soil samples with impacts were all collected from the fill materials (silty sand or silty clay) which were found in all boreholes with the exception of thallium in BH/MW104 and molybdenum in TP109 which were in the native silty clay materials. The fill extended as deep as 4.4 mbgs and it is believed to be associated with the infilling of the former Welland River. Based on additional boreholes drilled during Amec Foster Wheeler's geotechnical investigation, fill material was encountered in a majority of the locations on-site.

The EC impact noted in the area of TP117 and TP224 to TP229 was noted at depths ranging from 0.5 to 2.0 m and possibly deeper. The EC impact may be attributed to former road salt storage or the stockpiling of snow (containing road salt). This area was not fully delineated during the delineation program.

As there are impacts above the Ministry's standards in the soil and ground water at the Phase Two Property, a RSC could not be filed at this time. Once the additional sampling has been completed, the contaminants would need to be addressed using one of or a combination of the following techniques before an RSC could be filed:

- Soil Remediation the impacted materials would be removed for off-Site disposal at a licensed landfill; or
- Site Specific Risk Assessment impacted materials can remain in place if they are below site specific criteria that would be generated for the Phase Two Property.

Figure 11 outlines the estimated areas of impacted soil above the Table 1 SCS for various metals parameters and EC. Based on an average soil depth of 1 m, the estimated tonnage of impacted soil is 1,800 tonnes based on a bulking factor of 1.8 tonnes/cubic metres (m³). It is noted that the EC impact has not been fully delineated. The order of magnitude costing to remove this soil from the Phase Two Property is discussed in a separate letter.

The ground water results indicate metal impacts above the Table 1 SCS in MW202 based on the original ground water sampling in 2015. Two of the three wells (MW103 and MW104) could not be sampled in the January 2017 event due to damage or insufficient water. As a RSC may be

required for the Phase Two Property, the Client should consider the reinstallation of monitoring wells to replace the previous wells.

Furthermore, if the applicable standards are revised to Table 3 SCS (i.e., if the wetland boundary is confirmed), there are no exceedances for metals in ground water. The concentration of thallium in soil would exceed the Table 3 SCS for residential/parkland/institutional property use but not industrial/commercial/community property use. However, the EC concentrations exceed the Table 3 SCS.

Once the ground water monitoring wells no longer be required, they must be maintained or abandoned in accordance with the requirements of Section 21(3) of Ontario Regulation 903 – Wells which states *"the well owner shall immediately abandon the well if it is not being used or maintained for future use as a well"*.

2.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, a Division of Amec Foster Wheeler Americas Limited (Amec Foster Wheeler) was retained by GR (CAN) Investments Co., Ltd. (the Client), to conduct a Phase Two Environmental Site Assessment (ESA) of a property known as the Thundering Waters Development, in Niagara Falls, Ontario (the Phase Two Property; **Figure 1**). The Phase Two Property does not have a current municipal address. The Client is considering developing the Phase Two Property for proposed mixed land use. A Record of Site Condition (RSC), acknowledged by the Ministry of the Environment and Climate Change (MOECC), may be required as a condition of the planned redevelopment from vacant to mixed land use. The Client is seeking confirmation with the City of Niagara Falls and the Regional Municipality of Niagara (RMON) regarding this issue.

Amec Foster Wheeler previously completed a Phase I ESA, the findings of which were documented in the report entitled "*Phase I Environmental Site Assessment Thundering Waters Development, East & North of Dorchester Road & West of Progress Street, Niagara Falls, Ontario*" dated January 25, 2016, (Phase I ESA).

This Phase Two ESA was carried out in accordance with Amec Foster Wheeler's proposal dated October 16, 2015 and authorization to proceed, signed by the Client on November 15, 2015. A delineation testpitting and ground water sampling program was carried out in accordance with Amec Foster Wheeler's proposal dated December 2, 2016 and authorization to proceed, signed by the Client on December 3, 2016.

A Phase Two ESA in support of a RSC is legislated under Ontario Regulation 153/04 as amended (*O. Reg. 153/04* as amended). The regulation outlines the procedure to follow to complete Phase One and Two ESAs including the requirement to complete a Phase One ESA prior to completing a Phase Two ESA. As such, should the Client require a RSC, the Phase I ESA will need to be updated to a Phase One ESA that meets *O. Reg. 153/04* as amended requirements.

2.1 Site Description

The Phase Two Property is located east and north of Dorchester Road and west of Progress Street in Niagara Falls, Ontario (**Figure 1**). The Phase Two Property is currently owned by the Client and is bisected by a railway running northeast to southwest. The Phase Two Property was vacant, undeveloped land and lies in a municipal urban setting in an area of mixed vacant, industrial and commercial land uses. **Figures 2a, 2b and 2c** illustrate the property boundaries of the Phase Two Property.

2.2 Property Ownership

The property ownership and Client names and contact information is as follows:

Owner	GR (CAN) Investments Co., Ltd.	4342 Queen Street, Suite 203 Niagara Falls, Ontario L2E 7J7 P: 1 (905) 233-4427 Gang (Allan) Hu <u>allanghu@gmail.com</u>
-------	--------------------------------	--

2.3 Current and Proposed Future Uses

The Phase Two Property was vacant, undeveloped land covered with dense vegetation. Railway tracks were observed bisecting the Phase Two Property from northeast to southwest. The proposed future use is residential, commercial and parkland. Section 168.3.1 of the Environmental Protection Act (EPA) may prohibit the residential, commercial and parkland property use unless a RSC is filed. As mentioned previously, the Client will confirm the requirement for a RSC.

2.4 Applicable Site Condition Standard

Under O. Reg. 153/04 as amended, the MOEE has outlined SCS in the document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated 15 April 2011. The SCS applicable to the Phase Two Property have been evaluated on the basis of the following rationale:

- The proposed property use is residential, commercial and parkland and therefore the SCS for residential/parkland/institutional property use would apply;
- Two samples were submitted for grain size distribution tests. Grain size distribution tests on a composite sample of the silty sand fill (TP119-4 and TP121-4) and a composite sample of the native silty clay (TP108-4 and TP112-6) indicated that 37% and 89% of the samples consisted of particles less than 75 micrometres (µm) in diameter, respectively (Appendix A). The silty sand is classified as a coarse textured soil (i.e., contains more than 50% by mass of particles that are 75 µm or larger in mean diameter (*O. Reg. 153/04, s.42 (2)*) and the silty clay of classified as a medium and fine textured soil (i.e., contains 50% or more by mass of particles that are smaller than 75 µm in mean diameter (*O. Reg. 153/04, s.42 (2)*). As more than 1/3 of the soil at the property consists of medium and fine textured soils, the soil materials at the Phase Two Property have been classified as medium and fine textured (*O. Reg. 153/04, s.42 (1*));
- Municipal services are located throughout the Phase Two Study Area, however, three domestic water wells are located within 250 metres (m) of the Phase Two Property (based on a search of the MOECC interactive well record mapping tool completed by Amec Foster Wheeler on March 16, 2016);

- In accordance with *O. Reg. 153/04*, the Phase Two Property does include land that is within 30 m of a "water body";
- The depth to bedrock is greater than 2 m; and
- The Phase Two Property is classified as an environmentally sensitive area under *O. Reg. 153/04* as amended, as:
 - The Phase Two Property appears to include land (or be within 30 m of land) that would be classified as an area of natural significance as defined by *O. Reg. 153/04* as amended; and
 - Soil pH values were reported between 7.2 and 7.8 in the nine soil/fill samples (including two field duplicates) submitted for pH determination from the borehole and testpit samples. The reported soil pH for all soil samples was within 5.0 to 9.0 units for surface soil (surface to 1.5 metres below ground surface [mbgs] and 5.0 to 11.0 units for subsurface soil (below 1.5 mbgs).

Based on the above site characteristics, the SCS currently applicable to the Phase Two Property, for the purposes of filing a RSC, are the Table 1 Full Depth Generic SCS for a non-potable ground water condition, residential/parkland/institutional/industrial/commercial/community property use and fine and medium textured soils (the Table 1 SCS). The Client will confirm the boundaries of the area of natural significance (wetland) and forward this information to Amec Foster Wheeler. It is possible that the SCS may change (or for a portion of the Phase Two Property) pending this study result.

3.0 BACKGROUND INFORMATION

3.1 Physical Setting

The Phase Two Property lies at an approximate elevation of 180 metres above sea level (mASL) (**Niagara Topographic Series, 1984**). The UTM coordinates (NAD 83) are Zone 17, 4768774 Northing and 654873 Easting. The topography across the Phase Two Property is relatively flat and graded evenly with the surrounding properties to the east and northwest. A drainage ditch was noted which originates near the railway tracks and traverses the central area of the southern portion of the Phase Two Property and discharges into the Welland River. The Welland River and Queenston-Chippawa Power Canal are located approximately 0.025 to 0.130 kilometres (km) south and west of the Phase Two Property, respectively. Therefore, the Phase Two Property includes land within 30 m of a "waterbody" as outlined in *O. Reg. 153/04* as amended.

The surficial geology within the Phase Two Property and surrounding area is interpreted to consist of glaciocustrine deposits which consist of sand, gravelly sand and gravel, near shore and beach deposits ("*Quaternary Geology of the Niagara Area, Southern Ontario*", preliminary map p. 764, Ontario Division of Mines, 1972).

Bedrock is anticipated be of the Middle and Lower Silurian Age, consisting of sandstone, shale, dolostone and siltstone of the Lockport Formation (*"Bedrock Geology of Ontario"*, Ontario Geological Survey, 1991). Bedrock is anticipated to be encountered at depths ranging from 20 to 25 mbgs across the Phase Two Property (*"Niagara Sheet Southern Ontario Drift Thickness"*, Preliminary Map p. 537, Ontario Department of Mines, 1969).

The regional ground water flow direction, based on topographic features and knowledge gained from other sites in the area, is expected to be to the southwest towards the Welland River. Locally, however, the shallow ground water flow may be influenced by underground utility trenches, conduits, and structures, variations in soil type, and minor fluctuations in topography.

3.2 Past Investigations

Background materials relevant to the discussion provided herein are documented in more detail in Amec Foster Wheeler's Phase I ESA.

Based on the Amec Foster Wheeler Phase I ESA, Areas of Potential Environmental Concern (APECs) associated with current or former Potentially Contaminating Activities (PCAs) associated with the Phase I Property and the surrounding properties are as follows:

Area of Potential Environmental Concern	Location of APEC on Phase One Property	Potentially Contaminating Activity*	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC-1: Historic Infilling	Southern portion of Phase One Property	#30 – Importation of Fill Material of Unknown Quality	On-Site	Metals, SAR, EC, PAHs, BTEX, PHCs	Soil Ground Water
APEC-2: Former Cyro Canada Inc	Northwestern portion of Phase One Property	#8 – Chemical Manufacturing, Processing, and Bulk Storage	Off-Site	Metals, VOCs, PHCs	Soil Ground Water
APEC-3: Chemtrade Logistics	Northeastern portion of Phase One Property	#8 – Chemical Manufacturing, Processing, and Bulk Storage	Off-Site	Metals, VOCs, PHCs	Soil Ground Water

*Potentially Contaminating Activity (PCA) described specifically for the Phase One Property with reference to the applicable item number in the Table of Potentially Contaminating Activities provided in Schedule D of *O. Reg. 153/04* as amended, where applicable.

EC – Electrical Conductivity

PHCs – Petroleum Hydrocarbons

SAR – Sodium Absorption Ratio

VOCs – Volatile Organic Compounds

BTEX – Benzene, toluene, ethylbenzene, xylenes

PAHs – Polycyclic Aromatic Hydrocarbons

As such, Amec Foster Wheeler completed the following scope of work for the Phase Two ESA.

4.0 SCOPE OF THE INVESTIGATION

4.1 Overview of Site Investigation

The investigation consisted of the following activities:

- Developing a Health & Safety Plan and a Sampling and Analysis Plan for the intrusive work at the Phase Two Property. In accordance with Schedule E of *O. Reg. 153/04 as amended*, a copy of the Sampling and Analysis Plan is provided in **Appendix B**;
- Undertaking clearance of all public underground utility services (i.e., telephone, hydro, natural gas, cable television and sewer/water). In addition, Amec Foster Wheeler retained a private utility locate contractor to identify the location of any private services on the Phase Two Property. Amec Foster Wheeler requested that the owner identify any privately owned services as well prior to commencement of the work (none were identified by the owner);
- Advancing a total of five boreholes (BH/MW1, BH/MW2, BH/MW3, BH/MW4 and BH/MW5) at the Phase Two Property to maximum depths of 6.1 mbgs using a Geoprobe 7822 DT;
- Advancing a total of twenty-one testpits (TP101 through TP121) at the Phase Two Property to maximum depths ranging from 1.5 to 4.0 mbgs using a CAT 420F IT rubber tired backhoe;
- A total of twenty-nine delineation testpits were excavated across the Phase Two Property using a rubber tired backhoe to maximum depths ranging from 1.0 to 2.0 mbgs;
- Field screening all soil samples collected during the drilling and testpitting programs both visually and measuring Combustible Organic Vapours (COVs) and Total Organic Vapours (TOVs) utilizing a RKI Eagle 2, equipped with dual sensors which were calibrated to a known isobutylene standard (for TOV sensor) and to a known hexane standard (for COV sensor);
- Installing ground water monitoring wells in the five boreholes (BH/MW1, BH/MW2, BH/MW3, BH/MW4 and BH/MW5) and developing the wells with dedicated sampling equipment after installation;
- Conducting ground water monitoring at the newly installed monitoring wells as well as two
 existing monitoring wells including measuring ground water levels and checking for freephase petroleum product/sheens;
- Purging the monitoring wells using a low flow sampling technique with dedicated sampling equipment prior to collecting ground water samples;

- Completing an additional round of ground water sampling in January 2017 for metals analysis;
- Submitting selected soil and ground water samples for laboratory analyses for potential contaminants of concern (COCs) including: metals including hydrides, inorganics (including pH, Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR)) petroleum hydrocarbons (PHC) in the F1 to F4 ranges, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs);
- Completing a hydrogeological assessment in the newly installed and existing monitoring wells;
- Evaluating the results of the chemical analyses against the applicable assessment criteria; and
- Preparing a Phase Two ESA report documenting the findings of the investigation.

4.2 Media Investigated

Soil samples were collected during the drilling and testpitting programs. Furthermore, as the potential COCs included VOCs and PHCs which can become mobilized and potentially be transported to the ground water, ground water media was sampled. Ground water samples were collected in four monitoring wells installed during the Phase Two ESA as well as two monitoring wells which were previously installed at the Phase Two Property.

No sediment samples were analyzed because no water bodies are present on the Phase Two Property.

4.3 Phase One ESA Conceptual Site Model

As part of the Phase I ESA, a conceptual site model (CSM) was not required. Should the Client require an RSC, the Phase I ESA report will need to be revised in order to support a RSC.

Based on the Phase I ESA findings, APECs resulting from current or former PCAs associated with the Phase I Property and the surrounding properties are as follows:

*Potentially Contaminating Activity (PCA) described specifically for the Phase Two Property with reference to the applicable item number in the Table of Potentially Contaminating Activities provided in Schedule D of *O. Reg. 153/04* as amended, where applicable.

EC – Electrical Conductivity

PHCs – Petroleum Hydrocarbons

SAR – Sodium Absorption Ratio

VOCs – Volatile Organic Compounds

BTEX – Benzene, toluene, ethylbenzene, xylenes

PAHs – Polycyclic Aromatic Hydrocarbons

As such, Amec Foster Wheeler completed the following scope of work for the Phase Two ESA.

4.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan is included in **Appendix B**. There were no major deviations from the Sampling and Analysis Plan with the exception of the additional two ground water samples from the existing monitoring wells. In addition, a delineation testpitting program was completed in December 2016 and the monitoring wells were re-sampled in January 2017. During the resampling of the monitoring wells, BH/MW104 could not be sampled due to lack of water and high sediment levels and BH/MW103 is no longer present (damaged beyond repair).

4.5 Impediments

There were no physical impediments or denial of access during the Phase Two ESA with the exception of thick brush and vegetation which made some areas of the Phase Two Property inaccessible.

5.1 General

This section describes the methods used during this subsurface investigation work, including all conventional drilling, testpitting, soil sampling, monitoring well installation and ground water monitoring activities. Quality Assurance/Quality Control (QA/QC) procedures are also discussed. The borehole drilling, testpitting, monitoring well installations, ground water monitoring, and hydrogeological testing activities were undertaken between December 2, 2015 and January 3, 2017.

The investigation activities were conducted in accordance with Amec Foster Wheeler's SOPs as of July 2011 and updated in October 2013. The Sampling and Analysis Plan (**Appendix B**) lists the relevant SOPs.

5.2 Drilling

Drilling

Five boreholes (BH/MW1, BH/MW2, BH/MW3, BH/MW4, and BH/MW5) were drilled on December 2 and 3, 2015 by Direct Environmental Drilling Inc. (DED) of St. Thomas, Ontario (MOECC License Number 7320). The boreholes were advanced to a maximum depth of 6.1 mbgs using a Geoprobe 7822 DT. Continuous core samples of 1.5 m lengths were obtained throughout the borehole advancement using the Geoprobe's macro core sampling system, which uses dedicated (disposable) sample liners to prevent cross contamination.

All five of the boreholes (BH/MW1, BH/MW2, BH/MW3, BH/MW4 and BH/MW5) were completed as ground water monitoring wells to depths of 6.1 mbgs.

The locations of the boreholes/monitoring wells are indicated on **Figure 2**. The borehole logs are included in **Appendix A**.

The sampling equipment was cleaned between each sample to minimize the potential for crosscontamination. Soil cuttings generated during the borehole investigation were stored in 205 litre (L) drums. Residue Management is discussed in Section 5.10 and **Appendix C**.

5.3 Testpitting

Twenty-one testpits (TP101 through TP121) were excavated on December 8 and 9, 2015 by Cotton Inc. of Niagara Falls, Ontario. The testpits were advanced to a maximum depth ranging from 1.5 to 4.0 mbgs. Samples were obtained at every 0.5 m using a decontaminated stainless steel shovel.

Twenty-nine testpits (TP201 to TP229) were excavated on December 21 and 22, 2016 by H.S. Cole Excavating of St. Catharines, Ontario using a Hitachi Zaxis 160 LC Backhoe. The delineation testpits were advanced to a maximum depth of 2.0 mbgs. Samples were obtained at every 0.5 m using a decontaminated stainless steel shovel.

The locations of the testpits are indicated on **Figures 2a and 2b**. The testpit logs are included in **Appendix A**.

The sampling equipment was cleaned between each sample to minimize the potential for crosscontamination.

5.4 Soil: Sampling

Soil samples collected during the drilling and testpitting programs were split into duplicate fractions upon recovery. The primary sample fractions were placed into laboratory supplied unpreserved glass jars with Teflon-lined lids and subsequently stored in coolers on ice for future potential laboratory analysis. The duplicate sample fractions were placed in resealable plastic sample bags and stored at ambient temperature for subsequent field vapour screening. All soil samples were collected in accordance with strict environmental sampling protocols to minimize loss of volatile organics and to ensure reliable and representative results. All soil sampling equipment (including trowels, spatulas, spoons, etc.) was thoroughly decontaminated between soil sample locations to prevent potential cross-contamination.

The subsurface conditions encountered at the Phase Two Property are described in the borehole and testpit logs provided in **Appendix A**. In general, the fill was dominated by silty sand with organics, and traces of gravel and cobbles which is believed to be reworked native material from the material used to fill the former Welland River. The fill materials ranged in depth from 0.5 to 2.0 mbgs at most borehole and testpit locations, with the exception of TP114, TP115 and TP116 (4.0 mbgs). A native silty clay with traces of sand seams and fine gravel, was present beneath the fill materials in all boreholes and testpits. The silty clay/clayey silt extended to the termination depths of the shallower testpits and to depth ranging from 4.6 to 6.1 mbgs in the deeper boreholes (where monitoring wells were installed). A peat/organic layer was encountered in BH/MW101 at a depth of 4.4 mbgs. Trace slag was noted in TP221 (0.5 mbgs). Black and/or white seams were noted in the fill material in TP221, TP226, TP227 and TP228. Bedrock was not encountered during the drilling program. The stratigraphy in the delineation testpits was consistent with the boreholes and testpits completed in 2015.

Visual or olfactory evidence of petroleum hydrocarbon or other chemical impacts were not observed by Amec Foster Wheeler during the drilling or testpitting program.

Representative cross-sections oriented north to south and east to west are provided in **Figures 3 and 4**, respectively.

All soil samples collected during the drilling and testpitting programs were screened in the field for gross evidence of negative environmental impact including staining and odours. Soil sample headspace screening was also performed to facilitate sample selections for laboratory analysis and to provide an assessment of the vertical contaminant distributions at each location. The duplicate soil sample fractions were screened for COV and TOV concentrations using the sample headspace method. COV and TOV concentrations were measured using an RKI EAGLE 2^{TM} combustible vapour analyzer equipped with dual sensors and calibrated to known hexane and isobutylene standards and operated in methane elimination mode. The RKI EAGLE 2^{TM} is capable of detecting 0-11,000 parts per million (ppm) and 0-100 % Lower Explosive Limit (LEL) with an accuracy of +/- 5% and the calibration standard is Hexane. The equipment is calibrated every day prior to the commencement of fieldwork.

The TOV/COV screening measures the cumulative organic/combustible vapour present within sample headspace. TOV/COV results are semi-quantitative at best and are generally only used for relative sample comparison purposes when selecting samples from individual boreholes for laboratory analysis.

Soil samples were selected for laboratory analysis based on observations in the field. The depth intervals of samples selected for analysis and the parameters they were submitted for are included in the Tables appendix at the end of this report.

The soil vapour concentrations are included in the borehole and testpit logs in **Appendix A**. There were no deviations from the field screening method from the Sampling and Analysis Plan.

5.6 Ground Water: Monitoring Well Installation

Overburden monitoring wells were installed in the five boreholes (BH/MW1, BH/MW2, BH/MW3, BH/MW4 and BH/MW5) to obtain hydrogeologic and ground water quality information from the hydrostratigraphic zone. The monitoring wells were installed by DED on December 2 and 3, 2015 using a Geoprobe 7822 DT to depths of 6.1 mbgs. The monitoring wells were installed by using 100 millimetre (mm) diameter direct push casings. The casings are washed prior to coming to the Phase Two Property and drilling proceeds from the least to inferred most contaminated borehole in order to reduce the potential for cross-contamination. No ground water samples were collected during drilling.

The monitoring wells were constructed using 32 mm diameter, schedule 40, flush-joint threaded PVC monitoring well supplies. The monitoring wells were completed with a 3.05 m length of #10 mil slotted intake screen. The tops of the intake screens were then extended to the ground surface using solid riser pipe. A silica sand filter pack was placed between the intake screen and the wall of the borehole. The filter pack was extended approximately 0.3 m above the top of the well screen. A grout/bentonite seal was placed above the sand pack to surface. The wells were completed with stick-up casings. The locations of the monitoring wells are shown in **Figure 2**. Details of the monitoring well constructions are included in the borehole logs in **Appendix A**.

The ground water monitoring wells installed were instrumented with dedicated Waterra[™] foot valve inertial pumps fitted with polyethylene tubing to facilitate well development. The wells were developed by removing three well volumes using dedicated instrumentation (i.e., foot valve and tubing) on December 7, 2015 and January 8, 2016. In addition, Amec Foster Wheeler developed two wells formerly installed at the Phase Two Property on January 8, 2016 (BH/MW201 and BH/MW202). The locations of the former monitoring wells are shown in **Figure 2**. During both developing events, BH/MW105 was dry. Amec Foster Wheeler decided to omit this well from any further ground water monitoring. Amec Foster Wheeler recorded the stabilization parameters (including pH, conductivity and temperature) as outlined in Amec Foster Wheeler's SOPs. During development, an oil/water interface meter was used to measure potential accumulations of Light Non-Aqueous Phase Liquids (LNAPL) or Dense Non-Aqueous Phase Liquids (DNAPL), and ground water levels in the wells.

5.7 Ground Water: Field Measurement of Water Quality Parameters

The wells (BH/MW101, BH/MW102, BH/MW103, BH/MW104, BH/MW201 and BH/MW202) were purged on January 20, 2016 using low flow sampling techniques until the pH, conductivity and temperature had reached stabilization criteria as outlined in Amec Foster Wheeler's SOPs. MW202 was purged on January 3, 2017 using low flow sampling techniques. It is noted that MW104 had insufficient ground water and high silt content to sample and MW103 is damaged and can no longer be sampled. During purging, an oil/water interface meter was used to measure potential accumulations of LNAPL or DNAPL, and ground water levels in the wells.

5.8 Ground Water: Sampling

Following monitoring and purging activities, Amec Foster Wheeler collected ground water samples (BH/MW101, BH/MW102, BH/MW103, BH/MW104, BH/MW201 and BH/MW202) on January 20, 2016 using low flow sampling techniques. MW202 was sampled on January 3, 2017 using low flow sampling techniques. The samples were collected into laboratory-provided containers using the dedicated instrumentation. Ground water samples for metals were field-filtered. All samples were stored in coolers on ice after collection and during transportation to the laboratory where they were delivered under continuous Chain of Custody documentation.

Representative ground water samples collected during the investigation in the wells were submitted for laboratory analysis of suspect parameters of concern. The sampling methodology including jar, bottle and preservative requirements followed the Analytical Protocol. Field duplicate samples as well as other QA/QC samples including field, trip and spike blanks were collected as required throughout the assessment work.

Ground water elevation measurements were collected on March 1, 2016 and are further discussed in Section 6.2.

5.9 Sediment: Sampling

No sediment samples were collected during the Phase Two ESA.

5.10 Analytical Testing

Amec Foster Wheeler collected soil/fill and ground water samples which were submitted to Paracel Laboratories Ltd. (Paracel), an ISO 17025-certified laboratory located in Ottawa, Ontario for laboratory analysis.

5.11 Residue Management Procedures

The soil cuttings generated during the drilling investigation were placed in 205 L steel drums on-Site. Soil/fill removed as part of the testpit excavation activities were placed back in the testpit in reverse order of removal and nominally compacted with the bucket of the backhoe upon completion. Liquid wastes generated during the investigation (well development and purged water) were stored on-Site in 205 L steel drums. Residue management is discussed further in **Appendix C**.

5.12 Elevation Surveying

An elevation survey was completed by Amec Foster Wheeler on January 19, 2016 and V&S Engineering on February 10, 2016. The ground surface elevations at the borehole/monitoring well and testpits locations were surveyed to a permanent and recoverable benchmark. The benchmark is described as *"the top of concrete pedestal for flashing lights at CN crossing at Dorchester Road"*. This benchmark was assigned an arbitrary elevation of 100.00 m which was then assigned a geodetic elevation of 178.42 m above sea level (mASL) as per the V&S Engineering survey.

5.13 Quality Assurance and Quality Control Measures

Soil samples collected during the drilling and testpitting programs were split into duplicate fractions upon recovery. The primary sample fractions were placed into laboratory supplied unpreserved glass jars with Teflon-lined lids and subsequently stored in coolers on ice for future potential laboratory analysis. Samples that were potentially going to be submitted for analysis for PHC F1 and VOCs were collected in 40 millilitre (mL) vials and field preserved. Samples for analysis for metals and other parameters were placed into 250 mL glass jars with Teflon-lined lids and subsequently stored in coolers on ice packs for future potential laboratory analysis. Each sample was labelled using a unique identifier except for blind duplicate samples that were assigned aliases. All samples were delivered to the laboratory under continuous Chain of Custody documentation. No deviations from the Sampling and Analysis Plan were noted.

The sampling methodology including jar, bottle and preservative requirements followed Analytical Protocol. Field duplicate soil and ground water samples as well as other QA/QC samples including field, trip and spike blanks for ground water samples were to be collected as required throughout the assessment work. A minimum of one field duplicate for every ten samples in soil was submitted. The field instruments were calibrated on a daily basis.

All soil sampling equipment was thoroughly decontaminated between soil sample locations to prevent potential cross-contamination. Decontamination activities included:

- Physical removal of any adhered debris;
- Wash/scrub in "Alconox" soap solution;
- Distilled water rinse; and
- Methanol rinse/air drying.

In addition to field activities pertaining to quality assurance (decontamination of non-dedicated equipment, blind duplicate samples, instrument calibration, etc.), an analytical quality assurance program was also implemented.

The chemical analyses completed on selected soil samples were carried out at Paracel.

The validity of the analytical results reported for the samples collected during this investigation has been assessed using the criteria presented in the Analytical Protocol.

The Analytical Protocol establishes Acceptance Limits for use when assessing the reliability of data reported by analytical laboratories. These include maximum hold times for the storage of samples/sample extracts between collection and analysis, specified/approved analytical methods, required field and/or laboratory quality assurance samples such as blanks and field and laboratory duplicates, specified recovery ranges for spiked samples and surrogates (compounds added to samples in known concentrations for data validation purposes), required Reporting Limits (RL, maximum allowable detection limits) and specified precision required when analyzing laboratory duplicate samples.

The results of the analytical quality assurance program are discussed in Section 6.9.

6.0 REVIEW AND EVALUATION

6.1 Geology

The Phase Two ESA included the investigation of three geologic units including the reworked silty clay materials, silty sand fill and silty clay found at depth.

The reworked fill materials found near the surface were above the ground water level with the exception of BH/MW101. DNAPLs or petroleum related ground water contaminants (if any) could be present in this unit and therefore this unit was investigated for DNAPLs or petroleum related contaminants in BH/MW101. The thickness of this unit ranged from 0.1 to 3.0 m in BH/MW101. In BH/MW102, BH/MW103, BH/MW104 and BH/MW105, this unit ranged from 0.1 to 0.5 m and from 0.1 to 4.0 m in TP101 through TP121.

The silty sand fill was partially saturated, therefore below the ground water level the silty sand is considered an aquifer and consists of medium permeability silty sand. The mobility of DNAPLs or petroleum related contaminants (if any) was considered to be possible; however, ground water sample results indicated that contamination in the ground water was not present. The thickness of this unit ranged from 2.0 to 3.5 m (TP119). The saturated aquifer thickness determined from the ground water elevations on March 1, 2016 to the bottom of the silty sand geologic unit ranged from to 3.1 to 4.4 m.

The silty clay is considered an aquitard and consists of a silty clay with a low permeability. The mobility of DNAPLs or petroleum related contaminants (if any) were considered to be minimal and therefore this unit was not investigated for DNAPLs or petroleum related contaminants. The thickness of this unit was not determined as the boreholes were terminated in this unit.

No other geologic unit or bedrock was encountered in any of the boreholes or testpits at the Phase Two Property.

The relative elevations of the first geologic unit (reworked fill materials) was ground surface (173.20 to 183.40 mASL) to 176.20 to 180.35 mASL. The relative elevation of the top of the silty sand geologic unit ranged from 178.03 to 179.52 mASL and the relative elevation of the bottom of this geologic unit ranged from 176.53 to 179.02 mASL. The relative elevation of the top of the silty clay geologic unit ranged from 176.20 to 181.72 mASL; the bottom of this geologic unit was not encountered during this Phase Two ESA.

The relative water level elevations of the silty sand and silty clay geologic unit were 179.62 mASL (BH/MW101), 171.80 mASL (BH/MW103), 177.19 mASL (BH/MW104), 179.11 mASL (BH/MW201) and 179.00 mASL (BH/MW202) on March 1, 2016.

6.2 Ground Water: Elevations and Flow Direction

The monitoring wells were placed in order for the screened intervals to assess the aquifer and to interpret the horizontal flow direction. The screened intervals were set to straddle the water table based on observations during drilling. No free flowing product was noted in the monitoring

wells. Further details of the ground water monitoring wells are included in Table 1.

On March 1, 2016 following completion of the hydraulic testing, the depth to ground water measured from surface ranged from approximately 0.17 to 3.49 mbgs at the Phase Two Property which corresponds to geodetic elevations ranging from 171.80 to 179.62 mASL as seen in **Figure 5a**. It is worth noting that BH/MW102 was not located, BH/MW105 and BH/MW200 were previously dry and were not recorded during this monitoring event.

In the southern portion of the Phase Two Property, excluding BH/MW103 (which is located approximately 4-5 m lower than the other monitoring wells), BH/MW102 and BH/MW200 (which were not recorded), the geodetic ground water elevations ranged from 179.00 to 179.62 mASL as seen in **Figure 5b**. Using the three-point method, the horizontal ground water flow was calculated to be south towards the Welland River with a gradient of approximately 0.002 metres/metre (m/m).

It is worth noting that the Phase Two Property is large, has significant changes in topography and has significant areas of fill while others are native. It is believed that generally the ground water flow direction would be towards the Welland River in the southern portion of the Phase Two Property and towards the Queenston-Chippawa Power Canal in the northern portion of the Phase Two Property.

6.3 Ground Water: Hydraulic Gradients

Hydraulic testing (single well response tests) were initiated on February 2, 2016 to assess the hydraulic conductivity of the screened overburden soils at the Phase Two Property.

Rising head tests were conducted at BH/MW101, BH/MW103, BH/MW104 and BH/MW202 by removing a volume of water sufficient to cause a displacement of the water level in the monitoring well and allowed it to recover back to equilibrium. A non-vented pressure transducer programmed to take measurements every minute was placed in the monitoring well prior to the start of the test and recorded the water level through the test. Manual water level measurements were initially taken to corroborate the transducer data, due to expected very slow recovery, the transducers were left in the monitoring wells to record the recovery over several days.

On February 19, 2016 water levels were measured in the monitoring wells, it was determined that the tests in BH/MW101 and BH/MW202 were complete however the tests in and BH/MW103 and BH/MW104 were not and were left to continue recording. It was also determined that the data for the test in BH/MW202 was not sufficient and needed to be repeated. The transducer was reset to record every second and the test was repeated.

On March 1, 2016 water levels were measured in the monitoring wells, it was determined that the tests in BH/MW103 and BH/MW104 were reasonably complete.

The hydraulic test data was analysed using the Bouwer-Rice method (Bouwer & Rice, 1976) in AQTESOLV version 4.5 (Duffield, 2007).

Monitoring Well	Test Type	Hydraulic Conductivity
BH/MW101	Rising Head	5.7 x 10 ⁻⁸ m/s
BH/MW103	Rising Head	3.6 x 10 ⁻¹⁰ m/s
BH/MW104	Rising Head	4.2 x 10 ⁻¹⁰ m/s
BH/MW202	Rising Head	4.8 x 10 ⁻⁷ m/s

The estimated hydraulic conductivities are presented in the following table.

The results of the hydraulic testing are consistent with expected results based on the soil descriptions in the borehole logs. BH/MW101 is screened in sandy silt fill and peat. BH/MW103 and BH/MW104 are screened in silty clay and BH/MW202 is screened in buried topsoil and silty clay to clayey silt, but has a sand pack which extends up into fill.

The results of the analysis can be found in **Appendix D**.

As discussed in Section 6.2, on March 1, 2016, the horizontal ground water flow was calculated to be south towards the Welland River with a gradient of approximately 0.002 m/m (**Figure 5b**).

6.4 Medium and Fine Soil Texture

One type of native soil was encountered at the Phase Two Property, a silty clay with traces of fine gravel. Gran size of the native silty clay (TP108-4 and TP112-6) indicated that 89% of the samples consisted of particles less than 75 μ m in diameter, respectively **(Appendix A)**. The silty clay is classified as a medium and fine textures soil (i.e., contains 50% or more by mass of particles that are smaller than 75 μ m in mean diameter (*O. Reg. 153/04, s.42 (2)*)). As more than 1/3 of the soil at the property consists of medium and fine textured soils, the soil materials at the Phase Two Property have been classified as medium and fine textured (*O. Reg. 153/04, s.42 (1*)).

6.5 Soil: Field Screening

COV concentration headspace measurements recorded in the soil samples collected from the boreholes and testpits ranged from non-detectable to 230 part per million (ppm). The TOV concentrations from the boreholes and testpits ranged from non-detectable to 2 ppm. The COV and TOV concentrations headspace measurements are summarized in the borehole logs in **Appendix A**.

It is Amec Foster Wheeler's opinion that the results of the screening program suggest a low potential for the presence of significant combustible soil headspace vapour levels in the boreholes. Laboratory analysis is required to confirm and quantify these field screening results (details follow).

Visual or olfactory evidence of petroleum hydrocarbon impacts were not observed by Amec Foster Wheeler during the drilling or testpitting program.

No LNAPL or DNAPL was observed at the time of development or sampling of any of the monitoring wells.

6.6 Soil Quality

The results of the soil sample analyses and their respective Table 1 SCS are summarized in **Tables 2, 3 and 4**. The laboratory certificates of analysis are included in **Appendix E**.

In accordance with Schedule E of *O. Reg. 153/04 as amended*, **Table 5** lists the maximum concentration for each tested parameter on the soil samples, which also includes the location of each corresponding sample.

The soil analytical results of this Phase Two ESA are summarized below:

- Metals testing was completed on samples (depth of sample in brackets): BH/MW101-1-C (0.1-1.5 mbgs), BH/MW102-1A-C (0.1-0.6 mbgs), BH/MW103-1A-C (0.1-0.5 mbgs), BH/MW104-1-C (0.2-1.5), BH/MW105-1-C (0.2-1.5 mbgs), TP101-5D (2.5 mbgs), TP102-1 (0.5 mbgs), TP103-1 (0.5 mbgs), TP104-1 (0.5 mbgs), TP105-1 (0.5 mbgs), TP106-1 (0.5 mbgs), TP107-1 (0.5 mbgs), TP108-1 (0.5 mbgs), TP109-2 (1.0 mbgs), TP110-1C (0.5 mbgs), TP111-1 (0.5 mbgs), TP112-2D (1.0 mbgs), TP113-1 (0.5 mbgs), TP113-7 (3.5 mbgs), TP114-1 (0.5 mbgs), TP115-1 (0.5 mbgs), TP116-2 (1.0 mbgs), TP117-3 (1.5 mbgs), TP118-1 (0.5 mbgs), TP119-1C (0.5 mbgs), TP120-1 (0.5 mbgs), TP121-1 (0.5 mbgs), TP112-5 (2.5 mbgs) and delineation testpits TP201 to TP223 from depths of 0.5 to 2.0 mbgs. Metals concentrations (Table 2) were reported below the Table 1 SCS at all locations tested with the following exceptions:
 - Antimony in TP103-1 (2.0 micrograms/gram [μ g/g]) versus the Table 1 SCS of 1.3 μ g/g. However, based on soil sample averaging with TP213 and TP214, this exceedance for antimony is no longer valid;
 - Molybdenum in TP109-2 (2.3 μg/g) versus the Table 1 SCS of 2 μg/g. However, based on soil sample averaging with TP201 and TP202, this exceedance for molybdenum is no longer valid; and
 - \circ Thallium in BH/MW101-1-C (1.2 $\mu g/g),$ BH/MW103-1A-C (1.2 $\mu g/g)$ and BH/MW104-1-C (1.3 $\mu g/g)$ versus the Table 1 SCS of 1 $\mu g/g.$
- Mercury and hexavalent chromium testing was completed on samples (depth of sample in brackets): TP112-2D (1.0 mbgs), TP113-7 (3.5 mbgs), TP119-8c (4.0 mbgs) and TP121-5 (2.5 mbgs). Mercury and hexavalent chromium concentrations (**Table 2**) were reported below the Table 1 SCS at all locations tested.
- Soil pH was determined for the following samples (depth of sample in brackets): BH/MW101-1-C (0.1-1.5 mbgs), BH/MW102-1A-C (0.1-0.4 mbgs), BH/MW103-1A-C (0.2-0.5 mbgs), TP101-5 (2.5 mbgs), TP114-1 (0.5 mbgs), TP117-3 (1.5 mbgs) and TP119-8C

(4.0 mbgs). Soil pH ranged from 7.7 to 7.8 for surficial soils and from 7.2 to 7.7 for subsurface soils (**Table 2**).

- EC testing was completed on samples (depth of sample in brackets): BH/MW101-1-C (0.1-1.5 mbgs), BH/MW102-1A-C (0.1-0.6 mbgs), BH/MW103-1A-C (0.1-0.5 mbgs), TP114-1 (0.5 mbgs), TP117-3 (1.5 mbgs) and TP119-8C (4.0 mbgs). In addition, delineation testpits TP224 to TP229 were sampled at 0.5 m intervals to a 2 m depth and analyzed for EC. EC (Tables 2 and 2A) was reported below the Table 1 SCS at all locations tested with the following exceptions:
 - $_{\odot}$ TP117-3 (2,990 microSiemens per centimetre [µS/cm]) and surrounding delineation testpits TP224 to TP229 (EC ranging from 772 to 3,040 µS/cm) versus the Table 1 SCS of 570 µS/cm.
- SAR testing was completed on samples (depth of sample in brackets): BH/MW101-1-C (0.1-1.5 mbgs), BH/MW102-1A-C (0.1-0.6 mbgs), BH/MW103-1A-c (0.2-0.5 mbgs), TP114-1 (0.5 mbgs), TP117-3 (1.5 mbgs) and TP119-8C (4.0 mbgs). SAR (Table 2) was reported below the Table 1 SCS at all locations tested.
- VOC testing was completed on samples (depth of sample in brackets): BH/MW104-3-D (3.8 mbgs), BH/MW105-3-C (3.8 mbgs) and TP113-7 (3.5 mbgs), and BTEX testing was completed on samples BH/MW101-2A-D (1.5 mbgs), BH/MW102-3-D (3.8 mbgs), BH/MW103-3-D (3.8 mbgs), TP119-8D (4.0 mbgs) and TP121-5 (2.5 mbgs). All VOC/BTEX concentrations (Table 3) were reported as non-detectable and were therefore below the Table 1 SCS.
- PHC (F1 to F4) testing was completed on samples (depth of sample in brackets): BH/MW101-2A-D (1.5mbgs), BH/MW102-3-D (3.8 mbgs), BH/MW103-3-D (3.8 mbgs), BH/MW104-3-D (3.8 mbgs), BH/MW105-3-d (3.8 mbgs), TP113-7 (3.5 mbgs), TP119-8D (4.0 mbgs) and TP121-5 (2.5 mbgs). PHC concentrations (**Table 3**) were reported as non-detectable and were therefore below the Table 1 SCS.
- PAH testing was completed on samples (depth of sample in brackets): TP110-1C (0.5 mbgs), TP112-2D (1.0 mbgs), TP113-7 (3.5 mbgs) and TP121-5 (2.5 mbgs). PAH concentrations (**Table 4**) were reported as non-detectable and were therefore below the Table 1 SCS.

The sample locations and sample analyses are indicated on **Figure 6**. No chemical or biological transformations were noted in the analysis nor did the results indicate that the soil/fill at the Phase Two Property is a contaminant mass contributing to ground water impact. No LNAPL or DNAPL was suspected.

6.7 Ground Water Quality

The results of the ground water sample analyses collected from the newly installed monitoring wells, and their respective Table 1 SCS, are summarized in **Tables 6 and 7**. The laboratory certificates of analysis are included in **Appendix E**.

In accordance with Schedule E of *O. Reg. 153/04*, **Table 8** lists the maximum concentration for each tested parameter on the ground water samples including their location and the screened depth of the well for each corresponding sample.

The results of the ground water analyses are summarized below.

Ground water samples were collected from BH/MW101, BH/MW102, BH/MW103, BH/MW104, BH/MW201 and BH/MW202. MW202 was resampled on January 3, 2017. The ground water sample depth interval was 2.4 to 5.5 mbgs in BH/MW101, BH/MW102, BH/MW103 and BH/MW104, 3.0 to 6.1 mbgs in BH/MW201 and 3.0 to 4.6 mbgs in BH/MW202. The samples for metals analysis were field filtered. The ground water analytical results of this Phase Two ESA are summarized below:

- Metals concentrations (**Table 6**) were reported below the Table 1 SCS at all locations tested with the following exceptions:
 - $_{\odot}$ Cobalt in BH/MW103 (5.0 micrograms/litre [µg/L]) versus the Table 1 SCS of 3.8 µg/L;
 - Silver in BH/MW202 (0.5 μg/L) versus the Table 1 SCS of 0.3 μg/L. During the resampling in January 2017, there was no exceedance of the Table 1 SCS for silver; and
 - $_{\odot}$ Uranium in BH/MW103 (53.7 $\mu g/L)$ and BH/MW104 (25.6 $\mu g/L)$ versus the Table 1 SCS of 8.9 $\mu g/L.$
- All VOC and PHC (F1-F4) concentrations (**Table 7**) were reported as non-detectable and were therefore below the Table 1 SCS.

The sample locations and sample analyses are indicated on **Figure 7.** No chemical or biological transformations were noted in the analysis nor did the results indicate that the soil/fill at the Phase Two Property is a contaminant mass contributing to ground water impact. No LNAPL or DNAPL was suspected.

6.8 Sediment Quality

Sediment was not assessed as part of the Phase Two ESA.

6.9 Quality Assurance and Quality Control Results

Field QA/QC Program - Soil

The field QA/QC program consisted of analyzing two field duplicates soil/fill samples for each of the following parameters/parameter groups: pH, conductivity, SAR, and metals, and one field duplicate soil/fill sample for each of the following parameters/parameter groups: mercury, hexavalent chromium, PHCs, VOCs, and PAHs. Duplicate samples are analyzed in order to assess the precision of the field sampling and laboratory analytical processes. To accurately calculate a statistically valid relative percent difference (RPD) for the duplicate sample, the concentration of the analytes found in both the original and duplicate sample must be greater than five (5) times the MDL. The field duplicate samples are summarized as follows:

- The field borehole soil/fill sample duplicate Dup-A was a duplicate of sample TP114-1 for pH, conductivity, SAR, and metals, Dup-C was a duplicate of TP117-3 for pH, conductivity, SAR and metals, Dup-G was a duplicate of TP112-2D for mercury, hexavalent chromium and PAHs, DUP-1 was a duplicate sample of BH/MW105-3-C for PHC and VOCs, DUP AA was a duplicate sample of TP202-2 for metals and DUP AC was a duplicate of TP208-4 for metals. An assessment of the RPDs for the duplicate samples was completed (Tables 2, 3 and 4). The RPDs were either not calculable as both values were not greater than 5 times the MDL or were below the RPD limit (0.3 pH units, 10% for conductivity, 30% for metals, mercury and PHCs, 40% for PAHs, 35% for hexavalent chromium and 50% for BTEX/VOCs with the following exceptions:
 - Conductivity in TP117-3 and DUP-G (RPD of 80%).

It is noted that the RPD values in the Analytical Protocol are for duplicate samples collected at the laboratory and are used for comparison to the RPDs calculated for field duplicates.

Field QA/QC Program – Ground Water

The field QA/QC program consisted of analyzing one (1) field duplicate ground water sample (Dup-A) for metals, VOCs and PHC (F1-F4). Duplicate samples are analyzed in order to assess the precision of the field sampling and laboratory analytical processes. The field duplicate samples are summarized as follows:

The field ground water duplicate (Dup A) was a duplicate of sample BH/MW202 for metals, VOCs and PHCs. Dup A was a duplicate of BH/MW202 on January 3, 2017 for metals analysis. An assessment of the RPDs for the duplicate sample was completed (**Tables 6** and 7). The RPDs were either not calculable as both values were not greater than 5 times the MDL or were below the RPD limit [20% for metals and 30% for VOC and PHCs]

It is noted that the RPD values in the Analytical Protocol are for duplicate samples collected at the laboratory and are used for comparison to the RPDs calculated for field duplicates.

A field blank sample was submitted for analysis of VOCs. Field blanks are samples of laboratory provided reverse osmosis deionized (RODI) water, which is poured into a set of sample bottles at the same time and in the same general area as the samples are collected. The field blank is used to determine if there is presence of contamination as a result of field handling. The field blank was non-detectable for all parameters analyzed indicating that the field activities did not bias the reported results.

A trip blank was submitted for analysis for VOCs. A trip blank is a sample of RODI water prepared and filled into the relevant sample bottles by the laboratory. The sample is sent with the bottle shipment, taken out to the field and then shipped back with the collected samples for analysis (not opened at any time by field staff). All parameters were found to be non-detectable in the trip blank.

A trip spike was submitted for analysis for VOCs. A trip spike is a sample of RODI water to which a known amount of analyte of interest and appropriate preservative has been added by the laboratory. This sample is also sent with the bottle shipment, taken out to the field and then shipped back with the collected samples for analysis (not opened at any time by field staff). The trip spike recoveries were considered acceptable.

Laboratory QA/QC Program - Soil

The laboratory results for soil samples obtained during Amec Foster Wheeler's investigation met the Acceptance Limits of the Analytical Protocol with the exception of laboratory qualifiers noted by the laboratory **Appendix E**. All samples were analyzed within laboratory hold times and preservation method, storage requirements and container type were utilized as the Analytical Protocol. No issues with the QA/QC that would impact the results of the assessment were noted. The results of the QA/QC analyses are included on the laboratory Certificates of Analyses presented in **Appendix E** and in **Tables 2, 3 and 4**.

Laboratory QA/QC Program – Ground Water

The laboratory results for soil and ground water samples obtained during Amec Foster Wheeler's investigation met the Acceptance Limits of the Analytical Protocol with the exception of laboratory qualifiers noted by the laboratory **Appendix E**. No issues with the QA/QC that would impact the results of the assessment were noted. All samples were analyzed within laboratory hold times and preservation method, storage requirements and container type were utilized as the Analytical Protocol. The results of the QA/QC analyses are included on the laboratory Certificates of Analyses presented in **Appendix E** and in **Tables 6 and 7**.

Certification of Analytical Results

Based on the review of the QA/QC results for soil, the Chain of Custody forms and the laboratory Certificates of Analysis, it is concluded that:

• All Certificates of Analysis received pursuant to Section 47(2) of *O. Reg. 153/04* complies with Section 47(3) of *O. Reg. 153/04*;

• Copies of all Certificates of Analysis are provided in Appendix E of this report.

No issues with the analytical results affected decision-making or prevented the overall objectives of the investigation from being met.

6.10 Phase Two Conceptual Site Model

The Phase Two CSM is provided below:

Regulatory Requirement	Phase Two Property Information		
i. Areas where potentially contaminating activity has occurred, areas of potential	The location of the Phase One and Two Property is shown in Figure 1 . Based on the findings of the Phase One ESA, APECs and PCAs associated with the Phase Two Property are as follows (Figure 8):		
environmental concern and subsurface structures and	 APEC #1 – Historic infilling along the southern portion of the Phase Two Property (PCA 30 - importation of fill material of unknown quality) 		
contaminant distribution and transport.	 APEC #2 – Former Cyro Canada Inc located at 8100 Dorchester Road, adjacent to the northwestern portion of the Phase Two Property (PCA 8 – chemical manufacturing, processing and bulk storage); 		
	 APEC #3 – Chemtrade Logistics located at 6300 Oldfield Road, adjacent to the northeastern portion of the Phase Two Property (PCA 8 - chemical manufacturing, processing and bulk storage). 		
	There are no buildings or other structures present on the Phase Two Property. No active utilities are present on the Phase Two Property. Subsurface features that may affect contaminant distribution at the Phase Two Property include the infilling of the Phase Two Property with material from the former Welland River as depicted on Figures 2a, 2b and 2c .		
ii. Description and figures illustrating the physical setting of the property including, stratigraphy, hydrogeological characteristics, depth to bedrock, depth to water table, aspect related to Section 41 or 43.1 that apply to the property, areas where soil has been brought onto the property, location of any proposed buildings.	The stratigraphy at the Phase Two Property is depicted on the cross sections (Figures 3 and 4) and in general, the subsurface conditions encountered at the Phase Two Property are described as follows: a layer of topsoil was present across the Phase Two Property ranging from 0 to 0.15 mbgs. Beneath the topsoil, a layer of fill was encountered in all boreholes (with the exception of BH/MW104 and BH/MW105) and testpits (with the exception of TP108, TP111, TP118 and TP120). The fill was generally dominated by reworked native silty clay material (BH/MW102, BH/MW103, BH/MW104, BH/MW105, TP102, TP103, TP104, TP105, TP106, TP107, TP109, TP110, TP112, TP113, TP114, TP115, TP116, TP117, and TP121) or layers of silty clay and silty sand (BH/MW101, TP101, and TP119) materials. The		

Regulatory Requirement	Phase Two Property Information
	fill materials ranged in depth across the Phase Two Property from ground surface (TP108, TP111, TP118 and TP120) to 4.4 mbgs (BH/MW101). A native silty clay with traces of sand and fine to medium gravel was present beneath the fill materials in all boreholes and testpits. The silty clay extended to the termination depth of the boreholes. Trace slag was noted in TP221 (0.5 mbgs). Black and/or white seams were noted in the fill material in TP221, TP226, TP227 and TP228. The stratigraphy in the delineation testpits was consistent with the boreholes and testpits completed in 2015.
	Bedrock was not encountered at the maximum drilled depth of the boreholes (6.1 mbgs). The bedrock is anticipated to be of the Middle and Lower Silurian Age, consisting of sandstone, shale, dolostone and siltstone of the Lockport Formation. Bedrock is anticipated to be encountered at depths ranging from 20 to 25 mbgs. The results of the COV and TOV head space screening program suggest a low potential for the presence of significant combustible soil headspace vapour levels in the boreholes and testpits.
	On-Site vapour intrusion is not considered a concern at the Phase Two Property as no volatile COCs were identified on the property during the Phase Two ESA. There are no buildings on the Phase Two Property.
	The property was vacant at the time of the Phase Two ESA. The owner intends to develop the Phase Two Property for mixed residential, commercial and park land use.
	The regional ground water flow direction, based on topographic features and knowledge gained from other sites in the area, is expected to be to the southwest towards the Welland River in the southern portion of the Phase Two Property and towards the Queenston-Chippawa Power Canal in the northern portion of the Phase Two Property. Locally, however, the shallow ground water flow may be influenced by underground utility trenches, conduits, and structures, variations in soil type, and minor fluctuations in topography. As shown in Figure 5b , the interpreted ground water flow is southwest, based on water level readings taken March 1, 2016 at BH/MW101 (1.16 mbgs), BH/MW201 (0.17 mbgs) and BH/MW202 (0.61 mbgs).
	The Phase Two Property is located within or within 30 m of a waterbody and designated protected area based on mapping in the City of Niagara Falls Official Plan and the Region of Niagara Core Natural Heritage Map. These conditions would apply to the Phase Two Property under Section 41 (Environmentally Sensitive Areas).
	The depth to ground water measured from surface ranged from approximately 0.17 to 3.49 mbgs on March 1, 2016 which corresponds to arbitrary elevations ranging from 171.80 to 179.62 mASL. The geodetic ground water elevations ranged from 179.00 to 179.62 mASL as seen on Figure 5a . Using the three point method, the horizontal ground water flow was calculated to be south towards the Welland River with a gradient of approximately 0.002 metres/metre (m/m). The vertical hydraulic gradient was not measured as only one geologic unit was investigated.
	Based on falling head tests, the estimated hydraulic conductivities are as follows:
	 5.7 x 10⁻⁸ m/s (BH/MW01); 3.6 x 10⁻¹⁰ m/s (BH/MW103); 4.2 x 10⁻¹⁰ m/s (BH/MW104); and 4.8 x 10⁻⁷ m/s (BH/MW202).
	Fill materials were present beneath the topsoil at all borehole and testpit locations across the Phase Two Property (with the exception of TP108, TP111, TP118 and TP120). The fill extended as deep as 4.4 mbgs and it is believed to be associated with infilling of former Welland River.

Regulatory Requirement	Phase Two Property Information		
	The standards used for the identification of COCs were Table 1 SCS for use in a residential/parkland/institutional/industrial/commercial/community and medium and fine textured soils.		
iii. Contaminants on the Site	The contaminants located on the Phase Two Property and their origin are as follows:		
	• Thallium in fill materials at BH/MW101, BH/MW103 and BH/MW104;		
	Conductivity in fill materials at TP117;		
	Cobalt in ground water at BH/MW103;		
	 Silver in ground water at BH/MW202. It is noted that an additional round of sampling indicated non-detectable concentrations of silver; and 		
	• Uranium in ground water at BH/MW103 and BH/MW104.		
	The location of these boreholes and testpits are indicated on Figures 2a, 2b and 2cs and 6. The concentrations of metals and EC are attributed to the historical in-filling on-Site with fill material of unknown quality. The migration of the contaminants away from any APEC via a preferential pathway is not likely as the contaminants of concern are not considered mobile. However, it is noted that metals exceedances were noted in the ground water samples in 2015. Resampling of one monitoring well MW202 was conducted in January 2017 and no Table 1 exceedances were noted. The remaining two wells (MW103 and MW104) could not be resampled in January 2017 due to insufficient water or being damaged beyond repair. There were no exceedances of the Table 1 SCS for VOCs and PHCs noted in ground water on the Phase Two Property. In addition, no Light Non-Aqueous Phase Liquids (LNAPL) were observed at the time of development, purging or sampling in any of the monitoring wells. There are no contaminants discharging to the natural environment.		
	No exceedances of the Table 1 SCS for mercury, hexavalent chromium, SAR, PHCs or BTEX/VOCs were noted in soil in the Phase Two ESA.		
	Contaminants that exceeded the Table 1 SCS on the Phase Two Property in soil are depicted on Figure 6 . The COCs in soil are likely attributed to the historical infilling of the former Welland River on the Phase Two property. The estimated horizontal and vertical distribution of the contaminants in each area is indicated on Figures 6 .		
	The transport of these COCs in the surface would not be likely to be influenced by seasonal fluctuations in ground water elevation.		

Regulatory Requirement	Phase Two Property Information			
	As there are impacts above the Ministry's standards in the soil at the Phase Two Property, a RSC could not be filed at this time. The contaminants would need to be addressed using one of or a combination of the following techniques before an RSC could be filed:			
	 Soil Remediation – the impacted materials would be removed for off-Site disposal at a licensed landfill; or 			
	 Site Specific Risk Assessment – impacted materials can remain in place if they are below site specific criteria that would be generated for the Phase Two Property. 			
	Figure 11 outlines the estimated areas of soil impacted above the Table 1 SCS for metals and EC.			
iv. Cross-Sections and distribution of contaminants, depth to water, stratigraphy, subsurface structures or utilities affecting distribution.	The cross-sections provided on Figures 3 and 4 identify the depth to water on March 1, 2016 (ranged from 0.17 to 3.49 mbgs), stratigraphy (fill over native silty clay) and that there are no significant subsurface features that affect distribution of contaminants. The horizontal and vertical distribution of contaminants is indicated in Figures 3, 4, 6 and 7 .			
For areas of contamination, release mechanisms, transport pathways, receptors, exposure points and routes of exposure	Fill materials were present beneath the topsoil at all borehole and testpit locations across the Phase Two Property (with the exception of TP108, TP111, TP118 and TP120). The fill extended as deep as 4.4 mbgs and it is believed to be associated with infilling of former Welland River.			
	Figures 9 and 10 illustrate the Human Health and Ecological Exposure Conceptual Models. The models are described as follows:			
	Source:			
	The source of the COCs at the Phase Two Property (metals, EC) is historical infilling on-Site.			
	Potential Release Mechanism:			
	Wind Erosion			
	Uptake by Plants and Intake by Prey			
	Contaminant Transport Pathways (exposure route);			
	Dermal Contact, Stem/Foliar Contact			
	Ingestion			
	Inhalation of airborne particles			
	Ingestion by Plants and Prey			
	Human and Ecological Receptors:			
	Potential human receptors include future residents and visitors and construction workers and potential ecological receptors include terrestrial plants, invertebrates, mammals and birds.			
	Receptor Exposure Points:			
	Human exposure (resident, visitor) to COCs in soil via dermal contact, ingestion, inhalation of airborne particles. No contaminants were found in ground water and no complete exposure pathway is present.			
	Ecological exposure (terrestrial plants) anticipated through root update and inhalation via wind erosion. The exposure to COCs by terrestrial invertebrates is expected through soil ingestion and dermal contact. The exposure to COCs of terrestrial mammals and birds is expected through soil ingestion, dermal contact, ingestion of plans and prey and inhalation via wind erosion. Metals exceedances were found to be present in the ground water at the Phase Two Property.			

L

The Phase Two CSM is shown in Figure 8.

7.0 CONCLUSIONS

Amec Foster Wheeler was retained by GR (CAN) Investments Co., Ltd. to conduct a Phase Two ESA of the property known as the Thundering Waters Development, in Niagara Falls, Ontario (the Phase Two Property). The Phase Two Property does not have a current municipal address. The Client is considering developing the Phase Two Property for proposed mixed land use. A RSC, acknowledged by the MOECC, may be required as a condition of the planned redevelopment from vacant to mixed land use.

This Phase Two ESA was carried out in accordance with Amec Foster Wheeler's proposal dated October 16, 2015 and authorization to proceed, signed by the Client on November 15, 2015. A delineation testpitting and ground water sampling program was carried out in accordance with Amec Foster Wheeler's proposal dated December 2, 2016 and authorization to proceed, signed by the Client on December 3, 2016.

The primary findings of this Phase Two ESA are as follows:

- Amec Foster Wheeler drilled five boreholes, installed and monitored five monitoring wells, excavated 50 testpits, completed hydrogeological testing and an elevation survey between December 2, 2015 and January 3, 2017. The locations of the boreholes, monitoring wells and testpits were selected to address APECs and PCAs identified during the Phase I ESA.
- The subsurface conditions encountered at the Phase Two Property are described as • follows: a layer of topsoil was present across the Phase Two Property ranging from 0 to 0.15 mbgs. Beneath the topsoil, a layer of fill was encountered in all boreholes (with the exception of BH/MW104 and BH/MW105) and testpits (with the exception of TP108, TP111, TP118 and TP120). The fill was generally dominated by reworked native silty clay material (BH/MW102, BH/MW103, BH/MW104, BH/MW105, TP102, TP103, TP104, TP105, TP106, TP107, TP109, TP110, TP112, TP113, TP114, TP115, TP116, TP117, and TP121) or layers of silty clay and silty sand (BH/MW101, TP101, and TP119) materials. The fill materials ranged in depth across the Phase Two Property from 0 (TP108, TP111, TP118 and TP120) to 4.4 mbgs (BH/MW101). A native silty clay with traces of sand and fine to medium gravel was present beneath the fill materials in all boreholes and testpits. The silty clay extended to the termination depth of the boreholes. Trace slag was noted in TP221 (0-0.5 mbgs). Black and/or white seams (inferred organics) were noted in the fill material in TP221, TP226, TP227 and TP228. The stratigraphy in the delineation testpits was consistent with the boreholes and testpits completed in 2015.
- Bedrock was not encountered at the maximum drilled depth of the boreholes (6.1 mbgs). The bedrock is anticipated to be of the Middle and Lower Silurian Age, consisting of sandstone, shale, dolostone and siltstone of the Lockport Formation. Bedrock is anticipated to be encountered at depths ranging from 20 to 25 mbgs.

- Visual or olfactory evidence of petroleum hydrocarbon impacts was not observed by Amec Foster Wheeler during the drilling or testpitting programs.
- It is Amec Foster Wheeler's opinion that the results of the COV and TOV head space screening program suggest a low potential for the presence of significant combustible soil headspace vapour levels in the boreholes and testpits.
- On March 1, 2016 following completion of the hydraulic testing, the depth to ground water measured from surface ranged from approximately 0.17 to 3.49 mbgs at the Phase Two Property which corresponds to geodetic elevations ranging from 171.80 to 179.62 mASL. It is worth noting that BH/MW102 was not located, BH/MW105 and BH/MW200 were previously dry and were not recorded during this monitoring event. In the southern portion of the site, excluding BH/MW103 (which is located approximately 4-5 m lower than the other monitoring wells), BH/MW102 and BH/MW200 (which were not recorded), the geodetic ground water elevations ranged from 179.00 to 179.62 mASL. Using the three-point method, the horizontal ground water flow was calculated to be south towards the Welland River with a gradient of approximately 0.002 metres/metre (m/m). It is worth noting that the Phase Two Property is large, has significant changes in topography and has significant areas of fill while others are native. It is believed that generally the ground water flow direction would be towards the Welland River in the southern portion of the Phase Two Property.
- The assessment criteria applicable to the Phase Two Property, if a RSC was to be filed for the Phase Two Property are the Table 1 Full Depth Background Site Condition Standards for residential/parkland/institutional/industrial/commercial/community property use and medium and fine textured soils (Table 1 SCS).
- The results of the soil testing indicated exceedances of the Table 1 SCS, as follows:
 - Thallium in fill materials at BH/MW101, BH/MW103 and BH/MW104;
 - Conductivity in fill materials at TP117;
 - The remaining analyses were below the Table 1 SCS, including remaining metals, mercury, hexavalent chromium, SAR, BTEX/VOCs, PHCs and PAHs.
- The results of the ground water testing indicated exceedances of the Table 1 SCS, as follows:
 - Cobalt in ground water at BH/MW103;
 - Silver in ground water at BH/MW202. During the resampling in January 2017, there was no exceedance of the Table 1 SCS for silver; and
 - Uranium in ground water at BH/MW103 and BH/MW104.

The soil samples with impacts were all collected from the fill materials (silty sand or silty clay) which were found in all boreholes with the exception of thallium in BH/MW104 and molybdenum in TP109 which were in the native silty clay materials. The fill extended as deep as 4.4 mbgs and it is believed to be associated with the infilling of the former Welland River. Based on additional boreholes drilled during Amec Foster Wheeler's geotechnical investigation, fill material was encountered in a majority of the locations on-site.

The EC impact noted in the area of TP117 and TP224 to TP229 was noted at depths ranging from 0.5 to 2.0 m and possibly deeper. The EC impact may be attributed to former road salt storage or the stockpiling of snow (containing road salt). This area was not fully delineated during the delineation program.

As there are impacts above the Ministry's standards in the soil and ground water at the Phase Two Property, a RSC could not be filed at this time. Once the additional sampling has been completed, the contaminants would need to be addressed using one of or a combination of the following techniques before an RSC could be filed:

- Soil Remediation the impacted materials would be removed for off-Site disposal at a licensed landfill; or
- Site Specific Risk Assessment impacted materials can remain in place if they are below site specific criteria that would be generated for the Phase Two Property.

Figure 11 outlines the estimated areas of impacted soil above the Table 1 SCS for various metals parameters and EC. Based on an average soil depth of 1 m, the estimated tonnage of impacted soil is 1,800 tonnes based on a bulking factor of 1.8 tonnes/cubic metres (m³). It is noted that the EC impact has not been fully delineated. The order of magnitude costing to remove this soil from the Phase Two Property is discussed in a separate letter.

The ground water results indicate metal impacts above the Table 1 SCS in MW202 based on the original ground water sampling in 2015. Two of the three wells (MW103 and MW104) could not be sampled in the January 2017 event due to damage or insufficient water. As a RSC may be required for the Phase Two Property, the Client should consider the reinstallation of monitoring wells to replace the previous wells.

Furthermore, if the applicable standards are revised to Table 3 SCS (i.e., if the wetland boundary is confirmed), there are no exceedances for metals in ground water. The concentration of thallium in soil would exceed the Table 3 SCS for residential/parkland/institutional property use but not industrial/commercial/community property use. However, the EC concentrations exceed the Table 3 SCS.

Once the ground water monitoring wells no longer be required, they must be maintained or abandoned in accordance with the requirements of Section 21(3) of Ontario Regulation 903 – Wells which states *"the well owner shall immediately abandon the well if it is not being used or maintained for future use as a well"*.

7.1 Signatures

The undersigned carried out the Phase Two ESA documented herein, including developed the Sampling and Analysis Plan, supervised all field activities, reviewing the resulting data and prepared this report, including the findings and conclusions presented herein, acting either as a Qualified Person or under the supervision of a Qualified Person. Any practice of geoscience documented within this report was undertaken by or under the supervision of a Professional Engineer or Professional Geoscientist licensed in the Province of Ontario.

This report was prepared for the exclusive use of GR (CAN) Investments Co., Ltd. and is intended to provide information regarding the property located east and north of Dorchester Road and west of Progress Street in Niagara Falls, Ontario at the time of the field work. Amec Foster Wheeler shall provide written confirmation to any third party identified by GR (CAN) Investments Co., Ltd. that such party may rely on any reports, documents and materials generated by Amec Foster Wheeler during this Project. Any use which an unauthorized third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of the third party. Should additional parties require reliance on this report, written authorization from Amec Foster Wheeler will be required.

The investigation undertaken by Amec Foster Wheeler with respect to this report and any conclusions or recommendations made in this report reflect Amec Foster Wheeler's judgment based on the site conditions observed at the time of the site inspection on the date(s) set out in this report and on information available at the time of preparation of this report. This report has been prepared for specific application to this site and it is based, in part, upon visual observation of the site, as described in this report. Unless otherwise stated, the findings cannot be extended to previous or future site conditions, portions of the site, which were unavailable for direct investigation, which were not investigated directly. Amec Foster Wheeler has used its professional judgment in analyzing this information and formulating these conclusions.

Amec Foster Wheeler makes no other representations whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this report, including, but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and change. Such interpretations and regulatory changes should be reviewed with legal counsel.

This Report is also subject to the further Standard Limitations attached in Appendix F.

We trust that the information presented in this report meets your current requirements. Should you have any questions or require further information, please contact the undersigned.

Yours truly,

Amec Foster Wheeler Environment & Infrastructure, a Division of Amec Foster Wheeler Americas Limited.

Prepared by:

filly Patterson

Kelly Patterson, P.Geo. (ltd.) Environmental Scientist

Deanna Gemmell, B.A. Environmental Scientist

Reviewed by:

Patrick Shriner, P.Geo. Associate, Environmental Geoscientist

REFERENCES

Amec Foster Wheeler Environment & Infrastructure, *Phase I Environmental Site Assessment, Thundering Waters Development, East & North of Dorchester Road & West of Progress Street, Niagara Falls, Ontario* dated January 25, 2016, prepared for GR (CAN) Investments Co., Ltd.

Bouwer, H. and Rice, R.C., A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells, Water Resources Research, vol. 12, no. 3, pp. 423-428, 1976.

Duffield, G. M, AQTESOLV for Windows Version 4.5 User's Guide. Reston, VA: HydroSOLVE Inc, 2007.

Feenstra, B.H. Preliminary Map P.764. *Quaternary Geology of the Niagara Area, Southern Ontario*. [Map]. Ontario Division of Mines, 1972. 1:50,000.

Feenstra, B.H. *Bedrock Topography of the Niagara and Niagara-on-the-Lake Area, Southern Ontario*. [Map] Ontario Geological Survey Preliminary Map P.2400, Bedrock Topography Series, 1981. Scale 1:50,000.

Ministry of the Environment, *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* rev. December 1996.

Ministry of the Environment, Ontario Regulation 903 - Wells, 01 January 2011.

Ministry of the Environment, *Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act,* 15 April 2011.

Ministry of the Environment, Ontario Regulation 153/04 – Records of Site Condition, March 2004.

Ministry of the Environment, Ontario Regulation 347 – General - Waste Management, as amended by O. Reg. 337/09, 31 December 2009.

Ministry of the Environment, *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*, July 2011.

Barnett, P.J., Cowan, W.R., and Henry, A.P. Map 2556. *Quaternary Geology of Ontario, Southern Sheet.* [Map]. s.l., Ontario, Canada: Ontario Geological Survey, 1991. 1:200,000.

Precambrian Geology and Engineering and Terrain Geology, Ontario Geological Survey; Map 2544. *Bedrock Geology of Ontario, Southern Sheet.* [Map]. 1991. 1:1,000,000.

United States Department of Agriculture, Soil Survey Manual, October 1993.

FIGURES

	<complex-block></complex-block>
REFERENCE: Base plan provided by NIAGARA NAVIGATOR, https://maps-beta.niagararegion.ca/Nav	Vigator/ FOR ILLUSTRATION PURPOSES ONLY, ALL LOCATIONS APPROXIMATE.
GR (CAN) Investments Co., Ltd.	DN THUNDERING WATERS DEVELOPMENT DATE: CHK'D BY: DORCHESTER ROAD DATE: DATUM: NIAGARA FALLS, ONTARIO PROJECT NO.:
Amec Foster Wheeler Environment & Infrastructure 3300 Merrittville Hwy, Unit 5 Thorold, Ontario	PROJECTION: TITLE: TG161164 UTM Zone 17 PHASE TWO PROPERTY LAYOUT, BOREHOLE/MONITORING NO.: SCALE: WELL & TESTPIT LOCATION PLAN FIGURE 2a

<complex-block></complex-block>			<image/>	
CLIENT:	LEGEND:	DWN BY:	PROJECT:	REV. NO.: A
GR (CAN) Investments Co., Ltd.	BH/MW-1 Borehole with Monitoring Well	DN CHK'D BY:	THUNDERING WATERS DEVELOPMENT	DATE:
	Location Existing Borehole /Monitoring	PS	DORCHESTER ROAD NIAGARA FALLS, ONTARIO	JANUARY 2017
Amec Foster Wheeler	 ♥ Well Location (AMEC 2006) ▼TBM Temporary Benchmark 	NAD83		PROJECT NO.:
Environment & Infrastructure	Top of concrete pedestal for railway signal lights	PROJECTION:		
3300 Merrittville Hwy, Unit 5 Thorold, Ontario	Approximate Location of the Original Welland River (Circa 1813)	UTM Zone 17 SCALE: As Shown	WELL & TESTPIT LOCATION PLAN (SOUTHERN PORTION)	FIGURE 2b

REFERENCE: Base plan provided by NIAGARA NAVIGATOR, https://maps-beta.niagararegion.ca/Navigator/

FOR ILLUSTRATION PURPOSES ONLY, ALL LOCATIONS APPROXIMATE.

CLIENT:	LEGEND:		DWN BY:	PROJECT:	REV. NO.:
	TP-101	Test Pit Location	DN		A
GR (CAN) Investments Co., Ltd.	,BH/MW-	Borehole with Monitoring Well	CHK'D BY:		DATE:
	♦	Location	PS	DORCHESTER ROAD	JANUARY 2017
	•	Existing Borehole /Monitoring	DATUM:	NIAGARA FALLS, ONTARIO	PROJECT NO :
A	1 '	Temporary Benchmark			
Amec Foster Wheeler	\times^{TBM}	Top of concrete pedestal for railway signal	INADO		TG161164
Environment & Infrastructure		lights	PROJECTION:		
		Phase Two Property Boundary	UTM Zone 17	PHASE IWO PROPERTY LAYOUT, BOREHOLE/MONITORING	NO.:
3300 Merrittville Hwy, Unit 5		Approximate Location of the	SCALE:	WELL & TESTPIT LOCATION PLAN	
Thorold, Ontario wheeler		Original Welland River	As Shown	(NORTHERN PORTION)	FIGURE 2c
		(olica lolo)	AS 510WI		

	рни то рни т	<complex-block></complex-block>	t Pit Location ehole with Monitoring Well ation sting Borehole /Monitoring I Location (AMEC 2006) sporary Benchmark reorrete pedestal for railway signal se Two Property Boundary proximate Location of the ijnal Welland River (193) oth to Groundwater (gs) undwater Elevations ASL)
REFERENCE: Base plan provided by NIAGARA NAVIGATOR, https://maps-beta.niagararegion.ca/N	lavigator/	FOR ILLUSTRATION PURPOSES ONLY, ALL L	OCATIONS APPROXIMATE.
GR (CAN) Investments Co., Ltd.	DWN BY: DN CHK'D BY: PS DATUM:	PROJECT: THUNDERING WATERS DEVELOPMENT DORCHESTER ROAD NIAGARA FALLS, ONTARIO	REV. NO.: A DATE: JANUARY 2017 PROJECT NO.:
Amec Foster Wheeler Environment & Infrastructure 3300 Merrittville Hwy, Unit 5 Thorold, Ontario	PROJECTION: UTM Zone 17 SCALE: As Shown	TITLE: DEPTH TO GROUNDWATER AND GROUNDWATER ELEVATION PLAN	TG161164 NO.: FIGURE 5a

REFERENCE: Base plan provided by NIAGARA NAVIGATOR, https://maps-beta.niagararegion.ca/Navigator/

FOR ILLUSTRATION PURPOSES ONLY, ALL LOCATIONS APPROXIMATE.

GR (CAN) Investments Co., Ltd.		DWN BY: DN CHK'D BY: PS DATUM:	PROJECT: THUNDERING WATERS DEVELOPMENT DORCHESTER ROAD NIAGARA FALLS, ONTARIO	REV. NO.: DATE: JANUARY 2017 PROJECT NO.:
Amec Foster Wheeler Environment & Infrastructure 3300 Merrittville Hwy, Unit 5 Thorold, Ontario	arnec foster wheeler	NAD83 PROJECTION: UTM Zone 17 SCALE: As Shown	TITLE: INTERPRETED GROUNDWATER FLOW PLAN, MARCH 1, 2016	TG161164 NO.: FIGURE 5b

EFERENCE: Base plan provided by NIAGARA NAVIGATOR, https://maps-beta.niagararegion.ca/Navi	<image/> <complex-block><complex-block></complex-block></complex-block>	E.
CLIENT:	DWN BY: PROJECT: REV. NO.: A	
GR (CAN) Investments Co., Ltd.	CHK'D BY: PS DORCHESTER ROAD DATE: JANUARY 20'	17
	DATUM: NIAGARA FALLS, UN TAKIO PROJECT NO.: NAD83 TO 161164	
Amec Foster Wheeler Environment & Infrastructure 3300 Merrittville Hwy, Unit 5 Thorold, Ontario	PROJECTION: TITLE: TG161164 UTM Zone 17 SCALE: As Shown FIGURE 3	8

REA 1 = 49.4 m ²	
REFERENCE: Base plan provided by NIAGARA NAVIGATOR, https://maps-beta.niagararegion.ca/Navi	gator/ FOR ILLUSTRATION PURPOSES ONLY, ALL LOCATIONS APPROXIMATE.
GR (CAN) Investments Co., Ltd.	DWN BY: DN DN CHK'D BY: DORCHESTER ROAD DATUM: NIAGARA FALLS, ONTARIO
Amec Foster Wheeler Environment & Infrastructure 3300 Merrittville Hwy, Unit 5 Thorold, Ontario	PROJECTION: TITLE: TITLE: AREAS OF METALS AND EC IMPACTED SOIL SCALE: ABOVE TABLE 1 SCS FIGURE 9

TABLES

Table 1: Ground Water Elevation Data

Client: GR (CAN) Investments Co. Ltd.

Site: Proposed Thundering Waters Subdivision, Niagara Falls, Ontario Project: TG151118

									7-Dec-2015	j		8-Jan-2016	5	2	20-Jan-2010	6		3-Feb-2016	6		10-Feb-201	6	1	18-Feb-201	ô		1-Mar-2016			3-Jan-2017	1
Well ID	Date Installed	Screen Length (m)	Top of screen (mbgs)	Bottom of Screen (mbgs)	Surface Elevation (mASL)	TOR Elevation (mASL)	Difference b/t surface and TOR	GW Level (mbTOR)	GW Level (mbgs)	GW Elevation (mASL)																					
BH/MW101	03-Dec-15	3.05	2.44	5.49	180.78	181.69	0.91	2.27	1.36	179.42	2.25	1.34	179.44	3.07	2.16	178.62	2.20	1.29	179.49	-	-	-	-	-	-	2.07	1.16	179.62	-	-	-
BH/MW102	03-Dec-15	3.05	2.44	5.49	183.00	183.89	0.89	4.42	3.53	179.47	3.02	2.13	180.87	3.73	2.84	180.16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH/MW103	03-Dec-15	3.05	2.44	5.49	175.29	176.14	0.85	5.50	4.65	170.64	4.57	3.72	171.57	4.79	3.94	171.35	4.57	3.72	171.57	4.67	3.82	171.47	4.50	3.65	171.64	4.34	3.49	171.80	-	-	-
BH/MW104	03-Dec-15	3.05	2.44	5.49	180.47	181.39	0.92	6.13	5.21	175.26	5.04	4.12	176.35	5.06	4.14	176.33	-	-	-	-	-	-	4.44	3.52	176.95	4.20	3.28	177.19	-	-	-
BH/MW105	03-Dec-15	3.05	2.44	5.49	181.60	182.47	0.87	Dry	-	-	Dry	-	•	Dry	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH/MW201	02-Feb-06	3.05	3.05	6.10	179.28	180.50	1.22	-	-	-	1.45	0.23	179.05	1.52	0.30	178.98	-	-	-	-	-	-	-	-	-	1.39	0.17	179.11	-	-	-
BH/MW202	02-Feb-06	1.60	3.00	4.60	179.61	180.50	0.89	-	-	-	1.90	1.01	178.60	1.81	0.92	178.69	-	-	-	-	-	-	-	-	-	1.50	0.61	179.00	141.00	140.11	39.50

Note: "m" means metres. "mbgs" means metres below ground surface. "TOR" means top of riser. "mbTOR" means metres below top of riser pipe. "mASL" means metres above sea level. "-" means not recorded. The benchmark is described as "the top of concrete pedistal for flashing lights at CN crossing at Dorchester Road". This TBM was assigned a geodetic elevation of 178.42 mASL.

Table 2: Summary of Soil Analyses for General Inorganics and Metals

- Client: GR (CAN) Investments Co. Ltd.
- Proposed Thundering Waters Subdivision, Niagara Falls, Ontario Site:

Project: TG151118

iample ID			BH/MW101-1-C	BH/MW102-1A-C	BH/MW103-1A-C	BH/MW104-1-C	BH/MW105-1-C	TP101-5D	TP102-1	TP103-1	TP104-1	TP105-1	TP106-1	TP107-1	TP108-1	TP109-2	TP110-1C	TP111-1	TP112-2D	Dup-G	Duplicate Average	Relative Percent Difference	
																					(Field duplicate of TP112-2D)	(TP112-2D & Dup-G)	(TP112-2D & Dup-G)
Sample Depth (m)				0.1-1.5	0.1-0.6	0.1-0.5	0.2-1.5	0.2-1.5	2.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.0	0.5	0.5	1.0	1.0	-	-
Date Collected				03-Dec-15	02-Dec-15	02-Dec-15	02-Dec-15	02-Dec-15	09-Dec-15	18-Dec-15	18-Dec-15	09-Dec-15	-	- 1									
Laboratory ID				1550045-01	1550045-03	1550045-05	1550045-07	1550045-09	1550409-26	1552049-01	1552049-02	1550409-10	1550409-14	1550409-25	1550409-15	1550409-17	1550409-22	1550409-21	1550409-20	1550409-23	1550409-24	-	-
Parameter	Units	MDL	Table 1 SCS ^a																				
Sodium Adsorption Ratio (SAR)	n/a	0.01	2.4	0.06	0.17	0.36	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Conductivity	uS/cm	5	570	165	181	221	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pH	pH Units	0.05	+	7.7	7.7	7.8	-	-	7.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals																							,
Chromium (VI)	µg/g	0.2	0.66	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<	<	-	NC
Mercury	µg/g	0.1	0.27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<	<	-	NC
Antimony	µg/g	1.0	1.3	<	<	<	<	<	<	<	2.0	<	<	<	<	<	<	<	<	<	-	-	-
Arsenic	µg/g	1.0	18	5.6	4.6	6.2	5.8	5.1	1.9	5.9	5.9	4.4	5.0	4.8	4.2	4.9	3.7	5.3	4.9	4.3	-	-	-
Barium	µg/g	1.0	220	106	101	96.2	126	130	47.4	102	99.9	112	110	91.6	116	114	105	107	83.6	110	-	-	-
Beryllium	µg/g	1.0	2.5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-
Boron (total)	µg/g	1.0	36	12.3	11.4	11.4	14.9	16.3	3.7	13.0	13.8	14.7	16.4	12.3	16.1	14.6	12.9	15.7	14.2	12.4	-	-	-
Cadmium	µg/g	0.5	1.2	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-
Chromium (total)	µg/g	1.0	70	20.7	20.3	22.4	24.7	26.7	5.2	22.2	21.3	21.0	22.4	19.4	20.2	20.5	19.2	20.8	19.1	19.0	-	-	-
Cobalt	µg/g	1.0	21	12.1	11.7	12.1	13.8	13.5	3.2	11.3	11.2	11.9	11.6	10.4	10.1	10.7	10.0	10.7	9.5	10.0	-	-	-
Copper	µg/g	1.0	92	23.1	26.3	27.1	27.6	26.8	8.3	22.8	20.4	21.4	21.0	21.4	19.8	20.1	19.6	21.2	18.3	20.5	-	-	-
Lead	µg/g	1.0	120	11.1	11.2	11.5	13.0	12.9	10.2	12.2	11.1	9.2	10.1	9.9	12.8	11.8	9.9	10.3	9.9	11.2	-	-	-
Molybdenum	µg/g	1.0	2	<	<	<	<	<	<	<	<	<	<	<	<	<	2.3	<	<	<	-	-	-
Nickel	µg/g	1.0	82	18.9	20.9	21.1	25.7	25.2	3.9	19.3	18.4	21.2	22.0	20.9	19.2	20.6	19.6	19.8	19.1	19.4	-	-	-
Selenium	µg/g	1.0	1.5	<	<	1.5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-
Silver	µg/g	0.5	0.5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-
Thallium	µg/g	1.0	1	1.2	<	1.2	1.3	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-
Uranium	µg/g	1.0	2.5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	-	-	-
Vanadium	µg/g	1.0	86	27.0	26.4	30.1	33.5	35.5	13.7	28.1	27.0	28.6	30.8	26.1	28.2	27.9	26.0	29.1	26.4	25.7	-	-	-
Zinc	µg/g	1.0	290	63.0	112	48.1	50.1	53.7	96.1	52.6	53.9	47.3	60.0	47.3	74.2	52.2	49.0	48.2	50.9	58.9	-	-	-

Notes: "a" - Table 1: Full Depth Background Site Condition Standards, for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use; established in "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Ontario Ministry of the Environment, 15 April 2011 (MOE).

Bolded values exceed the Table 1 SCS.

** - not applicable or parameter not analyzed. "Duplicate vareage" - average of results of sample and it's field duplicate; where parameter +MDL, MDL used to calculate average. Note: the duplicate average must exceed the SCS for there to be an exceedance. "RPD" - relative percent difference. "NC" - RPD not calculable as both values are not greater than 5x the MDL. Bold - means RPD outside of the sample duplicate value as outlined in the 2011 Analytical Protocol (Metals 30%, pH 0.3 pH units, EC 10%, Cr VI 35%, Hg 30%). ** means as per O. Reg. 15304 as amended, in order to apply the generic Site Condition Standards, pH for surdace soli (<1.5 mbgs) should be between 5 and 9 and pH for subsurface soil (>1.5 mbgs) should be between 5 and 11.

Table 2: Summary of Soil Analyses for General Inorganics and Metals

- Client: GR (CAN) Investments Co. Ltd.
- Proposed Thundering Waters Subdivision, Niagara Falls, Ontario Site:

Project: TG151118

Sample ID		TP113-1	TP113-7	TP114-1	Dup -A	Duplicate Average	Relative Percent Difference	TP115-1	TP116-2	TP117-3	Dup C	Duplicate Average	Relative Percent Difference	TP-118-1	TP119-1c	TP119-8c	TP120-1	TP121-1	TP121-5		
							(Field duplicate of TP114-1)	(TP114-1 & Dup-A)	(TP114-1 & Dup-A)				(Field duplicate of TP117-3)	(TP117-3 & Dup C)	(TP117-3 & Dup C)						
Sample Depth (m)				0.5	3.5	0.5	0.5	-	-	0.5	1.0	1.5	1.5	-	-	0.5	0.5	4.0	0.5	0.5	2.5
Date Collected				08-Dec-15	08-Dec-15	08-Dec-15	08-Dec-15	-	-	08-Dec-15	08-Dec-15	08-Dec-15	08-Dec-15	-	-	08-Dec-15	09-Dec-15	09-Dec-15	09-Dec-15	09-Dec-15	09-Dec-15
Laboratory ID				1550409-08	1550409-09	1550409-01	1550409-02	-	-	1550409-03	1550409-04	1550409-05	1550409-06	-	-	1550409-07	1550409-11	1550409-13	1550409-16	1550409-18	1550409-19
Parameter	Units	MDL	Table 1 SCS ^a																		
Sodium Adsorption Ratio (SAR)	n/a	0.01	2.4	-	-	0.56	0.72	0.64	25%	-	-	0.76	1.39	1.08	59%	-	-	0.48	-	-	-
Conductivity	uS/cm	5	570	-	-	230	254	242	10%	-	-	2990	1280	2410	80%	-	-	283	-	-	-
pH	pH Units	0.05	+	-	-	7.7	7.7	7.7	0%	-	-	7.8	7.8	7.80	0%	-	-	7.2	-	-	-
Metals																					
Chromium (VI)	µg/g	0.2	0.66	-	<	-	-	-	-	-	-	-	-	-	-	-	-	<	-	-	<
Mercury	µg/g	0.1	0.27	-	<	-	-	-	-	-	-	-	-	-	-	-	-	<	-	-	<
Antimony	µg/g	1.0	1.3	<	<	<	<	<	NC	<	<	<	<	<	NC	<	<	<	<	۷	<
Arsenic	µg/g	1.0	18	3.4	3.0	3.2	2.8	3	NC	4.2	4.3	4.3	4.7	4.5	NC	5.3	6.0	3.0	5.0	4.8	4.2
Barium	µg/g	1.0	220	127	62.1	165	150	158	10%	179	101	127	166	147	27%	123	112	95.7	118	102	106
Beryllium	µg/g	1.0	2.5	<	<	<	<	<	NC	<	<	<	<	<	NC	<	<	<	<	<	<
Boron (total)	µg/g	1.0	36	15.4	4.3	21.4	22.8	22.1	6%	16.6	14.5	16.9	17.4	17.2	3%	17.3	14.7	4.3	15.5	13.5	11.6
Cadmium	µg/g	0.5	1.2	<	<	<	<	<	NC	<	<	<	<	<	NC	<	<	<	<	۷	<
Chromium (total)	µg/g	1.0	70	18.3	17.4	23.9	25.2	24.5	5%	27.2	20.8	25.7	25.2	25.5	2%	27.8	21.9	14.5	21.0	20.9	20.8
Cobalt	µg/g	1.0	21	8.8	10.3	11.8	12.3	12.0	4%	13.9	10.1	13.7	14.2	14.0	4%	13.6	11.1	7.8	10.8	10.7	10.5
Copper	µg/g	1.0	92	20.6	5.2	21.2	21.8	21.5	3%	21.8	20.6	22.1	20.4	21.3	8%	21.1	22.2	7.2	20.3	20.4	17.3
Lead	µg/g	1.0	120	13.3	10.9	10.0	10.8	10.4	8%	12.9	9.1	11.9	10.5	11.2	13%	11.1	10.9	9.6	11.0	11.7	9.7
Molybdenum	µg/g	1.0	2	<	<	<	<	<	NC	<	<	<	<	<	NC	<	<	<	<	<	<
Nickel	µg/g	1.0	82	17.4	10.8	23.5	25.3	24.4	7%	28.6	19.7	24.9	26.2	25.6	5%	29.5	21.1	8.3	20.1	21.0	18.1
Selenium	µg/g	1.0	1.5	<	<	<	<	<	NC	<	<	<	<	<	NC	<	<	<	<	<	<
Silver	µg/g	0.5	0.5	<	<	<	<	<	NC	<	<	<	<	<	NC	۸	<	<	<	<	<
Thallium	µg/g	1.0	1	<	<	<	<	<	NC	<	<	<	<	<	NC	<	<	<	<	<	<
Uranium	µg/g	1.0	2.5	<	<	<	<	<	NC	<	<	<	<	<	NC	<	<	<	<	<	<
Vanadium	µg/g	1.0	86	26.0	28.0	32.2	33.9	33.0	5%	36.6	28.7	34.8	33.9	34.4	3%	35.8	29.7	26.0	28.7	28.2	30.2
Zinc	µg/g	1.0	290	70.3	48.8	51.3	55.7	53.5	8%	60.8	45.1	51.8	49.1	50.5	5%	61.4	107	47.0	53.1	52.6	45.2

Notes: "a" - Table 1: Full Depth Background Site Condition Standards, for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use; established in "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Ontario Ministry of the Environment, 15 April 2011 (MOE).

Bolded values exceed the Table 1 SCS.

"µg/g" - micrograms per gram, parts per million. "MDL" - method detection limit. "<" - sample results less than the MDL. "-" - not applicable or parameter not analyzed.

**- not applicable or parameter not analyzed.
"Upujicate Average" - average of results of sample and it's field duplicate; where parameter
MDL, MDL used to calculate average. Note: the duplicate average must exceed the SCS for three to be an exceedance.
"RPD" - relative percent difference.
"NC" - RPD not calculable as both values are not greater than 5x the MDL.
Bold - means RPD outside of the sample duplicate value as outlined in the 2011 Analytical Protocol (Metals 30%, pH 0.3 pH units, EC 10%, Cr VI 35%, Hg 30%).
*v" means as per O. Reg. 15304 as amended, in order to apply the generic Site Condition Standards, pH for subsurface soil (>1.5 mbgs) should be between 5 and 11.

GR (CAN) Investments Co. Ltd Client:

Thundering Waters Development, Dorchester Road, Niagara Falls, Ontario Site:

Project: TG161164

	TP109-2 and Samples within 2 m																			
Sample ID				TP109-2	TP201-2	TP202-2	DUP AA	Duplicate Average	Relative Percent Difference		TP201-3	TP202-3	TP203-2	TP203-3	TP204-1	TP204-2	TP205-1	TP205-2	TP206-1	TP206-2
							(Field duplicate of TP202-2)			Average of TP109-2, TP201- 2, TP202-2 and										
Sample Depth (m)				1.0	1.0	1.0	1.0	-	-	DUP AA	1.5	1.5	1.0	1.5	1.0	1.5	0.5	1.0	0.5	1.0
Date Collected				09-Dec-15	21-Dec-16	21-Dec-16	21-Dec-16	-	-		21-Dec-16									
Laboratory ID				1550409-22	1653030-01	1653030-03	1653030-36	-	-		1653030-02	1653030-04	1653030-05	1653030-06	1653030-07	1653030-08	1653030-09	1653030-10	1653030-11	1653030-12
Date Analyzed - Metals				-	30-Dec-16	30-Dec-16	30-Dec-16	-	-		30-Dec-16									
Parameter	Units	MDL	Table 1 SCS ^a																	
Metals																				
Antimony	µg/g	1.0	1.3	<	<	<	<	<	NC	<	<	<	<	<	<	<	<	<	<	<
Arsenic	µg/g	1.0	18	3.7	<	<	<	<	NC	2.6	<	<	<	<	<	<	<	<	<	<
Barium	µg/g	1.0	220	105	112	119	116	118	3%	113	121	112	113	127	158	115	130	124	117	122
Beryllium	µg/g	1.0	2.5	<	<	<	<	<	NC	<	<	<	<	<	<	<	<	<	<	<
Boron	µg/g	1.0	36	12.9	19.5	19.5	20.0	19.8	3%	18.0	21.0	21.7	17.8	17.3	21.9	19.5	19.8	19.8	20.0	20.0
Cadmium	µg/g	0.5	1.2	<	<	<	<	<	NC	<	<	<	<	<	<	<	<	<	<	<
Chromium	µg/g	1.0	70	19.2	23.3	23.6	25.0	24.3	6%	22.8	25.3	25.6	24.2	21.1	28.3	23.8	24.0	24.1	24.3	24.8
Cobalt	µg/g	1.0	21	10.0	12.0	11.9	12.6	12.3	6%	11.6	12.6	12.7	12.3	10.9	14.1	12.1	12.1	12.2	11.9	12.6
Copper	µg/g	1.0	92	19.6	25.3	27.5	26.1	26.8	5%	24.6	26.9	26.9	29.9	22.6	29.6	27.6	26.5	26.2	25.3	26.5
Lead	µg/g	1.0	120	9.9	12.4	12.6	13.8	13.2	9%	12.2	13.1	14.0	13.1	12.4	13.0	13.6	14.7	14.8	12.0	13.5
Molybdenum	µg/g	1.0	2	2.3	<	<	<	<	NC	1.3	<	<	<	<	<	<	<	<	<	<
Nickel	µg/g	1.0	82	19.6	25.5	26.3	27.7	27.0	5%	24.8	26.8	28.4	26.6	23.5	30.8	26.8	26.3	27.2	26.0	28.3
Selenium	µg/g	1.0	1.5	<	<	<	<	<	NC	<	<	<	<	<	<	<	<	<	<	<
Silver	µg/g	0.5	0.5	<	<	<	<	<	NC	<	<	<	<	<	<	<	<	<	<	<
Thallium	µg/g	1.0	1	<	<	<	<	<	NC	<	<	<	<	<	<	<	<	<	<	<
Uranium	µg/g	1.0	2.5	<	<	<	<	<	NC	<	<	<	<	<	<	<	<	<	<	<
Vanadium	µg/g	1.0	86	26.0	36.2	36.3	37.8	37.1	4%	34.1	38.5	39.1	37.3	32.7	42.3	36.7	37.1	37.1	36.9	37.7
Zinc	µg/g	1.0	290	49.0	56.6	57.0	62.9	60.0	10%	56.4	64.8	60.2	66.4	53.3	62.5	58.1	60.7	66.6	59.1	60.4

Notes:

a - Table 1 Full Depth Background Site Condition Standards in a Potable Ground Water Condition, for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use; established in "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Ontario Ministry of the Environment, 15 April 2011 (MOE). SCS apply to medium and fine textured soils. Bolded values exceed the Table 1 SCS.

"µg/g" - micrograms per gram, parts per million.

"MDL" - method detection limit.

"<" - sample results less than the MDL. "-" - not applicable or parameter not analyzed.

"Duplicate Average" - average of results of sample and it's field duplicate; where parameter <MDL, MDL used to calculate average. Note: the duplicate average must exceed the SCS for there to be an exceedance.

"RPD" - relative percent difference.

"NC" - RPD not calculable as both values are not greater than 5x the MDL.

GR (CAN) Investments Co. Ltd Client:

Thundering Waters Development, Dorchester Road, Niagara Falls, Ontario Site:

Project: TG161164

		Bł	2 m															
Sample ID				BH/MW101-1-C	COMPOSITE TP207	COMPOSITE TP208		TP208-4	DUP AC	Duplicate Average	Relative Percent Difference	COMPOSITE TP209	TP209-4	COMPOSITE TP210	TP211-1	TP211-2	COMPOSITE TP212	TP212-4
							Average of BH/MW101-1-C, Composite TP207 and Composite		(Field duplicate of TP208-4)									
Sample Depth (m)				0.1-1.5	1.0-1.5	0.5-1.5	208	2.0	2.0	-	-	0.5-1.5	2.0	0.5-1.5	0.5	1.0	0.5-1.5	2.0
Date Collected				03-Dec-15	21-Dec-16	21-Dec-16		21-Dec-16	21-Dec-16	-	-	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16
Laboratory ID				1550045-01	1653030-13	1653030-14		1653030-15	1653030-37	-	-	1653030-16	1653030-17	1653030-18	1653030-19	1653030-20	1653030-21	1653030-22
Date Analyzed - Metals				-	30-Dec-16	30-Dec-16		30-Dec-16	30-Dec-16	-	-	30-Dec-16	30-Dec-16	30-Dec-16	30-Dec-16	30-Dec-16	30-Dec-16	30-Dec-16
Parameter	Units	MDL	Table 1 SCS ^a															
Metals																		
Antimony	µg/g	1.0	1.3	<	<	<	<	<	<	<	NC	<	<	<	<	<	<	<
Arsenic	µg/g	1.0	18	5.6	<	<	2.5	<	<	<	NC	<	<	<	<	<	<	<
Barium	µg/g	1.0	220	106	130	106	114	91.2	91.9	91.6	1%	113	117	138	117	113	112	123
Beryllium	µg/g	1.0	2.5	<	<	<	<	<	<	<	NC	<	<	<	<	<	<	<
Boron	µg/g	1.0	36	12.3	20.9	11.5	14.9	6.1	6.0	6.1	2%	16.8	11.2	19.9	18.1	17.3	17.7	18.4
Cadmium	µg/g	0.5	1.2	<	<	<	<	<	<	<	NC	<	<	<	<	<	<	<
Chromium	µg/g	1.0	70	20.7	26.3	21.2	22.7	5.5	6.3	5.9	14%	20.5	15.1	25.2	24.9	20.8	23.6	24.8
Cobalt	µg/g	1.0	21	12.1	13.5	7.1	10.9	3.5	3.7	3.6	NC	11.6	9.3	13.2	12.5	10.4	12.3	12.8
Copper	µg/g	1.0	92	23.1	28.2	16.7	22.7	7.6	7.4	7.5	3%	26.2	15.9	27.8	27.8	21.2	28.9	31.0
Lead	µg/g	1.0	120	11.1	15.2	35.9	20.7	8.0	8.0	8.0	0%	31.7	7.5	13.0	11.5	9.0	14.9	13.1
Molybdenum	µg/g	1.0	2	<	<	<	<	<	<	<	NC	<	<	<	<	<	<	<
Nickel	µg/g	1.0	82	18.9	29.3	14.0	20.7	6.0	7.4	6.7	21%	23.9	16.8	28.8	27.7	23.4	26.7	27.3
Selenium	µg/g	1.0	1.5	<	<	<	<	<	<	<	NC	<	<	<	<	<	<	<
Silver	hð/ð	0.5	0.5	<	<	<	<	<	<	<	NC	<	<	<	<	<	<	<
Inallium	hð/ð	1.0	1	1.2	<	<	1.1	<	<	<	NC	<	<	<	<	<	<	<
Uranium	hð/ð	1.0	2.5	<	<	<	<	<	<	< 10.5	NC 100/	<	<	<	<	<	<	<
	hð/ð	1.0	86	27.0	40.0	21.9	29.6	11.8	13.1	12.5	10%	32.3	25.7	38.6	37.9	33.0	36.8	38.8
Zinc	µg/g	1.0	290	63.0	79.6	138	93.5	39.4	40.3	39.9	2%	/1.2	35.1	62.8	57.2	47.6	78.2	82.1

Notes:

a - Table 1 Full Depth Background Site Condition Standards in a Potable Ground Water Condition, for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use; established in "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Ontario Ministry of the Environment, 15 April 2011 (MOE). SCS apply to medium and fine textured soils. Bolded values exceed the Table 1 SCS.

"µg/g" - micrograms per gram, parts per million.

"MDL" - method detection limit.

- "<" sample results less than the MDL.
- "-" not applicable or parameter not analyzed.

"Duplicate Average" - average of results of sample and it's field duplicate; where parameter <MDL, MDL used to calculate average. Note: the duplicate average must exceed the SCS for there to be an exceedance.

"RPD" - relative percent difference.

"NC" - RPD not calculable as both values are not greater than 5x the MDL.

GR (CAN) Investments Co. Ltd Client:

Thundering Waters Development, Dorchester Road, Niagara Falls, Ontario Site:

Project: TG161164

Sample D FP103-1 TP213-1 TP214-1 Average of OFTP03-1, TP213-1 TP214-2 COMPOSITE TP215-3 TP216-1 TP216-2 TP217-1 TP217-2 TP218-1 TP218-1 TP213-1	TP218-2
Sample Depth (m) Date Collected Laboratory ID MDL Table 1 SCS ⁴ 0.5 0.5 21-Dec-16 21-Dec-16 1.0 0.5-1.5 1.5 0.5 1.0 0.5 1	1.0
Parameter Units MDL Table 1 SCS ^a Image: constraint of the state of	21-Dec-16 653030-34 30-Dec-16
MetalsImage: space of the systemImage: space of the	
Antimony $\mu g/g$ 1.01.3 2.0 <<1.3<<<<<<<< </td <td></td>	
Arsenic µg/g 1.0 18 5.9 < < 2.6 < < < < < <	<
Barium μg/g 1.0 220 99.9 130 110 113 111 125 118 123 124 115 111 112 121 121 Beryllum μg/g 1.0 2.5 < < < < < < 123 124 115 111 112 121 121 Beryllum μg/g 1.0 2.5 < < < < < < < 123 124 115 111 112 121 121 121 121 121 123 123 123 124 135 113 113 113 113 123 124 115 111 112 121 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 <th123< th=""> 123 <th133< th=""></th133<></th123<>	<
Berylium µg/g 1.0 2.5 < < < < < < < < < < <	118
Boron μg/g 1.0 36 13.8 23.4 17.3 18.2 18.3 17.9 19.7 19.2 20.0 17.1 18.2 20.0 19.3 Cadmium μg/g 0.5 1.2 < 17.9 19.7 19.2 20.0 17.1 18.2 20.0 19.3 Cadmium μg/g 0.5 1.2 < < < < < 19.3 19	<
Cadmium μg/g 0.5 1.2 < < < < < < < < < < <th< th=""> <t< td=""><td>20.1</td></t<></th<>	20.1
Chromium μg/g 1.0 70 21.3 28.2 22.3 23.9 23.0 25.3 24.3 23.8 25.4 23.8 25.6 23.5 24.6	<
	25.0
Cobalt μg/g 1.0 21 11.2 13.5 11.6 12.1 11.9 12.8 12.4 12.5 12.9 12.1 12.7 11.6 12.4	12.5
Copper µg/g 1.0 92 20.4 26.0 24.1 23.5 25.2 27.1 25.1 24.8 27.0 24.0 26.3 23.4 27.0	25.4
Lead µg/g 1.0 120 11.1 21.3 12.1 14.8 11.2 12.7 11.8 13.2 14.3 13.4 11.4 13.0 20.5	13.6
Molybdenum µg/g 1.0 2 < < < < < < < < < < < < < <	<
Nickel μg/g 1.0 82 18.4 30.0 25.6 24.7 25.8 28.1 26.1 27.0 28.5 26.2 27.4 25.7 26.1	27.2
Selenium μg/g 1.0 1.5 < < < < < < < < < < < < < <	<
Silver µg/g 0.5 0.5 < < < < < < < < < < < < < <	<
Thallium μg/g 1.0 1 < < < < < < < < < < < < < < <	<
Uranium µg/g 1.0 2.5 < < < < < < < < < < < < < <	<
Vanadium µg/g 1.0 86 27.0 41.7 33.8 34.2 35.2 37.8 37.1 36.5 39.0 35.0 38.9 36.6 37.3	38.1
Zinc µg/g 1.0 290 53.9 57.0 58.4 56.4 60.0 62.9 55.8 56.4 73.8 61.6 53.5 67.2 59.3	

Notes:

"a" - Table 1 Full Depth Background Site Condition Standards in a Potable Ground Water Condition, for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use; established in "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Ontario Ministry of the Environment, 15 April 2011 (MOE). SCS apply to medium and fine textured soils.

Bolded values exceed the Table 1 SCS.

"µg/g" - micrograms per gram, parts per million.

"MDL" - method detection limit.

"<" - sample results less than the MDL.

"-" - not applicable or parameter not analyzed.

"Duplicate Average" - average of results of sample and it's field duplicate; where parameter <NDL, MDL used to calculate average. Note: the duplicate average must exceed the SCS for there to be an exceedance.

"RPD" - relative percent difference.

"NC" - RPD not calculable as both values are not greater than 5x the MDL.

GR (CAN) Investments Co. Ltd Client:

Thundering Waters Development, Dorchester Road, Niagara Falls, Ontario Site:

Project: TG161164

				BH/N	W103-1A-C and	Samples within 2	2 m								
Sample ID				BH/MW103-1A-C	TP219-1	TP221-1		TP219-2	TP220-1	TP220-2	TP221-2	TP222-1	TP222-2	TP223-1	TP223-2
Sample Depth (m) Date Collected Laboratory ID Date Analyzed - Metals				0.1-0.5 02-Dec-15 1550045-05	0.5 22-Dec-16 1653032-01 30-Dec-16	0.5 22-Dec-16 1653032-05 30-Dec-16	Average of BH/MW103-1A-C, TP219-1 and TP221-1)	1.0 22-Dec-16 1653032-02 30-Dec-16	0.5 22-Dec-16 1653032-03 30-Dec-16	1.0 22-Dec-16 1653032-04 30-Dec-16	1.0 22-Dec-16 1653032-06 30-Dec-16	0.5 22-Dec-16 1653032-07 30-Dec-16	1.0 22-Dec-16 1653032-08 30-Dec-16	0.5 22-Dec-16 1653032-09 30-Dec-16	1.0 22-Dec-16 1653032-10 30-Dec-16
Parameter	Units	MDL	Table 1 SCS ^a												
Metals															
Antimony	µg/g	1.0	1.3	<	<	<	<	<	<	<	<	<	<	<	<
Arsenic	µg/g	1.0	18	6.2	<	<	2.7	<	<	<	<	<	<	<	<
Barium	µg/g	1.0	220	96.2	114	109	106	138	136	119	121	128	129	140	125
Beryllium	µg/g	1.0	2.5	<	<	<	<	<	<	<	<	<	<	<	<
Boron	µg/g	1.0	36	11.4	1.57	15.7	9.6	15.6	19.7	17.0	16.6	16.3	14.5	18.2	14.9
Cadmium	µg/g	0.5	1.2	<	<	<	<	<	<	<	<	<	<	<	<
Chromium	µg/g	1.0	70	22.4	22.8	50.9	32.0	23.7	25.2	24.0	25.0	26.1	24.0	28.5	24.6
Cobalt	µg/g	1.0	21	12.1	11.8	12.9	12.3	12.7	13.3	12.5	13.4	12.9	14.6	15.0	15.1
Copper	µg/g	1.0	92	27.1	26.0	29.4	27.5	26.7	24.2	24.6	24.9	26.0	27.9	28.2	28.0
Lead	µg/g	1.0	120	11.5	11.6	14.3	12.5	11.5	14.1	11.3	11.4	13.4	12.6	14.7	13.0
Molybdenum	µg/g	1.0	2	<	<	<	<	<	<	<	<	<	<	<	<
Nickel	µg/g	1.0	82	21.1	26.6	36.9	28.2	26.3	28.9	25.9	29.3	29.1	29.3	32.6	30.4
Selenium	µg/g	1.0	1.5	1.5	<	<	<	<	<	<	<	<	<	<	<
Silver	µg/g	0.5	0.5	<	<	<	<	<	<	<	<	<	<	<	<
Thallium	µg/g	1.0	1	1.2	<	<	1.1	<	<	<	<	<	<	<	<
Uranium	µg/g	1.0	2.5	<	<	<	<	<	<	<	<	<	<	<	<
Vanadium	µg/g	1.0	86	30.1	35.6	39.0	34.9	36.9	39.2	36.7	36.9	38.5	36.4	41.8	37.0
Zinc	µg/g	1.0	290	48.1	52.5	68.8	56.5	53.0	55.3	53.4	56.7	61.9	58.8	65.4	59.7
Notes:															

a - Table 1 Full Depth Background Site Condition Standards in a Potable Ground Water Condition, for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use; established in "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Ontario Ministry of the Environment, 15 April 2011 (MOE). SCS apply to medium and fine textured soils. Bolded values exceed the Table 1 SCS.

"µg/g" - micrograms per gram, parts per million.

"MDL" - method detection limit.

"<" - sample results less than the MDL.

"-" - not applicable or parameter not analyzed.

"Duplicate Average" - average of results of sample and it's field duplicate; where parameter <MDL, MDL used to calculate average. Note: the duplicate average must exceed the SCS for there to be an exceedance.

"RPD" - relative percent difference.

"NC" - RPD not calculable as both values are not greater than 5x the MDL.

Client: GR (CAN) Investments Co. Ltd.

Site: Thundering Waters Development, Dorchester Road, Niagara Falls, Ontario

Project: TG161164

Sample ID				TP224-1	TP224-2	TP224-4	TP225-1	TP225-2	TP225-4	TP226-1	TP226-2	TP226-4	TP227-1	TP227-2	TP227-3	TP228-1	DUP A3	Duplicate Average	Relative Percent Difference	TP228-2	TP228-4	TP229-1	TP229-2	TP229-4
																	(Field duplicate of TP228-1)							
Sample Depth (m)				0.5	1.0	2.0	0.5	1.0	2.0	0.5	1.0	2.0	0.5	1.0	1.5	0.5	0.5		-	1.0	2.0	0.5	1.0	2.0
Date Collected				22-Dec-16	-	-	22-Dec-16	22-Dec-16	22-Dec-16	22-Dec-16	22-Dec-16													
Laboratory ID				1653032-11	1653032-12	1701133-01	1653032-13	1653032-14	1701133-02	1653032-15	1653032-16	1701133-03	1653032-20	1653032-21	1701133-04	1653032-22	1653032-19	-	-	1653032-23	1701133-05	1653032-17	1653032-18	1701133-06
Date Analyzed - PAHs				03-Jan-17	03-Jan-17	05-Jan-17	03-Jan-17	03-Jan-17	-	-	03-Jan-17	05-Jan-17	03-Jan-17	03-Jan-17	05-Jan-17									
Parameter	Units	MDL	Table 1 SCS ^a																					
Electrical Conductivity																								
EC	µS/cm	5	570	1160	1170	1150	1340	1600	1110	738	2820	2940	1930	3040	2940	1270	1260	1265	1%	2230	1310	772	3040	2810
Notes:																								

"µS/cm" - microSiemens per centimetre "MDL" - method detection limit.

"<" - sample results less than the MDL.

< - sample results less than the MUL.</p>
**- not applicate by organizer not analyzed.
Duplicate Average - average of results of sample and it's field duplicate; where parameter
<MDL, MDL used to calculate average. Note: the duplicate average must exceed the SCS for there to be an exceedance.</p>

"RPD" - relative percent difference.

"NC" - RPD not calculable as both values are not greater than 5x the MDL. **Bold** - means RPD outside of the sample duplicate value as outlined in the 2011 Analytical Protocol (EC 10%).

Table 3: Summary of Soil Analyses for VOCs/BTEX and PHCs

Client: GR (CAN) Investments Co. Ltd.

Proposed Thundering Waters Subdivision, Niagara Falls, Ontario Site: **Project:** TG151118

Sample ID				BH/MW101-2A-D	BH/MW102-3-D	BH/MW103-3-D	BH/MW104-3-D	BH/MW105-3-C	Dup 1	Duplicate Average	Relative Percent Difference	TP113-7	TP-119-8d	TP121-5
									(Field duplicate of BH 105-3-C)	(BH 105-3-C & Dup 1)	(BH 105-3-C & Dup 1)			
Sample Depth (m)				1.6	3.8	3.8	3.8	3.8	3.8	-	-	3.5	4.0	2.5
Date Collected				03-Dec-15 1550045-02	02-Dec-15	02-Dec-15	02-Dec-15	02-Dec-15	02-Dec-15		1	08-Dec-15	09-Dec-15	09-Dec-15
Parameter	Units	MDL	Table 1 SCS ^a	1330043-02	1550045-04	1550045-00	1550045-00	1330043-10	1330043-11	-	-	1330403-03	1550405-12	1330403-13
Volatile Organic Compounds														
Acetone	ug/g	0.50	0.5	-	-	-	<	<	<	-	NC	<	-	-
Benzene	ug/g	0.02	0.02	-	-	-	<	<	<	-	NC	<	-	-
Bromodichloromethane	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Bromomethane	ug/g	0.05	0.05	-	-	-	<	<	< <	-	NC	<	-	-
Carbon Tetrachloride	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Chlorobenzene	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Chloroform	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Dibromochloromethane	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Dichlorodifluoromethane	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
1,2-Dichlorobenzene	ug/g	0.05	0.05	-	-	-	<	<	< <	-	NC	<	-	-
1.4-Dichlorobenzene	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
1,1-Dichloroethane	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
1,2-Dichloroethane	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
1,1-Dichloroethylene	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
cis-1,2-Dichloroethylene	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
trans-1,2-Dichloroethylene	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
cis-1.3-Dichloropropylene	ug/g	0.05	NV		-	-	<	<	<	-	NC	<	-	-
trans-1,3-Dichloropropylene	ug/g	0.05	NV	-	-	-	<	<	<	-	NC	<	-	-
1,3-Dichloropropene, total	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Ethylbenzene	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Ethylene dibromide (dibromoethane,	1,2- ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Methyl Ethyl Katone (2-Butanone)	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	~	-	-
Methyl Isobutyl Ketone	ug/g	0.50	0.5		-	-	<	<	<	-	NC	<	-	-
Methyl tert-butyl ether	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Methylene Chloride	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Styrene	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
1,1,1,2-Tetrachloroethane	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Tetrachloroethylene	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Toluene	ug/g	0.05	0.2	-	-	-	<	<	<	-	NC	<	-	-
1,1,1-Trichloroethane	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
1,1,2-Trichloroethane	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Trichloroethylene	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Irichlorofluoromethane	ug/g	0.05	0.25	-	-	-	<	<	<	-	NC	<	-	-
m/n-Xvlene	ug/g	0.02	0.02 NV	-	-		<	<	<	-	NC	<	-	-
o-Xylene	ug/g	0.05	NV	-	-	-	<	<	<	-	NC	<	-	-
Xylenes, total	ug/g	0.05	0.05	-	-	-	<	<	<	-	NC	<	-	-
Benzene	ug/g	0.02	0.02	<	<	<	-	-	-	-	-	-	<	<
Ethylbenzene	ug/g	0.05	0.05	<	<	<	-	-	-	-	-	-	<	<
m/n-Xylene	ug/g	0.05	0.2 NV	<	<	<	-	-	-	-	-	-	<	<
o-Xylene	ug/g	0.05	NV	<	<	<	-	-	-	-	-	-	<	<
Xylenes, total	ug/g	0.05	0.05	<	<	<	-	-	-	-	-	-	<	<
Hydrocarbons														
F1 PHCs (C6-C10)	ug/g	7	25	<	<	<	<	<	<	-	NC	<	<	<
F2 PHCs (C10-C16)	ug/g	4	240	<	<	~	<	<	< <	-	NC	<	~	<
F4 PHCs (C34-C50)	ug/g	6	120	<	<	<	<	<	<	-	NC	<	<	<
"a" - Table 1: Full Depth Background Site C April 2011 (MOE).	Condition Standar	rds, for Residen	tial/Parkland/Institutio	nal/Industrial/Commerce	cial/Community Proper	rty Use; established in	*Soil, Ground Water	and Sediment Stand	ards for Use Under	Part XV.1 of the En	vironmental Protecti	on Act*, Ontario	Ministry of the E	nvironment, 15
Bolded values exceed the Table 1 SCS.														
"NV" - no value in Table 1 SCS														
"µg/g" - micrograms per gram, parts per mil	llion.													
"MUL" - method detection limit.														
 - sample results less than the MDL. - not applicable or narameter not english 	ed.													
"Duplicate Average" - average of results of	sample and it's f	ield duplicate: v	vhere parameter <md< td=""><td>L, MDL used to calcula</td><td>te average. Note: the</td><td>e duplicate average m</td><td>ust exceed the SCS f</td><td>or there to be an exc</td><td>eedance.</td><td></td><td></td><td></td><td></td><td></td></md<>	L, MDL used to calcula	te average. Note: the	e duplicate average m	ust exceed the SCS f	or there to be an exc	eedance.					
"RPD" - relative percent difference.														
"NC" - RPD not calculable as both values a	ire not greater th	an 5x the MDL.												
Bold - means RPD outside of the sample de	uplicate value as	outlined in the	2011 Analytical Proto	col (VOCs 50% and PH	ICs 30%).									

Table 4: Summary of Soil Analyses for PAHs

Client: GR (CAN) Investments Co. Ltd.

Site: Proposed Thundering Waters Subdivision, Niagara Falls, Ontario

Project: TG151118

Sample ID				TP110-1c	TP112-2d	Dup-G	Duplicate Average	Relative Percent Difference	TP113-7	TP121-5
							(BH TP112- 2d & Dup-G)	(BH TP112- 2d & Dup-G)		
Sample Depth (m)				0.5	1.0	1.0	-	-	3.5	2.5
Date Collected				09-Dec-15	09-Dec-15	09-Dec-15	-	-	08-Dec-15	09-Dec-15
Laboratory ID				1550409-21	1550409-23	1550409-24	-	-	1550409-09	1550409-19
Parameter	Units	MDL	Table 1 SCS ^a							
Polycyclic Aromatic Hydrocarbons										
Acenaphthene	ug/g	0.02	0.072	<	<	<	<	NC	<	<
Acenaphthylene	ug/g	0.02	0.093	<	<	、	<	NC	<	<
Anthracene	ug/g	0.02	0.16	<	<	<	<	NC	<	<
Benzo[a]anthracene	ug/g	0.02	0.36	<	<	<	<	NC	<	<
Benzo[a]pyrene	ug/g	0.02	0.3	<	<	<	<	NC	<	<
Benzo[b]fluoranthene	ug/g	0.02	0.47	<	<	<	<	NC	<	<
Benzo[g,h,i]perylene	ug/g	0.02	0.68	<	<	<	<	NC	<	<
Benzo[k]fluoranthene	ug/g	0.02	0.48	<	、	۲	<	NC	v	v
Chrysene	ug/g	0.02	2.8	<	~	۲	<	NC	۲	۷
Dibenzo[a,h]anthracene	ug/g	0.02	0.1	<	~	۲	<	NC	۲	۷
Fluoranthene	ug/g	0.02	0.56	<	~	۲	<	NC	۲	۷
Fluorene	ug/g	0.02	0.12	<	<	、	<	NC	<	<
Indeno[1,2,3-cd]pyrene	ug/g	0.02	0.23	<	<	、	<	NC	<	<
1-Methylnaphthalene	ug/g	0.02	0.59	<	<	、	<	NC	<	<
2-Methylnaphthalene	ug/g	0.02	0.59	<	<	、	<	NC	<	<
Methylnaphthalene (1&2)	ug/g	0.04	0.59	<	<	、	<	NC	<	<
Naphthalene	ug/g	0.01	0.09	<	<	<	<	NC	<	<
Phenanthrene	ug/g	0.02	0.69	<	<	<	<	NC	<	<
Pyrene	ug/g	0.02	1	<	<	<	<	NC	<	<

"a" - Table 1: Full Depth Background Site Condition Standards, for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use; established in "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Ontario Ministry of the Environment, 15 April 2011 (MOE).

Bolded values exceed the Table 1 SCS.

"µg/g" - micrograms per gram, parts per million.

"MDL" - method detection limit.

"<" - sample results less than the MDL.

"-" - not applicable or parameter not analyzed.

"Duplicate Average" - average of results of sample and it's field duplicate; where parameter <MDL, MDL used to calculate average. Note: the duplicate average must exceed the SCS for there to be an exceedance. "RPD" - relative percent difference.

"NC" - RPD not calculable as both values are not greater than 5x the MDL.

Table 5: Maximum Concentrations for Analytical Results for Soil

Client: GR (CAN) Investments Co. Ltd.

Site: Proposed Thundering Waters Subdivision, Niagara Falls, Ontario

Project: TG151118

o-Xylene	all sample locations	throughout Phase Two Property	<0.05
Xylenes, total	all sample locations	throughout Phase Two Property	<0.05
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	all sample locations	throughout Phase Two Property	<0.02
Acenaphthylene	all sample locations	throughout Phase Two Property	<0.02
Anthracene	all sample locations	throughout Phase Two Property	<0.02
Benzo[a]anthracene	all sample locations	throughout Phase Two Property	<0.02
Benzo[a]pyrene	all sample locations	throughout Phase Two Property	<0.02
Benzo[b]fluoranthene	all sample locations	throughout Phase Two Property	<0.02
Benzo[g,h,i]perylene	all sample locations	throughout Phase Two Property	<0.02
Benzo[k]fluoranthene	all sample locations	throughout Phase Two Property	<0.02
Chrysene	all sample locations	throughout Phase Two Property	<0.02
Dibenzo[a,h]anthracene	all sample locations	throughout Phase Two Property	<0.02
Fluoranthene	all sample locations	throughout Phase Two Property	<0.02
Fluorene	all sample locations	throughout Phase Two Property	<0.02
Indeno[1,2,3-cd]pyrene	all sample locations	throughout Phase Two Property	<0.02
1-Methylnaphthalene	all sample locations	throughout Phase Two Property	<0.02
2-Methylnaphthalene	all sample locations	throughout Phase Two Property	<0.02
Methylnaphthalene (1&2)	all sample locations	throughout Phase Two Property	<0.04
Naphthalene	all sample locations	throughout Phase Two Property	< 0.01
Phenanthrene	all sample locations	throughout Phase Two Property	<0.02
Pyrene	all sample locations	throughout Phase Two Property	<0.02

Notes:

Exceeds Table 1 SCS

Table 6: Summary of Ground Water Analyses for Metals

Client: GR (CAN) Investments Co. Ltd.

Site: Proposed Thundering Waters Subdivision, Niagara Falls, Ontario

Project: TG151118 TG161164

Sample ID Date Collected Laboratory ID		BH/MW101 20-Jan-16 1604330-05	BH/MW102 20-Jan-16 1604330-04	BH/MW103 20-Jan-16 1604330-07	BH/MW104 20-Jan-16 1604330-06	BH/MW201 20-Jan-16 1604330-03	BH/MW202 20-Jan-16 1604330-01	Dup A (Field duplicate of BH/MW 202) 20-Jan-16 1604330-02	Relative Percent Difference (BH/MW 202 & Dup A)	BH/MW202 03-Jan-17 1701115-01	Dup A (Field duplicate of BH/MW 202) 03-Jan-17 1701115-02	Relative Percent Difference (BH/MW 202 & Dup A)		
Parameter	Units	MDL	Table 1 SCS ^a											
Metals														
Antimony	µg/L	0.5	1.5	<	<	<	<	<	<	<	NC	<	<	NC
Arsenic	µg/L	1	13	<	<	<	1	<	<	<	NC	<	<	NC
Barium	µg/L	1	610	198	75	42	23	18	25	25	0%	25	25	0%
Beryllium	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	<	<	NC
Boron (total)	µg/L	10	1700	114	385	369	299	92	124	115	8%	71	68	4%
Cadmium	µg/L	0.1	0.5	<	<	<	<	<	<	<	NC	<	<	NC
Chromium (total)	µg/L	1	11	<	<	<	<	<	<	<	NC	<	<	NC
Cobalt	µg/L	0.5	3.8	0.7	0.6	5.0	1.7	<	<	<	NC	<	<	NC
Copper	µg/L	0.5	5	<	1.0	1.9	1.9	0.7	<	0.8	NC	<	<	NC
Lead	µg/L	0.1	1.9	<	<	<	<	<	<	<	NC	<	<	NC
Molybdenum	µg/L	0.5	23	0.7	7.6	4.5	5.6	<	0.6	<	NC	<	<	NC
Nickel	µg/L	1	14	<	2	8	4	<	2	2	NC	1	1	NC
Selenium	µg/L	1	5	<	1	2	2	<	<	<	NC	1	<	NC
Silver	µg/L	0.1	0.3	<	<	<	<	<	0.5	<	NC	<	<	NC
Thallium	µg/L	0.1	0.5	<	<	<	<	<	<	<	NC	<	<	NC
Uranium	µg/L	0.1	8.9	0.5	6.1	53.7	25.6	5.5	8.5	8.5	0%	8.1	7.9	2%
Vanadium	µg/L	0.5	3.9	<	0.6	1.2	0.9	<	<	<	NC	<	<	NC
Zinc	µg/L	5	160	<	<	8	6	12	<	<	NC	<	<	NC

Notes:

"a" - Table 1: Full Depth Background Site Condition Standards, for All Types of Property Use; established in "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Ontario Ministry of the Environment, 15 April 2011 (MOE).

ontane winistry of the Environment, To April 2011

Bolded values exceed the Table 1 SCS. "µg/L" - micrograms per Litre, parts per billion.

"MDL" - method detection limit.

"<" - sample results less than the MDL.

"-" - not applicable or parameter not analyzed.

"RPD" - relative percent difference.

"NC" - RPD not calculable as both values are not greater than 5x the MDL.

Table 7: Summary of Ground Water Analyses for VOCs and PHCs

Client: GR (CAN) Investments Co. Ltd.

Site: Proposed Thundering Waters Subdivision, Niagara Falls, Ontario

Project: TG151118

Sample ID				BH/MW 101	BH/MW 102	BH/MW103	BH/MW 104	BH/MW 201	BH/MW 202	Dup A	Relative Percent Difference	Trip Spike	Trip Blank	Field Blank
										(Field duplicate of	(BH/MW 202 &			
Data Callestad				00 1 40	00 1 40	00 1 40	00 1 40	00 1 40	00 1 40	BH/MW 202)	Dup A)	40 1-1 40	40 1-1 40	00 1 40
Date Collected				20-Jan-16	20-Jan-16	20-Jan-16	20-Jan-16	20-Jan-16	20-Jan-16	20-Jan-16		18-Jan-16	18-Jan-16	20-Jan-16
Laboratory ID				1604330-05	1604330-04	1604330-07	1604330-06	1604330-03	1604330-01	1604330-02		1604330-09	1604330-08	1604330-10
Parameter	Units	MDL	Table 1 SCS ^e											
Volatile Organic Compounds			0700									00.5		
Acetone	µg/L	5.0	2700	<	<	<	<	<	<	<	NC	98.5	<	<
Benzene	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	26.3	<	<
Bromodichloromethane	µg/L	0.5	2	<	<	<	<	<	<	<	NC	30.0	<	<
Bromotorm	µg/L	0.5	5	<	<	<	<	<	<	<	NC	47.1	<	<
Bromomethane	µg/L	0.5	0.89	<	<	<	<	<	<	<	NC	23.5	<	<
Carbon Tetrachloride	µg/L	0.2	0.2	<	<	<	<	<	<	<	NC	33.8	<	<
Chlorobenzene	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	38.0	<	<
Chloroform	µg/L	0.5	2	<	<	<	<	<	<	<	NC	28.5	<	<
Dibromochloromethane	µg/L	0.5	2	<	<	<	<	<	<	<	NC	48.1	<	<
Dichlorodifluoromethane	µg/L	1.0	590	<	<	<	<	<	<	<	NC	21.7	<	<
1,2-Dichlorobenzene	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	42.1	<	<
1,3-Dichlorobenzene	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	39.6	<	<
1,4-Dichlorobenzene	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	39.6	<	<
1,1-Dichloroethane	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	32.5	<	<
1,2-Dichloroethane	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	32.5	<	<
1,1-Dichloroethylene	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	27.9	<	<
cis-1,2-Dichloroethylene	µg/L	0.5	1.6	<	<	<	<	<	<	<	NC	31.8	<	<
trans-1,2-Dichloroethylene	µg/L	0.5	1.6	<	<	<	<	<	<	<	NC	29.8	<	<
1,2-Dichloropropane	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	27.1	<	<
cis-1,3-Dichloropropylene	µg/L	0.5	-	<	<	<	<	<	<	<	NC	29.5	<	<
trans-1,3-Dichloropropylene	µg/L	0.5	-	<	<	<	<	<	<	<	NC	29.0	<	<
1,3-Dichloropropene, total	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	58.5	<	<
Ethylbenzene	µg/L	0.5	0.5	<	<	<	<	<	<	<	NC	42.8	<	<
Ethylene dibromide (dibromoetha	ne, 1µ2)/L	0.2	0.2	<	<	<	<	<	<	<	NC	39.1	<	<
Hexane	µg/L	1.0	5	<	<	<	<	<	<	<	NC	27.8	<	<
Methyl Ethyl Ketone (2-Butanone)	µg/L	5.0	400	<	<	<	<	<	<	<	NC	107	<	<
Methyl Isobutyl Ketone	µg/L	5.0	640	<	<	<	<	<	<	<	NC	87.6	<	<
Methyl tert-butyl ether	µa/L	2.0	15	<	<	<	<	<	<	<	NC	88.1	<	<
Methylene Chloride	µg/L	5.0	5	<	<	<	<	<	<	<	NC	30.2	<	<
Styrene	µa/L	0.5	0.5	<	<	<	<	<	<	<	NC	44.7	<	<
1.1.1.2-Tetrachloroethane	ug/l	0.5	1.1	<	<	<	<	<	<	<	NC	45.5	<	<
1.1.2.2-Tetrachloroethane	ua/L	0.5	0.5	<	<	<	<	<	<	<	NC	38.0	<	<
Tetrachloroethylene	ug/l	0.5	0.5	<	<	<	<	<	<	<	NC	40.5	<	<
Toluene	ua/l	0.5	0.8	<	<	<	<	<	<	<	NC	39.2	<	<
1.1.1-Trichloroethane	µg/l	0.5	0.5	<	<	<	<	<	<	<	NC	32.5	<	<
1 1 2-Trichloroethane	µg/l	0.5	0.5	<	<	<	<	<	<	<	NC	27.1	<	<
Trichloroethylene	ua/l	0.5	0.5	<	<	<	<	<	<	<	NC	29.5	<	<
Trichlorofluoromethane	µg/l	1.0	150	<	<	<	<	<	<	<	NC	28.4	<	<
Vinyl Chloride	µg/L	0.5	0.5								NC	23.4		
m/n-Xylene	ug/L	0.5	-	<	<	<	<	<	<	<	NC	85.0	<	<
o-Xvlene	ug/L	0.5	-	<	<	<	<	<	<	<	NC	44.4	<	<
Xylenes total	µg/⊑	0.5	72	~	~	~	-				NC	120	-	
Petroleum Hydrocarbons	P9/-	0.0									110	120	,	
F1 PHCs (C6-C10)	ua/l	25	420	~	~	~		6	6	6	NC			_
E2 PHCs (C10 C16)	µg/L	100	420	-	-	-	-			~	NC	-	-	-
F3 PHCs (C16-C34)	µg/L µg/l	100	500	~	~	~	< real contraction of the second seco	<	<	< real contraction of the second seco	NC	-	-	
F4 PHCs (C34-C50)	µg/⊑	100	500	~	~	-	-				NC	-	-	-

Bolded values exceed the Table 1 SCS.

"µg/L" - micrograms per Litre, parts per billion.

"MDL" - method detection limit.

"<" - sample results less than the MDL.

"-" - not applicable or parameter not analyzed.

"RPD" - relative percent difference.

"NC" - RPD not calculable as both values are not greater than 5x the MDL.

Bold - means RPD outside of the sample duplicate value as outlined in the 2011 Analytical Protocol (VOCs 30%, PHCs 30%). Trip Spike sample for VOCs prepared at 40 µg/L for all parameters except m/p-Xylene (80 µg/L for) and ketones (100 µg/L). Client: GR (CAN) Investments Co. Ltd.

Site:Proposed Thundering Waters Subdivision, Niagara Falls, OntarioProject:TG151118

Parameter	Sample ID	Location	Maximum Concentration
Metals			(µg/∟)
Antimony	all sample locations	throughout Phase Two Property	<0.5
Arsenic	BH/MW104	northwestern portion of Phase Two Property	1
Barium	BH/MW101	southwestern portion of Phase Two Property	198
Beryllium	all sample locations	throughout Phase Two Property	<0.5
Boron	BH/MW102	southwestern portion of Phase Two Property	385
Cadmium	all sample locations	throughout Phase Two Property	<0.1
Chromium	all sample locations	throughout Phase Two Property	<1
Cobalt	BH/MW103	southeastern portion of Phase Two Property	5.0
Copper	BH/MW103 & BH/MW104	southeastern & northwestern portions of Phase Two Property	1.9
Lead	all sample locations	throughout Phase Two Property	<0.1
Molybdenum	BH/MW102	southwestern portion of Phase Two Property	7.6
Nickel	BH/MW103	southeastern portion of Phase Two Property	8
Selenium	BH/MW103 & BH/MW104	southeastern & northwestern portions of Phase Two Property	2
Silver	BH/MW202	southwestern portion of Phase Two Property	0.5
Thallium	all sample locations	throughout Phase Two Property	<0.1
Uranium	BH/MW103	southeastern portion of Phase Two Property	53.7
Vanadium	BH/MW103	southeastern portion of Phase Two Property	1.2
Zinc	BH/MW201	south central portion of Phase Two Property	12
Petroleum Hydrocarbons			
F1 PHCs (C6-C10)	all sample locations	throughout Phase Two Property	<25
F2 PHCs (C10-C16)	all sample locations	throughout Phase Two Property	<100
F3 PHCs (C16-C34)	all sample locations	throughout Phase Two Property	<100
F4 PHCs (C34-C50)	all sample locations	throughout Phase Two Property	<100
Volatile Organic Compounds			
Acetone	all sample locations	throughout Phase Two Property	<5.0
Benzene	all sample locations	throughout Phase Two Property	<0.5
Bromodichloromethane	all sample locations	throughout Phase Two Property	<0.5
Bromoform	all sample locations	throughout Phase Two Property	<0.5
Bromomethane	all sample locations	throughout Phase Two Property	<0.5
	all sample locations	throughout Phase Two Property	<0.2
Chlorobenzene	all sample locations	throughout Phase Two Property	<0.5
Chloroform	all sample locations	throughout Phase Two Property	<0.5
Dibromocniorometnane	all sample locations	throughout Phase Two Property	<0.5
		throughout Phase Two Property	<1.0
1,2-Dichlorobenzene		throughout Phase Two Property	<0.5
		throughout Phase Two Property	<0.5
1,4-Dichloroethane	all sample locations	throughout Phase Two Property	<0.5
1 2-Dichloroethane	all sample locations	throughout Phase Two Property	<0.5
1 1-Dichloroethylene	all sample locations	throughout Phase Two Property	<0.0
cis-1 2-Dichloroethylene	all sample locations	throughout Phase Two Property	<0.0
trans-1 2-Dichloroethylene	all sample locations	throughout Phase Two Property	<0.5
1.2-Dichloropropane	all sample locations	throughout Phase Two Property	<0.5
cis-1.3-Dichloropropylene	all sample locations	throughout Phase Two Property	<0.5
trans-1.3-Dichloropropylene	all sample locations	throughout Phase Two Property	< 0.5
1.3-Dichloropropene, total	all sample locations	throughout Phase Two Property	< 0.5
1,2-Dibromoethane	all sample locations	throughout Phase Two Property	<0.2
Ethylbenzene	all sample locations	throughout Phase Two Property	<0.5
Hexane	all sample locations	throughout Phase Two Property	<1.0
Methyl Ethyl Ketone (2-Butanone)	all sample locations	throughout Phase Two Property	<5.0
Methyl Isobutyl Ketone	all sample locations	throughout Phase Two Property	<5.0
Methyl tert-butyl ether	all sample locations	throughout Phase Two Property	<2.0
Methylene Chloride	all sample locations	throughout Phase Two Property	<5.0
Styrene	all sample locations	throughout Phase Two Property	<0.5
1,1,1,2-Tetrachloroethane	all sample locations	throughout Phase Two Property	<0.5
1,1,2,2-Tetrachloroethane	all sample locations	throughout Phase Two Property	<0.5
Tetrachloroethylene	all sample locations	throughout Phase Two Property	<0.5
Toluene	all sample locations	throughout Phase Two Property	<0.5
1,1,1-Trichloroethane	all sample locations	throughout Phase Two Property	<0.5
1,1,2-Trichloroethane	all sample locations	throughout Phase Two Property	<0.5
Trichloroethylene	all sample locations	throughout Phase Two Property	<0.5
Trichlorofluoromethane	all sample locations	throughout Phase Two Property	<1.0
Vinyl Chloride	all sample locations	throughout Phase Two Property	<0.5
m/p-Xylene	all sample locations	throughout Phase Two Property	<0.5
o-Xylene	all sample locations	throughout Phase Two Property	<0.5
Xylenes, total	all sample locations	throughout Phase Two Property	<0.5

Notes:

Exceeds Table 1 SCS

APPENDIX A

GRAIN SIZE ANALYSIS, BOREHOLE/MONITORING WELL & TESTPIT LOGS

Number:	TG151118	Drilling Metho
Client:	GR (CAN) Investments Co. Ltd.	Drilling Machir

Sample Type

d: 100 mm Direct Push Geoprobe 7822 DT ne:

Project Project Project Name: Phase Two Environmental Site Assessment Project Location: Proposed Thundering Waters Subdivision Drilling Location: 4768139N; 653800E

LITHOLOGY PROFILE

DESCRIPTION

Lithology Plot

ssessmen bdivision	nent Date Started: 3 Dec 15 Date Completed: 3 Dec 15 on Logged by: DN Compiled by: DN Reviewed by: PS Revision No.: 0, 22/3/16		-	amec foster wheeler												
ample Number secovery (%) kecovery (%) sPT 'N' Value		SPT 'N' Value	DEPTH (m)	ELEVATION (m)	FIELD TESTI PenetrationTesti 0 SPT • [ING ting DCPT 80	SOIL SCREENING * Combustible Organic Vapour (ppm) ◆ Combustible Organic Vapour (%LEL) △ Total Organic Vapour (ppm)				NSTRUMENTATION	NSTALLATION	СОММЕ	NTS
			- - -	-												

Ę	Local Ground Surface Elevation: 180.8	3 m	Saı	Sai	Re	SP	BE	Ш	20	40	60	80	100	20	00 3	300 4	100	Ľ	Ľ				
6 (). (1	100 mm TOPSOIL	180.7					_	-	:			-							1				_
***		0.1					_	-										÷					
****	trace sand, gravel, rootle	ets					-	-										÷Ŧ	-Ŧ				
***	dtpl						-	-															
***							-	-															
***							-	-															
****			22	1	17	Ν/Δ	-	-					20 ÷										
***			00			IN/A	-	180 -				1.	Ď :							Sample BH/	MW-101 S	S1 submitte	d
****							-						• • • • • • • • •							for laborator	y analysis hH FC an	for metals ar	ла
****							1	-													,,		
***								-															
****							_	-					:										
***							-	-															
****		179.3					-	-															
****	Brown SILTY SAND FILL	1.5	SS	2A	100	N/A	-	-												Commis DLI	MAX 101 C	COA automitt	1 a al
****	saturated	179.1					ŀ	170												for laborator	vivv-101 5 v analvsis	for PHC	lea
***	Brown						-	179 -					· · · · ·							(F1-F4) and	BTEX.		
***	SILTY CLAY FILL							-															
****	liace sailu seallis						_ 2	-															
****							_	-															
***							-	-					30										
****			SS	2B	31	N/A	-	-					⊾ж					LL		1			
****							-	-				1.	l i					E	=				
****							-	-										ΙE	17				
***							-	178										l∶ ⊨	1				
***							-	170 -										Ε	1.				
****		177 7					_ 3	-										E					
****	Brown	3.0					L]	Ľ -										l∴⊨	÷.	1			
***	SILTY SAND FILL						-	-										ĿΕ					
***	saturated						-	-										l					
****							-	-										ΙE	1.				
****							-	-										l: E	10				
***							-	-					20					I F	1				
****			SS	ЗA	100	N/A	-	177				4	*					LΕ	30				
****												. 0.	ľ :					. • =	- · ·				
***								-										Ε	30				
***								-	-									=	10]			
***							-	-										ĿΕ	1				
***							-	-										l∵ ⊨	- 12				
	Brown	1/6.4					ł	-						14	5			E					
_	PEAT / ORGANICS	176.2	SS	3B	100	N/A	-	-				. : Z	ĥ	*				l i	1.	1			
1/1	trace rootlets	4.6					-	-										ŀΕ	÷.,				
111	saturated	/					Ľ	176 -										l =					
ΉИ	SILTY CLAY						_	-										ΙE	1.				
łИ	trace sand seams						- 5	-										ĽЕ	- 1: `				
111								-										E	-				
111													40					1	1.1				
111			SS	4	60	N/A	-	-	-			2	⊾ж ⊂					l · F	- · ·				
łИ							-					0.	P					E					
111								-												Upon Comp	letion: Bore	ehole	o.
111							_	-												remained op mbas.	en and wa	ater level 5.1	δ±
111							F	175 —												Monitoring V	Vell Installa	ation: 3.2cm	
ΉИ							-	-												diameter sch	nedule 40 j	pipe with 3.0	m
łΗ		17/ 7					- 6	-					i i							casing. No	evidence o	of free flowing	g
ИЙ	BOREHOLE TERMINAT	ED 61					1									-	-			product.			-
		2																					
																-							
Am	ec Foster Wheeler	▼ Grounder	ator dor	th enco	untered	00.00~	nletion	of drillin	a. 20														
En	rironment & Infrastructure		ater uep		undied	UT COI	hierioti	or unnin	y. <u>ບ.</u> ∠	<u>l</u> .													
3300) Merrittville Hwy, Unit 5	Groundwa	ater dep	oth obse	rved on	<u>01/20</u>) <u>/2016</u> a	at a depl	h of:	<u>3.1 m</u> .													
Tho	old, Ontario L2V 4Y6	Borehole details	as prese	nted do	not const	itute a +F	orough	understa	nding of all	potenti	al condi	tions pre	sent ∆le	50. ho	rehole	inform	nation s	should	i be				
Tel: Fax:	(905) 687-6616 (905) 687-6620	read in conjunction	on with t	he enviro	nmental	report fo	r which	it was cor	nmissioned	i.				., 20							1 *	Scale: 1 : 3	36
www	amecfw.com																				P	age: 1 of	1

Project Number:	TG151118	Drilling Method:	100 mm Dire	ct Push		
Project Client:	GR (CAN) Investments Co. Ltd.	Drilling Machine:	Geoprobe 782	22 DT		
Project Name:	Phase Two Environmental Site Assessment	Date Started:	2 Dec 15	Date Completed:	2 Dec 15	amec
Project Location:	Proposed Thundering Waters Subdivision	Logged by:	DN	Compiled by:	DN	foster
Drilling Location:	4767866N; 654080E	Reviewed by:	PS	Revision No.:	0, 22/3/16	whool

Project Number:	TG151118
Project Number.	10151110

ush			
ate Completed:	2 Dec 15	amec	
ompiled by:	DN	foster	
evision No.:	0, 22/3/16	wheeler	-

Project Number:	TG151118	Drilling Method:
Project Client:	GR (CAN) Investments Co. Ltd.	Drilling Machine:
Project Name:	Phase Two Environmental Site Assessment	Date Started:
Project Location:	Proposed Thundering Waters Subdivision	Logged by:
Drilling Location:	4768013N; 654716E	Reviewed by:

thod:	100 mm Direct Push											
chine:	Geoprobe 782	22 DT										
ed:	2 Dec 15	Date Completed:	2 Dec 15									
	DN	Compiled by:	DN									
by:	PS	Revision No.:	0, 22/3/16									

	LITHOLOGY PROFILE		SC	DIL SA	MPLI	NG			FIELD T	ESTING	SOIL SCREENING			
									Penetrati	onTesting	* Combustible Organic	lon		
Ħ	DESCRIPTION		Ð	nber	()	e		E	O SPT	DCPT	Combustible Organic		Š	COMMENTS
Jy Plo			, Typ	Nur	ery (%	Valu	E I	0 E			Vapour (%LEL)		F	
holoć			mple	mple	SCOVE	N. L	LT H	EVA			$^{\triangle}$ (ppm)	STR	R N	
Ľ.	Local Ground Surface Elevation: 175.3 m 150 mm TOPSOIL		s	Š	Å.	R R	ä		20 40	60 80	100 200 300 400	ZZ	Z ₩÷	
~~~	Brown	175.1 0.2	22	1.0	100		-	-					-# #-	Sample BH/MW-103 SS1A submitted
	SILTY SAND FILL trace rootlets		33		100		-	175 —				- <del>-</del> -		for laboratory analysis for metals and inorganics. pH. EC. and SAR.
XX	dtpl	174.8 					-	-						·····g-·····, p··,,
	SILTY CLAY							-						
	dtpl						-	-						
			SS	1B	100	N/A	- 1	-			↓ 120 ↓ 米			
H							-	-		0	.0			
							_	174 —						
		173.8					_	-						
	Reddish brown	1.5					-	-						
	dtpl						_	-						
							-	-						
								-				-		
			SS	2	85	N/A	_	- 173 —			70 4 *			
							-	-		0.	.0			
							_	-						
							_	-			•••••••••••••••••••••••••••••••••••••••			
		170.0					-	-				ΙE		
Ħ		<u>172.2</u> 3.0					- 3	-				Ē		
	1						_	- 172 —						
							-							
							-	-						
				2	100			-			50			Sample BH/MW-103 SS3 submitted
			33	3	100		-	-		0	4 * D			(F1-F4) and BTEX.
							- 4 -	-				Ε		
							-	-				÷		
							_							
							_	-			·····;····;····;····;			
								-				E		
	1						- 3	-			· · · · · · · · · · · · · · · · · · ·	E		
							- 5	-						
							-	-			60	E		
		160.8	SS	4	100	N/A	_	170 -		0	<b>≜ *</b>			
Ħ	grey with brown seams	5.5					_	-						Upon Completion: Borehole
	api-wipi						-	-						Monitoring Well Installation: 3.2cm
							-	-						length #10 mil slotted screen, stick-up
		169.2					- 6	-						product.
1	BOREHOLE TERMINATED	6.1												
An	lec Foster Wheeler							. h	<u> </u>					
En	vironment & Infrastructure	io treesta	anding (	groundv	vater me	easured	in oper	n boreho	e on completio	n ot arilling.				
330 The	00 Merrittville Hwy, Unit 5 prold, Ontario L2V 4Y6		ater dep	on obse	erved on	<u>01/20</u>	<u>12016</u> 8	at a dept	n or: <u>4.8 m</u>	<u>l</u> .	and Alex benchmarked at the	ha 1		
Tel: Fax	(905) 687-6616 (905) 687-6620	le details conjunctio	as prese on with t	nted, do he enviro	not cons nmental	titute a th report for	orough ' which i	understar t was cor	iding of all potent imissioned.	al conditions pre	esent. Also, borehole information s	nould b	эe	Scale: 1 : 36
ww	w.amecfw.com													Page: 1 of 1

-	· · · · · ·						
Project Number:	TG151118	Drilling Method:	100 mm Dire	ct Push			
Project Client:	GR (CAN) Investments Co. Ltd.	_ Drilling Machine:	Geoprobe 782	22 DT			l
Project Name:	Phase Two Environmental Site Assessment	Date Started:	2 Dec 15	Date Completed:	2 Dec 15	amec 🏹	
Project Location:	Proposed Thundering Waters Subdivision	Logged by:	DN	Compiled by:	DN	foster	ľ
Drilling Location:	4768931N; 653562E	_ Reviewed by:	PS	Revision No.:	0, 22/3/16	wheeler	

	LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD TESTING	SOIL SCREENING		
								PenetrationTesting	* Combustible Organic	NOL	
t	DESCRIPTION	۵	lber		e		E T	o SPT ● DCPT	- Combustible Organic	IND NO	COMMENTS
gy Plo	DESCRIPTION	Typ	Nun	ary (%	Valu	E .	Ó		Vapour (%LEL)	LAT	
holoç		ample	ample	SCOVE	N. Lo	L H	EVA		$^{\Delta}$ (ppm)	STR	
Lit	Local Ground Surface Elevation: 180.5 m 150 mm TOPSOIL	ů	ő	Å.	5	ā		20 40 60 80	100 200 300 400	ZZ Rifi	
ЯV	180. Brown 0.	3				-	-			통 문	
	SILTY CLAY / CLAYEY SILT trace reddish grey seams					-	-			101	
	dtpl					_	180 -				
		SS	1	100	N/A	-	-		130 *		
						-	-	0	. <b>D</b>		Sample BH/MW-104 SS1 submitted for laboratory analysis for metals.
						- 1 -	-				
						L	-				
						-	- 179 —				
						-					
						-	-				
						-	-				
						-	-				
		SS	2	92	N/A	-	-				
						-	178 —		<b>[</b>		
						_	-				
						-	-				
		1				- 3	-				
	Brown-reddish brown 3. trace grey seams					-	-				
	uipi-api					-	-				
						-	177				
				100		_	_		<b>110</b>		Sample BH/MW-104 SS3 submitted
			5	100		-	-	0	<b>b</b>		PHC (F1-F4).
						- 4	-				
						-	-				
						-	176 —				
						Ļ	-			1 目:	
						-	-				
						- ⁵ 🗴	-				
							-		20		
	175	ss	4	100	N/A	-	-	0	4*		
	api-wtpi5.	5				- 🔳	175 -				Upon Completion: Borehole remained open to 5 49+ mbgs and
						L	-				dry. Monitoring Well Installation: 3.2cm
						-	-				diameter schedule 40 pipe with 3.0m length #10 mil slotted screen, stick-up
111	BOREHOLE TERMINATED 6.	1				- °					casing. No evidence of free flowing product.
Am Env	ec Foster Wheeler vironment & Infrastructure ¥ No free	standing	groundv	water me	easured	in open	boreho	le on completion of drilling.	Cave in depth after rer	moval of	augers: <u>5.5 m</u> .
330	0 Merrittville Hwy, Unit 5	water de	pth obse	erved or	<u>01/20</u>	/ <u>2016</u> a	t a dept	h of: <u>5.1 m</u> .			1
Tel:	(905) 687-6616 Borehole detai (905) 687-6620	s as prese	ented, do the enviro	not cons	titute a th report for	orough u r which it	inderstar was con	iding of all potential conditions pr missioned.	esent. Also, borehole information s	should be	Scale: 1 : 36
ww	v.amecfw.com										Page: 1 of 1

Project Number:	TG151118	Drilling Method:	100 mm Dire	ect Push		
Project Client:	GR (CAN) Investments Co. Ltd.	Drilling Machine:	Geoprobe 78	22 DT		
Project Name:	Phase Two Environmental Site Assessment	Date Started:	2 Dec 15	Date Completed:	2 Dec 15	amec 🔼
Project Location:	Proposed Thundering Waters Subdivision	Logged by:	DN	Compiled by:	DN	foster
Drilling Location:	4769009N; 654453E	Reviewed by:	PS	Revision No.:	<u>0, 22/3/16</u>	wheeler



# Renamed BH/MW201 in 2016

2016 Surface Elevation: 179.28 Metres Above Sea Level



PROJEC	T Environmental	I Phase II	rete u				LC	CATIC	N (re	fer to Bore	hole locatio	on plan)	ORIG	
CLIENT	Mountainview	Homes Niag	jara Ltd			12-23	al inge		_				COM	PILED BY KS
JOB NO.	<u>TG51160</u>	DATE	Febru	iary :	<u>2, 200</u>	)6	_ E	QUIPMI					CHE	CKED BY RS
	SOIL PROF	FILE	N 4	S	AMPL	ES	۲. "	2	STAN	DARD PENET	RATION TEST	Tota	I Organic Vapour	
ELEV DEPTH	DESCRIPT	FION	STRAT PLOT	NUMBER	TYPE	"N' VALUES	GROUND WATI CONDITIONS	DEPTH (m)	2 SHEA 0 Ut 0 QU 2	AR STRENG NCONFINED UICK TRIAXIA	50 80 1 TH (kPa) ▲ FIELD L ● LAB V 50 80 1	00 20 VANE Tota ANE 100 2	40 60 80 I Organic Vapour ppm	OBSERVATIONS & REMARKS
0.0	Grass overlying red-brown FILL: to Clayey Silt, tr and fine Gravel, wtpl, firm.	brown to Silty Clay ace Sand sdtpl to		1	SS	4		-	<b>P</b>			2)ppm		
							4	- 1 -						
				2	SS	6		- 2	0			Oppm		
								- 3						
				3	SS	5		-	0			25ppm		Split Spoon wet
								-4						upon retrieval.
175.3				4	SS	8		- 5	4				400ppm	
5.2	Brown to Red-or SILTY CLAY TO SILT, with trace grey-fissures, re pockets/zones, seams. dtpl to s	own ) CLAYEY Sand, ed Clay Sand wtol. very		5	SS	16	minimi	-	ł				280 <b>000</b>	
173.8	stiff. Fine Gravel at 6	.4 m(±).		6	SS	29		- - -		ſ		95 ₀₀₀		
u.,	Borenole Term	nateo.												Upon ompletion: Borehole open an- water level at 1.0 mbgs.

# Renamed BH/MW202 in 2016

2016 Surface Elevation: 179.61 Metres Above Sea Level.



			ł	REC	ORE	) OF	BOR	EHC	DLE N	lo BH	1/MW 5		1 OF	1			
PROJEC	T Environmental Phase II Mountainview Homes Niaga	ra I tri				_ LC	OCATIO	•N <u>(re</u>	efer to l	Boreho	ole location	n plan	)		0	RIG	INATED BY KS/RVH
JOB NO		Janua	ary 3	1, 20	06	E	QUIPME	ENT_							c	HEC	KED BY RS
	SOIL PROFILE		S	AMPL	ES	e:			DARD PI	ENETRA	TION TEST		Tota	I Orga	nic Var	pour	
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	GROUND WATE CONDITIONS	DEPTH (m)	SHE/ 0 U • Q	AR STR NCONFII UICK TR 0 40	60 ENGTH NED IAXIAL 60	80 10 I (kPa) ▲ FIELD \ ● LAB VA 80 10	0 /ANE NE 0	20 • Tota 100 2	70 L 40 6 I Organ pp 200 30	0 80 nic Var m 00 400	pour	OBSERVATIONS & REMARKS
0.0	FILL: Brown to red-brown Silty Clay to Clayey Silt, with trace of Gravel, fissures, silt seams, firm to stiff, dtol to who		1	SS	7			φ					70ppm				
			2	SS	9		- 1 -	-					75 <b>0</b> pm				
			3	SS	5		- - - 2	0				25	ppm				
			4	SS	5		-	Φ									
174.0 3.2 173.7 3.5	Black BURIED TOPSOIL, dayey organics, rootlets, moist to wet. Dark grey to brown SILTY		5	SS	9	Aintinini	3  								400	pm	Split Spoon wet upon retrieval.
	CLAY TO CLAYEY SILT, mottled to fissured, Silt seams/partings, dtpl, stiff to very stiff.		6	SS	24		- 4 						125pp	m			
4.6	Borehole Terminated.																Upon completion: Borehole open and water level at 3.1 mbgs.



TESTPIT LOC	6: TP101		Ground Surface Elevation	n: 181.52 m	UTM Co-ordinates: 653842 E, 4768127 N			
	Sample			Stratigraphy				
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description			
	0.5	100 / 0		0-0.15	Brown Topsoil			
	1.0	90 / 0		0.15-1.0	Fill: Brown Silty Clay with organics			
	1.5	70 / 0		1.0-2.0	Fill: Brown Silty Clay, trace sand and medium			
	2.0	65 / 1	No odours or staining.		gravel with small medium cobbles			
TP101-5 (Metals & pH)	2.5	85 / 0		2-2.5	Fill: Grey Silty Sand.			
	3.0	70 / 0		2.5-3.0	Grey Silty Clay trace fine gravel, wtpl			

Upon completion: Testpit open and dry @3.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG: TP102			Ground Surface Elevation	n: 180.58 m	UTM Co-ordinates: 653854 E, 4768193 N			
Sample				Stratigraphy				
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description			
TP102-1 (Metals)	0.5		No odours or staining.	0-0.0.5	Brown Silty Clay <b>Topsoil</b>			
	1.0			0.5-1.0	Fill: Brown Silty Clay with organics, dtpl			
	1.5			1.0-1.5	Brown <b>Silty Clay</b> with grey seams and trace fine/medium gravel, dtpl/apl			

Upon completion: Testpit open and dry @1.5m.

TESTPIT LOG	6: TP103		Ground Surface Elevatior	n: 181.87 m	UTM Co-ordinates: 653712 E, 4768090 N		
Sample				Stratigraphy			
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description		
TP103-1 (Metals)	0.5	75 / 0		0-0.15	<b>Fill</b> : Brown Silty Clay Topsoil over brown Silty Clay, trace organics, dtpl		
	1.0	30 / 0	No odours or staining.	0 15 1 5	Brown Silty Clay, trace fine gravel with grey		
	1.5	35 / 0		0.13-1.3	seams, dtpl/apl		

Upon completion: Testpit open and dry @1.5m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG	6: TP104		Ground Surface Elevation	n: 180.75 m	UTM Co-ordinates: 653702 E, 4767932 N			
	Sample			Stratigraphy				
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description			
TP104-1 (Metals)	0.5	95 / 0		0-0.1.5	<b>Fill</b> : Topsoil over brown Silty Clay with trace organics, trace fine gravel, dtpl			
	1.0	90 / 1		1.5-2	Brown/Grey Silty Clay trace fine gravel, dtpl/apl			
	1.5	75 / 1	No odours or staining.	0.05	Brown/Grey Silty Clay trace fine gravel, some			
	2.0	95 / 1		2-2.5	greenish streaks at 2m, dtpl/apl			
	2.5	80 / 0		253	Brown/Grey Silty Clay trace fine gravel, no			
	3.0	85 / 0		2.0-0	streaks, dtpl/apl			

Upon completion: Testpit open and dry @3.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG	i: TP105		Ground Surface Elevation	n: 182.36 m	UTM Co-ordinates: 653746 E, 4767997 N			
	Sample			Stratigraphy				
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description			
TP105-1 (Metals)	0.5	125 / 0		0-2.0	<b>Fill:</b> Brown Silty Clay with medium gravel and rounded cobbles, dtpl/apl			
	1.0	130 / 0						
	1.5	85 / 0	No odours or staining.		Prown Silty Clay with trace fine/medium gravel			
	2.0	80 / 0	J. J	2.0-3.0	dtpl/apl			
	2.5	70 / 0						
	3.0	80 / 0						

Upon completion: Testpit open and dry @3.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG	6: TP106		Ground Surface Elevation	n: 183.38 m	UTM Co-ordinates: 653925 E, 4768000 N			
Sample					Stratigraphy			
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description			
TP106-1 (Metals)	0.5	45 / 0		0-0.3	Topsoil			
	1.0	50 / 0	No odours or staining.	0.3-1.0	<b>Fill:</b> Brown Silty Clay with organics over brown Silty Clay with fine/medium gravel with organics, dtpl			
	1.5	55 / 0		1 0-2 0	Brown/Grey Silty Clay trace fine gravel dtpl			
	2.0	20 / 0		1.0-2.0	Brown/Grey <b>Girly Glay</b> trace line gravel, dipi			

Upon completion: Testpit open and dry @2.0m.

TESTPIT LOG	6: TP107		Ground Surface Elevation	n: 181.50 m	UTM Co-ordinates: 653900 E, 4767883 N			
Sample					Stratigraphy			
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description			
TP107-1 (Metals)	0.5	95 / 0		0-1.0	<b>Fill</b> : Silty Clay with fine/medium gravel, trace organics, rounded cobbles			
	1.0	75 / 0	No odours or staining.					
	1.5	80 / 0		1.0-2.0	Brown Silty Clay trace fine/medium gravel			
	2.0	75 / 0						

Upon completion: Testpit open and dry @2.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOC	6: TP108		Ground Surface Elevation	n: 181.62 m	UTM Co-ordinates: 653989 E, 4767858 N			
Sample					Stratigraphy			
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description			
TP108-1 (Metals)	0.5	160 / 0		0-0.3	Topsoil			
	1.0	175 / 0	No odours or staining.	0.3-2.0				
	1.5	145 / 0	5		Brown <b>Silty Clay</b> trace fine gravel, dtpl			
	2.0	140 / 0						

Upon completion: Testpit open and dry @2.0m.

TESTPIT LOG	6: TP109		Ground Surface Elevation	า: 180.65 m	UTM Co-ordinates: 654015 E, 4767792 N			
Sample				Stratigraphy				
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description			
	0.5	80 / 0		0-0.3	<b>Fill</b> : Brown Topsoil over brown Silty Clay with trace organics, trace fine/medium gravel			
TP109-2 (Metals)	1.0	90 / 0	No odours or staining.	0.3-1.0	Brown <b>Silty Clay</b> , brown,, some aquatic shells between 0.5-1.0 m			
	1.5	60 / 0		1 0-2 0	Brown Silty Clay, trace fine/medium sand, dtnl			
	2.0	45 / 0		1.0-2.0	Brown ency ency, race me/mediam sand, dipr			

Upon completion: Testpit open and dry @2.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOC	6: TP110		Ground Surface Elevation	n: 180.65 m	UTM Co-ordinates: 654109 E, 4767748 N			
Sample					Stratigraphy			
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description			
TP110-1C (Metals & PAHs)	0.5	75 / 0		0-0.3	Fill: Topsoil, brown			
	1.0	30 / 0	No odours or staining.	0.3-1.0	<b>Fill</b> : Silty Clay, brown, with trace medium sand, dtpl, some aquatic shells between 0.5-1.0 m			
	1.5	35 / 0		1 0-2 0	Brown Silty Clay, trace fine/medium sand, dtpl			
	2.0	5 / 0		1.0-2.0	Brown oncy oncy, trace internetition sand, dipi			

Upon completion: Testpit open and dry @2.0m.

TESTPIT LOG: TP111			Ground Surface Elevation: 181.81 m		UTM Co-ordinates: 654121 E, 4767832 N	
	Sample			Stratigraphy		
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description	
TP111-1 (Metals)	0.5	0 / 0	No odours or staining.	0-0.3	Topsoil	
	1.0	50 / 0		0.3-2.0	Brown <b>Silty Clay</b> , trace fine/medium gravel, dtpl/apl	
	1.5	45 / 0				
	2.0	20 / 0				

Upon completion: Testpit open and dry @2.0m.

Testpits excavated with CAT 420F Backhoe

Originated & compiled by: MS Checked By: PS



TESTPIT LOG: TP112			Ground Surface Elevation: 183.40 m		UTM Co-ordinates: 654039 E, 4767903 N	
	Sample			Stratigraphy		
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description	
	0.5	50 / 1		0-0.3	<b>Fill</b> : Brown Topsoil over Silty Clay with trace sand and gravel with cobbles, dtpl/apl	
TP112-2D (Metals, PAHs, Hg & Cr VI) DUPG (PAHs, Hg & Cr VI)	1.0	35 / 0	No odours or staining.	0.3-2.5	<b>Fill:</b> Silty Clay with trace sand and gravel with cobbles, dtpl/apl	
	1.5	45 / 0			Grey/Brown Silty Clay trace fine gravel, dtpl/apl	
	2.0	50 / 0		2530		
	2.5	40 / 0		2.5-5.0		
	3.0	35 / 0				

Upon completion: Testpit open and dry @3.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG: TP113			Ground Surface Elevation: 179.73 m		UTM Co-ordinates: 653712 E, 4767808 N	
Sample				Stratigraphy		
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description	
TP113-1 (Metals)	0.5	110 / 0				
	1.0	170 / 0			<b>Fill</b> : Brown, Silty Clay, some sand with medium	
	1.5	155 / 0		0-3.5	loose gravel, large cobbles throughout, moist	
	2.0	75 / 1				
	2.5	155 / 0				
	3.0	85 / 1	No odours or staining.			
TP113-7 (Metals, VOCs, PHCs, Hg, Cr VI & PAHs)	3.5	140 / 1		3.5-4.0	Grey <b>Silty Clay</b> dark organic layer	
	4.0	75 / 0				

Upon completion: Testpit open with water in bottom @4.0m. (Hole is caving)

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG: TP114			Ground Surface Elevation: 180.26 m		UTM Co-ordinates: 654758 E, 4768071 N	
	Sample			Stratigraphy		
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description	
TP114-1 & DUPA (Metals, pH, EC & SAR)	0.5	80 / 0		0-1.5	Fill: Brown Silty Clay, trace organics, dtpl	
	1.0	85 / 0				
	1.5	80 / 0	Gradual Moisture Increase		<b>Fill:</b> Brown Silty Clay, trace organics, trace fine gravel	
	2.0	130 / 1	w/Depth			
	2.5	110 / 0		1 5-4 0		
	3.0	90 / 0		1.0 1.0		
	3.5	90 / 1				
	4.0	95 / 0				

Upon completion: Testpit open and dry @4.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG: TP115			Ground Surface Elevation: 181.68 m		UTM Co-ordinates: 654835 E, 4768145 N	
	Sample			Stratigraphy		
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description	
TP115-1 (Metals)	0.5	80 / 0		0-1.0	<b>Fill:</b> Brown Silty clay, trace organics, trace fine gravel, dtpl	
	1.0	110 / 0			<b>Fill:</b> Brown/Grey Silty clay, trace organics, trace fine gravel, dtpl	
	1.5	100 / 0				
	2.0	95 / 1	Gradual Moisture Increase			
	2.5	80 / 0	w/Depin	1.0-4.0		
	3.0	120 / 0				
	3.5	95 / 0				
	4.0	95 / 1				

Upon completion: Testpit open and dry @4.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG: TP116			Ground Surface Elevation: 182.05 m		UTM Co-ordinates: 654756 E, 4768169 N	
	Sample			Stratigraphy		
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description	
	0.5	195 /1				
TP116-2 (Metals)	1.0	200 / 0		0-4.0	<b>Fill:</b> Brown Silty Clay with trace organics, and trace fine/medium gravel, dtpl	
	1.5	150 / 1				
	2.0	110 / 0	Slight Moisture			
	2.5	135 / 0				
	3.0	95 / 0				
	3.5	90 / 0				
	4.0	85 / 0	]			

Upon completion: Testpit open and dry @4.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG: TP117			Ground Surface Elevation: 176.78 m		UTM Co-ordinates: 654717 E, 4768075 N	
	Sample			Stratigraphy		
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description	
	0.5	125 / 1		0-1.5	<b>Fill:</b> Brown Silty Clay with trace organics, trace fine/medium gravel, dtpl	
	1.0	135 / 1		1.5-2.5		
TP117-3 & DUPC (Metals, pH, EC & SAR)	1.5	175 / 0	No odours or staining.		Fill: Brown Silty Clay, fissured with some grey seams	
	2.0	135 / 1				
	2.5	115 / 1			Brown/Grey <b>Silty Clay</b> , trace fine gravel, dtpl	
	3.0	100 / 1		2540		
	3.5	135 / 0		2.0-4.0		
	4.0	85 / 0				

Upon completion: Testpit open and dry @4.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG: TP118			Ground Surface Elevation: 173.20 m		UTM Co-ordinates: 654729 E, 4767983 N	
	Sample			Stratigraphy		
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description	
TP118-1 (Metals)	0.5	200 / 0	-	0-0.20	<b>Topsoil</b> over brown Silty Clay, trace fine gravel, dtpl	
	1.0	190 / 0		0.20-3.0	Brown Silty Clay trace fine gravel	
	1.5	95 / 0	No odours or staining.			
	2.0	60 / 1				
	2.5	115 / 1				
	3.0	190 / 1				

Upon completion: Testpit open and dry @3.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG: TP119			Ground Surface Elevation: 180.03 m		UTM Co-ordinates: 653842 E, 4767813 N	
Sample				Stratigraphy		
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description	
TP119-1C (Metals)	0.5	55 / 1				
	1.0	30 / 1		0-2.0	Fill: Brown Silty Clay with sand and gravel, and	
	1.5	30 / 2		0 2.0	rounded cobbles, dtpl/apl	
	2.0	60 / 0				
	2.5	25 / 0		2025	Fill Prown Silty Sand acturated	
	3.0	45 / 1	No odours or staining.	2.0-3.5	T III. DIOWN Silly Sand, Saturated	
	3.5	90 / 1				
TP119-8D (PHCs & BTEX) TP119-8C (Metals, pH, EC, SAR, Hg & Cr VI)	4.0	70 / 0		3.5-4.0	Brown/Green <b>Silty Clay</b> with trace sand and organics	

Upon completion: Caving @ 4.0m (Terminated)

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG: TP120			Ground Surface Elevation	n: 180.19 m	UTM Co-ordinates: 653852 E, 4767840 N
	Sample			Stratigraphy	
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description
TP120-1 (Metals)	0.5	60 / 1		0-0.30	Topsoil with organics, dtpl
	1.0	85 / 0	No odours or staining.	0 20 1 5	Brown Silty Clay trace fine grovel dtpl
	1.5	80 / 0		0.50-1.5	Brown <b>Giry Clay</b> trace time gravel, dipi

Upon completion: Testpit open and dry @1.5m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



TESTPIT LOG: TP121			Ground Surface Elevation: 179.24 m		UTM Co-ordinates: 653878 E, 4767855 N	
	Sample			Stratigraphy		
Number & Lab Analyses	Depth (mbgs)	COV/TOV (ppm)	Comments (odour, staining, moisture, etc.)	Depth (mbgs)	Material Description	
TP121-1 (Metals)	0.5	175 / 0				
	1.0	135 / 0		0-2.5	<b>Fill:</b> Silty Clay, trace fine/medium gravel, organics, dtpl	
	1.5	135 / 0				
	2.0					
TP121-5 (Metals, PHCs, BTEX, PAHs, Hg & Cr VI)	2.5	220 / 0	No odours or staining.	2.5-3.0	Silty Clay with occasional organic layer, dtpl/apl	
´	3.0	230 / 0				

Upon completion: Testpit open and dry @3.0m.

Testpits excavated with CAT 420F Backhoe

••

Originated & compiled by: MS Checked By: PS



#### TESTPIT LOG: TP201

### (654015, 4767794)

Sample	Denth	Comments (odour, staining, etc.)	COV/TOV	Stratigraphy		
Number	(mbgs)		(ppm)	Depth (mbgs)	Material Description	
TP201-2 (metals)	1.0	No odours or staining	-	0-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL	
TP201-3 (metals)	1.5	No odours or staining	-	1.0-1.5	Brown, Silty Clay/Clayey Silt, Possible Native, DTPL	

Upon completion: Open and dry at 1.5 mbgs.

## TESTPIT LOG: TP202

# (654015, 4767797)

Sample Number	Denth	Comments (odour, staining, etc.)	COV/TOV	Stratigraphy		
	(mbgs)		(ppm)	Depth (mbgs)	Material Description	
TP202-2 + Dup AA (metals)	1.0	No odours or staining	-	0-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL/APL	
TP202-3 (metals)	1.5	No odours or staining	-	1.0-1.5	Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, DTPL	

Upon completion: Open and dry at 1.5 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



#### TESTPIT LOG: TP203

#### (654018, 4767796)

Sample	Depth	Comments (odour, staining, etc.)	COV/TOV	Stratigraphy		
Number	(mbgs)		(ppm)	Depth (mbgs)	Material Description	
TP203-2 (metals)	1.0	No odours or staining	-	0-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL	
TP203-3 (metals)	1.5	No odours or staining	-	1.0-1.5	Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, Mottled, DTPL	

Upon completion: Open and dry at 1.5 mbgs.

TESTPIT LOG: TP204

# (654011, 4767797)

Sample Number	Denth	Depth Comments mbgs) (odour, staining, etc.)	COV/TOV	Stratigraphy		
	(mbgs)		(ppm)	Depth (mbgs)	Material Description	
TP204-1 (metals)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Fine Gravel, DTPL	
TP204-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



#### TESTPIT LOG: TP205

#### (654010, 4767789)

Sample	Denth	Comments (odour, staining, etc.)	COV/TOV (ppm)	Stratigraphy		
Number	(mbgs)			Depth (mbgs)	Material Description	
TP205-1 (metals)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL	
TP205-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Possible Native, Fissured, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

#### TESTPIT LOG: TP206

### (654020, 4767788)

Sample	Denth	epth Comments nbgs) (odour, staining, etc.)	COV/TOV	Stratigraphy		
Number	(mbgs)		(ppm)	Depth (mbgs)	Material Description	
TP206-1 (metals)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Fine Gravel, DTPL	
TP206-2 (metals)	1.0	No odours or staining.	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



#### TESTPIT LOG: TP207

#### (653801, 4768142)

Sample	Denth	Comments (odour, staining, etc.)	COV/TOV	Stratigraphy		
Number	(mbgs)		(ppm)	Depth (mbgs)	Material Description	
-	-	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Sand, Trace Organics, DTPL	
Composite	1.0	No odours or staining	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Fine Gravel, Trace Organics, DTPL	
TP207 (metals)	1.5	No odours or staining	-	1.0-1.5	Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, DTPL	

Upon completion: Open and dry at 1.5 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



#### TESTPIT LOG: TP208

#### (653799, 4768142)

Sample	Denth	Comments	COV/TOV	Stratigraphy	
Number	(mbgs)	nbgs) (odour, staining, etc.)	(ppm)	Depth (mbgs)	Material Description
Composito	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Sand, Some Medium Rounded Gravel, Medium Rounded Cobbles
TP208 (metals)	1.0	No odours or staining		0.5-1.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Sand, Some Medium Rounded Gravel, Medium Rounded Cobbles
	1.5	No odours or staining	-	1.0-1.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Sand, Some Medium Rounded Gravel, Medium Rounded Cobbles
TP208-4 + Dup AC (metals)	2.0	No odours or staining	-	1.5-2.0	Brown/Grey, Silty Clay/Clayey Silt, Possible Native, APL/WTPL

Upon completion: Open and dry at 2.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



### TESTPIT LOG: TP209

#### (653795, 4768140)

Sample	Denth	n Comments 5) (odour, staining, etc.)	COV/TOV	Stratigraphy		
Number	(mbgs)		(ppm)	Depth (mbgs)	Material Description	
	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Sand, Medium/Large Rounded Cobbles	
Composite TP209 (metals)	1.0	No odours or staining		0.5-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Sand, Medium/Large Rounded Cobbles	
	1.5	No odours or staining	-	1.0-1.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Sand, Medium/Large Rounded Cobbles	
TP209-4 (metals)	2.0	No odours or staining	-	1.5-2.0	Brown/Grey, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, APL/WTPL	

Upon completion: Open and dry at 2.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



#### TESTPIT LOG: TP210

#### (653799, 4768145)

Sample	Depth	Depth Comments nbgs) (odour, staining, etc.)		Stratigraphy		
Number	(mbgs)		(ppm)	Depth (mbgs)	Material Description	
Composite	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Fine Gravel, Trace Organics, DTPL	
TP210 (metals)	1.0	No odours or staining	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL	
	1.5	No odours or staining	_	1.0-1.5	Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, DTPL	

Upon completion: Open and dry at 1.5 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



#### TESTPIT LOG: TP211

#### (653804, 4768143)

Sample	Denth	Depth Comments	COV/TOV	Stratigraphy		
Number	(mbgs)	(odour, staining, etc.)	(ppm)	Depth (mbgs)	Material Description	
TP211-1 (metals)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Fine Gravel, Trace Organics, DTPL	
TP211-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Brown Clayey Silt, Possible Native, Fissured, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



#### TESTPIT LOG: TP212

#### (653800, 4768135)

Sample	Denth	Comments	COV/TOV	Stratigraphy		
Number	(mbgs)	mbgs) (odour, staining, etc.)	(ppm)	Depth (mbgs)	Material Description	
	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Sand, Medium Rounded Cobbles	
Composite TP212 (metals)	1.0	No odours or staining		0.5-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Sand, Medium/Large Rounded Cobbles	
	1.5	No odours or staining	-	1.0-1.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Sand, Medium/Large Rounded Cobbles	
TP212-4 (metals)	2.0	No odours or staining	-	1.5-2.0	Brown/Grey, Silty Clay/Clayey Silt, Possible Native, APL/WTPL	

Upon completion: Open and dry at 2.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



#### TESTPIT LOG: TP213

## (653715, 4768089)

Sample	Denth	Comments (odour, staining, etc.)	COV/TOV (ppm)	Stratigraphy		
Number	(mbgs)			Depth (mbgs)	Material Description	
TP213-1 (metals)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL	
TP213-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, Mottled, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

# TESTPIT LOG: TP214

# (653713, 4768092)

Sample Number	Depth (mbgs)	Comments (odour, staining, etc.)	COV/TOV (ppm)	Stratigraphy		
				Depth (mbgs)	Material Description	
TP214-1 (metals)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL	
TP214-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



#### TESTPIT LOG: TP215

### (653711, 4768094)

Sample Number	Depth (mbgs)	Comments (odour, staining, etc.)	COV/TOV (ppm)	Stratigraphy	
				Depth (mbgs)	Material Description
Composite	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Rounded Gravel, Trace Organics, DTPL
TP215 (metals)	1.0	No odours or staining	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Rounded Gravel, Trace Organics, DTPL
TP215-3 (metals)	1.5	No odours or staining	-	1.0-1.5	Brown, Silty Clay/Clayey Silt, Possible Native, Mottled, DTPL

Upon completion: Open and dry at 1.5 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



#### TESTPIT LOG: TP216

### (653718, 4768092)

	Sample Number	Depth (mbgs)	Comments (odour, staining, etc.)	COV/TOV (ppm)	Stratigraphy		
					Depth (mbgs)	Material Description	
I	TP216-1 (metals)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Fine/Medium Gravel, Trace Organics, DTPL	
	TP216-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

## TESTPIT LOG: TP217

# (653716, 4768085)

Sample Number	Depth (mbgs)	Comments (odour, staining, etc.)	COV/TOV (ppm)	Stratigraphy	
				Depth (mbgs)	Material Description
TP217-1 (metals)	0.5	No odours or staining	-	0-0.5	Reddish Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine/Medium Gravel, Trace Organics, DTPL
TP217-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Reddish Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine/Medium Gravel, Trace Organics, DTPL

Upon completion: Open and dry at 1.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP


### TESTPIT LOG: TP218

### (653708, 4768088)

Samplo	Denth	Comments	COV/TOV (ppm)	Stratigraphy		
Number	(mbgs)	(odour, staining, etc.)		Depth (mbgs)	Material Description	
TP218-1 (metals)	0.5	No odours or staining	-	0-0.5	Reddish Brown, Silty Clay/Clayey Silt, Fill Material, Trace Fine/Medium Gravel, Trace Organics, DTPL	
TP218-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Reddish Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine/Medium Gravel, Trace Organics, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



### TESTPIT LOG: TP219

### (654715, 4768010)

Sample Number	Denth	Comments (odour, staining, etc.)	COV/TOV	Stratigraphy		
	(mbgs)		(ppm)	Depth (mbgs)	Material Description	
TP219-1 (metals)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL	
TP219-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Reddish Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

### TESTPIT LOG: TP220

### (654716, 4768015)

Sample	Denth	Comments	COV/TOV (ppm)	Stratigraphy		
Number	(mbgs)	(odour, staining, etc.)		Depth (mbgs)	Material Description	
TP220-1 (metals)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL	
TP220-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Reddish Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



### TESTPIT LOG: TP221

### (654715, 4768007)

Sample	Denth	Comments (odour, staining, etc.)	COV/TOV	Stratigraphy		
Number	(mbgs)		(ppm)	Depth (mbgs)	Material Description	
TP221-1 (metals)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Slag Material, DTPL	
TP221-2 (metals)	1.0	No odours, some black seams	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Some Black Seams, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

### TESTPIT LOG: TP222

### (654716, 4768004)

Sample	Denth	Comments	COV/TOV (ppm)	Stratigraphy		
Number	(mbgs)	(odour, staining, etc.)		Depth (mbgs)	Material Description	
TP222-1 (metals)	0.5	No odours or staining	-	0-0.5	Reddish Brown, Silty Clay/Clayey Silt, Fill Material, Trace Fine Gravel, Trace Organics, Fissured, DTPL	
TP222-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Reddish Brown, Silty Clay/Clayey Silt, Possible Native, Trace Fine Gravel, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



### TESTPIT LOG: TP223

### (654722, 4768009)

Sample	Depth	Comments	COV/TOV	Stratigraphy		
Number	imber (mbgs) (odour, staining, etc.)	(odour, staining, etc.)	(ppm)	Depth (mbgs)	Material Description	
TP223-1 (metals)	0.5	No odours or staining	-	0-0.5	Reddish Brown, Silty Clay/Clayey Silt, Fill Material, Trace Fine Gravel, Trace Organics, Fissured, DTPL	
TP223-2 (metals)	1.0	No odours or staining	-	0.5-1.0	Reddish Brown, Silty Clay/Clayey Silt, Possible Native, Fissured, DTPL	

Upon completion: Open and dry at 1.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



### TESTPIT LOG: TP224

### (654714, 4768078)

Sample	Denth	Comments	COV/TOV		Stratigraphy	
Number	(mbgs)	(odour, staining, etc.)	(ppm)	Depth (mbgs)	Material Description	
TP224-1 (electrical conductivity)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL	
TP224-2 (electrical conductivity)	1.0	No odours or staining	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL	
-	-	No odours or staining	-	1.0-1.5	Brown/Grey/Red, Silty Clay/Clayey Silt, Fill Material, Trace Fine Granular, Trace Organics, DTPL	
TP224-4 (electrical conductivity)	2.0	No odours or staining	-	1.5-2.0	Grey/Red, Silty Clay, Possible Native, Trace Granular, Trace Organics, DTPL	

Upon completion: Open and dry at 2.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



### **TESTPIT LOG: TP225**

### (654717, 4768081)

Samplo	Depth	Comments			Stratigraphy	
Number	(mbgs)	(odour, staining, etc.)	(ppm)	Depth (mbgs)	Material Description	
TP225-1 (electrical conductivity)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, APL/WTPL	
TP225-2 (electrical conductivity)	1.0	No odours or staining	-	0.5-1.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, Trace Granular, APL/WTPL	
TP225-4 (electrical conductivity)-	2.0	No odours or staining	-	1.5-2.0	Brown, Silty Clay/Clayey Silt, Possible Native, Trace Organics, Trace Granular, APL/WTPL	

Upon completion: Open and dry at 2.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



### TESTPIT LOG: TP226

### (654712, 4768075)

Sample	Denth	Comments	COV/TOV	Stratigraphy	
Number	(mbgs)	(odour, staining, etc.)	(ppm)	Depth (mbgs)	Material Description
TP226-1 (electrical conductivity)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL
TP226-2 (electrical conductivity)	1.0	No odours or staining	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, White Seams, Trace Organics, Trace Fine Gravel, DTPL
TP226-4 (electrical conductivity)-	2.0	No odours or staining	-	1.0-2.0	Brown, Silty Clay/Clayey Silt, Fill Material, White/Black Seams, Trace Organics, Trace Fine Gravel, DTPL

Upon completion: Open and dry at 2.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



### TESTPIT LOG: TP227

### (654712, 4768073)

Sample	Depth	Comments	COV/TOV	Stratigraphy	
Number	(mbgs)	(odour, staining, etc.)	(ppm)	Depth (mbgs)	Material Description
TP227-1 (electrical conductivity)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, White Seams, Trace Organics, DTPL
TP227-2 (electrical conductivity)	1.0	No odours or staining	-	0.5-2.0	Brown, Silty Clay/Clayey Silt, Fill Material, White
TP227-3 (electrical conductivity)	1.5	No odours or staining	-		Seams, Trace Organics, DTPL

Upon completion: Open and dry at 2.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



### TESTPIT LOG: TP228

### (654714, 4768078)

Sample	Denth	Depth Comments	COV/TOV		Stratigraphy	
Number	(mbgs)	(odour, staining, etc.)	(ppm)	Depth (mbgs)	Material Description	
TP228-1 + Dup A3 (electrical conductivity)	0.5	No odours or staining	-	0-0.5	Brown, Silty Clay/Clayey Silt, Fill Material, Fissured, Trace Organics, DTPL	
TP228-2 (electrical conductivity)	1.0	No odours or staining	-	0.5-1.0	Brown, Silty Clay/Clayey Silt, Fill Material, White Seams, Trace Organics, DTPL	
TP228-4 (electrical conductivity)	2.0	No odours or staining	-	1.0-2.0	Brown, Silty Clay/Clayey Silt, Fill Material, Black Seams, Trace Organics, DTPL	

Upon completion: Open and dry at 2.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP



### TESTPIT LOG: TP229

### (654719, 4768075)

Sample	Denth	enth Comments	COV/TOV		Stratigraphy	
Number	(mbgs)	(odour, staining, etc.)	(ppm)	Depth (mbgs)	Material Description	
TP229-1 (electrical conductivity)	0.5	No odours or staining	-	0-0.5	Reddish Brown/Grey, Silty Clay/Clayey Silt, Fill Material, Trace Fine Gravel, Trace Organics, DTPL	
TP229-2 (electrical conductivity)	1.0	No odours or staining	-	0.5-1.0	Brown/Grey, Silty Clay/Clayey Silt, Fill Material, Trace Organics, DTPL	
TP229-4 (electrical conductivity)	2.0	No odours or staining	-	1.0-2.0	Brown/Grey, Silty Clay/Clayey Silt, Possible Native, DTPL	

Upon completion: Open and dry at 2.0 mbgs.

Equipment: Hitachi Zaxis 160 LC Excavator

Originated by: MS/KH Compiled By: MS Checked By: KP

GR (CAN) Investments Co., Ltd. Phase Two Environmental Site Assessment Thundering Waters Development, Niagara Falls, Ontario April 2017



# **APPENDIX B**

# SAMPLING AND ANALYSIS PLAN



# Memo

Re.	Phase Two ESA Sampling and Quality Assurance Plan, Thundering Waters, Niagara Falls
Date:	December 1, 2015 and December 18, 2016
cc:	Deanna Gemmell
From:	Patrick Shriner, P.Geo., QP _{ESA}
To:	Field Staff

### Scope of Sampling Program

The proposed number of boreholes, monitoring wells, testpits and the rationale for the location of each was determined by Amec Foster Wheeler. The soil/fill and ground water samples are to be analyzed for one or more of the following potential contaminants of concern (COCs): PAHs, PHCs, VOCs including BTEX and various metal (including mercury and hexavalent chromium) and inorganic parameters. The sample depths and parameters to be analyzed will be determined based on observations during the soil and ground water sampling programs and reviewed with the  $QP_{ESA}$  prior to submission. Field observations may indicate a need for additional numbers or types of samples, e.g., vertical and horizontal delineation. If such field observations are made, contact Patrick Shriner (905-687-6616) and report the observations.

Any deviations from the planned scope of work and the rationale for the deviation(s) are to be approved by Patrick Shriner and are to be recorded in the field notes.

### **Sampling Rationale and Procedures**

Sampling locations have been assessed on the basis of areas of potential environmental concern (APECs) identified during the Phase I ESA.

The following Amec Foster Wheeler Standard Operating Procedures (SOPs) are to be followed during the Project and are incorporated herein by reference:

SOP No. 1 - Equipment Calibration and Maintenance, Rev. No. 0, October 8, 2013;

Amec Foster Wheeler Environment & Infrastructure a Division of Amec Foster Wheeler Americas Limited 3300 Merrittville Highway, Unit 5 Thorold, Ontario Canada Tel (905) 687-6616 Fax (905) 687-6620 amecfw.com Continued...



SOP No. 2 - Equipment Decontamination, Rev. No. 0, October 8, 2013;

SOP No. 3 – Sample Location Inspection and Monitoring, Rev.0, October 8, 2013;

SOP No. 4 – Measurement of Field Parameters, Rev.0, October 8, 2013;

SOP No. 8 - Subsurface Soil Sampling, Rev. No. 0, October 8, 2013;

SOP No. 10 – Soil Vapour Headspace Screening, Rev. No. 0, October 8, 2013;

SOP No. 13 – Borehole Drilling and Soil Sampling, Rev. No. 0, October 8, 2013;

SOP No. 14 – Monitoring Well Design and Construction, Rev. No. 0. October 8, 2013;

SOP No. 16 - Ground Water and Liquid Level Monitoring, Rev. No. 0, October 8, 2013;

SOP No. 17 - Ground Water Purging and Sampling, Rev. No. 0, October 8, 2013;

SOP No. 18 – Ground Water Low Flow Sampling, Rev. No. 0, October 8, 2013;

SOP No. 19 - Handling of Volatile Samples, Rev. No. 0, October 8, 2013;

SOP No. 20 - Chain of Custody Completion, Rev. No. 0, October 8, 2013; and

SOP No. 21 – Aquifer Response Testing, Bail/Slug Testing, Rev. No. 0, October 8, 2013.

Specifications regarding sampling procedures, well installations, field note-taking, instrument calibration, field measurements, surveying, collection of blind duplicate samples, etc., are provided in the SOPs. The remainder of this Section provides a brief summary of sampling procedures that are to be followed, which does not supersede the requirements of the SOPs with the exception of changes in sample handling/collection practices required under the *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*, March 2004, amended as of 01 July 2011, in order to document site-specific information (e.g., contact persons).

Soil/fill and ground water samples are to be collected as per *O. Reg. 153/04*. Soil samples are to be collected at standard sampling locations throughout the full vertical extent of each borehole. Ground water samples are to be collected after the well has been both developed and purged.

Soil samples shall be submitted for analysis of parameters outlined above, as well as on the basis of the presence of fill material, visual or olfactory evidence of contamination, field screening results [hydrocarbons and VOCs (BTEX)], proximity to the apparent water table (LNAPLs) or the vicinity of the interface with a lower confining layer (DNAPLs). In the absence of any other indicators of impact, soil samples to be analyzed shall be collected from fill materials with the exception that samples for VOCs (BTEX) may be collected from the vicinity of the water table or a lower confining layer and samples for PHC F1 – F4 may be collected from the vicinity of the water table. Any deviation from the sampling plan is to be approved by Patrick Shriner.



Samples are to be submitted for analysis with the Chain of Custody clearly marked "O. Reg. 153/04" and with Table 1 and RSC selected as the applicable criteria. Soil samples to be analyzed for VOCs must be analyzed as per the revised Analytical Protocol which indicates field preservation in methanol.

Monitoring wells are to be installed with the screen extending approximately 1 m below the apparent water table (unless this would penetrate a confining layer in a potential DNAPL environment) and a minimum of 0.5 m above the high water table. If there is no indication of where the high water level is (e.g., a change from brown to grey), use an assumed value of 1 m (this is used in *O. Reg. 511/09*).

### Quality Assurance Program

The SOPs cited previously specify decontamination procedures, protocols for the collection of duplicate samples, the use of blank samples and instrument calibration checks, etc.

In the case of this Project, no non-dedicated sampling equipment, other than drilling equipment, is to be used.

Field duplicates will be collected at a ratio of 10 samples to 1 duplicate in soil and ground water samples and submitted for analysis for each analytical group/parameter in all media for which that testing is carried out at each site. One trip blank shall accompany all shipments of ground water samples submitted for analysis.

Patrick Shriner, P.Geo. Associate Geoscientist

patrick.shriner@amecfw.com

Deviations from Sampling and Analysis Plan:

Amec Foster Wheeler collected two (2) additional groundwater samples from the existing wells on the Phase Two Property which were installed by Amec Foster Wheeler in 2006.

Twenty-nine delineation testpits were completed in December 2016 and resampling of MW202 in January 2017.

GR (CAN) Investments Co., Ltd. Phase Two Environmental Site Assessment Thundering Waters Development, Niagara Falls, Ontario April 2017



# **APPENDIX C**

# **RESIDUE MANAGEMENT**



# **Residue Management**

The soil cuttings generated during the drilling investigation were placed in 205 L steel drums on-Site. The soil cuttings will be removed as part of the soil remediation program.

Liquid wastes generated during the investigation (well development and purge water) were stored in sealed 205 L drums. The containers will be disposed by an MOECC-licensed waste hauler upon completion of the Phase Two ESA.

GR (CAN) Investments Co., Ltd. Phase Two Environmental Site Assessment Thundering Waters Development, Niagara Falls, Ontario April 2017



# APPENDIX D

# HYDRAULIC CONDUCTIVITY RESULTS









GR (CAN) Investments Co., Ltd. Phase Two Environmental Site Assessment Thundering Waters Development, Niagara Falls, Ontario April 2017



# APPENDIX E

# LABORATORY CERTIFICATES OF ANALYSIS

# SOIL

# PARACEL ORDER #'s

# **GROUND WATER**

# PARACEL ORDER #'s

1604330 1701115



RELIABLE.

# Certificate of Analysis

### Amec Foster Wheeler (Thorold)

3300 Merrittville Hwy, Unit 5 Thorold, ON L2V 4Y6 Attn: Pat Shriner

Client PO: Project: TG151118 22687/688/690/691/692 Custody:

Report Date: 11-Dec-2015 Order Date: 7-Dec-2015

Order #: 1550045

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1550045-01	BH 101-1-C
1550045-02	BH 101-2A-D
1550045-03	BH 102-1A-C
1550045-04	BH 102-3-D
1550045-05	BH 103-1A-C
1550045-06	BH 103-3-D
1550045-07	BH 104-1-C
1550045-08	BH 104-3-D
1550045-09	BH 105-1-C
1550045-10	BH 105-3-C
1550045-11	Dup 1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



### **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	8-Dec-15	9-Dec-15
Conductivity	MOE E3138 - probe @25 °C, water ext	10-Dec-15	10-Dec-15
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	8-Dec-15	8-Dec-15
PHC F1	CWS Tier 1 - P&T GC-FID	8-Dec-15	9-Dec-15
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	8-Dec-15	9-Dec-15
REG 153: Metals by ICP/OES, soil	based on MOE E3470, ICP-OES	11-Dec-15	11-Dec-15
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	8-Dec-15	10-Dec-15
SAR	Calculation	11-Dec-15	11-Dec-15
Solids, %	Gravimetric, calculation	8-Dec-15	8-Dec-15

Report Date: 11-Dec-2015 Order Date: 7-Dec-2015 Project Description: TG151118



### Certificate of Analysis

#### Client: Amec Foster Wheeler (Thorold)

Client PO:

Order #: 1550045

Report Date: 11-Dec-2015

Order Date: 7-Dec-2015

	Client ID: Sample Date: Sample ID:	BH 101-1-C 03-Dec-15 1550045-01	BH 101-2A-D 03-Dec-15 1550045-02	BH 102-1A-C 02-Dec-15 1550045-03	BH 102-3-D 02-Dec-15 1550045-04
Physical Characteristics	MDL/Units	Soll	Soil	Soil	Soil
% Solids	0.1 % by Wt.	83.1	84.0	86.2	80.9
General Inorganics		05.1	04.0	00.2	00.9
SAR	0.01 N/A	0.06	-	0.17	-
Conductivity	5 uS/cm	165	-	181	-
pH	0.05 pH Units	7.67	-	7.73	-
Metals			1		
Antimony	1.0 ug/g dry	<1.0	-	<1.0	-
Arsenic	1.0 ug/g dry	5.6	-	4.6	-
Barium	1.0 ug/g dry	106	-	101	-
Beryllium	1.0 ug/g dry	<1.0	-	<1.0	-
Boron	1.0 ug/g dry	12.3	-	11.4	-
Cadmium	0.5 ug/g dry	<0.5	-	<0.5	-
Chromium	1.0 ug/g dry	20.7	-	20.3	-
Cobalt	1.0 ug/g dry	12.1	-	11.7	-
Copper	1.0 ug/g dry	23.1	-	26.3	-
Lead	1.0 ug/g dry	11.1	-	11.2	-
Molybdenum	1.0 ug/g dry	<1.0	-	<1.0	-
Nickel	1.0 ug/g dry	18.9	-	20.9	-
Selenium	1.0 ug/g dry	<1.0	-	<1.0	-
Silver	0.5 ug/g dry	<0.5	-	<0.5	-
Thallium	1.0 ug/g dry	1.2	-	<1.0	-
Uranium	1.0 ug/g dry	<1.0	-	<1.0	-
Vanadium	1.0 ug/g dry	27.0	-	26.4	-
Zinc	1.0 ug/g dry	63.0	-	112	-
Volatiles					
Benzene	0.02 ug/g dry	-	<0.02	-	<0.02
Ethylbenzene	0.05 ug/g dry	-	<0.05	-	<0.05
Toluene	0.05 ug/g dry	-	<0.05	-	<0.05
m,p-Xylenes	0.05 ug/g dry	-	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	-	<0.05	-	<0.05
Xylenes, total	0.05 ug/g dry	-	<0.05	-	<0.05
Toluene-d8	Surrogate	-	105%	-	104%
Hydrocarbons	7 ug/g day		_	1	_
		-	</td <td>-</td> <td><!--</td--></td>	-	</td
F2 PHCs (C10-C16)	4 ug/g dry	-	<4	-	<4
F3 PHCs (C16-C34)	o ug/g ary	-	<8	-	<8



Report Date: 11-Dec-2015 Order Date: 7-Dec-2015

	Client ID: Sample Date:	BH 101-1-C 03-Dec-15	BH 101-2A-D 03-Dec-15	BH 102-1A-C 02-Dec-15	BH 102-3-D 02-Dec-15
	Sample ID: MDL/Units	Soil	1550045-02 Soil	1550045-03 Soil	Soil
F4 PHCs (C34-C50)	6 ug/g dry	-	<6	-	<6



### Certificate of Analysis

#### Client: Amec Foster Wheeler (Thorold)

Client PO:

Order #: 1550045

Report Date: 11-Dec-2015

Order Date: 7-Dec-2015

	Client ID:	BH 103-1A-C	BH 103-3-D	BH 104-1-C	BH 104-3-D
	Sample Date:	02-Dec-15	02-Dec-15	02-Dec-15	02-Dec-15
	Sample ID:	1550045-05 Soil	1550045-06 Soil	1550045-07 Soil	1550045-08 Soil
Physical Characteristics	WDL/Units	001	001	301	501
% Solids	0.1 % by Wt.	83.8	78.2	81.7	79.1
General Inorganics	1 1			-	-
SAR	0.01 N/A	0.36	-	-	-
Conductivity	5 uS/cm	221	-	-	-
рН	0.05 pH Units	7.84	-	-	-
Metals				-	
Antimony	1.0 ug/g dry	<1.0	-	<1.0	-
Arsenic	1.0 ug/g dry	6.2	-	5.8	-
Barium	1.0 ug/g dry	96.2	-	126	-
Beryllium	1.0 ug/g dry	<1.0	-	<1.0	-
Boron	1.0 ug/g dry	11.4	-	14.9	-
Cadmium	0.5 ug/g dry	<0.5	-	<0.5	-
Chromium	1.0 ug/g dry	22.4	-	24.7	-
Cobalt	1.0 ug/g dry	12.1	-	13.8	-
Copper	1.0 ug/g dry	27.1	-	27.6	-
Lead	1.0 ug/g dry	11.5	-	13.0	-
Molybdenum	1.0 ug/g dry	<1.0	-	<1.0	-
Nickel	1.0 ug/g dry	21.1	-	25.7	-
Selenium	1.0 ug/g dry	1.5	-	<1.0	-
Silver	0.5 ug/g dry	<0.5	-	<0.5	-
Thallium	1.0 ug/g dry	1.2	-	1.3	-
Uranium	1.0 ug/g dry	<1.0	-	<1.0	-
Vanadium	1.0 ug/g dry	30.1	-	33.5	-
Zinc	1.0 ug/g dry	48.1	-	50.1	-
Volatiles	1				
Acetone	0.50 ug/g dry	-	-	-	<0.50
Benzene	0.02 ug/g dry	-	-	-	<0.02
Bromodichloromethane	0.05 ug/g dry	-	-	-	<0.05
Bromoform	0.05 ug/g dry	-	-	-	<0.05
Bromomethane	0.05 ug/g dry	-	-	-	<0.05
Carbon Tetrachloride	0.05 ug/g dry	-	-	-	<0.05
Chlorobenzene	0.05 ug/g dry	-	-	-	<0.05
Chloroform	0.05 ug/g dry	-	-	-	<0.05
Dibromochloromethane	0.05 ug/g dry	-	-	-	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	-	-	-	<0.05



Client PO:

### Order #: 1550045

Report Date: 11-Dec-2015 Order Date: 7-Dec-2015

	Client ID: Sample Date: Sample ID: MDI /Units	BH 103-1A-C 02-Dec-15 1550045-05 Soil	BH 103-3-D 02-Dec-15 1550045-06 Soil	BH 104-1-C 02-Dec-15 1550045-07 Soil	BH 104-3-D 02-Dec-15 1550045-08 Soil
1.2-Dichlorobenzene	0.05 ug/g dry	-	-	-	<0.05
1.3-Dichlorobenzene	0.05 ug/g dry	-	-	-	<0.05
1.4-Dichlorobenzene	0.05 ug/g dry	-	-	-	<0.05
1,1-Dichloroethane	0.05 ug/g dry	-	-	-	<0.05
1,2-Dichloroethane	0.05 ug/g dry	-	-	-	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	-	-	-	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	-	-	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	-	-	<0.05
1,2-Dichloropropane	0.05 ug/g dry	-	-	-	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	-	-	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	-	-	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	-	-	-	<0.05
Ethylbenzene	0.05 ug/g dry	-	-	-	<0.05
Ethylene dibromide (dibromoethar	0.05 ug/g dry	-	-	-	<0.05
Hexane	0.05 ug/g dry	-	-	-	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	-	-	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	-	-	-	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	-	-	-	<0.05
Methylene Chloride	0.05 ug/g dry	-	-	-	<0.05
Styrene	0.05 ug/g dry	-	-	-	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	-	-	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	-	-	<0.05
Tetrachloroethylene	0.05 ug/g dry	-	-	-	<0.05
Toluene	0.05 ug/g dry	-	-	-	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	-	-	-	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	-	-	-	<0.05
Trichloroethylene	0.05 ug/g dry	-	-	-	<0.05
Trichlorofluoromethane	0.05 ug/g dry	-	-	-	<0.05
Vinyl chloride	0.02 ug/g dry	-	-	-	<0.02
m,p-Xylenes	0.05 ug/g dry	-	-	-	<0.05
o-Xylene	0.05 ug/g dry	-	-	-	<0.05
Xylenes, total	0.05 ug/g dry	-	-	-	<0.05
4-Bromofluorobenzene	Surrogate	-	-	-	107%
Dibromofluoromethane	Surrogate	-	-	-	98.7%
Toluene-d8	Surrogate	-	-	-	107%



### Order #: 1550045

Report Date: 11-Dec-2015 Order Date:7-Dec-2015

	-				
	Client ID:	BH 103-1A-C	BH 103-3-D	BH 104-1-C	BH 104-3-D
	Sample Date:	02-Dec-15	02-Dec-15	02-Dec-15	02-Dec-15
	Sample ID:	1550045-05	1550045-06	1550045-07	1550045-08
	MDL/Units	Soil	Soil	Soil	Soil
Benzene	0.02 ug/g dry	-	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	-	-
Toluene	0.05 ug/g dry	-	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	-	-
o-Xylene	0.05 ug/g dry	-	<0.05	-	-
Xylenes, total	0.05 ug/g dry	-	<0.05	-	-
Toluene-d8	Surrogate	-	102%	-	-
Hydrocarbons			•		
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	-	<7
F2 PHCs (C10-C16)	4 ug/g dry	-	<4	-	<4
F3 PHCs (C16-C34)	8 ug/g dry	-	<8	-	<8
F4 PHCs (C34-C50)	6 ug/g dry	-	<6	-	<6



## Certificate of Analysis

#### Client: Amec Foster Wheeler (Thorold)

Client PO:

Order #: 1550045

Report Date: 11-Dec-2015

Order Date: 7-Dec-2015

	Client ID: Sample Date:	BH 105-1-C 02-Dec-15	BH 105-3-C 02-Dec-15	Dup 1 02-Dec-15	-
	Sample ID:	1550045-09	1550045-10	1550045-11	-
	MDL/Units	Soil	Soil	Soil	-
Physical Characteristics			Γ		
% Solids	0.1 % by Wt.	83.4	83.7	80.2	-
	1.0.ug/g.dg/				
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	5.1	-	-	-
Barium	1.0 ug/g dry	130	-	-	-
Beryllium	1.0 ug/g dry	<1.0	-	-	-
Boron	1.0 ug/g dry	16.3	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	1.0 ug/g dry	26.7	-	-	-
Cobalt	1.0 ug/g dry	13.5	-	-	-
Copper	1.0 ug/g dry	26.8	-	-	-
Lead	1.0 ug/g dry	12.9	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	-	-	-
Nickel	1.0 ug/g dry	25.2	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.5 ug/g dry	<0.5	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	1.0 ug/g dry	35.5	-	-	-
Zinc	1.0 ug/g dry	53.7	-	-	-
Volatiles					
Acetone	0.50 ug/g dry	-	<0.50	<0.50	-
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-
Bromodichloromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Bromoform	0.05 ug/g dry	-	<0.05	<0.05	-
Bromomethane	0.05 ug/g dry	-	<0.05	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	-	<0.05	<0.05	-
Chlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Chloroform	0.05 ug/g dry	-	<0.05	<0.05	-
Dibromochloromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry		<0.05	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-



Client PO:

Order #: 1550045

Report Date: 11-Dec-2015 Order Date: 7-Dec-2015 . . . TC1E1 18

				Project Descr	iption: IG1511
	Client ID: Sample Date: Sample ID: MDL/Units	BH 105-1-C 02-Dec-15 1550045-09 Soil	BH 105-3-C 02-Dec-15 1550045-10 Soil	Dup 1 02-Dec-15 1550045-11 Soil	-
1,2-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	-	<0.05	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	-	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Ethylene dibromide (dibromoethar	0.05 ug/g dry	-	<0.05	<0.05	-
Hexane	0.05 ug/g dry	-	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	-	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	-	<0.05	<0.05	-
Styrene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	-	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	-
4-Bromofluorobenzene	Surrogate	-	109%	106%	-
Dibromofluoromethane	Surrogate	-	98.3%	101%	-
Toluene-d8	Surrogate	-	105%	108%	-
Hydrocarbons				· · · · · ·	
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	<7	-

F1 PHCs (C6-C10)	7 ug/g dry	-	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	-	<4	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	-	<8	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	-	<6	<6	-



Order #: 1550045

Report Date: 11-Dec-2015

Order Date: 7-Dec-2015

Project Description: TG151118

# Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Hvdrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barlum Bendlium		1.0	ug/g						
Boron	ND	1.0	ug/g ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	1.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	1.0	ug/g						
Lead		1.0	ug/g						
Nickel	ND	1.0	ug/g ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.5	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium Zinc		1.0	ug/g						
	ND	1.0	ug/g						
Volatiles		0.50							
Renzene		0.50	ug/g						
Bromodichloromethane	ND	0.02	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene		0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1, I-Dichloroethane		0.05	ug/g						
1.1-Dichloroethylene	ND	0.05	ua/a						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene		0.05	ug/g						
1.3-Dichloropropene, total	ND	0.05	ug/g ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane	ND	0.05	ug/g						
	ND	0.05	ug/g						
weinyi Einyi Keione (2-Butanone)		0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g ug/a						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2- letrachloroethane	ND	0.05	ug/g						
renachioroennyiene	ND	0.05	ug/g						



Report Date: 11-Dec-2015

Order Date: 7-Dec-2015

Project Description: TG151118

## Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Analyte Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane Vinyl chloride m,p-Xylenes o-Xylene Xylenes, total Surrogate: 4-Bromofluorobenzene Surrogate: Dibromofluoromethane Surrogate: Toluene-d8	Result ND ND ND ND ND ND ND ND 8.41 7.58 8.02	Limit 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	Units ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/	Result	%REC 105 94.8 100	Limit 50-140 50-140 50-140	RPD	Limit	Notes
Benzene Ethylbenzene Toluene m,p-Xylenes o-Xylene Xylenes, total Surrogate: Toluene-d8	ND ND ND ND ND 8.02	0.02 0.05 0.05 0.05 0.05 0.05	ug/g ug/g ug/g ug/g ug/g <i>ug/g</i>		100	50-140			



# Method Quality Control: Duplicate

Report Date: 11-Dec-2015

Order Date: 7-Dec-2015

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Gonoral Inorganics									
	1 04	0.01	N/A	1 04			0.0	200	
Conductivity	167	5	uS/cm	165			14	6.2	
nH	7 68	0.05	nH Units	7 67			0.1	10	
	7.00	0.00	pri onito	1.01			0.1	10	
nydrocarbons		-	<i>,</i> ,					40	
F1 PHCs (C6-C10)	ND	1	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCS (C34-C50)	ND	ю	ug/g ary	ND				30	
Metals									
Antimony	3.05	1.0	ug/g dry	2.42			23.1	30	
Arsenic	6.73	1.0	ug/g dry	5.44			21.2	30	
Barium	106	1.0	ug/g dry	109			3.0	30	
Beryllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	11.7	1.0	ug/g dry	12.3			5.1	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	25.4	1.0	ug/g dry	25.6			0.8	30	
Cobalt	9.07	1.0	ug/g dry	8.87			2.2	30	
Copper	36.7	1.0	ug/g dry	36.3			0.9	30	
	64.7	1.0	ug/g ary	54.8			16.6	30	
Nicipal	1.76	1.0	ug/g ary	1.31			29.3	30	
	19.0	1.0	ug/g ary	19.2			0.9	30	
Selenium		1.0	ug/g dry				0.0	30	
		0.5	ug/g dry				0.0	30	
Iranium		1.0	ug/g dry				0.0	20	
Vanadium	26.1	1.0	ug/g dry	ND 26.5			17	30	
	20.1	1.0	ug/g dry	20.5			0.0	30	
	110	1.0	ug/g ury	111			0.9	30	
	90.7	0.1	9/ by \\/+	00 7			1 1	25	
% Solids	69.7	0.1	% Dy VVI.	00.7			1.1	25	
Volatiles									
Acetone	ND	0.50	ug/g dry	ND				50	
Benzene	ND	0.02	ug/g dry	ND				50	
Bromodichloromethane	ND	0.05	ug/g dry	ND				50	
Bromotorm	ND	0.05	ug/g dry	ND				50	
Bromomethane	ND	0.05	ug/g dry	ND				50	
	ND	0.05	ug/g ary	ND				50	
Chlorobenzene		0.05	ug/g dry					50	
Dibromachlaramathana		0.05	ug/g dry					50	
Diplomocnioromethane		0.05	ug/g dry					50	
		0.05	ug/g dry					50	
1.3-Dichlorobenzene		0.05	ug/g dry					50	
1 4-Dichlorobenzene		0.05	ug/g dry					50	
1 1-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1 2-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1 1-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
cis-1.2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
trans-1.2-Dichloroethylene	ND	0.05	ua/a drv	ND				50	
1.2-Dichloropropane	ND	0.05	ua/a drv	ND				50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND			0.0	50	
Ethylene dibromide (dibromoethane	ND	0.05	ug/g dry	ND			-	50	
Hexane	ND	0.05	ug/g dry	ND				50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND				50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND				50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND				50	



# Method Quality Control: Duplicate

Report Date: 11-Dec-2015

Order Date: 7-Dec-2015

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methylene Chloride	ND	0.05	ug/g dry	ND				50	
Styrene	ND	0.05	ug/g dry	ND				50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND				50	
Toluene	0.067	0.05	ug/g dry	0.073			8.8	50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND				50	
Trichloroethylene	ND	0.05	ug/g dry	ND				50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND				50	
Vinyl chloride	ND	0.02	ug/g dry	ND				50	
m,p-Xylenes	0.092	0.05	ug/g dry	0.103			11.5	50	
o-Xylene	0.058	0.05	ug/g dry	0.060			4.7	50	
Surrogate: 4-Bromofluorobenzene	6.03		ug/g dry	ND	108	50-140			
Surrogate: Dibromofluoromethane	5.81		ug/g dry	ND	104	50-140			
Surrogate: Toluene-d8	5.76		ug/g dry	ND	103	50-140			
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND			0.0	50	
Toluene	0.067	0.05	ug/g dry	0.073			8.8	50	
m,p-Xylenes	0.092	0.05	ug/g dry	0.103			11.5	50	
o-Xylene	0.058	0.05	ug/g dry	0.060			4.7	50	
Surrogate: Toluene-d8	5.76		ug/g dry	ND	103	50-140			



# Method Quality Control: Spike

Report Date: 11-Dec-2015

Order Date: 7-Dec-2015

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	185	7	ug/g	ND	92.3	80-120			
F2 PHCs (C10-C16)	82	4	ug/g	ND	90.6	80-120			
F3 PHCs (C16-C34)	191	8	ug/g	ND	103	80-120			
F4 PHCs (C34-C50)	132	6	ug/g	ND	106	80-120			
Metals									
Antimony	282		ug/L	48.3	93.5	70-130			
Arsenic	377		ug/L	109	107	70-130			
Barium	2370		ug/L	2180	74.1	70-130			
Beryllium	258		ug/L	1.15	103	70-130			
Boron	479		ug/L	246	93.0	70-130			
Cadmium	256		ug/L	ND	102	70-130			
Chromium	723		ug/L	513	84.0	70-130			
Cobalt	388		ug/L	177	84.4	70-130			
Copper	958		ug/L	727	92.6	70-130			
Lead	1300		ug/L	1100	83.0	70-130			
Molybdenum	247		ug/L	26.3	88.2	70-130			
Nickel	568		ug/L	384	73.5	70-130			
Selenium	221		ug/L	8.54	85.0	70-130			
Silver	221		ug/L	1.45	87.8	70-130			
Thallium	237		ug/L	18.8	87.2	70-130			
Uranium	239		ug/L	ND	95.4	70-130			
Vanadium	735		ug/L	531	81.9	70-130			
Zinc	302		ug/L	115	74.8	70-130			
Volatiles									
Acetone	9.17	0.50	ug/g	ND	91.7	50-140			
Benzene	3.90	0.02	ug/g	ND	97.4	60-130			
Bromodichloromethane	3.24	0.05	ug/g	ND	81.1	60-130			
Bromoform	3.94	0.05	ug/g	ND	98.4	60-130			
Bromomethane	2.93	0.05	ug/g	ND	73.2	50-140			
Carbon Tetrachloride	3.46	0.05	ug/g	ND	86.6	60-130			
Chlorobenzene	3.40	0.05	ug/g	ND	85.0	60-130			
Chloroform	4.02	0.05	ug/g	ND	101	60-130			
Dibromochloromethane	3.80	0.05	ug/g	ND	94.9	60-130			
Dichlorodifluoromethane	2.86	0.05	ug/g	ND	71.5	50-140			
1,2-Dichlorobenzene	4.99	0.05	ug/g	ND	125	60-130			
1,3-Dichlorobenzene	4.56	0.05	ug/g	ND	114	60-130			
1,4-Dichlorobenzene	4.34	0.05	ug/g	ND	108	60-130			
1,1-Dichloroethane	3.28	0.05	ug/g	ND	82.1	60-130			
1,2-Dichloroethane	3.66	0.05	ug/g	ND	91.4	60-130			
1,1-Dichloroethylene	3.11	0.05	ug/g	ND	77.7	60-130			
cis-1,2-Dichloroethylene	4.18	0.05	ug/g	ND	105	60-130			
trans-1,2-Dichloroethylene	3.82	0.05	ug/g	ND	95.6	60-130			
1,2-Dichloropropane	3.49	0.05	ug/g	ND	87.1	60-130			
cis-1,3-Dichloropropylene	2.69	0.05	ug/g	ND	67.2	60-130			
trans-1,3-Dichloropropylene	2.65	0.05	ug/g	ND	66.1	60-130			
Ethylbenzene	2.70	0.05	ug/g	ND	67.4	60-130			
Ethylene dibromide (dibromoethane	4.79	0.05	ug/g	ND	120	60-130			
Hexane	3.40	0.05	ug/g	ND	85.1	60-130			
Methyl Ethyl Ketone (2-Butanone)	8.64	0.50	ug/g	ND	86.4	50-140			
Methyl Isobutyl Ketone	8.84	0.50	ug/g	ND	88.4	50-140			
Methyl tert-butyl ether	8.69	0.05	ug/g	ND	86.9	50-140			


# Order #: 1550045

Report Date: 11-Dec-2015

Order Date: 7-Dec-2015

Project Description: TG151118

# Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methylene Chloride	4.15	0.05	ug/g	ND	104	60-130			
Styrene	2.48	0.05	ug/g	ND	62.0	60-130			
1,1,1,2-Tetrachloroethane	3.74	0.05	ug/g	ND	93.6	60-130			
1,1,2,2-Tetrachloroethane	4.41	0.05	ug/g	ND	110	60-130			
Tetrachloroethylene	4.80	0.05	ug/g	ND	120	60-130			
Toluene	3.80	0.05	ug/g	ND	95.1	60-130			
1,1,1-Trichloroethane	3.76	0.05	ug/g	ND	93.9	60-130			
1,1,2-Trichloroethane	3.18	0.05	ug/g	ND	79.6	60-130			
Trichloroethylene	3.70	0.05	ug/g	ND	92.6	60-130			
Trichlorofluoromethane	3.41	0.05	ug/g	ND	85.2	50-140			
Vinyl chloride	3.26	0.02	ug/g	ND	81.5	50-140			
m,p-Xylenes	5.30	0.05	ug/g	ND	66.3	60-130			
o-Xylene	2.97	0.05	ug/g	ND	74.3	60-130			
Surrogate: 4-Bromofluorobenzene	7.62		ug/g		95.3	50-140			
Benzene	3.90	0.02	ug/g	ND	97.4	60-130			
Ethylbenzene	2.70	0.05	ug/g	ND	67.4	60-130			
Toluene	3.80	0.05	ug/g	ND	95.1	60-130			
m,p-Xylenes	5.30	0.05	ug/g	ND	66.3	60-130			
o-Xylene	2.97	0.05	ug/g	ND	74.3	60-130			



#### Login Qualifiers :

Sample - F1/BTEX/VOCs (soil) not submitted according to Reg. 153/04, Amended 2011 - not field preserved Applies to samples: BH 105-3-C, Dup 1

#### **Sample Data Revisions**

None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

6	PARACEL LABORATORIES LTD.	TR RE RE	UST SPO LIAE	ED . NSIV BLE .	Ε.		Hea 300 Otta p: 1 e: p ww	ad Office 9-2319 St awa, Ont -800-749 aracel@ w.parace	. Laurent Blv ario K1G 4Ji 9-1947 paracellabs.com illabs.com	d. } om		Cl	tain of (Lab U NO	Custo se Only) _22	dy 687	
Client Name; Contact Nam Address: 7 Telephone:	Ame Foster Wheeler Patrick shriner 100 Mersfluike thin, Un orold, ON L2446	A-5	21	Project   Quote # PO # Email A	Reference: 15- iddress:	03	8 an	100	eu v ca		TAT: ) Date Re	P Regul [] 2 Day	age	01 [] 3 Day		
Crit	907-087-6616 Ieria: 50. Reg. 153/04 (As Amended) Table KIRJ	SC Filing	[]0.	2005T Reg. 558/	00 [] PWQO [	]CCME []SU	B (Storn	1) []Sl	IB (Sanitary)	Municipalit	y:		[] Othe	r:		
Matrix Type	S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/Sa	anitary Se	wer) P (F	Paint) A (Air) O (0	Other)		2		Requ	ired A	nalyses				
Paracel O	1550045	trix	Volume	f Containers	Sample	e Taken	(c(t,-ty)	Itex	AHS	LI T	0	AR		,	10	
	Sample ID/Location Name	Ma	Air	0 #	Date	Time	d	2	<u> </u>	2 0		S				
1	BH101-1-C	5	EIO233	1	Dee 3/15	Sieon	1323		X	X	X	X		250	DML	14
2	154-101-1-0	5		2	1.1.1	8:00m	~									
3	BH(01 - 24 - 1)	5		2		8:05-	X	$\square$		_	250	DML	tlv	ia \.		
4	154 101 - 215-15	)		1		8:07-				-	1			-		
6	BH101 - 74-D	2		7		8:10				-	1	-				
7	BH101 - 7B-D	5		Z		0:10 m		-			-					
8	BH101 - 3-C	5	-	1		X:10-					-	1		-		
9	BH101-4-D	5		2		\$:15m							-	1		
10	BH101 - 4-C	5		1		8:15a										
Comments	GOVERNED BY THE TER	MS + NA IN	ON ON O	OTTI SA	ows of . MP1ts	THE AC	ine 6	M&N7	+ #SN	A07.	203		Method	of Deliv	eny: P	
Relinquished Relinquished	By (Sign): By (Print): AGT SHOUNDA	Receive P Date/Ti	ed by Dri HC me: J	ver/Depo MA Der	njek njek	0 Date/Ti	ed at Lab.	ec.	8115	9:45	Verifie Date/T	ST	N-	) )	10	2

10

9	PARACEL LABORATORIES LTD.	TF   Re   Re	RUST ESPO ELIAE	ED. NSIV BLE.	Έ.			Hea 300 Otta p: 1 e: p	ad Offic )-2319 S awa, Or  -800-74 paracel @	e St. Laure Itario K1 9-1947 Igarace	nt Blvd. IG 4J8 Ilabs.con	n		Ch	ain of (Lab U) NO	Custo se Only) _22	^{idy} 688	
Climan	A			2		~	-	ww	w.parac	ellabs.co	m		-	Pa	age Z	_of 🗧	5	
Chent Na Contact N Address:	nne: Amee Foster Wheeler inne: Petrick Shring 300 Mersthille Hay, Un	+5		Project Quote # PO #	Reference	O	G1511	18					TAT:	[] 2 Day	ſ	[] 3 Day [] 1 Day	1	
	Thorold, ON LZV 446	12		Email A	ddress: 1	1				0			Date Re	quired:				
Telephone	905-687-6616			per	frock	<u>c</u> est	riher	Co	ame	cta	1.00	n.						<u> </u>
(	riteria: 5/0. Reg. 153/04 (As Amended) Table	SC Filing	[]0.	Reg. 558	/00 []P	WQO [	]CCME []SU	B (Storn	n) []S	UB (Sani	tary) Mu	nicipalit	y:		[] Othe	97		
Matrix Ty	pe: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	6 (Storm/S	anitary Se	wer) P (l	Paint) A (1	Air) 0 ((	Other)		• 6	( ₁ . ')	6	Requ	ired Ar	nalvses				
Paracel	Order Number:			s.			· · · · · · · · · · · · · · · · · · ·		k			1		,				
	1550045	rix	Volume	Container	e õi j	Sample	e Taken	(F-Fu	XQ	alls	C D L	No	0	Jec				
5.1	Sample ID/Location Name	Math	Air	# of	Da	ate	Time	PH	5	9	-2	4	+ 12	Sf				
1	DUP 2	5		Z	Dec	2/15	THE									-		
2	BH10Z-1A-D	5		Z			3:50-										-	
3	BH 10 Z- (B-D	5		Z			3:50 ~							-				
4	BH102-1A-C	5		T	240	10.20	3:50~				V	X	X	X		250		
5	BH 102 - 113 - C	5		1			3:50-				×					200	MC	
6	BH102-2-C	5		1			3:55											-
7	BH102-3-P	5	6.6%	Z	Sea -		4'00	X	X				0	50.	1 t	Ivia		
8	BH102-3-C	5		1			4:00-							JUM	16-1	1.119	· .	
9	BH102-4-C	5		1	V	/	4:05m	_										
10			1				Ó											
Comme	SEE NOTES PG.	1							1	1 - 1					Method	of Delive	ry: P	
Relinquish	ed By (Sign):	Receive	d by Driv H C	er/Depot	Nia	gar	Receive	d at Lab: Bend	1	4	_		Verified	30	3			3
Date/Time	: DECTIS HIBOAM	Date/Til Temper	ne: ature: C	1.8%	<u>e 15</u>		Date/Tit Temper	ne: p iture: 1	1.2.	8/1	50	1:45	Date/Tir pH Veri	nepl fied M E	e. Iv:N	A	10	

9	GPARACEL   TRUST LABORATORIES LTD.   RELIAN					ED. NSIVE. BLE.				Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com				Chain of Custody (Lab Use Only) Nº _22690				
Clime N				-		÷	-	WW	w.parac	ellaps.c	om		-	P	age _	<u>5</u> of _	5	
Contact	Ame Foster Wheely			Project	Reference	e: «	6-15111	8	1	8			TAT:	🕅 Regul	ar	[] 3 Da	12.5	
Address	Mane. Patrock . Shrmy		-ufa	Quote #										[] 2 Day	t i	[] ] Day		
"	Through an 121 day	net?	>	PO #									D . D			[] i Daj		
Telephor	1e: 905-687-6616			POr	troel	Les	hrme-	0	ume	cta	e Co	m.	Date Re	quired:				
	Criteria: 1/10. Reg. 153/04 (As Amended) Table KRS	C Filing	[]0.	Reg. 558	/00 []P	WQO	]CCME []SU	IB (Storn	n) []S	UB (San	tary) Mu	nicipalit	v:		[] Othe	201		
Matrix T	ype: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/Sa	anitary Se	wer) P (I	Paint) A (	Air) O(	Other)					Requ	ired Au	nalvses				+
Parace	l Order Number:			so .				1.5	N	1	1	requ		1413553			T	1
	1550045		ne	ainer		Sampl	e Taken	+-++			SA							
	1000045	ix	/olui	Cont		5		CC.	Ê	4	of I	I	0	N G				
	Sample ID/Location Name	Matr	Air V	# of (	Da	ate	Time	4	0	P	-05	2	1-20	5				
1	BH 103 - 1A-D	5		Z	Dec	2/19	10:30-											-
2	BH 103-1B-D	5		Z	1		10:30m											
3	\$1-103-10-C	5	-	才				-	-	-						-		
4	BA103-1A-C	5		1	Rept	123	10:30n		1.200	1000	X	X	X	X		25	nml	
5	BH103-1A-1C	5		考			10:30-	1										-
6	BH 103 - 2-C	5		1			10:35-	- 02										h
7	BH103 - 3-D	5	K.153	2			10:40m	X	X					250	DML	+ 1	lial.	
8	BH103-3-C	5		t			10:400											
9	BH103 - 4-C	5		4		/	10:45a.											
10					14													
Comme	SEE NOTES PG	1													Method	of Deliv	eny: P	
Relinquis	hed By (Sign):	Receive	d by Driv	/et/Depot	Na	gar	Receiver	d at Lab;	/	1	$\nu$	-	Verified	BY	38	$\supset$		
Relinquis Date/Tim	e: DECT 1.5 11:30 MM	Date/Tir Tempera	ne: iture: O	Dec	15		Date/Tir Tempera	ne: D	11.2	C 11'	59	:45	Date/Ti pH Veri	fied [X]	C. By: N	8,15 A	5 /	0

6	PARACEL LABORATORIES LTD.	TR RE RE	USTI SPO LIAB	ED . NSIV ILE .	Ε.		Hea 300- Otta p: 1- e: pr www	d Office -2319 S wa, Ont -800-74 aracel@ w.parace	t. Laurent Blvd. ario K1G 4J8 9-1947 paracellabs.com Ilabs.com			Cha a N Pag	in of ( Lab Use [0] re <u>4</u>	Custody Only) 2269 of <u>5</u>	91	
Client Name: Contact Name Address: 7 L Telephone:	Amee Foster Wheeler Pootriele Shyme 300 Hersthille Hay, U avold, on LZV 446. 905-687-6616	nA	5	Project I Quote # PO # Email A POT	ddress:	shrmar c	D 91	neo	Peu - cen	- ·	TAT: 🔪 [ Date Req	Regular ] 2 Day uired:	[]	1 Day		-
Crite	Prin: JU, Reg. 155/04 (As Amended) Table L	SC Filing	[]0.1	Keg. 558/	uu []PwQ	O []CUME []SU	5 (310m)	1) [ ] 2(	76 (Santary) Mu	Dogu	ired An	alwaa	J Other:			
Paracel Or	rder Number: 1550095	x	olume	Containers	Sar	nple Taken	CS	C(F, Fy)	TALS							_
	Sample ID/Location Name	Matri	Air V	4 of (	Date	Time	Vo	10	NE CT							
1	BH104 - 1 - D	5		Z	Decz	15 8:30-										
2	BH104 - 1 - C	5		1	1	8:30m			X		25	SOML				
3	BH104 - Z-1)	5		2		8:40-										
4	BH104 - Z-C	Ś		1		8:40-										
5	BH104 - 3-D	5	in pice	2		\$150m	X	X			25	Oml	+11	ial.		
6	BH104-3-C	5		1		8:50m										
7	BH104-4-D	5		Z		9:00m										
8	BH104-4-C	5		1	V	9:00m	-									1
9								, X. 384								
10											-					
Comments:	SEE NOTE	s p	6. /	L									Method o	1 Delivery:	)	
Relinquished Relinquished Date/Time:	By (Sign): By (Print): PAT 5H NINEN DECTUS 1130 AM	Receive Date/Ti Temper	d by Dri )	ver/Depo NY DR 1	Lemi L'15 C	CAC Receive UK Z Date/Ti Temper	d at Lab: me: T ature:	1.2	8/15 q	·45	Verified Date/Tir pH Veri		75 20. Y: NI	×.15		9

Client Name: A mee Foster Wheeler Contact Name: A mee Foster Wheeler Contact Name: Batrick Shriner Address: 3300 Herrittville thay, Units Thorold, ON LZV 416 Telephone: $905-687-6616$ Criteria: Store, 13/04 (As Amended) Table MiRSC Filing [] O. Ref. 558:00 [] PWQO [] CCME [] SUB (Storm) [] SUB (Sanita Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sever) P (Paint) A (Air) O (Other) Paracel Order Number: 1550045 x $y$ $y$ $z$ $y$ $y$ $z$ $y$ $y$ $z$ $y$ $y$ $z$ $z$ $y$ $z$ $y$ $z$ $z$ $y$ $z$ $z$ $y$ $z$ $z$ $y$ $z$	TAT: X Regular [] 3 Day [] 2 Day [] 1 Day Date Required: COM. Required Analyses
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other)Paracel Order Number:1 $550045$ $50045$ Sample ID/Location Name $2000$ $3000$ 1 $BH 105 - 1 - D$ $5$ $7$ 2 $BH 105 - 1 - C$ $5$ $1$ 3 $BH 105 - 2 - C$ $5$ $1$ 4 $BH 105 - 3 - D$ $5$ $7$ 5 $7200$ $1145$	Required Analyses
Paracel Order Number:       Sample ID/Location Name       Sumport       Sample Taken       Sample Taken         1 $\beta H / 05 - 1 - C$ 5       Z $Date$ Time $Sample Taken$ 2 $\beta H / 05 - 1 - C$ 5       I $I'.35$ X         3 $\beta H / 05 - 3 - C$ 5       I $I'.45$ X         4 $\beta H / 05 - 3 - C$ 5       I $I'.45$ X	
Sample ID/Location Name $\frac{1}{2}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 250 mL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5 missing • RH/05 - 3 - C < 1 1/46 XX	d
	250mL
6 BH105-4-D 5 Z 1:50-	
7 BH105-4-C 5 ( 1:50 m-	
8	
9	
10 mos additioner addi	A the lab Method of Delivery
Comments: SEE Notes PG. 1 BH103-3-C No Und Submitted to	Pup
Relinquished By (Sign): Received by Driver/Depot: NIagana Reveived at Lab: BHOMENIER BHOMENIER	Verified By:
Relinquished By (Print): Date/Time: Det 15 Date/Time: Det 8/1	15 9:45 Date/Title: ALL SIT N
Date/Time: Temperature: <u>11.2</u> °C Temperature: <u>11.2</u> °C	pH Ventied H By: N H



RELIABLE.

# Certificate of Analysis

# Amec Foster Wheeler (Thorold)

3300 Merrittville Hwy, Unit 5 Thorold, ON L2V 4Y6 Attn: Pat Shriner

Client PO: Project: TG151118 26598-26608/24778/779 Custody:

Report Date: 17-Dec-2015 Order Date: 11-Dec-2015

Order #: 1550409

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1550409-01	TP114-1
1550409-02	Dup-A
1550409-03	TP115-1
1550409-04	TP116-2
1550409-05	TP117-3
1550409-06	Dup C
1550409-07	TP118-1
1550409-08	TP113-1
1550409-09	TP113-7
1550409-10	TP104-1
1550409-11	TP119-1c
1550409-12	TP119-8d
1550409-13	TP119-8c
1550409-14	TP105-1
1550409-15	TP107-1
1550409-16	TP120-1
1550409-17	TP108-1
1550409-18	TP121-1
1550409-19	TP121-5
1550409-20	TP111-1
1550409-21	TP110-1c
1550409-22	TP109-2
1550409-23	TP112-2d
1550409-24	Dup-G
1550409-25	TP106-1
1550409-26	TP101-5d

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



# **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	15-Dec-15	15-Dec-15
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	14-Dec-15	15-Dec-15
Conductivity	MOE E3138 - probe @25 °C, water ext	16-Dec-15	16-Dec-15
Mercury by CVAA	EPA 7471B - CVAA, digestion	16-Dec-15	16-Dec-15
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	15-Dec-15	15-Dec-15
PHC F1	CWS Tier 1 - P&T GC-FID	15-Dec-15	15-Dec-15
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	15-Dec-15	15-Dec-15
REG 153: Metals by ICP/OES, soil	based on MOE E3470, ICP-OES	16-Dec-15	16-Dec-15
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	14-Dec-15	15-Dec-15
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	15-Dec-15	15-Dec-15
SAR	Calculation	16-Dec-15	17-Dec-15
Solids. %	Gravimetric, calculation	14-Dec-15	14-Dec-15

Report Date: 17-Dec-2015 Order Date: 11-Dec-2015 Project Description: TG151118



#### Client: Amec Foster Wheeler (Thorold)

Client PO:

Order #: 1550409

Report Date: 17-Dec-2015

Order Date: 11-Dec-2015

	-				
	Client ID:	TP114-1	Dup-A	TP115-1	TP116-2
	Sample Date:	08-Dec-15	08-Dec-15	08-Dec-15	08-Dec-15
	Sample ID:	1550409-01	1550409-02	1550409-03	1550409-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	81.0	82.4	81.6	81.6
General Inorganics				-	
SAR	0.01 N/A	0.56	0.72	-	-
Conductivity	5 uS/cm	230	254	-	-
рН	0.05 pH Units	7.72	7.66	-	-
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	3.2	2.8	4.2	4.3
Barium	1.0 ug/g dry	165	150	179	101
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Boron	1.0 ug/g dry	21.4	22.8	16.6	14.5
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	23.9	25.2	27.2	20.8
Cobalt	1.0 ug/g dry	11.8	12.3	13.9	10.1
Copper	1.0 ug/g dry	21.2	21.8	21.8	20.6
Lead	1.0 ug/g dry	10.0	10.8	12.9	9.1
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	1.0 ug/g dry	23.5	25.3	28.6	19.7
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	1.0 ug/g dry	32.2	33.9	36.6	28.7
Zinc	1.0 ug/g dry	51.3	55.7	60.8	45.1



#### Client: Amec Foster Wheeler (Thorold)

Client PO:

Order #: 1550409

Report Date: 17-Dec-2015

Order Date: 11-Dec-2015

	Client ID.	TD447.0		TD110 1	TD112.1
	Sample Date:	18117-3 08-Dec-15	08-Dec-15	08-Dec-15	08-Dec-15
	Sample ID:	1550409-05	1550409-06	1550409-07	1550409-08
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	80.9	79.2	82.7	86.0
General Inorganics					
SAR	0.01 N/A	0.76	1.39	-	-
Conductivity	5 uS/cm	2990	1280	-	-
рН	0.05 pH Units	7.77	7.76	-	-
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	4.3	4.7	5.3	3.4
Barium	1.0 ug/g dry	127	166	123	127
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Boron	1.0 ug/g dry	16.9	17.4	17.3	15.4
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	25.7	25.2	27.8	18.3
Cobalt	1.0 ug/g dry	13.7	14.2	13.6	8.8
Copper	1.0 ug/g dry	22.1	20.4	21.1	20.6
Lead	1.0 ug/g dry	11.9	10.5	11.1	13.3
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	1.0 ug/g dry	24.9	26.2	29.5	17.4
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	1.0 ug/g dry	34.8	33.9	35.8	26.0
Zinc	1.0 ug/g dry	51.8	49.1	61.4	70.3



#### Client: Amec Foster Wheeler (Thorold)

**Client PO:** 

Report Date: 17-Dec-2015

Order #: 1550409

Order Date: 11-Dec-2015

	Client ID: Sample Date:	TP113-7 08-Dec-15	TP104-1 09-Dec-15	TP119-1c 09-Dec-15	TP119-8d 09-Dec-15
	Sample ID: MDI /Units	1550409-09 Soil	1550409-10 Soil	1550409-11 Soil	1550409-12 Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	80.9	78.9	81.2	74.2
Metals				1	
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Arsenic	1.0 ug/g dry	3.0	4.4	6.0	-
Barium	1.0 ug/g dry	62.1	112	112	-
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Boron	1.0 ug/g dry	4.3	14.7	14.7	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	-
Chromium	1.0 ug/g dry	17.4	21.0	21.9	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	10.3	11.9	11.1	-
Copper	1.0 ug/g dry	5.2	21.4	22.2	-
Lead	1.0 ug/g dry	10.9	9.2	10.9	-
Mercury	0.1 ug/g dry	<0.1	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Nickel	1.0 ug/g dry	10.8	21.2	21.1	-
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	-
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Vanadium	1.0 ug/g dry	28.0	28.6	29.7	-
Zinc	1.0 ug/g dry	48.8	47.3	107	-
Volatiles	1			1	
Acetone	0.50 ug/g dry	<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-



Client PO:

Order #: 1550409

Report Date: 17-Dec-2015 Order Date: 11-Dec-2015

ſ	Client ID: Sample Date: Sample ID: MDL/Units	TP113-7 08-Dec-15 1550409-09 Soil	TP104-1 09-Dec-15 1550409-10 Soil	TP119-1c 09-Dec-15 1550409-11 Soil	TP119-8d 09-Dec-15 1550409-12 Soil
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethar	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
4-Bromofluorobenzene	Surrogate	96.8%	-	-	-
Dibromofluoromethane	Surrogate	95.1%	-	-	-
Toluene-d8	Surrogate	105%	-	-	-
Benzene	0.02 ug/g dry	-	-	-	<0.02
Ethylbenzene	0.05 ug/g dry	-	-	-	<0.05



Client PO:

Order #: 1550409

Report Date: 17-Dec-2015 Order Date: 11-Dec-2015

	Client ID: Sample Date: Sample ID: MDL/Units	TP113-7 08-Dec-15 1550409-09 Soil	TP104-1 09-Dec-15 1550409-10 Soil	TP119-1c 09-Dec-15 1550409-11 Soil	TP119-8d 09-Dec-15 1550409-12 Soil
Toluene	0.05 ug/g dry	-	-	-	<0.05
m,p-Xylenes	0.05 ug/g dry	-	-	-	<0.05
o-Xylene	0.05 ug/g dry	-	-	-	<0.05
Xylenes, total	0.05 ug/g dry	-	-	-	<0.05
Toluene-d8	Surrogate	-	-	-	108%
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	-	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	-	-	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	-	-	<8
F4 PHCs (C34-C50)	6 ug/g dry	<6	-	-	<6
Semi-Volatiles	· · · · · ·				
Acenaphthene	0.02 ug/g dry	<0.02	-	-	-
Acenaphthylene	0.02 ug/g dry	<0.02	-	-	-
Anthracene	0.02 ug/g dry	<0.02	-	-	-
Benzo [a] anthracene	0.02 ug/g dry	<0.02	-	-	-
Benzo [a] pyrene	0.02 ug/g dry	<0.02	-	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	-	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	-	-	-
Chrysene	0.02 ug/g dry	<0.02	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	-	-	-
Fluoranthene	0.02 ug/g dry	<0.02	-	-	-
Fluorene	0.02 ug/g dry	<0.02	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	-	-
Naphthalene	0.01 ug/g dry	<0.01	-	-	-
Phenanthrene	0.02 ug/g dry	<0.02	-	-	-
Pyrene	0.02 ug/g dry	<0.02	-	-	-
2-Fluorobiphenyl	Surrogate	54.2%	-	-	-
Terphenyl-d14	Surrogate	84.0%	-	-	-



#### Client: Amec Foster Wheeler (Thorold)

Client PO:

Order #: 1550409

Report Date: 17-Dec-2015

Order Date: 11-Dec-2015

	Client ID:	TP119-8c	TP105-1	TP107-1	TP120-1
	Sample Date:	08-Dec-15	09-Dec-15	09-Dec-15	09-Dec-15
	Sample ID:	1550409-13	1550409-14	1550409-15	1550409-16
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics			T		
% Solids	0.1 % by Wt.	77.0	81.3	88.6	83.8
General Inorganics			1		
SAR	0.01 N/A	0.48	-	-	-
Conductivity	5 uS/cm	283	-	-	-
рН	0.05 pH Units	7.18	-	-	-
Metals			1	1	
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	3.0	5.0	4.2	5.0
Barium	1.0 ug/g dry	95.7	110	116	118
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Boron	1.0 ug/g dry	4.3	16.4	16.1	15.5
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	14.5	22.4	20.2	21.0
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	7.8	11.6	10.1	10.8
Copper	1.0 ug/g dry	7.2	21.0	19.8	20.3
Lead	1.0 ug/g dry	9.6	10.1	12.8	11.0
Mercury	0.1 ug/g dry	<0.1	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	1.0 ug/g dry	8.3	22.0	19.2	20.1
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	1.0 ug/g dry	26.0	30.8	28.2	28.7
Zinc	1.0 ug/g dry	47.0	60.0	74.2	53.1



#### Client: Amec Foster Wheeler (Thorold)

Client PO:

Report Date: 17-Dec-2015 Order Date: 11-Dec-2015

Project Description: TG151118

	Client ID:	TP108-1	TP121-1	TP121-5	TP111-1
	Sample Date:	09-Dec-15 1550409-17	09-Dec-15 1550409-18	09-Dec-15 1550409-19	09-Dec-15 1550409-20
	MDI /Units	Soil	Soil	Soil	Soil
Physical Characteristics	WDE/Onits				
% Solids	0.1 % by Wt.	83.9	83.2	81.4	84.7
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	4.9	4.8	4.2	4.9
Barium	1.0 ug/g dry	114	102	106	83.6
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Boron	1.0 ug/g dry	14.6	13.5	11.6	14.2
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	20.5	20.9	20.8	19.1
Chromium (VI)	0.2 ug/g dry	-	-	<0.2	-
Cobalt	1.0 ug/g dry	10.7	10.7	10.5	9.5
Copper	1.0 ug/g dry	20.1	20.4	17.3	18.3
Lead	1.0 ug/g dry	11.8	11.7	9.7	9.9
Mercury	0.1 ug/g dry	-	-	<0.1	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	1.0 ug/g dry	20.6	21.0	18.1	19.1
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	1.0 ug/g dry	27.9	28.2	30.2	26.4
Zinc	1.0 ug/g dry	52.2	52.6	45.2	50.9
Volatiles					- -
Benzene	0.02 ug/g dry	-	-	<0.02	-
Ethylbenzene	0.05 ug/g dry	-	-	<0.05	-
Toluene	0.05 ug/g dry	-	-	<0.05	-
m,p-Xylenes	0.05 ug/g dry	-	-	<0.05	-
o-Xylene	0.05 ug/g dry	-	-	<0.05	-
Xylenes, total	0.05 ug/g dry	-	-	<0.05	-
Toluene-d8	Surrogate	-	-	107%	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	-	-	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	-	-	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	-	-	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	-	-	<6	-

Order #: 1550409



### Client: Amec Foster Wheeler (Thorold)

**Client PO:** 

Order #: 1550409 Report Date: 17-Dec-2015

Order Date: 11-Dec-2015

	Client ID: Sample Date: Sample ID:	TP108-1 09-Dec-15 1550409-17	TP121-1 09-Dec-15 1550409-18	TP121-5 09-Dec-15 1550409-19	TP111-1 09-Dec-15 1550409-20
	MDL/Units	Soil	Soil	Soil	Soil
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	-	-	<0.02	-
Acenaphthylene	0.02 ug/g dry	-	-	<0.02	-
Anthracene	0.02 ug/g dry	-	-	<0.02	-
Benzo [a] anthracene	0.02 ug/g dry	-	-	<0.02	-
Benzo [a] pyrene	0.02 ug/g dry	-	-	<0.02	-
Benzo [b] fluoranthene	0.02 ug/g dry	-	-	<0.02	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	-	<0.02	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	-	<0.02	-
Chrysene	0.02 ug/g dry	-	-	<0.02	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	-	<0.02	-
Fluoranthene	0.02 ug/g dry	-	-	<0.02	-
Fluorene	0.02 ug/g dry	-	-	<0.02	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	-	<0.02	-
1-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	-
2-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	-	<0.04	-
Naphthalene	0.01 ug/g dry	-	-	<0.01	-
Phenanthrene	0.02 ug/g dry	-	-	<0.02	-
Pyrene	0.02 ug/g dry	-	-	<0.02	-
2-Fluorobiphenyl	Surrogate	-	-	59.2%	-
Terphenyl-d14	Surrogate	-	-	98.0%	-



#### Client: Amec Foster Wheeler (Thorold)

**Client PO:** 

Report Date: 17-Dec-2015

Order #: 1550409

Order Date: 11-Dec-2015

	Client ID:	TP110-1c	TP109-2	TP112-2d	Dup-G
	Sample Date: Sample ID:	1550409-21	1550409-22	1550409-23	1550409-24
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics			-	-	
% Solids	0.1 % by Wt.	82.9	86.0	84.7	85.4
Metals	1			I	
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Arsenic	1.0 ug/g dry	5.3	3.7	4.3	-
Barium	1.0 ug/g dry	107	105	110	-
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Boron	1.0 ug/g dry	15.7	12.9	12.4	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	-
Chromium	1.0 ug/g dry	20.8	19.2	19.0	-
Chromium (VI)	0.2 ug/g dry	-	-	<0.2	<0.2
Cobalt	1.0 ug/g dry	10.7	10.0	10.0	-
Copper	1.0 ug/g dry	21.2	19.6	20.5	-
Lead	1.0 ug/g dry	10.3	9.9	11.2	-
Mercury	0.1 ug/g dry	-	-	<0.1	<0.1
Molybdenum	1.0 ug/g dry	<1.0	2.3	<1.0	-
Nickel	1.0 ug/g dry	19.8	19.6	19.4	-
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	-
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Vanadium	1.0 ug/g dry	29.1	26.0	25.7	-
Zinc	1.0 ug/g dry	48.2	49.0	58.9	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Acenaphthylene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Anthracene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Benzo [a] anthracene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Benzo [a] pyrene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Chrysene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Fluoranthene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Fluorene	0.02 ug/g dry	<0.02	-	<0.02	<0.02



Order #: 1550409

Report Date: 17-Dec-2015 Order Date: 11-Dec-2015

	Client ID: Sample Date: Sample ID: MDI /Units	TP110-1c 09-Dec-15 1550409-21 Soil	TP109-2 09-Dec-15 1550409-22 Soil	TP112-2d 09-Dec-15 1550409-23 Soil	Dup-G 09-Dec-15 1550409-24 Soil
Indeno [1.2.3-cd] pyrene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
1-Methylnaphthalene	0.02 ug/g dry	<0.02	_	<0.02	<0.02
2-Methylnaphthalene	0.02 ug/g dry	<0.02	_	<0.02	<0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.02	· .	<0.02	<0.02
Naphthalene	0.01 ug/g dry	<0.01	-	<0.01	<0.01
Phenanthrene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Pyrene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
2-Fluorobiphenyl	Surrogate	58.5%	-	61.2%	67.7%
Terphenyl-d14	Surrogate	97.3%	-	85.9%	97.3%
	Client ID: Sample Date: Sample ID: MDL/Units	TP106-1 09-Dec-15 1550409-25 Soil	TP101-5d 09-Dec-15 1550409-26 Soil	- - - -	- - - -
Physical Characteristics	•				· ·
% Solids	0.1 % by Wt.	85.3	81.9	-	-
General Inorganics	<u>г г</u>		T	r	1
рН	0.05 pH Units	-	7.68	-	-
	1.0 ····································	4.0	4.0		,
Antimony	1.0 ug/g dry	<1.0	<1.0	-	-
Arsenic	1.0 ug/g dry	4.8	1.9	-	-
Barium	1.0 ug/g dry	91.6	47.4	-	-
Beryilium	1.0 ug/g dry	<1.0	<1.0	-	-
Boron	1.0 ug/g dry	12.3	3.7	-	-
	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	1.0 ug/g dry	19.4	5.2	-	-
Cobalt	1.0 ug/g dry	10.4	3.2	-	-
Copper	1.0 ug/g dry	21.4	8.3	-	-
Lead	1.0 ug/g dry	9.9	10.2	-	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	-	-
Nickel	1.0 ug/g dry	20.9	3.9	-	-
Selenium	1.0 ug/g dry	<1.0	<1.0	-	-
Silver	0.5 ug/g dry	<0.5	<0.5	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	1.0 ug/g dry	26.1	13.7	-	-
Zinc	1.0 ug/g dry	47.3	96.1	-	-



Order #: 1550409

Report Date: 17-Dec-2015

Order Date: 11-Dec-2015

Project Description: TG151118

# Method Quality Control: Blank

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Conorol Inorganico									
		5	uS/cm						
Undrogenhane	ND	5	u0/cm						
		7	ua/a						
F2 PHCs (C10-C16)	ND	4	ug/g ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Boron	ND	1.0	ug/g ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	1.0	ug/g						
Coppor		1.0	ug/g						
Lead	ND	1.0	ug/g ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	1.0	ug/g						
Selenium Silver		1.0	ug/g						
Thallium	ND	1.0	ug/g ua/a						
Uranium	ND	1.0	ug/g						
Vanadium	ND	1.0	ug/g						
Zinc	ND	1.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene		0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [K] fluorantnene		0.02	ug/g						
Dibenzo [a.h] anthracene	ND	0.02	ug/g ua/a						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene Surrogata: 2 Eluarabinhanyl	ND 1.02	0.02	ug/g		77.0	50 140			
Surrogate: Z=r ruorobiprienyr Surrogate: Terphenyl-d14	1.03		ug/g ua/a		98.7	50-140 50-140			
Volatilos			ug/g		00.7	00 / 10			
		0.50							
Benzene		0.00	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon letrachioride		0.05	ug/g						
Chloroform	ND	0.05	ug/g ug/a						



Dibromochloromethane

Dichlorodifluoromethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Analyte

#### Certificate of Analysis Client: Amec Foster Wheeler (Thorold) **Client PO:**

# Method Quality Control: Blank

Report Date: 17-Dec-2015

Order Date: 11-Dec-2015

Notes

Project Description: TG151118

RPD

Limit

RPD

%REC

Limit

Source

Result

%REC

Units

ug/g

ug/g

ug/g

ug/g

1,4-Dichlorobenzene	ND	0.05	uq/q			
1,1-Dichloroethane	ND	0.05	ug/g			
1,2-Dichloroethane	ND	0.05	ug/g			
1,1-Dichloroethylene	ND	0.05	ug/g			
cis-1,2-Dichloroethylene	ND	0.05	ug/g			
trans-1,2-Dichloroethylene	ND	0.05	ug/g			
1.2-Dichloropropane	ND	0.05	ug/g			
cis-1,3-Dichloropropylene	ND	0.05	ug/g			
trans-1,3-Dichloropropylene	ND	0.05	ug/g			
1,3-Dichloropropene, total	ND	0.05	ug/g			
Ethylbenzene	ND	0.05	ug/g			
Ethylene dibromide (dibromoethane	ND	0.05	ug/g			
Hexane	ND	0.05	ug/g			
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g			
Methyl Isobutyl Ketone	ND	0.50	ug/g			
Methyl tert-butyl ether	ND	0.05	ug/g			
Methylene Chloride	ND	0.05	ug/g			
Styrene	ND	0.05	ug/g			
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g			
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g			
Tetrachloroethylene	ND	0.05	ug/g			
Toluene	ND	0.05	ug/g			
1,1,1-Trichloroethane	ND	0.05	ug/g			
1,1,2-Trichloroethane	ND	0.05	ug/g			
Trichloroethylene	ND	0.05	ug/g			
Trichlorofluoromethane	ND	0.05	ug/g			
Vinyl chloride	ND	0.02	ug/g			
m,p-Xylenes	ND	0.05	ug/g			
o-Xylene	ND	0.05	ug/g			
Xylenes, total	ND	0.05	ug/g			
Surrogate: 4-Bromofluorobenzene	7.82		ug/g	97.7	50-140	
Surrogate: Dibromofluoromethane	7.40		ug/g	92.4	50-140	
Surrogate: Toluene-d8	8.39		ua/a	105	50-140	
Benzene	ND	0.02	ua/a			
Ethylbenzene	ND	0.05	ua/a			
Toluene	ND	0.05	ua/a			
m.p-Xvlenes	ND	0.05	ua/a			
o-Xylene	ND	0.05	ug/g			
Xylenes, total	ND	0.05	ug/g			
Surrogate: Toluene-d8	8.39		ug/g	105	50-140	

Reporting

. Limit

0.05

0.05

0.05

0.05

0.05

Result

ND

ND

ND

ND

ND



Order #: 1550409

Report Date: 17-Dec-2015

Order Date: 11-Dec-2015

Project Description: TG151118

# Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
Conductivity	289	5	uS/cm	283			2.1	6.2	
рН	7.68	0.05	pH Units	7.72			0.5	10	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ua/a dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	136	8	ua/a drv	161			17.3	30	
F4 PHCs (C34-C50)	279	6	ug/g dry	296			5.9	30	
Motals			00 /						
		1.0	ua/a day				0.0	20	
Arsenic	2.62	1.0	ug/g dry	3.03			1/1	30	
Barium	64.0	1.0	ug/g dry	62 1			3 1	30	
Bervllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	4.34	1.0	ug/g dry	4.30			0.9	30	
Cadmium	ND	0.5	ua/a dry	ND			0.0	30	
Chromium (VI)	ND	0.2	ua/a drv	ND			0.0	35	
Chromium	18.0	1.0	ua/a drv	17.4			3.7	30	
Cobalt	10.6	1.0	ug/g dry	10.3			3.7	30	
Copper	5.27	1.0	ug/g dry	5.15			2.4	30	
Lead	10.8	1.0	ug/g dry	10.9			0.9	30	
Mercury	ND	0.1	ug/g dry	ND				35	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	10.6	1.0	ug/g dry	10.8			1.4	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.5	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND				30	
Uranium	1.40	1.0	ug/g dry	ND			0.0	30	
Vanadium	29.1	1.0	ug/g dry	28.0			3.8	30	
Zinc	50.2	1.0	ug/g dry	48.8			2.7	30	
Physical Characteristics									
% Šolids	80.9	0.1	% by Wt.	81.0			0.2	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ua/a drv	ND				40	
Acenaphthylene	ND	0.02	ug/g dry	ND				40	
Anthracene	ND	0.02	ug/g dry	ND				40	
Benzo [a] anthracene	ND	0.02	ug/g dry	ND				40	
Benzo [a] pyrene	ND	0.02	ug/g dry	ND				40	
Benzo [b] fluoranthene	ND	0.02	ug/g dry	ND				40	
Benzo [g,h,i] perylene	ND	0.02	ug/g dry	ND				40	
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND				40	
Chrysene	ND	0.02	ug/g dry	ND				40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g dry	ND				40	
Fluoranthene	ND	0.02	ug/g dry	ND				40	
	ND	0.02	ug/g dry	ND				40	
Indeno [1,2,3-cd] pyrene		0.02	ug/g dry					40	
2 Methylnaphthalene		0.02	ug/g dry					40	
2-methylnaphthalene Naphthalono		0.02	ug/g dry					40	
Phenanthrene		0.01	ug/g ury ug/a dry					40 40	
Pyrene		0.02	ug/g dry ug/a dry	ND				40	
Surrogate: 2-Fluorobinhenvl	0 497	0.02	ug, g dry ug/a dry	ND	30 1	50-140		-10	S-04
Surrogate: Terphenyl-d14	1.38		ua/a drv	ND	837	50-140			-
Volotiloo	1.00		ag, g ary		00.7	00 140			
vulatiles		0.50	un la dest					<b>F</b> 0	
Acetone	ND	0.50	ug/g dry					50	
Denzene Promodiobloromothers		0.02	ug/g ary					50 E0	
Bromoform		0.05	ug/g ary					00 E0	
	ND	0.05	uy/y ury	ND				50	



# Method Quality Control: Duplicate

Report Date: 17-Dec-2015

Order Date: 11-Dec-2015

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromomethane	ND	0.05	ug/g dry	ND				50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND				50	
Chlorobenzene	ND	0.05	ug/g dry	ND				50	
Chloroform	ND	0.05	ug/g dry	ND				50	
Dibromochloromethane	ND	0.05	ug/g dry	ND				50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND				50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
trans-1,3-Dicnioropropylene	ND	0.05	ug/g ary	ND				50	
Etnylbenzene	ND	0.05	ug/g ary	ND				50	
Ethylene dibromide (dibromoethane		0.05	ug/g ary					50	
Hexane Method Ethod Keterer (2 Duterene)		0.05	ug/g ary					50	
Methyl Leobutyl Ketone (2-Butanone)		0.50	ug/g ary					50	
Methyl Isobulyi Kelone		0.50	ug/g dry					50	
Methylana Chlarida		0.05	ug/g dry					50	
Sturopo		0.05	ug/g dry					50	
1 1 1 2-Tetrachloroethane		0.05	ug/g dry					50	
1 1 2 2-Tetrachloroethane		0.05	ug/g dry					50	
Tetrachloroethylene		0.05	ug/g dry					50	
Toluene	ND	0.05	ug/g dry					50	
1 1 1-Trichloroethane	ND	0.00	ug/g dry	ND				50	
1 1 2-Trichloroethane	ND	0.00	ug/g dry	ND				50	
Trichloroethylene	ND	0.05	ua/a dry	ND				50	
Trichlorofluoromethane	ND	0.05	ua/a dry	ND				50	
Vinvl chloride	ND	0.02	ua/a drv	ND				50	
m.p-Xvlenes	ND	0.05	ua/a drv	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: 4-Bromofluorobenzene	5.91		ua/a drv	ND	98.3	50-140			
Surrogate: Dibromofluoromethane	5.82		ua/a drv	ND	96.8	50-140			
Surrogate: Toluene-d8	6.43		ua/a drv	ND	107	50-140			
Benzene	ND	0.02	ua/a drv	ND				50	
Ethylbenzene	ND	0.05	ua/a drv	ND				50	
Toluene	ND	0.05	ua/a drv	ND				50	
m,p-Xylenes	ND	0.05	ug/g drv	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	6.43		ug/g dry	ND	107	50-140			



# Method Quality Control: Spike

Report Date: 17-Dec-2015

Order Date: 11-Dec-2015

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	198	7	ug/g	ND	99.2	80-120			
F2 PHCs (C10-C16)	72	4	ug/g	ND	80.0	80-120			
F3 PHCs (C16-C34)	186	8	ug/g	ND	100	80-120			
F4 PHCs (C34-C50)	120	6	ug/g	ND	96.8	80-120			
Metals									
Antimony	224		ug/L	15.4	83.5	70-130			
Arsenic	295		ug/L	60.6	93.8	70-130			
Barium	1540		ug/L	1240	121	70-130			
Beryllium	220		ug/L	3.07	86.9	70-130			
Boron	300		ug/L	86.0	85.4	70-130			
Cadmium	209		ug/L	1.40	83.1	70-130			
Chromium (VI)	4.6	0.2	ug/g	ND	93.0	70-130			
Chromium	581		ug/L	348	93.1	70-130			
Cobalt	418		ug/L	205	85.2	70-130			
Copper	319		ug/L	103	86.4	70-130			
Lead	428		ug/L	218	84.2	70-130			
Mercury	1.63	0.1	ug/g	ND	109	72-128			
Molybdenum	211		ug/L	6.93	81.7	70-130			
Nickel	211		ug/L	ND	84.6	70-130			
Selenium	178		ug/L	ND	78.1	70-130			
Silver	181		ug/L	0.39	72.1	70-130			
Thallium	207		ug/L	ND	82.9	70-130			
Uranium	247		ug/L	ND	98.6	70-130			
Vanadium	800		ug/L	560	96.3	70-130			
Zinc	1220		ug/L	976	97.3	70-130			
Semi-Volatiles									
Acenaphthene	0.137	0.02	ug/g	ND	66.5	50-140			
Acenaphthylene	0.121	0.02	ug/g	ND	58.9	50-140			
Anthracene	0.149	0.02	ug/g	ND	72.5	50-140			
Benzo [a] anthracene	0.140	0.02	ug/g	ND	68.1	50-140			
Benzo [a] pyrene	0.164	0.02	ug/g	ND	79.5	50-140			
Benzo [b] fluoranthene	0.181	0.02	ug/g	ND	87.8	50-140			
Benzo [g,h,i] perylene	0.208	0.02	ug/g	ND	101	50-140			
Benzo [k] fluoranthene	0.167	0.02	ug/g	ND	81.1	50-140			
Chrysene	0.200	0.02	ug/g	ND	97.0	50-140			
Dibenzo [a,h] anthracene	0.178	0.02	ug/g	ND	86.6	50-140			
Fluoranthene	0.167	0.02	ug/g	ND	80.8	50-140			
Fluorene	0.143	0.02	ug/g	ND	69.2	50-140			
Indeno [1,2,3-cd] pyrene	0.185	0.02	ug/g	ND	89.8	50-140			
1-Methylnaphthalene	0.157	0.02	ug/g	ND	76.0	50-140			
2-Methylnaphthalene	0.213	0.02	ug/g	ND	103	50-140			
Naphthalene	0.142	0.01	ug/g	ND	68.9	50-140			
Phenanthrene	0.168	0.02	ug/g	ND	81.5	50-140			
Pyrene	0.176	0.02	ug/g	ND	85.3	50-140			
Surrogate: 2-Huorobipnenyi	0.955		ug/g		58.0	50-140			
	10 5	0.50	ua/a	ЛЛ	105	50-140			
Benzene	2 55	0.00	ug/g	ND	88.7	60-130			
Bromodichloromethane	3.00 2.00	0.02	ug/g		96.5	60-130			
Bromoform	3.00 1 69	0.05	ug/g		117	60-130			
Bromomethane	3.06	0.05	na\a	ND	76.5	50-140			
	0.00		- 3' 3						



# Method Quality Control: Spike

Report Date: 17-Dec-2015

Order Date: 11-Dec-2015

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Carbon Tetrachloride	3.90	0.05	ug/g	ND	97.5	60-130			
Chlorobenzene	3.73	0.05	ug/g	ND	93.2	60-130			
Chloroform	4.28	0.05	ug/g	ND	107	60-130			
Dibromochloromethane	4.37	0.05	ug/g	ND	109	60-130			
Dichlorodifluoromethane	3.30	0.05	ug/g	ND	82.4	50-140			
1,2-Dichlorobenzene	4.56	0.05	ug/g	ND	114	60-130			
1,3-Dichlorobenzene	4.55	0.05	ug/g	ND	114	60-130			
1,4-Dichlorobenzene	4.38	0.05	ug/g	ND	110	60-130			
1,1-Dichloroethane	3.55	0.05	ug/g	ND	88.8	60-130			
1,2-Dichloroethane	3.81	0.05	ug/g	ND	95.3	60-130			
1,1-Dichloroethylene	4.47	0.05	ug/g	ND	112	60-130			
cis-1,2-Dichloroethylene	4.19	0.05	ug/g	ND	105	60-130			
trans-1,2-Dichloroethylene	3.94	0.05	ug/g	ND	98.6	60-130			
1,2-Dichloropropane	3.49	0.05	ug/g	ND	87.4	60-130			
cis-1,3-Dichloropropylene	3.89	0.05	ug/g	ND	97.2	60-130			
trans-1,3-Dichloropropylene	3.97	0.05	ug/g	ND	99.1	60-130			
Ethylbenzene	3.59	0.05	ug/g	ND	89.8	60-130			
Ethylene dibromide (dibromoethane	4.35	0.05	ug/g	ND	109	60-130			
Hexane	2.94	0.05	ug/g	ND	73.6	60-130			
Methyl Ethyl Ketone (2-Butanone)	8.88	0.50	ug/g	ND	88.8	50-140			
Methyl Isobutyl Ketone	9.09	0.50	ug/g	ND	90.9	50-140			
Methyl tert-butyl ether	9.80	0.05	ug/g	ND	98.0	50-140			
Methylene Chloride	4.11	0.05	ug/g	ND	103	60-130			
Styrene	4.75	0.05	ug/g	ND	119	60-130			
1,1,1,2-Tetrachloroethane	4.12	0.05	ug/g	ND	103	60-130			
1,1,2,2-Tetrachloroethane	3.90	0.05	ug/g	ND	97.6	60-130			
Tetrachloroethylene	4.78	0.05	ug/g	ND	120	60-130			
Toluene	3.48	0.05	ug/g	ND	86.9	60-130			
1,1,1-Trichloroethane	3.64	0.05	ug/g	ND	90.9	60-130			
1,1,2-Trichloroethane	3.54	0.05	ug/g	ND	88.4	60-130			
Trichloroethylene	4.07	0.05	ug/g	ND	102	60-130			
Trichlorofluoromethane	3.75	0.05	ug/g	ND	93.7	50-140			
Vinyl chloride	3.65	0.02	ug/g	ND	91.3	50-140			
m,p-Xylenes	7.37	0.05	ug/g	ND	92.1	60-130			
o-Xylene	3.58	0.05	ug/g	ND	89.4	60-130			
Benzene	3.55	0.02	ug/g	ND	88.7	60-130			
Ethylbenzene	3.59	0.05	ug/g	ND	89.8	60-130			
Toluene	3.48	0.05	ug/g	ND	86.9	60-130			
m,p-Xylenes	7.37	0.05	ug/g	ND	92.1	60-130			
o-Xylene	3.58	0.05	ug/g	ND	89.4	60-130			



#### **Qualifier Notes:**

#### QC Qualifiers :

S-04: The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

#### Sample Data Revisions

None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL	TRI RES REI	JSTI SPO LIAB	ED . NSIVI	E .		He 300 Ott p: 1 e: p	ad Office )-2319 S awa, On  -800-74 paracel@	e It. Lauren tario K10 9-1947 Iparacella	it Blvd. G 4J8 abs.com	1		Ch Nº	ain of (Lab Us 2{	Custo e Only) 6598	dy 3	
A						WW	w.parac	ellabs.col	m			Pa	ge <u>/</u>	of	3	
Client Name: Amec FW Contact Name: Del Chrine Address: 5-3200 Micr. Marthe they Then	d o	W	Project R Quote # PO # Email Ac	ddress:	15//18 031			0		1	TAT: )	(Regular ] 2 Day quired:	r [	] 3 Day ] 1 Day		
Telephone: 905 68766/6				patric	leish/ine	Øa	neeh	sico	7			-				-
Criteria: 510. Reg. 153/04 (As Amended) Table 1 XIRSC	Filing	[] (),)	Reg. 558/(	00 []PWQO [	] CCME [] SI	JB (Storr	n) []S	UB (Sanit	ary) Mu	nicipalit	Y		] Other	; 		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (S	storm/San	iitary Se	wer) P (Pa	aint) A (Air) O (C	ther)					Requ	ired An	alyses				
Paracel Order Number: 1550 409	rix	Volume	Containers	Sample	Taken	Marc.	IC(+,-++)	c P METALS	r	VV.	0				8	
Sample ID/Location Name	Mat	Air	# of	Date	Time	Nd Vd	9		9	5	2					
1 TP/14-1	S		11	Dec 8/16	9:40			X	X	Х	X		-	950	m(-	1
2 114-2			V	8	9.45											
3 // 4 - 3			V		4'50											
4 //4-4		_	01		955											
5 // 9-5			2.1		10:00											
6 119-6			1.1	(	10:00											
1 1/9-7			V	/	10:10											
8 119-8				/	10:10			~	~ /	~ /			<u>.</u>	alan		
9 Dipla	F	-		, J	11100	-		$\times$	X	X	×		-	270	m(-	/
Comments: Coursel by SNA 07-003			Hold	Singles	for he	in	CARY	184.	7				Method	of Delive	MC- ify:	
Relinquished By (Sign)	Received	by Driv	ver/Depot: NEN	IRIC	Receiv	ed at Lab	R				Verified	By.	4	N.		
Relinquished By (Print): Mul Seehal   Date/Time: 10-12-15	Date/Tim Femperat	ie: ]] iure: [7	Dee 3°C	15 1500	Date/T	ime: 1 Z rature: 1	1121	2015 C	11.	30	Date/Tir pH Veri	ne: De	C. I BY:NY	4/1	5 11	:06

GPARACEL LABORATORIES LTD.	TRUS RESF RELI	STED . Ponsivi Able .			Hea 300 Otta p: 1- e: p: www	d Office -2319 S wa, Ont -800-74 aracel@ w.parace	t. Laurent ario K10 9-1947 paracella ellabs.con	Blvd. à 4J8 ibs.com		Ch Nº	ain of (Lab Us) 26	Custor Only) 599	dy )	
1						P			1	Pa	ge Z	_ of	Ĵ	
Client Name: Aunec & C Contact Name: Def Shriner Address: 5-3700 Murrth Ale they There LIV 446 Telephone: 916 6 7 6 611	ton	Project R Quote # PO # Email Ac	eference: 76 15-03 Idress: patri	15/1/8 21 14.5h7m	, er C	Cone	chre	(Cr,	TAT: [/	Regula ] 2 Day uired:	[	] 3 Day ] 1 Day		
Criteria: 🖂 Ø. Reg. 153/04 (As Amended) Table	RSC Filing []	O. Reg. 558/0	0 []PWQO [	]CCME []SU	B (Storm	i) []SI	JB (Sanita	ry) Municipalit	y		] Other			
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm/Sanita	ry Sewer) P (Pa	aint) A (Air) O (C	Other)				Requ	ired An	alyses				
Paracel Order Number: 1550409	rri x	Volume f Containers	Sample	Taken	OCS	(+++)))	P	PH SAR	$\bigcirc$					
Sample ID/Location Name	Mai	Air # of	Date	Time	>	PK	02		0					
1 TP 115-2	5	1,	1)ec 8/15	11:00										
2 115-5		11	/	11:05										
3 115-9		10	7	11:05										
4 //5-5		CU		1.(15										-
» // <u>)</u> · O				1617		-			-					
7 116-9		1	/	11.20										
8 0 0		1.	/	11.00										
9 JP/1(-1		11	/	17:60		1								
10 116-2	U	10	rt	12:00			X			-	25	Onl	1.1.1	1
Comments: See ps /										. 1	Method	of Delive	ty:	
Relinquished By (Sign):	Received by	Driver/Depot	niek	CL Receive	nd at Lab	18			Verified	By:	h	1		
Relinquished By (Print): Mark Second	Date/Time:	Dee	IS	Date/Ti	me: 1	2/12/	12015	10,35	Date/Tin	me: D	P	1/15	11:0	06
Date/Time: 10.12.115	Temperatur	e: 14.5 "		Temper	ature: <u>/</u>	0.1	¢.		pH Ven	ned M	eà: 🔽	<u>[]</u>		

G PARACE	D. RELIA	ED. DNSIVE. BLE.	Head 300-2 Ottaw p: 1-8 e: par www.	Office 319 St. Laurent ra, Ontario K1G 00-749-1947 racel@paracellat paracellabs.com	Blvd. 4J8 os.com	N	Chain of (Lab U) 9 2	Custody R Only) 6600	
Client Name: Amee FL Contact Name: Pet Shrme Address: 5-3300 Herrithalle Un ON L 2 446 Telephone: GUS 6876616	y Thoul	Project Reference: T6151 Quote # 15-631 PO # Email Address: Dectrice . 3	1/18 shrmer C	gmee h	1 ( 0 m	TAT: []2 Date Require	Page <u>}</u> egular Day d:	_ of () [] 3 Day [] 1 Day	
Criteria: X4.0. Reg. 153/04 (As Amended) Table	RSC Filing [] 0	. Reg. 558/00 [] PWQO [] CCN	IE [] SUB (Storm)	[] SUB (Sanitar	y) Municipalit	y;	[ ] Othe	F	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface	Water) SS (Storm/Sanitary S	Sewer) P (Paint) A (Air) O (Other)			Requ	ired Analy	ses		
Paracel Order Number:         ISSO 409         Sample ID/Location Name         1 $TN//6-3$ 2 $N/6-5$ 3 $1/6-5$ 4 $1/6-6$ 5 $1/6-7$ 6 $1/6-8$ 7 $TN/M/2 1/7 - 1$ 8 $1/7-7$	Air Volume	Sample Take 3 Date Take 3 Date Take 3 Date Take $1 \sqrt{NecS/1/3}$ 12 $1 \sqrt{NecS/1/3}$ 12 1 Ne	m 5 ime > .05 .05 .05 .05 .05 .05 .05 .05	PHC(FI-FU) ICP METRUS	Nd	EC			
9 1/7-3		2/ 12	:55	X	XX	X	-	Room	L+ Juil-
10 // 7-4 Comments:	Ľ	11 11	:55				Metho	1 of Delivery:	
Relinquished By (Sign):	Received by D	river/Depot: NIQgara	Received at Lab:	le		Verified By	1	11	
Relinquished By (Print):	Date/Time: []	Der 15 1500	Date/Time: 17	hehois	(1:35	Date/Time:	Dec	西方	11:06
Date/Time:	Temperature:	12.3 °C	Temperature: 14	2.9 °C		pH Verified	X By: A	1A	

GPARACEL LABORATORIES LTD.	TR   Re   Re	IUST SPO ELIAE	ED . NSIVI BLE .	Ε.		Hea 300 Otta p: 1 e: p ww	ad Office -2319 S awa, On -800-74 aracel@ w.parace	t. Lauren tario K10 9-1947 paracella ellabs.cor	t Blvd. G 4J8 abs.com n	1		Ch Nº Pa	ain of (Lab Us 2(	Custo e Only) 660:	dy L	
Client Name: Contact Name: Address: 5-5500 Contact March 5-5500 Contact March Contact March Contact March Contact March Contact March Contact Name: Contact Nam	Thal	1/	Project R Quote # PO # Email Ad	idress: ddress: ddress:	6 151 116 031 cle ishrim	1 0	C.m	ec hi	7 7, CC+	7	TAT: [. [ Date Req	] 2 Day uired:	r   [	[] 3 Day ] 1 Day	2	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	SC Filing	[ ] O. anitary Se	ewer) P (Pa	aint) A (Air) O (	[ ] CCME [ ] S	UB (Storn	1) []51	JB (Sanit	ary) Mu	Requ	ired An	alvses	] Other	1		
Paracel Order Number: 1550409	dix	Volume	Containers	Sampl	e Taken	acs	(+1-4))	PETALS	H	200	J				6	
Sample ID/Location Name	Mat	Air	fo #	Date Dec 8116	Time	>	Nd	5	9	S	LL					
2 117-6			1		1:00				1 1 1 1							
4 1/2-5			11	r	1.05								00		4 (A	
5 Def C 6 TP118-1			6.0		1:45			X	X	X	X		-90	200-	-140 ML-	-
7 1/8-2 8 1/8-3			1/		143 2:00											
9 /18-4 10 /18-5	ł		1/	-	2:00 2:00								-			
Comments: Sce-OS													Method	of Delive	ny: P	
Relinquished By (Sign): Relinquished By (Print): Mule Second Date/Time: Dice ND/145	Receive B Date/Ti Temper	ed by Dri H M ime: [] rature: []	ver/Depot Nev P3 °c	NIAGA NELL	Receiv Date/T Tempe	ed at Lab M ime: 1 rature:	1/12	toi	5 (1	-35	Verified Inc Date/Tin pH Verif	By; ne: Dc fied [X] 1	By: N	IIIS IA	//:0	06

ŵ.

GPARACEL LABORATORIES LTD.	TR RE RE	USTE SPO LIAB	ED. NSIVI LE.	Ε.		Hea 300- Otta p: 1- e: p: www	d Office 2319 St wa, Onta 800-749 aracel@ w.parace	. Laurent ario K1G )-1947 paracella illabs.con	Blvd. 3 4J8 Ibs.com			Cha Nº Pa	ain of (Lab Use 26 Ige <u>5</u>	Custor Only) 0602	dy 2 3	
Client Name: A Mele Contact Name: Pa J Shrner Address: 53300 Merrit Hille May ( Telephone: 9056876016	to nd	IJ	Project R Quote # PO # Email Ad	ddress:	5 15/11 031 ìle,shin	8 ~ 0	Could	· A.	Gam.		TAT: J	Regula ]2 Day quired:	r [	] 3 Day ] 1 Day		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/Sa	[] 0.1 mitary Se	wer) P (P	aint) A (Air) O (	Other)	OD (Storn	0 [ ] 50	in (name	nyi ivia	Requi	red An	alyses	[] outa			
Paracel Order Number: ISSO409	rix	Volume	Containers	Sampl	e Taken	19 CS	1c( F, Fy)	-P N=TALS	I	AR	0	67	TNY	PAHS		
Sample ID/Location Name	Mat	Air	# of	Date	Time	~	ē	-2	0	. ( ₎	0	m	U			
1 TP118-6	5		lv	The 8/13	2:10									0.00		
2 TH 113-1	1		11		3:05		-	$\times$					-	250	m(+	
3 113-2			1		3:05											
4 113-3			/		310	_							- N			
5 113-4				1	310	_							120			
6 113-5				/	3:20											
7 1/3-6			N		3:20	-		. /					~ 2		OF	001 1 2
8 113-7			20		3:66	×	X	X				X	X	X	-200	mitspa
9 1/3-8			IV		3170											
10 /Jeph)	U		1 1	10									Machael	- E Dalla		
Comments: See nutes os													P	) W	ny: P	
Relinquished By (Sign):	Receive	d þy Dri H (M	ver/Depo	Niggar	-a Rece	ved at Lab	Mil	e			Verifie	d By:	1	1	-	
Relinquished By (Print): Hunt Stat	Date/Ti Temper	me:	Dec	215 c	Date/	Fime: /	2/12	-/ 20 C	15 11	135	Date/T pH Ves	ime: D	ec By: N	ATK	5 //	ice,

GPARACEL	TRUS RESP RELIA	TED . ONSIVE . BLE .	Head Offic 300-2319 ( Ottawa, Or p: 1-800-7 e: paracel	e St. Laurent Blvd. Itario K1G 4J8 I9-1947 ⊉paracellabs.com	C Nº	hain of Custody (Lab Use Only) 26603	
			www.parad	ellabs.com	]	Page $\underline{6}$ of $\underline{3}$	
Client Name: Jone C Contact Name: Red Shime Address: 5-3300 Merr Hrille US Telephone: CZV446	ny Thede	Project Reference: 16 P. Quote # 15-03 PO # Email Address: pcfruck	51118 1 . shriner C c	mech ecy	TAT: X Regu [] 2 Da Date Required:	ılar [] 3 Day ıy [] 1 Day	
Criteria: X40. Reg. 153/04 (As Amended) Table	(RSC Filing [])	), Reg. 558/00 [] PWQO [] CC	ME []SUB(Storm) []	UB (Sanitary) Municipal	ity:	[ ] Other:	_
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water	) SS (Storm/Sanitary	Sewer) P (Paint) A (Air) O (Other)		Req	uired Analyse	S	
Paracel Order Number: 1550409	Volume	Sample Tal	ken C C	CP LETRS NI	EC		
Sample ID/Location Name	Ma	Date	Time Sa	-3 2 1	)		
1 1104-1	5	1 Dec 9/15 To	7152	X		250 ml-	/
2 104-2	1	14.1 7.	:52				
3 104-5		11 8	:00				
4 104-4		24 8:	.00				
5 104-5		14 8	:05				
6 104-6		14 8.	:05				
7 DLOE,		141 -					
8 TP/119-1d		21 8:	30				1
9 119-1c		IV 81	50	X		-anom(-	/
10 119-2	C	12 0 81	10				
Comments: Scelos.						Method of Delivery: Pup	
Relinquished By (Sign):	Received by 1 BH(	Driver/Depor: Nagana Meniek	Received at Lab:	ke	Verified By:	how	~
Relinquished By (Print): Mul Stelle	Date/Time:// Temperature:	Dee 15 123°C	Date/Time: 12/1 Temperature: 10.9	17015 11.39 °C	Date/Time:	By: NA	11:06

GPARACEL	TRUST RESPO RELIAE	ED. NSIV BLE.	E.		Hea 300 Otta p: 1 e: p ww	ad Office -2319 S awa, On -800-74 aracel@ w.parace	t. Lauren tario K10 9-1947 paracella ellabs.col	t Blvd. 3 4J8 ąbs.com n			Ch Nº	(Lab Us 2 (	Custo e Only) 6604	dy		
Client Name: Ance Contact Name: Pet Shriner Address: 5-3360 Merneth. It. Buy Thus UN Telephone: US 687 6616 Criteria: P40. Reg. 153/04 (As Amended) Table MRSC Fil	<i>clb</i>	Project F Quote # PO # Email A Reg. 558/	Idress: Dot.	5 15 1118 2031 ach shrn	2 UNCO UB (Storm	2 Cre.	chi JB (Sanit	ICO2	licipality	TAT: ) Date Rec	Pa Regula ] 2 Day quired:	age	of ] 3 Day	2		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Stor	m/Sanitary S	ewer) P (P	aint) A (Air) O (	Other)					Requi	red An	alyses					
Paracel Order Number: 1550409	Volume	Containers	Sampl	e Taken	locs	((t.t.))	ETALS	MO	SAR	EC	TEX	6	r v T			
Sample ID/Location Name	Air	fo #	Date	Time	2	PM	-3				B	7	U			
$\frac{1}{1} \frac{TP/Q-S}{1}$	<u>)</u>		Acc 9/15	8190	-				_							
3 //0-6		V		8:40									-			
4 1/9-6				8:50											-	
5 1/9-7		V	,	\$150											_	
6 119-82		21		9.00		X					X	-	250	ML+1	.ist-	1
7 119-86		T		900			X	$\times$	X	X		X	X	-950	ml-	1
8 TP106-1		10	e	9:25			X					<u> </u>	1	9.50	ml-	1
9 105-2		IV		4:20												
10 105-3		12	Ĺ	9190								34.4.4	- 6 D. V			
See os												Method	of Delive	ту: Э		
Relinquished By (Sign):		iver/Depot	Niagan	CC Receiv	ed at Lab	Nik	e			Verified	l By:	/		~		
Relinquished By (Print): Mul State Date Date/Time: 10, 12, 15 Ten	e/Time:	2.3%	-15	Date/T Tempe	lime: [2 erature: [	0.9	12015	5 (l.	35	Date/Ti pH Veri	me: De ified M	By:	9/1ª	5 ]];	06	

GPARACEL LABORATORIES LTD.	TR   RE   RE	USTI SPO LIAB	ED . NSIVE LE .			Hea 300- Otta p: 1- e: pi	d Office -2319 St wa, Ont -800-749 aracel@	. Laurent ario K1G I-1947 paracellal	Blvd. 4J8 bs.com			Chi Nº	tin of Lab Us 26	Custo e Only) 6605	dy 5	
						WWV	w.parace	liabs.com			1	Pa	ge 8	of _	3	
Client Name: Ange Contact Name: Pit Shine Address: 5-3300 Herr Hulle Ung Telephone: 905 6876666	- Au	tell	Project Re Quote # PO # Email Add	dress: Detrice	KINS T	, - Q	Crei	h.c.	1		TAT: j [ Date Rec	Regular ] 2 Day juired:	. [	] 3 Day ] 1 Day		
Criteria: 0. O. Reg. 153/04 (As Amended) Table L. X F	SC Filing	[]0.	Reg. 558/0	0 []PWQO [	]CCME []SU	JB (Storm	) []St	JB (Sanita	ry) Mun	icipality			] Other			
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	S (Storm/S	anitary Se	wer) P (Pa	int) A (Air) O (C	(ther)					Requi	red An	alyses				
Paracel Order Number: 1550409	rix	Volume	Containers	Sample	Taken	005	2C(F1-F4)	PANS	N	NN.	C	Tex				
Sample ID/Location Name	Mati	Air '	fo #	Date	Time	$\geq$	ć	03	2	. ഗ	4	Q				
1 TP105-4	5		12	Ar. GIS	930									1.1		
2 105.5 (d)			2	. /	9.45											
3 105-6			11	<u> </u>	945											
4 TP107-1			14	/	955			X					1	200	ML-	
5 (07-2			11		9:55		-							·		
6 107-3 (NO VIA)			2		10th						(NC	010	U)			
7 107-9,			11		10115			1						950	anl	
8 TP120-1			14		11.00			X						0.00	1411-	
9 120-2			4		11:00											
10 /20-3 (DO VIA)	12		Zu		/1.13								Method	l of Deliv	erv:	
Comments: See of													P	w	p	
Relinquished By (Sign):	Receiv	ed by Dr HC	iver/Depot.	Nagan	ra Receiv	red at Lab	e.ke	;			Verifier	d By:	1	14	1	11
Relinquished By (Print): Much Second	Date/T	ime: )	Del	15	Date/T	fime:	10.9	1201	511	:35	Date/Ti	ime: 7	BV: NT	HAT/	IS	1:06
Date/Time: 10/10113	Tempe	rature	a2 1	(	Temp						I. ret	THE MU		1/		

in.

GPARACEL LABORATORIES LTD.	TR RE RE	USTI SPO LIAB	ED . NSIV BLE .	Ε.		Hea 300 Otta p: 1 e: p	ad Office )-2319 S awa, Onf  -800-74  aracel@	t. Laurent ario K1G 9-1947 paracella	Blvd. 3 4J8 bs.com		Ch Nº	Lab U	Custo e Only) 5608	dy	
				N		VV VV	w.parace	naus.con			Р	age <u>1</u>	_ of	2	
Client Name: Amec Contact Name: At Shrner Address: 5-3300 Alerrithath thuy OW Telephone: GUB 687 6676	, The	M	Project F Quote # PO # Email A	idress: Detroit	1. 1. 1118 3. 1 4. sh/me	7 7@	cue	h.	4	TAT: /	Regula [] 2 Day	ar	[] 3 Day ] 1 Day	7	
Criteria: JQO. Reg. 153/04 (As Amended) Table	SC Filing	[]0.	Reg. 558/	00 [] PWQO	]CCME []SI	UB (Storn	n) []SI	JB (Sanita	ry) Municipal	ity:		[] Othe	ri		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	S (Storm/Sa	mitary Se	ewer) P (P	aint) A (Air) O (	Other)				Req	uired Ai	nalyses				
Paracel Order Number: 1550409	rix	Volume	Containers	Samp	e Taken	10 C	to (Finte)	PETRS	NR	C	STEX	SHH	79	r VT	
Sample ID/Location Name	Mat	Air	fo #(	Date	Time		đ	US	a v	P	9	9	4	0	
1 DUD F (NO Vial	5		D	Akc 9/13											
2 TP108-1			1/2		12:20			Х				25	omi	v	
3 1118-7			12		12:20										
4 108.3			( /		12:25										
5 108-4			2'		12:25										
6 TP121-1			1-		1120			Х				-95	oml	1	/
7 121-7			110		11/20										
8 121-3			12		1130								7		
9 121-4			1-	e	1130										
10 121-5	L		2.	-1	11:40		X	X			X	X	X	X	1
Comments: Seeps												Method	of Delive	ry: P	250m
Relinquished By (Sign):	Receive	sd by Dri SHÇ	ver/Depot	Niago	una Receiv	ed at Lab	M	1/2		Verifie Za	d By:	1	14		
Relinquished By (Print): M.L. Szchel Date/Time: //, N:15	Date/Ti Temper	me:    ature:	Dee 23°	15	Date/T Tempo	lime: erature: _/	12	12/	2015 11	pH Ve	ime: 7)* rified [X	By: N	9/1- A	5 //:	06

GPARACEL LABORATORIES LTD.	RESPONSIVE. TORIES LTD. Head Off 300-2319 Ottawa, C RESPONSIVE. RELIABLE. Print Reference: CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC							Laurent ario K1G -1947 paracellat	Blvd. 4J8 os.com		Cł Nº	Lab Use (Lab Use 26	Custo e Only) 660	dy 7	
1						WWV	v.parace	liabs.com			Р	age <u>((</u>	of	3	
Client Name: Amer Contact Name: PLI Shrney Address: 5-3360 MerrHuth they's Telephone: 906 6876616	The	/	Project R Quote # PO # Email Ad	dress: Ovtrace	5 15 11 lg -031 Lishmer	0	enec	h.c	'n	TAT: 🤈	Regul:	ar [	] 3 Day ] 1 Day		
Criteria: 170 Reg. 153/04 (As Amended) Table 1 ARS	C Filing	[]0.	Reg. 558/0	0 []PWQO [	]CCME []SU	B (Storm	) [ ] SL	B (Sanitar	y) Municipalit	y		[ ] Other			
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/Sa	anitary Se	ewer) P (Pa	iint) A (Air) O (O	Other)		$\sim$		Requ	ired A	nalyses	0			
Paracel Order Number: 1550409	nix	Volume	Containers	Sample	e Taken	ОC	10(+,-Fy	Pras	DH	0	JEX	PRHS	7.	6	
Sample ID/Location Name	Mat	Air	# of	Date	Time	$\geq$	đ	0-		L	00				
1 TP/21-6	5		11	Dec 4/15	11.40										
2 TP/11-1		-	- /6	-	12:40			$\times$				- 0	50	m(-	
3 1/1-2			21		12:10										
4 1/1-3			IV		1230										
5 111-4			1		12:50								-		
6 7 P110-la (missingua	D		(4)		1:15										
1 110.2			Tr		120										
8 110.3		_	1		120					_					
9 110.4	Ц.		lv	/	125			. /		-				(A Days	
10 110.12	C		1.1	U	115			Х				Method	of Deliv	BUUM	<u> </u>
Ster 15												1	PU	P	
Relinquished By (Sign):	Receiv	ed by Dri	iver/Depot	Maga	ra Receive	ed at Lab	Uf	e		Verifie	ed By:	1	4	5	
Relinquished By (Print): Mark Se Sh	Date/T	ime: []	Der	25	Date/T	me: /2	112)	2015	-11:35	Date/7	ime: D	ect	4/1	511	06
Date/Time: 10.1213	Tempe	rature:	2.3%		Temper	ature/ (	1, 9 0	C		pH Ve	rified [X]	By	7		

le.
GPARACEL   TRUSTED. LABORATORIES LTD.   RELIABLE.							Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com					Chain of Custody (Lab Use Only) Nº 26608					
Client Name: Contact Name: Address: 5-3300 Plen. In & Uny Th Telephone: GUS 6876676	all	Project Reference: TGK1118 Quote # 15-05/ NO # Email Address: Detrick.shrmine anachies							TAT: Regular [] 3 Day [] 2 Day [] 1 Day Date Required:								
Criteria: XO. Reg. 153/04 (As Amended) Table XR Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	SC Filing	[] 0. anitary Se	Reg. 558/(	00 [] PWQO [	] CCME [] SU	JB (Storn	1) []SI	JB (Sanita	ry) Mun	icipality Requi	red Ar	nalyses	[ ] Other				
Paracel Order Number: 1550409	ıtrix	r Volume	of Containers	Sampl	e Taken	Joc	PHC (+,-FL)	METRIS	ρŊ	SAR	0	Itex	SHAD	G	T' NT		
Sample ID/Location Name	M M	Ai	#	Date	Time	-	7			V /	2	(a)	/				
2 106-2	1		(~		2:00			X					-	250	ML-		
$\frac{3}{4}$ (09-3)			() ()		2:10												
5 TP/12-1			14		235											1 21/16	
× 6 112-2C			12		2:35								- Li	- 3	ISDWU	R	
7 /12-20			24		2:40	-		$\times$				-	X	X	X		
8 //2-9	+	-	11		211		-					-					
10 1/2 - 6	L		/ /-ï		DIRA											·. —	
Comments: Sec OS						1							Method	of Deliv	ery: P		
Relinquished By (Sign):	Receiv P	ed by Dr HC	iver/Depot	"Niaga niek	ra Receiv	ed at Lab	1/16				Verifie	d By: These	D	4	2		
Relinquished By (Print): M. L. Stand " Date/Time: 104 14 15.	Date/T Tempe	ime: rature: ]	1 Dee 2.3 °	-15 c	Date/T Tempo	ime: /	Y12	1201	15 11	30	Date/T	ime: 🤺 rified [X	By: N	141/ A	15 1	1:06	

GPARACEL LABORATORIES LTD.	TR RE RE	TRUSTED . RESPONSIVE . RELIABLE .					Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com				Chain of Custody (Lab Use Only) Nº 24778 Page /2 of 3					
Client Name: Contact Name: Address: 5-3300 Herr Hult. Telephone: 905 687 6676 Criteria: HO. Reg. 153/04 (As Amended) Tables [] R	SC Filing	[]0.1	Project Ro Quote # PO # Email Ad Reg. 558/0	dress: 0 [] PWQ0	СК(118 131 цсс. st.,	B (Storm	? <i>Creet</i> 1) [] SUB (Sar	itary) Mu	nicipalit	TAT:   Date Re	aquired:	r [	] 3 Day ] 1 Day			
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S Paracel Order Number: 1550409	S (Storm S:	anitary Se	Containers	Samp	le Taken	VO CS	IC (FI-Fy)	H	Neda SV	U	878X	PAHS	H9	S UT		
Sample ID/Location Name           1 $TP / I/2 - 6$ 2 $D_{LO} 6$ 3 $TP / I/2 - 6$ 4 $IO6 - 7$ 5 $IO6 - 3$ 6 $IO6 - 4$ 7 $TP / IOI / 1$	Ma	Air	0 # 12 2.2 12 12 22 12 12 22	Date	Time 2:55. 							×	×.	* × 250	ml-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Receiv	red by Dr	iver/Depol	Niago	4:00 4:10 4:15	ed at Lay	like			Verifie	ed By:	Methor	I of Deliv	ery:		
Relinquished By (Print): Mark Seel	Date/T Tempe	Date/Time: [] Dee) 5 Dat Temperature: 2.3 °C Ter				Fime: 17/12/2015 11 3 Date				pH Verified & By: NA					.06	

GPARACEL		Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com					Chain of Custody (Lab Use Only) Nº 24779									
Clicat Name			Project R	elerence: T	1111				-			Pa	ge / 5	of <u></u>		-
Contact Name: <u>Pree</u> Contact Name: <u>Pref Shree</u> Address: <u>5-3360 Marr H. Ile Ihr,</u> Telephone: <u>204 68 1666</u>	Quote # 15-03 - The cl PO # Email Address: Debruk . Shrue Conce huncer								[] 2 Day [] 1 Day Date Required:							
Criteria: 100, Reg. 153/04 (As Amended) Table 1	RSC Filing	[]0.1	leg, 558/0	0 []PWQO []0	CCME []SU	JB (Storm	) []\$U	B (Sanita	ry) Mut	icipality			[] Other			
atrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm Sanitary Sewer) P (Paint) A (Air) O (Other) Requi									red An	alyses						
Paracel Order Number: 1550409	trix	Volume	f Containers	Sample T	aken	locs	HC(FI-FI)	METRIS	PN	SAR	0	BTEX	PAHS	(FH)	Cr VI	
Sample ID/Location Name	Ma	Air	o # (	Date	Time	2	d	-	~/					67m	41	int.
1 11/101-15d	5		2	1911.13	<u>9.6</u>	-		X	$\mathbf{X}$				V	00 m	11 21	U.
2 $107-6$			20		717											
3 105 TOC	L															
5																
6																
7												-				
8																
9												-				
10											-		Metho	d of Deliv	ery:	
Comments:													1	)u	D	
Relinquished By (Sign):	Received by Driver/Depot: NIAGANA BHOMENVEL Date/Time: 12.3°C					leceived at Lab: M.K. Date/Time: 13/12/201511:35 Temperature: 10, 3°C				35	Verified By: Date Time: D=C 14/15 11:0C pH Verified [] By: N P					



RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

# Certificate of Analysis

## Amec Foster Wheeler (Thorold)

3300 Merrittville Hwy, Unit 5 Thorold, ON L2V 4Y6 Attn: Pat Shriner

Client PO: Project: TG151118 Custody: 23735

Report Date: 24-Dec-2015 Order Date: 21-Dec-2015

Order #: 1552049

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID
TP102-1
TP103-1

Approved By:



Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



Order #: 1552049

Report Date: 24-Dec-2015 Order Date: 21-Dec-2015 Project Description: TG151118

## **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: Metals by ICP/OES, soil	based on MOE E3470, ICP-OES	23-Dec-15	24-Dec-15
Solids, %	Gravimetric, calculation	22-Dec-15	22-Dec-15



## Certificate of Analysis

## Client: Amec Foster Wheeler (Thorold)

Client PO:

Order #: 1552049

Report Date: 24-Dec-2015

Order Date: 21-Dec-2015

	_			-	
	Client ID:	TP102-1	TP103-1	-	-
	Sample Date:	18-Dec-15	18-Dec-15	-	-
	Sample ID:	1552049-01	1552049-02	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	84.3	85.7	-	-
Metals			•	•	•
Antimony	1.0 ug/g dry	<1.0	2.0	-	-
Arsenic	1.0 ug/g dry	5.9	5.9	-	-
Barium	1.0 ug/g dry	102	99.9	-	-
Beryllium	1.0 ug/g dry	<1.0	<1.0	-	-
Boron	1.0 ug/g dry	13.0	13.8	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	1.0 ug/g dry	22.2	21.3	-	-
Cobalt	1.0 ug/g dry	11.3	11.2	-	-
Copper	1.0 ug/g dry	22.8	20.4	-	-
Lead	1.0 ug/g dry	12.2	11.1	-	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	-	-
Nickel	1.0 ug/g dry	19.3	18.4	-	-
Selenium	1.0 ug/g dry	<1.0	<1.0	-	-
Silver	0.5 ug/g dry	<0.5	<0.5	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	1.0 ug/g dry	28.1	27.0	-	-
Zinc	1.0 ug/g dry	52.6	53.9	-	-



Order #: 1552049

Report Date: 24-Dec-2015

Order Date: 21-Dec-2015

Project Description: TG151118

## Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
			2	. tooun					
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	1.0	ug/g						
Boron	ND	1.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	1.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	1.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	1.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.5	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	1.0	ug/g						
Zinc	ND	1.0	ug/g						



Order #: 1552049

Report Date: 24-Dec-2015

Order Date: 21-Dec-2015

Project Description: TG151118

## Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	ND	1.0	ug/g dry	1.78			0.0	30	
Barium	33.8	1.0	ug/g dry	34.0			0.8	30	
Beryllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	6.52	1.0	ug/g dry	7.07			8.1	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	11.3	1.0	ug/g dry	10.7			5.9	30	
Cobalt	4.40	1.0	ug/g dry	4.15			5.7	30	
Copper	14.3	1.0	ug/g dry	12.7			11.8	30	
Lead	14.3	1.0	ug/g dry	12.9			10.5	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	5.95	1.0	ug/g dry	5.56			6.8	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.5	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	18.1	1.0	ug/g dry	17.9			1.1	30	
Zinc	33.5	1.0	ug/g dry	34.4			2.5	30	
Physical Characteristics									
% Solids	74.4	0.1	% by Wt.	74.2			0.3	25	



## Order #: 1552049

Report Date: 24-Dec-2015

Order Date: 21-Dec-2015

Project Description: TG151118

## Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	264		ug/L	ND	106	70-130			
Arsenic	323		ug/L	35.7	115	70-130			
Barium	885		ug/L	681	81.8	70-130			
Beryllium	253		ug/L	3.85	99.8	70-130			
Boron	377		ug/L	141	94.1	70-130			
Cadmium	246		ug/L	1.81	97.8	70-130			
Chromium	423		ug/L	214	83.7	70-130			
Cobalt	298		ug/L	83.0	86.0	70-130			
Copper	469		ug/L	254	86.1	70-130			
Lead	468		ug/L	258	84.0	70-130			
Molybdenum	231		ug/L	9.55	88.6	70-130			
Nickel	287		ug/L	111	70.2	70-130			
Selenium	216		ug/L	18.7	78.9	70-130			
Silver	236		ug/L	0.07	94.6	70-130			
Thallium	206		ug/L	18.7	74.9	70-130			
Uranium	210		ug/L	18.8	76.5	70-130			
Vanadium	557		ug/L	358	79.9	70-130			
Zinc	863		ug/L	687	70.5	70-130			



Report Date: 24-Dec-2015 Order Date: 21-Dec-2015 Project Description: TG151118

## Qualifier Notes:

None

Sample Data Revisions None

## Work Order Revisions / Comments:

None

## **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

GPARACEL LABORATORIES LTD.	TR   RE   RE	TRUSTED . RESPONSIVE . RELIABLE .						Laurent Blvd. ario K1G 4J8 -1947 baracellabs.com llabs.com		Chain of Custody (Lab Use Only) Nº _23735 Page / of /			
Criteria: 40. Reg. 153/04 (As Amended) Table 1 54	lv all RSC Filing	[]0.	Project Reference: TG/S/11/8 Quote # 15-63/ PO # Email Address: Datrick, Shrine Cancelin, C Reg. 558/00 [] PWQO [] CCME [] SUB (Storm) [] SUB (Sanitary) Munici						TAT: Regular [] 3 Day [] 2 Day [] 1 Day Date Required: ality:				
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm/Sa	anitary Se	ewer) P (l	Paint) A (Air) O (	Other)			Re	quired Ar	alyses	0		
Paracel Order Number:	Matrix	Air Volume	Z / / # of Containers	Sampl Date MecIIIIS	e Taken Time - <i>3:20</i> <i>3:25</i> <i>3:43</i> <i>3:43</i> <i>3:43</i> <i>3:43</i> <i>3:43</i>	SHIDT X X							
10 Comments: General by SNA 07- NO-HG/Crb or Relinquished By (Sign): Relinquished By (Print): Mult Scuth Date/Time: Dec 21/16	OU3 NWE Receive B Date/Til Temper	BC xi by Dri HO ature: T	Hole Mer/Depo Mer Der	Naga Vel S 130	D Date/T Tempe	red at [ Al	2 Cer Dec 0.0 °0	R 22/15 9.280	Verified Date/Tir pH Veri	By: he: fied I() By:		15	
Chain of Custody (Plank) Day 0.2 Oct 2044	Cm	Ho	td S	ample	she	d	af d	upet.	- Pro train	10 mm	9	: 282	



RELIABLE.

# Certificate of Analysis

## Amec Foster Wheeler (Thorold)

3300 Merrittville Hwy, Unit 5 Thorold, ON L2V 4Y6 Attn: Kelly Patterson

Client PO: Project: TG161164 Custody: 110413/414/415/416/417/418

Report Date: 3-Jan-2017 Order Date: 23-Dec-2016

Order #: 1653030

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1653030-01	TP201-2
1653030-02	TP201-3
1653030-03	TP202-2
1653030-04	TP202-3
1653030-05	TP203-2
1653030-06	TP203-3
1653030-07	TP204-1
1653030-08	TP204-2
1653030-09	TP205-1
1653030-10	TP205-2
1653030-11	TP206-1
1653030-12	TP206-2
1653030-13	Composite TP207
1653030-14	Composite TP208
1653030-15	TP208-4
1653030-16	Composite TP209
1653030-17	TP209-4
1653030-18	Composite TP210
1653030-20	TP211-1
1653030-21	TP211-2
1653030-22	Composite TP212
1653030-23	TP212-4
1653030-24	TP213-1
1653030-25	TP213-2
1653030-26	TP214-1
1653030-27	TP214-2
1653030-28	Composite TP215
1653030-29	TP215-3
1653030-30	TP216-1
1653030-31	TP216-2

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



1653030-32	TP217-1
1653030-33	TP217-2
1653030-34	TP218-1
1653030-35	TP218-2
1653030-36	Dup AA
1653030-37	Dup AC

Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016 Project Description: TG161164



Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

## **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: Metals by ICP/OES, soil	based on MOE E3470, ICP-OES	30-Dec-16	30-Dec-16
Solids, %	Gravimetric, calculation	30-Dec-16	30-Dec-16



Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

	_			_		
	Client ID:	TP201-2	TP201-3	TP202-2	TP202-3	
	Sample Date:	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16	
	Sample ID:	1653030-01	1653030-02	1653030-03	1653030-04	
	MDL/Units	Soil	Soil	Soil	Soil	
Physical Characteristics			-	-		
% Solids	0.1 % by Wt.	83.1	80.5	85.1	83.6	
Metals			-	-		
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Barium	1.0 ug/g dry	112	121	119	112	
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Boron	1.0 ug/g dry	19.5	21.0	19.5	21.7	
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5	
Chromium	1.0 ug/g dry	23.3	25.3	23.6	25.6	
Cobalt	1.0 ug/g dry	12.0	12.6	11.9	12.7	
Copper	1.0 ug/g dry	25.3	26.9	27.5	26.9	
Lead	1.0 ug/g dry	12.4	13.1	12.6	14.0	
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Nickel	1.0 ug/g dry	25.5	26.8	26.3	28.4	
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5	
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Vanadium	1.0 ug/g dry	36.2	38.5	36.3	39.1	
Zinc	1.0 ug/g dry	56.6	64.8	57.0	60.2	



Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

	_				
	Client ID:	TP203-2	TP203-3	TP204-1	TP204-2
	Sample Date:	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16
	Sample ID:	1653030-05	1653030-06	1653030-07	1653030-08
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics			•		
% Solids	0.1 % by Wt.	82.8	81.9	80.0	83.3
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Barium	1.0 ug/g dry	113	127	158	115
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Boron	1.0 ug/g dry	17.8	17.3	21.9	19.5
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	24.2	21.1	28.3	23.8
Cobalt	1.0 ug/g dry	12.3	10.9	14.1	12.1
Copper	1.0 ug/g dry	29.9	22.6	29.6	27.6
Lead	1.0 ug/g dry	13.1	12.4	13.0	13.6
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	1.0 ug/g dry	26.6	23.5	30.8	26.8
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	1.0 ug/g dry	37.3	32.7	42.3	36.7
Zinc	1.0 ug/g dry	66.4	53.3	62.5	58.1



Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

	_					
	Client ID:	TP205-1	TP205-2	TP206-1	TP206-2	
	Sample Date:	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16	
	Sample ID:	1653030-09	1653030-10	1653030-11	1653030-12	
	MDL/Units	Soil	Soil	Soil	Soil	
Physical Characteristics	•					
% Solids	0.1 % by Wt.	84.0	83.8	84.4	83.5	
Metals						
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Barium	1.0 ug/g dry	130	124	117	122	
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Boron	1.0 ug/g dry	19.8	19.8	20.0	20.0	
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5	
Chromium	1.0 ug/g dry	24.0	24.1	24.3	24.8	
Cobalt	1.0 ug/g dry	12.1	12.2	11.9	12.6	
Copper	1.0 ug/g dry	26.5	26.2	25.3	26.5	
Lead	1.0 ug/g dry	14.7	14.8	12.0	13.5	
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Nickel	1.0 ug/g dry	26.3	27.2	26.0	28.3	
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5	
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Vanadium	1.0 ug/g dry	37.1	37.1	36.9	37.7	
Zinc	1.0 ug/g dry	60.7	66.6	59.1	60.4	

# ARACEL

### Certificate of Analysis Client: Amec Foster Wheeler (Thorold) **Client PO:**

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

Order #: 1653030

	-				
	Client ID:	Composite TP207	Composite TP208	TP208-4	Composite TP209
	Sample Date:	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16
	Sample ID:	1653030-13	1653030-14	1653030-15	1653030-16
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	77.9	85.1	81.2	83.5
Metals					-
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Barium	1.0 ug/g dry	130	106	91.2	113
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Boron	1.0 ug/g dry	20.9	11.5	6.1	16.8
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	26.3	12.2	5.5	20.5
Cobalt	1.0 ug/g dry	13.5	7.1	3.5	11.6
Copper	1.0 ug/g dry	28.2	16.7	7.6	26.2
Lead	1.0 ug/g dry	15.2	35.9	8.0	31.7
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	1.0 ug/g dry	29.3	14.0	6.0	23.9
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	1.0 ug/g dry	40.0	21.9	11.8	32.3
Zinc	1.0 ug/g dry	79.6	138	39.4	71.2



Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

	ан. на <b>Г</b>					
	Client ID:	TP209-4	Composite TP210	TP211-1	TP211-2	
	Sample Date:	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16	
	Sample ID:	1653030-17	1653030-18	1653030-20	1653030-21	
	MDL/Units	Soil	Soil	Soil	Soil	
Physical Characteristics						
% Solids	0.1 % by Wt.	81.5	80.2	84.3	83.3	
Metals						
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Barium	1.0 ug/g dry	117	138	117	113	
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Boron	1.0 ug/g dry	11.2	19.9	18.1	17.3	
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5	
Chromium	1.0 ug/g dry	15.1	25.2	24.9	20.8	
Cobalt	1.0 ug/g dry	9.3	13.2	12.5	10.4	
Copper	1.0 ug/g dry	15.9	27.8	27.8	21.2	
Lead	1.0 ug/g dry	7.5	13.0	11.5	9.0	
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Nickel	1.0 ug/g dry	16.8	28.8	27.7	23.4	
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5	
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0	
Vanadium	1.0 ug/g dry	25.7	38.6	37.9	33.0	
Zinc	1.0 ug/g dry	35.1	62.8	57.2	47.6	



Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

	-								
	Client ID:	Composite TP212	TP212-4	TP213-1	TP213-2				
	Sample Date:	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16				
	Sample ID:	1653030-22	1653030-23	1653030-24	1653030-25				
	MDL/Units	Soil	Soil	Soil	Soil				
Physical Characteristics									
% Solids	0.1 % by Wt.	82.6	77.8	79.2	84.9				
Metals									
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0				
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0				
Barium	1.0 ug/g dry	112	123	130	111				
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0				
Boron	1.0 ug/g dry	17.7	18.4	23.4	18.3				
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5				
Chromium	1.0 ug/g dry	23.6	24.8	28.2	23.0				
Cobalt	1.0 ug/g dry	12.3	12.8	13.5	11.9				
Copper	1.0 ug/g dry	28.9	31.0	26.0	25.2				
Lead	1.0 ug/g dry	14.9	13.1	12.3	11.2				
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0				
Nickel	1.0 ug/g dry	26.7	27.3	30.0	25.8				
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0				
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5				
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0				
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0				
Vanadium	1.0 ug/g dry	36.8	38.8	41.7	35.2				
Zinc	1.0 ug/g dry	78.2	82.1	57.0	60.0				



Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

	T				
	Client ID:	TP214-1	TP214-2	Composite TP215	TP215-3
	Sample Date:	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16
	Sample ID:	1653030-26	1653030-27	1653030-28	1653030-29
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	85.5	80.9	83.3	82.3
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Barium	1.0 ug/g dry	110	125	118	123
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Boron	1.0 ug/g dry	17.3	17.9	19.7	19.2
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	22.3	25.3	24.3	23.8
Cobalt	1.0 ug/g dry	11.6	12.8	12.4	12.5
Copper	1.0 ug/g dry	24.1	27.1	25.1	24.8
Lead	1.0 ug/g dry	12.1	12.7	11.8	13.2
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	1.0 ug/g dry	25.6	28.1	26.1	27.0
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	1.0 ug/g dry	33.8	37.8	37.1	36.5
Zinc	1.0 ug/g dry	58.4	62.9	55.8	56.4



Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

	Client ID.	TD216 1	TD216.2	TD217 1	TD217.2
	Sample Date:	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16
	Sample ID:	1653030-30	1653030-31	1653030-32	1653030-33
	MDL /Units	Soil	Soil	Soil	Soil
Physical Characteristics	MDE/OIIIt3				
% Solids	0.1 % by Wt	84.6	83.6	78.6	84.3
78 Solids	0.1 /0 by Wt.	04.0	03.0	70.0	04.5
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Barium	1.0 ug/g dry	124	115	111	112
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Boron	1.0 ug/g dry	20.0	17.1	18.2	20.0
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	25.4	23.8	25.6	23.5
Cobalt	1.0 ug/g dry	12.9	12.1	12.7	11.6
Copper	1.0 ug/g dry	27.0	24.0	26.3	23.4
Lead	1.0 ug/g dry	14.3	13.4	11.4	13.0
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	1.0 ug/g dry	28.5	26.2	27.4	25.7
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	1.0 ug/g dry	39.0	35.0	38.9	36.6
Zinc	1.0 ug/g dry	73.8	61.6	53.5	67.2



Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

	Client ID:	TD219 1	TD210.2		
	Sample Date:	21-Dec-16	21-Dec-16	21-Dec-16	21-Dec-16
	Sample ID:	1653030-34	1653030-35	1653030-36	1653030-37
	MDL /Unite	Soil	Soil	Soil	Soil
Dhugiaal Characteristics	MDL/Units	0011	001	001	0011
Physical Characteristics			1	1	1
% Solids	0.1 % by Wt.	83.6	84.5	83.9	79.9
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Barium	1.0 ug/g dry	121	118	116	91.9
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Boron	1.0 ug/g dry	19.3	20.1	20.0	6.0
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	24.6	25.0	25.0	6.3
Cobalt	1.0 ug/g dry	12.4	12.5	12.6	3.7
Copper	1.0 ug/g dry	27.0	25.4	26.1	7.4
Lead	1.0 ug/g dry	20.5	13.6	13.8	8.0
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	1.0 ug/g dry	26.1	27.2	27.7	7.4
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	1.0 ug/g dry	37.3	38.1	37.8	13.1
Zinc	1.0 ug/g dry	59.3	61.2	62.9	40.3



Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

## Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	1.0	ug/g						
Boron	ND	1.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	1.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	1.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	1.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.5	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	1.0	ug/g						
Zinc	ND	1.0	ug/g						



Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

## Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	ND	1.0	ug/g dry	ND				30	
Barium	75.4	1.0	ug/g dry	75.1			0.5	30	
Beryllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	13.8	1.0	ug/g dry	13.1			5.0	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	20.6	1.0	ug/g dry	22.6			9.5	30	
Cobalt	7.00	1.0	ug/g dry	7.00			0.1	30	
Copper	33.6	1.0	ug/g dry	35.7			6.3	30	
Lead	48.5	1.0	ug/g dry	48.8			0.5	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	13.8	1.0	ug/g dry	14.4			4.2	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.5	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	29.9	1.0	ug/g dry	28.6			4.4	30	
Zinc	75.0	1.0	ug/g dry	76.2			1.6	30	
Physical Characteristics									
% Šolids	79.3	0.1	% by Wt.	80.2			1.1	25	



## Order #: 1653030

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

## Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	324		ug/L	17.1	123	70-130			
Arsenic	363		ug/L	ND	145	70-130			
Barium	1710		ug/L	1500	84.0	70-130			
Beryllium	285		ug/L	ND	114	70-130			
Boron	542		ug/L	262	112	70-130			
Cadmium	291		ug/L	ND	116	70-130			
Chromium	666		ug/L	453	85.2	70-130			
Cobalt	368		ug/L	140	91.3	70-130			
Copper	1000		ug/L	715	114	70-130			
Lead	1210		ug/L	976	95.3	70-130			
Molybdenum	251		ug/L	14.1	94.8	70-130			
Nickel	504		ug/L	288	86.3	70-130			
Selenium	295		ug/L	ND	118	70-130			
Silver	274		ug/L	4.23	108	70-130			
Thallium	233		ug/L	4.75	91.4	70-130			
Uranium	275		ug/L	ND	110	70-130			
Vanadium	818		ug/L	572	98.5	70-130			
Zinc	1720		ug/L	1520	77.8	70-130			



Report Date: 03-Jan-2017 Order Date: 23-Dec-2016 Project Description: TG161164

## **Qualifier Notes:**

### Login Qualifiers :

Container(s) - Bottle and COC sample ID don't match -Applies to samples: TP211-1, TP211-2, Composite TP215, TP215-3, TP216-2

#### **Sample Data Revisions**

None

### Work Order Revisions / Comments:

None

### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

GPARACEL	_   TR _ RE RE TD.	USTE SPO LIAB	ED . NSIV LE .	Ε.					Hea 300 Otta p: 1 e: p	id Offi -2319 iwa, C -800-1 arace	ce St. La Intario 749-11 @par	aurent Blvd. o K1G 4J8 947 racellabs.com		Chai (L NO	n of C ab Use C 110	ustody aly) 413	
Client Name:				Project Reference	511	111	L							Tum	<u> </u>		
Contact Name: Weller Mulhar				Quote # T::	2 070	5/10/							-		aroun(	m 2 De	
Address: J-3300 Alera Halle 14	The lat	N		PO #	12	·····								Jay		LI 3 Da	iy
La 446	pour cer c			Email Address:	, //	_//				$\hat{n}$		NB() (1967-1864) at 1977 and 1987		Day		K Regi	ular
Telephone: 4056876676					ely, p	the	nØ	Con	ch		C-	٦	Date	Requi	red:		
Criferia: 20. Reg. 153/04 (As-Amended) Table. 🗌 🕱	RSC Filing	O. Reg	. 558/00	D PWQO D	CCME DI SI	JB (Sto	rm) l	JSU	B (Sa	initary	) Mi	unicipality:			Other:		
Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surface W)	ater) SS (Storm/S	ianitary S	ewer) P (	(Paint) A (Air) O (	(hher)	Rec	nuire	l An	alvs	aç							
Paracel Order Number:		olume	ontainers	Sample	Taken	1-F4-BTEN		9.5	Dy IC P		S)	ALC: NO					
Samula ID/I contian Name	1atri	ir V	ofC	Data	л [.]	- is	0C>	SHV	ctuls	2	(HW)	Ba					
1 TO 7 P/-	- 3	4	#	Date Acc21116	GIS	A	ž	14	2	Î Q	2		-	arn			
2 76/-7			1	1	617			-			+			000	m		
3 76/-3					(16		$\left  \right $		$\left( \right)$	-					+		
4 10262-1					130		•	- 1	4		+						
5 707-7			+		626					+	+		_				
6 717-3			+		LUM			-{	$\overline{\mathbf{A}}$	+-			+				
7 07/103-1					GUL			{	A	+	+				+		
8 708-1					660			-	/	+	+						
9 203-3			11-		616					+	+		_				
10 10204-1			V		11/25		$\vdash$		X	+	+		+				
Comments: Generally SUN (700) Hold For File crash	3 16-5-			L	1.000		L		Y		_	I		Metho	d of Deliv	ery:	
telinquished By (Sigu):	Receive	d by Driv	ver/Depot		Rece	ived at L	POR	N		001	( )	NAT Veril	ied By: Rac	hel	Su	bicc	t
elinquished By (Print): Hund Spech-	Date/1'i	ne:			Date/	Time:	M	29	20	16		10/20 Date	Time:	Dec	20	MIG	)
are time: V/CC ZZ/16	Tempen	shure:	°(	C	Temp	scrature:	9.0	<u>\</u> "(	Ċ			pH V	erified (	By: N	VA		1:2

GPARACEL	RE	USTI SPO ELIAB	ED . NSIV ILE .	Ε.				Head 300- Otta p: 1- e: pa	d Offic 2319 ( wa, Or 800-74 tracel (	e St. Laurent Blvd Nario K1G 4J8 I9-1947 ⊉paracellabs.co		Chain of (Lab U NO. 1:	f Custody Ise Only) 10414	
CREDORATORILO L	1 12 .											Page 🖉	_ of _6	te tre giere
Chent Name: // hely				Project Reference:	1	FI	17	64				Turnaro	und Time:	
Contact Name: Kelly Palfer	ran			Quote # Tier	2						011	)ay	□3 Da	Y
Address: 5-3300 Merr. thalk 1	ly Then	10	V	PO #									V	
Telephone:	6 111	/		Email Address:	11.	n Ale	1	to c.		1		Day	Regu	ılar
Oteria the province in the province of the second s	16616			R.	en in	GIC	501	le con	cen	19	Date	Required:		
Cinema, uno. Keg. 153/04 (As Amended) Table /	RSC Filing D	1 O. Reg	, 558/00	) DPWQO DCC	ME DSU	B (Stor	m) 🗆 S	SUB (Sa	nitary)	Municipality:		🛛 Othe	r	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Wa	ter) SS (Storm )	Sanitary S	ewer) P	(Paint) $\Lambda$ (Air) $O$ (Oth	er)	Req	uired /	Analyse	\$					10101101
Paracel Order Number: 1653030 Sample ID/Location Name 1 1/204-2 2 1/205/	Matrix	Air Volume	# of Containers	Sample T Date Sec.21/16	aken Time 1610 1015-	PHCs FI-F4-BTEX	VOCs PAHs	Metals by ICP	CrVI	B (HWS)	- 21	50m1-		
3 US-C		-		/	20			X						
4 70 206 -1				1	600			Х						
5 26-6				110	:005			Х						
6	1 1	1	1 1	1 1 1	-	1 1	1	1 1						
7 000 207-2					230			"Y						,
8 12 207-3					235			"// ⁻						
9 - most 7208-1		X			202			$\langle \rangle^{-}$						Poor factor
10 40208 208-2		1	V	11/	263		-	Ŵ				WI		
Comments: Seyes		ind	ude	TP208-3 in	Compas	siters	108					Method of I	)elivery:	
Relinquished By (Sign):	Receive	ed by Driv	/er/Depol		Receiv S V	ved at La MH	h: CRN		ж	MAY V	erified By: Ra	chel s	Subrech	t
Relinquished By (Print): Much Sector	Date/Ti	me:	1997) 1997		Date/T	ime:	JEC'2	9,20	16	10,20 01	ate/l'ime:	Doc	29 16	
Date time: Mec LU/10	Temper	ature:	0	C	Tempe	reture:	1.2	_°d		pł	Verified Dd	By: N/A	11	:2

GPARACEL	TF   RE   RE	UST SPO LIAB	ED . NSIV ILE .	Ε.					He 30 Oti p: e: j	ad O 0-231 awa, 1-800 parac	ffice 9 St. L Ontari -749-1 el@pa	aurent Blvd. o K1G 4J8 947 racellabs.com		Chain o (Lab ( Nº 1	f Cüstody Jse Only) 10415	
				Y										Page	5. of 6	
Cherce Name: Amal		******		Project Reference:	16	1611	69	/						Turnaro	und Time	1
Conder Name: Kelly Pethsien				Quole # Tier	2								011	Day	🗆 3 E	Day
Telephone: 9056876016	Nort	11 0		PO # Fmail Address:	Kelly.	a.h	lse	r O	'ca	ect	[ wil	57	Date	Day Required:	<b>A</b> Rej	gular
Criteria: 10. Reg. 153/04 (As Amended) Table / DRSC	Filing C	10. Reg	. 558/00	DPWQ0 DC	CME I SU	B (Sto	nm)	DSU	JB (S	anite	ry) M	unicipality:		Othe	a.	
Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Water) (	SS (Storm/	Santary S	ewer) P	(Paint) A (Air) O ((	Nher)	Re	quire	ed Ai	nalys	ies						
Paracel Order Number:	rix	Volume	Containers	Sample	Taken	FLEFFBIEX			s hy ICP		VS)					
, duck Septe ID/Location Name	Mat	Air	# of	Date	Time	PHC	VOC	PAHs	Metal	al l	B (HV					
1" Jon ports TPLOS-5	5		1	hellk	1268				X				-g!	Tomit		1
2 208.4					1210				X					1		
3 ook 71209-1					1139				$\backslash$							
4 000 209 206-Z	_				1142				Y							
5 209-3					1145				$\Lambda$							
6 209-9					1150				X							
7 with (72/0-1					12/6				T				total months and			
applie) 2/0-2					12/8				VI							1
, 12/0-3					120,				M					V		1
10 210-4					124				X			Missin	d	E.		
Comments: SUCOS													5	Method of	Delivery:	
Relinquished By (Sign):	Receive	d by Driv	ver/Depot		Repair	ved at I	ab: PO	RN		D	DNN	M ^{Veriti}	ed By:		المناجع	
Relinquished By (Print): Mach Stellach	Date/17	me:			Date/1	fime:	050	2	1 9 0	1910	- 1	10 . 20 Date/	Time;	Der	19/16	1200
Date Time: 1/cc 22/16	Temper	alure:	0		Temps	crature	5.1	2	°C			pH V	critica (X	By: N//	+	11:2

GPARACEL	TR   RE   RE	USTI SPO LIAB	ED. NSIV LE.	Ε.				Hea 300- Otta p: 1- e: pa	d Offic 2319 wa, O 800-7 tracel	e St. Laurent Blvd. htario K1G 4J8 49-1947 Øparacellabs.com		Chain of (Lab Us NO 11	Custody e Only) .0416	
												Page 4	of 6	
Client Name: Amec				Project Reference:	16-16	710	9	***			****	Turnarou	nd Time:	
Contact Name: Kelly Milkson			1	Quote # Tier 2	etersori (Kinemiliana, Kinada						1 D	ay	🗆 3 D	ay
Address: 5-3700 Hernolpulle ON LEUY Telephone: 40568	761	Mk t	dil.	P() # Email Address: //e.	thy pa	He se	en le	D.C.m	uch	Dilla	Date	ay Required:	XReg	ular
Criteria: 90. Reg. 153/04 (As Amended) Table / DeRSC	Filing	(Jac	358,00	DPWQ0 DCCM	E 🗆 SUB (	Storm	DS	UB (Sa	nitary	Municipality:		💷 🛙 Other	19894	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm)	Sanitary S	ewer) P (	Paint) A (Air) () (Other)	F	Reaui	red A	nalvse	5	At			and the state	and and a second
Psracel Order: Number: $ \begin{array}{c} 1653030 \\ \hline Sample ID/Location Name \\ 1 772//-/ 2 2//-2 \\ \hline 3 6 7/2 2/2-2 \\ 5 2/2-3 \\ 6 2/2-4 \\ 7 772/3-/ \\ 8 2/3-2 \\ 9 7/2/4/ \end{array} $	Matrix	Air Volume	# of Containers	Sample Tak Date Dec U//b / 2 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7	en Time 293 250 726 726 726 725 720 720 77	PHCs F1-F4+B1EX	PAHs	X X X Metuls by ICP	CrVI	B (HWS)	- 24	50mi-		
10 2/4-2		1	V	20	14.			X				W		
Comments: SCCPS Relinquished By (Sign): Multiple Sector	Receive Date/Ti	ed by Driv me:	er/Depot		Received a	ai Lab: ZEP	RN	. 2011	ром	MA MA Date	fied By: Rac) /Time: T	Method of D	elivery:	
Date Time: Acc 22/16	Temper	ature:	ð(	1. San	Temperatu	inu:	.2	°C		pH1	/erified [X]	By: N/A	1	1:2

GPARACEL LABORATORIES LTD	TR   RE   RE	USTE SPO LIAB	ED . NSIV	Ε,	11			He 30 Ot p: e:	ad O 0-23 tawa, 1-80( parac	ffice 9 St. L Ontari -749-1 el@pa	aurent Blvd. o K1G 4J8 947 racellabs.com		Chain of (Lab Us VO 14	Custody e Only) 0417
Client Name: Away				Project Reference;	1	11	11	10	7			<u> </u>	Turnarou	nd Time
Contact Name: Velles Alfaster				Quole # Tier?_	VEI	01	70						aunarou	D3 Day
Address: 5-5300 Alemithalle the Oc cic & Telephone: US 657	46	Ner ;	D	PO # Emnil Address;	y ne.	Th.	7 -5c1	C	Va	ech	-i Con	Date I	iy Required:	Regular
Criferia: O. Reg. 153/04 (As Amended) Table _ GRSC F	iling C	I O. Reg	. 558/00	DPWQO DCCME D	SUB (St	orm)		JB (S	anitz	ry) M	unicipality:		🗆 Other,	AN COREAN
Matrix Type: S (Soil-Seil.) GW (Ground Water) SW (Surface Water) S.	s (Storm/S	Sanitary S	ewer)P(	(Paint) A (Air) O (Other)	Re	quir	ed A	nalv	ses					
Paracel ¹ Order Number: 1653030 Sample ID/Location Name 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 - 2 - 5 - 2 - 5 - 2 - 5 - - - - - - - - - - - - -	Matrix	Air Volume	# of Containers	Sample Taken Date Time Nec 21/16 140 143 143 143 143 143 143 143 143	PHCs FI-F4-BTEX	VOC.	PAHs	XXXXXX Metuls by ICP	g[1]	B (HWS)		- 71	Бот? -	
8 70218-1				235				X						
9 218-2				240	5			X						
10 1) Ly Att Comments: SCLUS		I			-			Д					Method of Dr	livery:
Relinquished By (Sren): Relinquished By (Print): Date Time: May Tello	Receive Date/Th Temper	nturc:	ver/Depot	: Ri ( D C Th	ceived at SVM de/Time: mperature	Lab: PP D	OR EC9	N 2, 21	00	) M (M 10 .	Verili 20 Date/ pH V	ed By: Rac	nel Si Dec 20 By N/A	ubject 9916

GPARACEL	TR   RE   RE	IUST SPO LIAB	ED . NSIV BLE .	Ε.				Head C 300-23 Otlawa D: 1-80 9: parai	Office 19 St. La , Ontaric 0-749-19 cel@par	iurent B K1G 4 947 aceliabs	lvd. J8 s.com		Chain (Lai	of Cus Use Onit	tody n 18	
													Page	6 of ]	6	
Chent Name: Amel				Project Reference:	76/61	169	1					1	Turnar	ound 7	l'ime:	And the states
Contact Name: Kelly Pathsen				Quole # Tie-2	2						88 Million (Million)		ay	τ	3 3 Day	y
Address: \$ 33 60 Mern Hully Telephone: 446	hay 1 87 0	1610 1610	V G	PO# Emuil Address:	ly:pa	lls:	n (	90	rech	Л. 	сл	Date I	ny Require	Д:	Regu	lar
Criteria: DO. Reg. 153/04 (As Amended) Table / DRSC	Filing D	10. Reg	y. 558/00	DPWQO DCGM	E 🗆 SUB (St	prm) [	SOB	(Sanit	ary)kMu	inicipali	ly:		0 0t	her:		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storat'	Sanitary S	Sewer) P	(Paint) A (Air) O (Other)	Re	quirec	l Ana	yses								naningi yaƙig
Paracel Order Number: 1653030	trix	Volume	f Containers	Sample Tak	eu s F1-F4+BTEX	S	ls ils by ICP		WS)						Million dans pro-	BA-HARMANANAN
Sample ID/Location Name	Ma	Air	0#	Date	Time E	NOC	P.A.H Meta	lig	CrVI B (H							
1 Dyp AB	5		11	Bull								12	Som	-		
2 ALPAC							X									1
3 NEDAL	1		2	11-	_	1996 - C							VI			,
4 /																
5																Philip Inc.
6																
7																
8																
9																*****
10																,
Comments: Szegg							<i>a</i> ,			••••••	d		Method o	(Delivery		
Relinquished By (Sign):	Receive	d by Dri	ver/Depo	I.	Received at	ab: EPGR	N	D	ONN	M	Verifie	d By: Rac	ihel	Suk	incot	F State
Date Time: Mr. 27/16	Date/11	me:	5	C	Date/Time:	020	29	2011	10.	20	Date/1	ine:	Dec	291	16	05
encer w c/ UV	Louiber			Sana Sana Sana Sana Sana Sana Sana Sana	remperature	1.4	Annua Co				Ibu ve	mea 🗙 i	Y: N	A		11

6	PARACEL	TF   RE	RUSTI ESPO ELIAB	ED . NSIV	Ε.				H 30 D p:	ead Ol 00-231 ttawa, : 1-800 : parac	fice 9 St. La Ontario -749-19 el@para	urent Blvd. K1G 4J8 47 acellabs.com		Chain (Lat	of Cu Use Or 1104	stody Ily) 413	
	LABORATORIES LI	D.												Page	_/ of	6	
Client Name:	Amely an	N.			Project Reference	TGIG	1164	2.						Turnai	round	Time:	
Contact Name	Helly Muthson				Quote #	Tier	12	-					_ 1 I	Day		🗆 3 Da	y
Address:	5-3300 Mersthalle 14 The	hald	oN		PO #									Joy		M Dom	Ja
Telephone:	61111871111				Email Address:	elly. a	the	100	Emel	R.	con		Date	Dequire	d.	Arcgi	IIa.
riteria: H	O Reg 153/04 (As Amended) Table DRS	C Filing	TO Rec	558/00		COME DISL	IR (Stor	m) ["	SUR	Sanita	rv) Mi	nicipality	Date		ther:		_
A CONTRACTOR		a co co	in or neg			and a st	P			Junto	.,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	opanty			,		_
latrix Type: !	S (Soil/Sed.) GW (Ground Water) SW (Surface Water	r) SS (Storm	/Sanitary S	Sewer) P	(Paint) A (Air) O (	Other)	Requ	uired	Analy	vses							_
'aracel Or	der Number:		me	tainers	Sample	e Taken	:4+BTEX		ICP				Quer.	OTA	WW4	6	
	1653030	rix	Volu	Con			S F1-F	s	s Is by		(SM				CIPC	1/41	
1	Sample ID/Location Name	Mat	Air	# of	Date	Time	PHC	VOC	Meta	Hg	CrVI B (H						
1	SP 201-1	5		/	Acellab	915							725	Oml-			
2	201-2	Î		1		617											
3	201-3					620				8							
4	TP262-1					630	_										
5	202-2					535											
6	202-3.					440											
7	TP203-1					943											
8	203-2 1					450											
(9)	203-2 1					915											_
• 10	10204-1	U	/	V	U U	1025							1	1			
Comments: Relinquished	Bressen Ly SUM 17-003 Hold For Fihr craly Mul Scall	Te-S- Receiv	text ved by Dr BH (	WIS Wer/Depo Me	ed cc son zm nierc	BC Fr 917-31 1 Reee	E PR	e 1646 110 110 110	RN	had	DOU	51. <u>167431</u> MAI ^{Verit}	ied By:	Method	or Delive op ( Sub	2Kb	
telinquished	By (Print): Hul Sech-	Date/	l'ime: 💈	12 De	e 16 16	45 Date	Time: 1	)E(	29,	2016		U. Al Date	Time:	Dec	29	116	
Date/Time:	1/4 22/11	Temp	eralure:		°C	Temj	perature:	21%	°C	1 .	1	pH \	/erified [	] By: ()	1		1.
Chain of Cus	tody (Env) - Rev 0.7 Feb. 2016	-01	Att	old	sampl	es un	<u>II k</u>	20	he Hipp	hd RD	DEC	. 28,2011	<del>t.</del> 6 C	- Au 5°C	JAn DB	-pu <s< td=""><td></td></s<>	

GPARACEL	TR RE RE	USTE SPOI LIAB	ED. NSIV LE.	Ε.				H 3 C P e	lead C 00-23 Ottawa : 1-80 : para	office 19 St. Onta 0-749- cel@p	Laurent Blvd. rio K1G 4J8 1947 aracellabs.com		Chair (La N⁰	n of C ab Use ( 110	ustody ^(niy) 414	
	•						<del>,,,,</del>						Page	e Z o	f <u>6</u>	
Client Name: Amely				Project Reference	1	Tell	11	69	/				Turna	roun	I Time:	
Contact Name: Kelly Valteson				Quote #	Tie	x	2						)ay		🗆 3 D	ay
Address: 5-3306 Merr, Hulk Hug Telephone: GUS 687	Гыл. 616	10	V	PO # Email Address:	kelly, pi	Ale	r son	au	cnee	£.	14	Date	Day Requir	ed:	<b>X</b> Reg	gular
Criteria: 00. Reg. 153/04 (As Amended) Table _ GKSC I	iling C	I O. Reg	. 558/00	D PWQO D	CCME I SUI	3 (Stor	m) 🗆	SUB	(Sanit	ary) l	Municipality:		0	Other: _		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	S (Storm/	Sanitary S	ewer) P	(Paint) A (Air) O (	Other)	Req	uired	Anal	yses							
Paracel Order Number: $ \begin{array}{r} 1653030 \\ \hline 1070972 \\ \hline 20772 \\ \hline 4 70205 \\ \hline 4 70206 \\ \hline 5 206 \\ \hline 6 70207 \\ \hline 7 207 \\ \hline 8 207 \\ \hline 8 207 \\ \hline \end{array} $	Matrix	Air Volume	# of Containers	Sample Date Date	Taken Time 1010 1015. 1000 1005 1005 1226 1230 1235	PHCs F1-F4+BTEX	VOCs	Metals by ICP	Hg	CrVI		-	250	ml.		
- 9 TP208-1					1902	Π		-							1	
10 708-2	10		10	V	1203								V			
Comments: Slegg Relinquished By (Sign): Mul Say Relinquished By (Print): Mul Say	Receiv T Date/T	ed by Dri 311 ( ime: 2	ver/Depo	«Niaga enier	a Receiv	ine:	ab Por	(N 29.	3011	Do	WMA Veri 10, 20 Date	fied By: Rack	Method	d of Dell NOY Sub	very: > of ect	6
Date/Time: Acc 22/16	Tempe	rature:		°C °C	Tempo	erature:	5.8	°C	7.4.4		pH	Verified [	By: A	Â	1.0	1:22

6	PARACEL	TR   RE   RE	USTE SPOI LIAB	ED . NSIV LE .	Ε.					He 30 Ot p: e:	ad O 0-231 tawa, 1-800 parac	fice 9 St. l Ontar -749- el@pa	aurent o K1G 947 tracellat	3lvd. 4J8 os.con	n	1	Chai (I VO	n of .ab Us 11	Cust e Only .04	ody ) 15	
	LADORATORIES ETD																Pa	ge <u>3</u>	. of _	0	
Client Name:	And 1				Project Reference	161	611	69								,	ſurn	arou	nd T	ime:	
Contact Name	Killy filkson				Quote #	The	NO	2								🗆 1 Da	ıy		C	13 Da	y
Address: Telephone:	5-9700 Heinthelle 16-1 1.20 446 905687 6616	Moul	16	<i>v</i>	PO # Email Address:	Kelly. p	x./A	son	O	Con	recs	Fun	(n			□ 2 Da Date I	iy (equi	red:_	Ż	Regi	ılar
Criteria:	O. Reg. 153/04 (As Amended) Table / DRSC	Filing 🗆	O. Reg	. 558/00	DPWQ0 D	CCME II SU	B (Sto	rm)		JB (	Sanita	ry) N	lunicipa	lity:			_ 0	Other	:		
Matrix Type:	S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm/S	anitary S	ewer) P	Paint) A (Air) O (	Other)	Rec	quire	ed A	naly	ses										
Paracel O	rder Number: 1653030	ix	Volume	Containers	Sample	e Taken	: F1-F4+BTEX	s		Is by ICP		WS)									
	Sample ID/Location Name	Mati	Air '	# of	Date	Time	PHCs	VOC	P.AH:	Meta	Hg	CrVI B (H)									
-1	TP208-3	5		1	hellk	1208										- 21	500	nl	Ĵ		
- 2	208.4					1210											ſ				
- 3	TP209-1					1139					8										
4	209-2					1142															c(!)
(5)	209-3 1					1145							PRI	UEC	1 R	ech :	= 16	11	6116	37	Soc.
6	209-9					1150															Sec.
- (7)	1210-1					1216							PR	OJEC	ĩ	Road	2	16 -	1611	54	00
- 8	210-2 MM				12	1218															)y.
-(9)	2/0-3 #					120,							PR	OJE	εí	Roa	1v	TE-	-1611	54	R
(0)	210-4.1					1224								-	¥	- M	15.	5/1	NÇ	710	Ð.
Comments	sugg	e an the data of the large															Method	od of E	Pelivery	eff	2
Relinquishec	By (Sign): Men Serl	Receiv	ed by Dri	ver/Depo	eniek	Recei	ved at I	Lab:	POR	N	[	NOK	M	Ve	rified	By: Rad	nel	<	des	icd	
Relinquished	By (Print): Much Stelach	Date/T	ime: 2	2 De	16 16	45 Date/	Time:	1/21	2	100	1914		11. 9	0 Da	ite/Ti	me:	De	12	91	16	107
Date/Time:	ACC410	1 empe	rature:		C	Temp	crature	·	10	. L				lb.	i ven	inica [ ]	by. P	54		11	. 22
GPARACEL	TR   RE   RE	TRUSTED . RESPONSIVE . RELIABLE .						Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com					Chain of Custody (Lab Use Only) Nº 110416								
----------------------------------------------------------------	--------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------	--------------------	-----------	--------------	--------	-------------------------------------------------------------------------------------------------------------------------	--------	-------------	--------------	--------	-------------------------------------------------	--------	----------	----------	-----------------				
LABORATORIES LI	υ.							,						Page	· Lot	6					
Client Name: Amel	22			Project Reference	161	[[]]	1,9	f					1	Turna	round	Time	j				
Contact Name: Kelly Makson			1	Quote #	Tier	2							] 🗆 1 Da	ay		🗆 3 D	ay				
Address: 5-3200 Hernthald ON LEUG Telephone: 40568	7 661	The second provide the second of the second								Date I	ay Requir	ed:	A Reg	;ular							
Criteria: 🗹 O. Reg. 153/04 (As Amended) Table 🖉 🖾 RS	C Filing	1 Reg	258400	DPWQ0 D	CCME 🗆 SU	B (Sto	rm) C	JSUB	(Sanit	ary) M	lunicipal	ity:		00	ther:						
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water	) SS (Storm/2	Sanitary S	ewer) P (	Paint) A (Air) O (	Other)	Req	luired	l Anal	yses												
Paracel Order Number:  653030	rix	Volume	Containers	Sample	Taken	s F1-F4+BTEX	N.	s ils by ICP:		WS)			1	ge	Thol		30.00				
Sample ID/Location Name	Mat	Air	# of	Date	Time	PHC	VOC	PAH Meta	Hg	CrVI R H		p-		Th		BB.	0				
1 1/2/1-/ 1	5		/	Teello	1245						500	5	ABEL	EA	TPI	11-1	(?)				
² 2/1-2 1				1	1250						1/1/	14	BELE	A	PP	11-0	$\mathbb{Q}(2)$				
- 3 7/2/2-1					1120				·		_					-					
- 4 2/2-2					1125																
- 5 2/2-3					1130						_										
- 6 2/2-4					1133.																
- 7 1/2/3-1					213						_				L						
- 8 2/3-2.		2			220						_					<u> </u>					
- 9 (10/14-1		ļ		1	157										ļ						
- 10 2/9-2		1	V		204									X	1						
Comments: SCC PS														Method	of Deliv	bo	ί				
Relinquished By (Sign): Hub Sector	Receiv	ed hy Dri	iver/Depo NRM	"Nlaga	ra Rece	Ved at I	党	RAV		201	(MAI	Verifi	ed By: Rac	hel	Sul	over	ł				
Relinquished By (Print): Mark, Sechel	Date/T	ime: J	2De	4/6 11	045 Date/	TIPET	129	201	0		10.20	Date/	l'ime:	De	g 2	9/10	0				
Date/Time: 1/4 12/16	Tempe	rature:		'C	Temp	erature:	76	°C				pH V	erified [ ]	Ву:Д	A		1.02				

GPARACEL	TRU RES REI	JSTE SPOI	ED. NSIV LE.	Ε.		Office 19 St. La 1, Ontario 10-749-19 1cel@pari	N	Chain of Custody (Lab Use Only) Nº 110417			
LABURATURIES LID.									2	Page 5	of 6
Client Name:				Project Reference:	1.1611	1,4			1	Turnarour	d Time:
Contact Name: Kelly heferser			,	Quote #	erz				🗆 1 Da	У	🗆 3 Day
Address: 5-5300 Membulk the ON CIU &		Nen	Ø	PO # Email Address:	athre	n OC	uch	- con	Date R	y .equired:	Regular
Criteria: O. Reg. 153/04 (As Amended) Table	iling []	O. Reg	. 558/00	DPWQO DCCME DSU	B (Storm)	SUB (Sani	tary) Mu	inicipality:		_ Other:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/S	anitary S	ewer) P (	Paint) A (Air) O (Other)	Required	Analyses					
Paracel Order Number: 653030 Sample ID/Location Name 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Matrix	Air Volume	# of Containers	Sample Taken Date Time $Dec U//b^{-} /40$ 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/43 1/30 1/4 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40	PHCs F1-F4+BTEX VOCs PAHS	Metals by ICP	CrVI Et ON B (HWS)	-a5 pome 5 ne (L	DMI - ABELE ABELE	ESTP 11 D TP 1 D TP 1	46 - 2 (?)
6 102/7-2 7 2/7-2 (8) 102/8-/ 9 2/8-2 10 Dip AA Comments:		/		230 230 235 240			V	PR0JEC	i Read	Z TG H	11 b3. USE
Relinquished By (Sign): Relinquished By (Print): Date/Time: Mark 22/16	Receive B Date/Th Temper	d by Dri HV me: 2' ature:	ver/Depo Me 2 De	nt:NIAGAIA Receiption niek St e-16 1645 Date C Temj	ived at Lab: VVIE PO Time: DE C 9 perature: 5-9	2N 9,2016	DON-	MAj Date pH 1	fied By: Rac /Time: /erified [ ]	dro hel s he 29 By: NA	p DOX

GPARACEL	TRU	STED . PONSIV IABLE .	Ε.				Hea 300- Otta p: 1- e: pa	d Offic 2319 ( wa, Or 800-74 aracel (	e St. Laurent B Itario K1G 4 I9-1947 ⊉paracellabs	lvd. J8 s.com	1	Chain (Lab Nº 1	of Custo Use Only) .1041	dy .8
LABURATURIES L	ID.						,				2	Page	6 of 6	2
Client Name: Amee	9		Project Reference	1616	116	4		2			,	Furnar	ound Ti	me:
Contact Name: Kelly Puthsen			Quote #	Tie	12						🗆 l Da	ıy		3 Day
Address: 5-3360 Hern fulle Telephone: 400	14 May 14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,16 5.000	PO # Email Address:	kelly p	cell.	501	Ol	(me	ch.c	ел	Date F	iy Required	d:	Regular
Criteria: LMO. Keg. 153/04 (As Amended) Table 1	₩SC Filing ⊔ U	. Keg. 558/00	UPWQ0 LI	CME LISUB	s (Storm)	П2	0B (28	nitary	Municipali	ty:		LI Uti	лег:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	ater) SS (Storm/Sani	itary Sewer) P (	Paint) A (Air) O (	)ther)	Requi	red A	nalyse	es						
Paracel Order Number: 1653030 Sample ID/Location Name 1 010 AB 2 010 AB 2 010 AB 3 010 AB 4 5 6 7 8	Matrix	Air Volume	Sample	Taken	PHCs F1-F4+BTEX	PAHs	Metals by ICP	CrVI ·	B (HWS)			257	17ml -	
9														
10						+		-						
Comments: Szegs					<u> </u>				III			Method o	f Delivery:	Sex
Relinquished By (Sign): Marke Serffo Relinquished By (Print):	Received I Bl	hy Driver/Depo -lome : 22 De	"Nagar enieh 216 16	A Received	ed at Lab; VNV ime: P	, PO(	N 1,201	D. 6	01/ MA	Verifi Date/	ed By: Roc Fime:	hel	Subj	ect 116
Date/Time: Mell/16	Temperatu	ire:	°C	Tempe	rature:	1:2	°C			pH V	erified [ ]	By: MA	4	1:2



RELIABLE.

# Certificate of Analysis

### Amec Foster Wheeler (Thorold)

3300 Merrittville Hwy, Unit 5 Thorold, ON L2V 4Y6 Attn: Kelly Patterson

Client PO: Project: TG161164 110384/385/387/386 Custody:

Report Date: 3-Jan-2017 Order Date: 23-Dec-2016

Order #: 1653032

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1653032-01	TP219-1
1653032-02	TP219-2
1653032-03	TP220-1
1653032-04	TP220-2
1653032-05	TP221-1
1653032-06	TP221-2
1653032-07	TP222-1
1653032-08	TP222-2
1653032-09	TP223-1
1653032-10	TP223-2
1653032-11	TP224-1
1653032-12	TP224-2
1653032-13	TP225-1
1653032-14	TP225-2
1653032-15	TP226-1
1653032-16	TP226-2
1653032-17	TP229-1
1653032-18	TP229-2
1653032-19	Dup A3
1653032-20	TP227-1
1653032-21	TP227-2
1653032-22	TP228-1
1653032-23	TP228-2

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



Order #: 1653032

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

## **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Conductivity	MOE E3138 - probe @25 °C, water ext	3-Jan-17	3-Jan-17
REG 153: Metals by ICP/OES, soil	based on MOE E3470, ICP-OES	30-Dec-16	30-Dec-16
Solids, %	Gravimetric, calculation	30-Dec-16	30-Dec-16



Order #: 1653032

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

	_				
	Client ID:	TP219-1	TP219-2	TP220-1	TP220-2
	Sample Date:	22-Dec-16	22-Dec-16	22-Dec-16	22-Dec-16
	Sample ID:	1653032-01	1653032-02	1653032-03	1653032-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics			-		
% Solids	0.1 % by Wt.	80.5	86.4	83.7	83.9
Metals	· · ·		-	-	
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Barium	1.0 ug/g dry	114	138	136	119
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Boron	1.0 ug/g dry	15.7	15.6	19.7	17.0
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	22.8	23.7	25.2	24.0
Cobalt	1.0 ug/g dry	11.8	12.7	13.3	12.5
Copper	1.0 ug/g dry	26.0	26.7	24.2	24.6
Lead	1.0 ug/g dry	11.6	11.5	14.1	11.3
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Nickel	1.0 ug/g dry	26.6	26.3	28.9	25.9
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	1.0 ug/g dry	35.6	36.9	39.2	36.7
Zinc	1.0 ug/g dry	52.5	53.0	55.3	53.4



Order #: 1653032

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

	_						
	Client ID:	TP221-1	TP221-2	TP222-1	TP222-2		
	Sample Date:	22-Dec-16	22-Dec-16	22-Dec-16	22-Dec-16		
	Sample ID:	1653032-05	1653032-06	1653032-07	1653032-08		
	MDL/Units	Soil	Soil	Soil	Soil		
Physical Characteristics			•				
% Solids	0.1 % by Wt.	87.5	82.4	83.8	84.6		
Metals							
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0		
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0		
Barium	1.0 ug/g dry	109	121	128	129		
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0		
Boron	1.0 ug/g dry	15.7	16.6	16.3	14.5		
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5		
Chromium	1.0 ug/g dry	50.9	25.0	26.1	24.0		
Cobalt	1.0 ug/g dry	12.9	13.4	12.9	14.6		
Copper	1.0 ug/g dry	29.4	24.9	26.0	27.9		
Lead	1.0 ug/g dry	14.3	11.4	13.4	12.6		
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0		
Nickel	1.0 ug/g dry	36.9	29.3	29.1	29.3		
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0		
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5		
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0		
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0		
Vanadium	1.0 ug/g dry	39.0	36.9	38.5	36.4		
Zinc	1.0 ug/g dry	68.8	56.7	61.9	58.8		

# PARACEL

#### Certificate of Analysis Client: Amec Foster Wheeler (Thorold) Client PO:

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

Order #: 1653032

	Client ID:	TP223-1	TP223-2	TP224-1	TP224-2
	Sample Date:	22-Dec-16	22-Dec-16	22-Dec-16	22-Dec-16
	Sample ID:	1653032-09	1653032-10	1653032-11	1653032-12
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	83.3	84.7	82.2	85.2
General Inorganics					
Conductivity	5 uS/cm	-	-	1160	1170
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	-	-
Arsenic	1.0 ug/g dry	<1.0	<1.0	-	-
Barium	1.0 ug/g dry	140	125	-	-
Beryllium	1.0 ug/g dry	<1.0	<1.0	-	-
Boron	1.0 ug/g dry	18.2	14.9	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	1.0 ug/g dry	28.5	24.6	-	-
Cobalt	1.0 ug/g dry	15.0	15.1	-	-
Copper	1.0 ug/g dry	28.2	28.0	-	-
Lead	1.0 ug/g dry	14.7	13.0	-	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	-	-
Nickel	1.0 ug/g dry	32.6	30.4	-	-
Selenium	1.0 ug/g dry	<1.0	<1.0	-	-
Silver	0.5 ug/g dry	<0.5	<0.5	-	-
Thallium	1.0 ug/g dry	<1.0	<1.0	-	-
Uranium	1.0 ug/g dry	<1.0	<1.0	-	-
Vanadium	1.0 ug/g dry	41.8	37.0	-	-
Zinc	1.0 ug/g dry	65.4	59.7	-	-
	Client ID:	TP225-1	TP225-2	TP226-1	TP226-2
	Sample Date:	1653032-13	1653032-14	1653032-15	1653032-16
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	75.4	81.8	82.3	83.9
General Inorganics					
Conductivity	5 uS/cm	1340	1600	738	2820
	Client ID:	TP229-1	TP229-2	Dup A3	TP227-1
	Sample Date:	1653032-17	1653032-18	1653032-19	1653032-20
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics			· · · · · · · · · · · · · · · · · · ·		
% Solids	0.1 % by Wt.	80.4	84.4	80.3	82.9
General Inorganics					
Conductivity	5 uS/cm	772	3040	1260	1930



Order #: 1653032

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

	Client ID:	TP227-2	TP228-1	TP228-2	-
	Sample Date:	22-Dec-16	22-Dec-16	22-Dec-16	-
	Sample ID:	1653032-21	1653032-22	1653032-23	-
	MDL/Units	Soil	Soil	Soil	-
Physical Characteristics					
% Solids	0.1 % by Wt.	83.8	80.4	81.4	-
General Inorganics					
Conductivity	5 uS/cm	3040	1270	2230	-



Order #: 1653032

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

# Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Metals									
Antimony	ND	1.0	ug/a						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	1.0	ug/g						
Boron	ND	1.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	1.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	1.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	1.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.5	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	1.0	ug/g						
Zinc	ND	1.0	ug/g						



Order #: 1653032

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

# Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Conductivity	1170	5	uS/cm	1170			0.3	6.2	
Metals									
Antimony	ND	1.0	ug/g dry	ND				30	
Arsenic	ND	1.0	ug/g dry	ND				30	
Barium	109	1.0	ug/g dry	114			3.8	30	
Beryllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	15.4	1.0	ug/g dry	15.7			2.1	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	22.6	1.0	ug/g dry	22.8			0.8	30	
Cobalt	12.0	1.0	ug/g dry	11.8			1.6	30	
Copper	26.2	1.0	ug/g dry	26.0			0.8	30	
Lead	11.5	1.0	ug/g dry	11.6			1.6	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	25.5	1.0	ug/g dry	26.6			4.4	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.5	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND				30	
Vanadium	35.2	1.0	ug/g dry	35.6			1.2	30	
Zinc	53.5	1.0	ug/g dry	52.5			2.0	30	
Physical Characteristics									
% Solids	79.3	0.1	% by Wt.	80.2			1.1	25	



#### Order #: 1653032

Report Date: 03-Jan-2017 Order Date: 23-Dec-2016

Project Description: TG161164

# Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	289		ug/L	ND	116	70-130			
Arsenic	244		ug/L		97.7	70-130			
Barium	2450		ug/L	2270	70.5	70-130			
Beryllium	249		ug/L	3.54	98.0	70-130			
Boron	556		ug/L	314	96.7	70-130			
Cadmium	249		ug/L	2.30	98.6	70-130			
Chromium	663		ug/L	457	82.6	70-130			
Cobalt	449		ug/L	236	85.3	70-130			
Copper	766		ug/L	520	98.3	70-130			
Lead	434		ug/L	233	80.6	70-130			
Molybdenum	233		ug/L	12.0	88.6	70-130			
Nickel	729		ug/L	533	78.4	70-130			
Selenium	223		ug/L	15.4	82.9	70-130			
Silver	247		ug/L	4.92	96.8	70-130			
Thallium	209		ug/L	14.0	78.0	70-130			
Uranium	295		ug/L	ND	118	70-130			
Vanadium	937		ug/L	712	89.9	70-130			
Zinc	1250		ug/L	1050	81.9	70-130			



#### **Qualifier Notes:**

None

Sample Data Revisions None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

<b>GPARACE</b>		USTI SPO LIAB	ED . NSIV	E,					He 30 01 p: e:	ad Of 0-231 tawa, 1-800 parace	fice 9 St. Lau Ontario 749-194 el @para	irent Blvd. K1G 4J8 17 cellabs.com		Chain of (Lab U Nº 1	Custody se Only)	
	LID.		•											Page _	of <b>\$</b> 4	1
Chent Name: Amer Foster Wheeler				Project Reference	TATI	116	4							Turnarou	Ind Time:	;
Contact Nume: Kelly Patterson				Quote #	Tier 2	2							 1I	Day	□ 3 D	ay
Maress 3300 Merrittulle Itmy,	Thoroid, on	42	W446	P() #												
Telephone: 9/16-197-1616				Email Address:	Kelly.	patt	crsi	onc	0 9	imei	fw.c	om	<b>0</b> 2I	Day	<b>i</b> ∕≪Reg	ular
Criteria: NO Reg 153/04 (As Amanded) Table		0.'8-	600										Date	Required:		
Torrest Cast and the second second second	E D KOC LIMUX D	O. Keg	. ววช/ปไ	UYWQU DI	CCME DISU	B (Sto	orm)		UB (S	ianita	y) Mun	icipality:		D Othe	1 <u></u>	
matrix Type: (Soil/Sed) GW (Ground Water) SW (Surf	ace Water) SS (Storm 3	anitary S	ewer) P	(Paint) A (Air) O (	(Ither)	Re	quir	ed A	naly	ses						
Paracel Order Number:			Crs		v	FEX.										
1653032	i i i i i i i i i i i i i i i i i i i	/olume	Contain	Sample	: Taken	E+t4-14			by ICP		(3)					
Sample ID/Location Name	Matr	Air 7	Jo f	Date	Time	HCs	/OCs	AHS	Jerals	lg .	NHU I					
1 TP219-1	5		1	Dec. 22/16	1,110		-	in,	Ź		/ ==		1 21	Dm/+		
2 TP219-2	5		1	1		1			X	+	+					
3 TP220-1	5		11				-		X	+	+					
4 TP220-2	5		$\frac{1}{1}$		4		-		X	+	+					
5 TP221-1	5		1					-	X		+					
6 TP221-2	5					-			$\widehat{\mathbf{X}}$		+					
1 TP222-1	5								X		+					
8 TP222-2	7		1												*******	
9 TP223-1	S		1						X				++			
10 TP223-2	S			Y		+	-	-	X		┿╌╟		V			
Comments: Governed by te Holdremaining some	rms and les for hutur	analy	di hi sis	Eurs of	agreeme	int		5A	A	7	-00	3	<u> </u>	Method of E	elivery:	
Relinquished By (Sign):	Receive	d hy Driv	er/Depot		Receiv	ved at 1	101	SN		)0K	MA	Verif	ed By:	d s	ubject	
Deventures Or Contract	Date/Tit	11e:			Date/1	Time:	)EC	29	920	16	10.2	Date/	Time:	Dec 2	9/16	
URC. 1 dolo	Lempen	uure:			Tempe	Tature	2.0		°C			pH V	erified [X	By: N/A	11	:00

GPARACEL	TF   Re   RE	IUSTI SPO LIAB	ED. NSIV	Έ,					Head 300- Ottav p: 1- e: pa	d Offic 2319 wa, O 800-7 tracel	ce St. La ntario 49-19 @para	urent Blvd. K1G 4J8 47 acellabs.com		Chain (Li NΩ	n of C ab Use ( 110	ustody Daty) 1385	
	* 57													Pag	c 2 0	t 🖉	<u>19</u> 7951
Client Name: Amec Foster Wheeler				Project Reference	" TGI	6116	4	- Ule dage				* * **		Turna	round	l Time:	
Contact Name: Kelly Patterson				Quote #	Tier	2							al D	ay		🗆 3 D:	ìV
Address: 3300 Merrithalle Huy, Thom	old,	ON		PO #													5
Telephone:	42	144	16	Email Address:	Kelly.po	z H el	501-	Ć a	me	fw.	(9.1	ι	Date	ay Remir	ed.	Reg	ular
Criteria: 0. Reg. 153/04 (As Amended) Table ] 🗆 RSC	Filing ^y C	] (), Reg	. 558/0	D DPWQO D	CCME I SL	B (Sto	rm)		B (Sa	nitary	) Mu	nicipality:	lean		)ther:		
Matrix Type: F (Soil Set.) GW (Ground Water) SW (Surface Water) S	S (Storm?	Sanitary S	ewer) P	(Paint) A (Air) O	()ther)	Re	mire	d An	alvee	6			and a second		ert:		
Psracel Order Number:	1	T	UN	T	*	1%	[		T	-	1 1			1	1	·····	
1653032	NL	Volume	Container	Sample	e Taken	9131-64-14		- 10 B	2 D/ I/ L		VS)	J					
Sample ID/Location Name	Mat	Air '	# of	Date	Time	316.	VOC	AHs.	le:	IVI	S (HV	Ш					
1 TP 224-1	5		1	Der 22/16			-		- 144		1	X	10	tom	1.		******
2 TP224-2	5		1	Varver	· · · · · · · · · · · · · · · · · · ·							$\overline{\mathbf{x}}$	0	11	10		
3 TP224-3	3	1			**************************************			-		-			-				
4 TP224-4	5								+				-		1		4.01.70mm.
5 TP 225-1	5	-								-	$\left  - \right $	V					
6 TP225-2	5		1	1 1		-		-		-		X					
1 TP 225-3	5		1				-	-	+	-			-				148 HI I HI H
8 TP 225-4	4		1			-			+	-			-				
9 TP 226-1	5		1											1/			
10 TP226-2	5		1	1				-						¥			•
Comments: See notes on	piego	s. I.	1 (	. <u>.</u>	L							A.I		Method	of Deliv	rery:	
Relinquished By (Sign):	Receive	ed by Driv	/en/Depo	ł:	Recei	ved at 1	ab: EP(	RN	4	DQ	KN	Verili V41	ed By:	chel	50	bird	•
Inconquisince isy (Print): Keuin Itaines	Date/17	me:		20	Date/	fime: (	150	29,	201	6	10	NO Dates	l'ime:	D	cc.	2411	6
June 1 mile.	1 cmper	ature:	2012/2014	Calleration	Temp	crature:	21	2 0			1	pH V	erified 🕅	By: N/	A		1.0

6	PARACEL	TR   RE   RE	USTI SPO LIAB	ED . NSIV LE .	E.					He 30 Ot p: e:	ead O 0-231 tawa, 1-800 parac	ffice 9 St. L Ontar 9-749-1 rel @pa	aurent E io K1G 1947 iracellab	3lvd. 4J8 s.com			n of Ci ib Use O 1110	istody nly) 387	
Client Nar	nes Alex El El La				Project Rationau				o. Itomatara							Page	· 23	2	1
Contact N	mec toster Wheeler					TGIG	1160								-	Furna	round	Time:	
Address;	Pelly Patterson	11 .	<u>.</u> 1			ier 2		-				-				iy		o 3 Da	ıy
	7700 Merritonic ingi ine	12 L'2	N 44	1	Email Addressor	1. (1	1.		6			four			-n2D	av		5 Per	ular
Telephone	905-687-6616		- 1 ]	0	Ginan Address,	Kelly. po	atter	40n.	C	an	RC	*.w	Cc .~ C		Date	•2 Venuir	ed.	parce	4101
Criferia:	TO. Reg. 153/04-(As Amended) Table _ RSC	Filing C	I O. Reg	. 558/00		ME DISU	B (Sto	(m)	DSI	JB (S	Sanite	rv) M	unicipal	ity:	120 are 1	DC	)ther		
Matrix Ty	ner S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm?)	Sanitaro C	ever) P	(Paint) A (Air) () (D)	heri	Pe	, mie	A be	nal		2.3			****	man the be			
Paracel	Order Number:		T		1		Net Net	10111			363	-	T	1	1	[	T	1	
LAIALI	1653032	j.	volume	Containers	Sample 7	aken	GLEP-FH-LI			s by ICP		VS)							
	Sample ID/Location Name	Mati	Air	# of	Date	Time	PEICs	v'OC's	SHV	Metal	20	3 (HV	W	E					
l	TP229-1	5		1	Dec 22/16			-		~	-		X		-	-95	Inni		
2	+p229-2	5		1							-		X				1	1	
3	TP 229-3	5		1			1						- <u>``</u>						
4	TP 229-21	5		11									-						
5	Duo A1	5		1				-						1					
6	Dun A2	5		i									and i	1	-				
7	Duo A3	5		1								-	JI.	X					
8	Dun AY	.5	1	1	V								- 200	~~~			1		
9	man front Santo and a second	1																	
10												1			-		¥		<u>p</u>
Commer	nts: See notes on	paye	2.					1	<u> </u>	I		_	_11			Method	of Deliv	i i ery:	
Relinquish	red By (Sign):	Receive	ed by Driv	ver/Depo	Ľ	Recei	ved at I	ab: {E(	POR	N		Доц	M	Veritie	d By: Rach	nel	ક્ય	bier	<i>t</i>
Relinquish	ed By (Print): Kevin Harnes	Date/Ti	nie.		e1	Date/	l'ime:	D	100	29	2011		10,90	Date/T	ime:	D	5	29/	6
Date 1 line		Temper	ature:	ieds of	C	Temp	erature:		17	C				pH Ve	rified 🕅 1	3y: N	VA	1	:00

GPARACEL	TR   RE   RE	USTI SPO LIAB	ED. NSIV LE.	E.					H( 30 01 p: e:	ad Of 0-231 tawa, 1-800 paraci	fice 9 St. L Ontari 749-1 91@pa	aurent Blvd. o K1G 4J8 947 racellabs.con		Chair (La NO	1 of CL 16 Use O 110	istody ily) 386	
LADURATURIES LI	Ŋ.									<b>K</b> onstanti			101.970900	Page	. <u>4</u> of	4	100000
Client Name: Aprec Foster Wheeler				Project Reference	TG16	1160	7							Turna	round	Time:	
Contact Name: Kelly Patterson				Quote #	Tier 2		herrison		Brearth datas					)ay		D 3 Da	V
Address: 3300 Merri Hurtle Hury;	Thorold,	ON	Anthonyou	PO #	4												-
Telephone: 905-687-6616	1-21	144	6	Emuil Address:	Kelly.pu	Hers	ON (	<u>a</u> 1	en.	ecfi	J Ce	244	Date	)ay Require	, ed:	& Regu	lar
Criteria: GO. Reg. 159/04 (As Amended) Table	SC Piling C	IO. Reg	. 558/00	) DPWQ0 D(	CCME DISL	IB (Sti	rm)	IN St	<b>(</b> )	Sanitar	v) M	unicipality:			)ther:		
Matrix Type: # (Soil/Sed) GW (Ground Water) SW (Surface Water	er) SS (Storm?	Sanitary S	ewer) P	(Paint) & (Air) () ()	(Selicie)	Dat	anie.	A In	ar <u>a</u> la	<u></u>						And the second second	
Pstatel Order Number	1000	T	1	T		X	land		nary	363		1 1					
1653082	ix	Volume	Containers	Sample	Taken	F1-P4-8TE			s by ICP		(S)	J					
Sample ID/Location Name	Matr	Air	405	Date	Time	PHCs	70Cs	AHS	Actal	16 Invit	NH3 (	Ŵ					
1 TP226-3	5		Ĩ	D. 22/16			-	-	-	-				957	mi		
2 TP226-4	5		1	1							-	-		1,00	1116		
3 TP227-1	5	-	1							-	-	X					
4 TP227-2	5		1			-	-					X					
5 TP 227-3	5		1					_							h		
6 TP227-4	5		1														
2 TP228-1	5		1							-	-	Y					
8 TP228-2	5	-	1			-						X					
9 TP 228-3	5		1	1		-			-								
10 TP228-4	5		7	V		-					-			NI			
Comments: fre notes on	page	1.	A				1					<u>I</u>	_	Method	ofiDelive	ty:	
Relinguished By (Sign):	Receive	d by Driv	en/Depo	t	Recei	yed at I	ab: Ff	POR	Ň	p	eni	Ver VM	ified By;	chel	S	uhie	ot
Relinquished By (Print): Kevin Harnes	Date/11	me:	A		Date/	fine)	EC.	29,	201	6	Tý	20 Dat	e/Time:	De	ç,	29/1	6
rane i nue;	Femper	ature:		C	Temp	crature:		1	°C	15114		pH	Verified X	By: N	1A	1	:00

GPARACEL	TR   RE   RE	USTE SPO LIAB	ED. NSIV LE.	Ε.					He 30 01 p: e:	ead C 00-23 Itawa 1-80 para	office 19 St. , Onta 0-749 cel@p	Laurent Blvo rio K1G 4J8 -1947 paracellabs.c	d. B			n of Cu ab Use O 110	niy) 384	
LABURATURIES LID	1														Pag	e <u> </u> of	34	ſ
Client Name: Amer Foster Wheeler				Project Reference	e: TGT (b	116	4								Furna	round	Time:	
Contact Name: Kelly Patterson				Quote #	Tier 2										ay		🗆 3 Da	ay
Address: 330 Merrittuille Hury, Thoral	d, oN	1, 42	V446	PO #									1	1				
				Email Address:	Kelly.	ou H	crso	n é	2 9	rine	cfu	.com		02 D	ay		Reg	ular
Telephone: 905-687-6616					1201									Date I	Requir	ed:		
Criteria: 🖾 O. Reg. 153/04 (As Amended) Table 🔤 🗆 RSC	Filing 🗆	1 O. Reg	, 558/00	) DPWQO D	CCME I SU	B (Sto	orm)	□S	UB (	Sanit	ary)	Municipality	/:		□ (	Other:		
Matrix Type: (Soil/Sed) GW (Ground Water) SW (Surface Water)	SS (Storm/S	Sanitary S	ewer) P	(Paint) A (Air) O	(Other)	Ree	quir	ed A	naly	ses								
Paracel Order Number:		T	N N			EX	T									1		
		ne	ainen	Samp	le Taken	+BT			P									
1653032	×	olun	onta	county.	it Tunen	1-F4			by IC		-		> <	fra	27	ACIA	RA	
Comple ID/I contion Name	latri	ir V	of C	Data	Timo	HCs I	OCs	AHs	fetals	00	rVI	(HW						
Sample $D/Location Name$	2	<	#	0. 72/14		A	>	Р	2	H	0	<u>m</u>		ar	tam			
+ + P214-2	2		1	Veedallo		-	-		-		+			7	10 11	110		
- 11 all a	5							-			+			-				
3 1F a 20-1	0						-		-		+					i na inana		
4 7 9 2 2 0 3	>	-	1				-				-							
5 TP 221-1	2		1		and and a strategy and		-	-			_	_						
6 TP221-2	S					_	-				_	_						_
7 TP222-1	5					_						_						
8 TP272-2	5		1														_	
9 TP223-1	5		11															
10 TP223-2	S			A											V			
Comments: Governed by terms	and	cor a i	ndi h	ions of	agreem	ent		5 A	) A	0 -	7 - 0	003			Metho C	d of Deliv	O O(x)	6
Relinquished By (Sign): This This	Receive	ed by Dri	ver/Depo	n:Niaga nenit	ro, Rece UK	ved at	Lab: E Ri	RN		D	ON	MA	Verific	sd By: Rac/	el	auk	yed	-
Relinquished By (Print): Kevin Harnes	Date/T	ime: 6	12 De	110 11	0:45 Date	Time:	DEC(	129	1,2	016		0.20	Date/1	lime:	T	SC.	29/1	6
Date/Time: Nec. , 2016	Tempe	rature:		°C	Tem	veraturu	21	X	_*°C				pH Ve	rified [ ]	By:	VA		1.0

OnHold Samples held at depot Au SAMPLES SHIPPED DEL. 28, 2016 CSC B

GPARACEL	TR RE RE	USTE SPOI	ED. NSIV LE.	Ε.					He 30 Ot p: e:	ad Off 0-2319 tawa, ( 1-800- parace	ce St. Lau Intario 749-194	rent Blvd. K1G 4J8 7 cellabs.com		١	Chain (La	of Ci b Use 0 110	ustody nly) 385	
LABORATORIES LID.															Page	20	1	
Client Name: Amec Foster Wheeler				Project Reference:	TGIE	116	4							7	Furna	round	l Time:	
Contact Name: Kelly Patterson				Quote #	Tier	2								1 Da	ıy		🗆 3 D	ay
Address: 3300 Merrithille Huy, Thoro	id,	ON		PO #										<b>1</b> D			Lo	
r Talaskasa	42	V44	'6	Email Address:	Kelly.pa	ittel	SOIL	C	am	ecfw	· corA			2 Da	ıy		<b>A</b> Reg	ular
l elephone:													Da	ate F	Require	ed:		
Criteria: PO. Reg. 153/04 (As Amended) Table _ 🗆 RSC F	iling 🗆	O. Reg	. 558/00	D PWQO CC	CME 🗆 SU	B (Sto	rm)		JB (S	Sanitar	y) Mur	icipality:			C	ther:		
Matrix Type: 8 (Soil/Set.) GW (Ground Water) SW (Surface Water) SS	(Storm/S	Sanitary S	ewer) P	(Paint) A (Air) O (O	ther)	Req	luire	d Ai	naly	ses								
Paracel Order Number:		Γ	ers			TEX												
1653032	rix	Volume	Containe	Sample	Taken	s F1-F4+B'	s	1	Is by ICP		(SM			9				
Sample ID/Location Name	Mati	Air '	# of	Date	Time	PHC	VOC	PAH	Meta	Hg	B (H							
1 TP 224-1	5		1	Dec 22/16								-	2	50	ml	F		,
- 2 TP224-2	5		1											1				1
3 TP224-3	5									2								
- 4 TP 224-4	5		1															
5 TP 225-1	5		1															1
- 6 TP225-2	5		1															
- 1 TP 225-3	5		1															
8 TP 225-4	5																	
T 9 TP 226-1	5		1															
10 TP226-2	5		1									-		/				1
Comments: See notes on	nug	e 1.		рэнцан анын тработуулар О											Method	y Of	very:	5
Relinquished By (Sign):	Receiv	ed by Dri BH	ver/Depo	NIAgar Lenier	a Recei	ived at I	ep(	RN	À	0 lh	Dok	MA	fied By	acl	nel	SU	blee	t
Date/Time:	Date/T Tempe	nature:	717	ec 16 16: °C	45 Date/ Temp	Time: 1 perature	: 1º	2	20	310	11	pH	v i ime: Verifiea	1[]	By:	TÂ	1414	11.0

GPARACEL	TR RE RE	USTE SPOM LIAB	D. NSIV LE.	Ε.				H 30 0 p: e:	ead O 10-231 Itawa, 1-800 parac	ffice 9 St. Onta 9-749 el@p	Laurent Blvd. rio K1G 4J8 ·1947 aracellabs.com		Chair (La NO Page	b Use C 110	ustody ^(nly) 1387	
Client Name: Apple Foster Wheeler				Project Reference: TG16	116	LĨ							Turna	round	I Time:	
Contact Name: Kally Putterson	8			Quote # Trer 2	110	1			-				av		□ 3 Da	V
Address: 3300 Merrittville Hwy, Thora	d, 01	V,		PO #	-											v.
//00	1:2	V 44	6	Email Address: Kelly,	latti	erson	0	an	<i>ll</i> c	Ŧw	. COM	- 0 2 D	ay		KRegu	ılar
Telephone: 905-687-6616												Date	Requir	ed:		
Criteria: ZO. Reg. 153/04 (As Amended) Table 🗆 RSC F	iling 🗆	O. Reg	558/00	D PWQO CCME S	UB (S	torm)		UB (	Sanita	ury)	Municipality: _		0 0	)ther:		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/S	lanitary So	ewer) P	(Paint) A (Air) O (Other)	R	equir	ed A	naly	ses							
Paracel Order Number:			STS		XH		Ι								TT	
1653032	rix	Volume	Containe	Sample Taken	* F1_F4+B1	s	~	Is by ICP			(SM					
Sample ID/Location Name	Mat	Air	# of	Date Time	OHa	VOC	PAH	Meta	Hg	CrVI	B (H	-				
- 1 TP229-1	5		t	Dec 22/16								- 91	tom	-		
2 tp22a-2	5		1													
3 TP229-3	5								2							
- 4 TP 229-21	5		1													0
5 Duo A1	5		1													
6 Duo A2	5		1													
7 Duo A3	5		1													
8 Dup AY	5		1	$\vee$									Ŵ			
9																
10																
Comments: See notes on	reye	2.											Method	1 of Deli ハの	pb0	ΥX.
Relinquished By (Sign):	Receive	ed by Dri 3H	ver/Depo	neniek Rei	oived a	Lab:	Po	RN	-11-	R	) M MAP Ver	itied By: Roc	hel	SU	oject	
Relinquished By (Print): Kevin Haines Date/Time:	Date/T	ime: 2/	2 04	<u>с 16 16:45</u> Da °C Те	e/Time nperatu	:DE (	2	1.2 1.0 1.0	)  1)		pH	e/Time: Verified [ ]	Der By:	(A	9116	:00,

GPARACEL	TR RE RE	USTE SPOI LIAB	D. NSIV LE.	Ε.					Hea 300- Otta p: 1- e: pa	d Offic 2319 ( wa, Or 800-74 aracel (	e St. Laurer Itario K1 9-1947 ≩paracell	it Blvd. G 4J8 abs.com	1		of Cu o Use Or 110	stody ly) 386	
LABORATORIES LTD											17			Page	<u>4</u> of	4	
Client Name: Amee Foster Wheeler	2			Project Reference:	TG16	1164	/							Furna	round	Time:	
Contact Name: Kelly Patterson				Quote #	Tier 2								🗆 l Da	ıy		🗆 3 Da	ay
Address: 3300 Merri Hwille Hwy, The Telephone: 908-687-6611	rold, Lau	6N 44	6	PO # Email Address:	Kelly.pa	Hers	on C	a	ne	cfw	com		Date F	iy Require	, ed:	<b>Æ</b> Reg	ular
Criteria: DKD. Reg. 153/04 (As Amended) Table DRSC F	iling C	IO. Reg	. 558/00		CME ISU	B (Sto	rm) [	JSU	B (Sa	nitary	Munici	pality:		0	ther:		
Matrix Type: StailSed) CW (Ground Water) SW (Surface Water) S	S (Storm/S	Sanitary S	ewer) P (	(Paint) A (Air) O ((	)ther)	Rec	mireo	l An	alvse								
Derand Order Number	1	T		T		X		T					1				
1653032	rix	Volume	f Container	Sample	Taken	's F1-F4+BTE	S	s	als by ICF	-	(MS)						
Sample ID/Location Name	Mat	Air	# ot	Date	Time	PHC	VOC	PAH	Met	CrV	B (H			0			
- 1 TP226-3	5		/	Dec 22/16									-	2501	mi-		
2 TP226-4	5		1	1										- 1			
3 TP227-1	5		1														
4 TP227-2	5		l														
5 TP 227-3	5		1														
6 TP227-4	5		1														
-7 TP228-1	5		1														
- 8 TP228-2	5		1										-				
- 9 TP 228-3	5		1												ļ		
T10 TP228-4	5		/	$\vee$										V			
Comments: See notes on	suge	1	i –											Method	of Deliv	bC	X
Relinquished By (Sign):	Receiv	ed by Dri BY-	ver/Depo	neniel	ra Rece	ived at VM	ab: F	ER:	N	ſ	OKA	1A1 Verit	fied By:	ache	5	ubig	zt
Relinquished By (Print): Keyin Haines Date/Time:	Date/T Tempe	ime: 🥥 rature:	2-De	016 164 °C	S Date Temp	Time: perature	15:	2	12	)lb	Wi	Date pH V	/l'ime: /erified [_]	By:	TA	94	0.1



RELIABLE.

# Certificate of Analysis

### Amec Foster Wheeler (Thorold)

3300 Merrittville Hwy, Unit 5 Thorold, ON L2V 4Y6 Attn: Kelly Patterson

Client PO: Project: TG161164 Custody: 110385/386/387

Report Date: 6-Jan-2017 Order Date: 4-Jan-2017

Order #: 1701133

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1701133-01	TP224-4
1701133-02	TP225-4
1701133-03	TP226-4
1701133-04	TP227-3
1701133-05	TP228-4
1701133-06	TP229-4

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



Order #: 1701133

Report Date: 06-Jan-2017 Order Date: 4-Jan-2017 Project Description: TG161164

# **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Conductivity	MOE E3138 - probe @25 °C, water ext	5-Jan-17	5-Jan-17
Solids, %	Gravimetric, calculation	5-Jan-17	5-Jan-17



Order #: 1701133

Report Date: 06-Jan-2017 Order Date: 4-Jan-2017

Project Description: TG161164

	_				
	Client ID:	TP224-4	TP225-4	TP226-4	TP227-3
	Sample Date:	22-Dec-16	22-Dec-16	22-Dec-16	22-Dec-16
	Sample ID:	1701133-01	1701133-02	1701133-03	1701133-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	79.4	81.5	82.5	84.8
General Inorganics			-		
Conductivity	5 uS/cm	1150	1110	2940	2940
	Client ID:	TP228-4	TP229-4	-	-
	Sample Date:	22-Dec-16	22-Dec-16	-	-
	Sample ID:	1701133-05	1701133-06	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	82.3	83.7	-	-
General Inorganics	- -		-	•	· · · · ·
Conductivity	5 uS/cm	1310	2810	-	-



Report Date: 06-Jan-2017

Order Date: 4-Jan-2017

Project Description: TG161164

# Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics Conductivity	ND	5	uS/cm						



Order #: 1701133

Report Date: 06-Jan-2017

Order Date: 4-Jan-2017

Project Description: TG161164

# Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics Conductivity	396	5	uS/cm	397			0.2	6.2	
Physical Characteristics % Solids	68.8	0.1	% by Wt.	69.4			0.8	25	



None

Sample Data Revisions None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

GPARACEL	TR Re Re	TRUSTED . RESPONSIVE . RELIABLE .						Hea 300- Otta p: 1- e: p:	d Offi 2319 wa, C 800-1 aracel	Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontano K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com				to of Co to Use O	istody niy) 385		
Client Name: A concentration of the Income	949.0000 - <b>1000 - 1000</b> - 1000 - 1000	en monen er i døgelog		Project Reference	and t	11 1 1 1	11	1.8						Payı	: 🔬 0	<u> </u>	
Contact Name: 1/11 0 11				Onote H	10	0116	7							Turna	round	Time:	
Address: 22m M 1/1 1/ TT		x . 1		WO #	lier	9					-			)ay		🗆 3 Day	6
7700 riemthile Hary ine	rold /	UN	11	1.14						turguna				0	1	6	1
Felephone:	Fd	K 9 7	6	Email Address;	Kelly. y	atte	301-	Co	(MC	e.f.w	64.1	1	021	Jay		Ø Kegul	ar
Fileris: AD Bay 153.04 / As Amanded Table 1 19 DC	aran je	50.0	F # 0.101										Date	Requir	ed:		
Startic Politicg. 155 by (AS Amended) Have 1 D RSC	- Film§., f	J O. Keg	. 558/00	D D PWQ0 D (	CCME II S	UB (Sto	(m)	OSC	B (Sa	nitery	) Mi	inicipality:		00	ther.		
Matrix Type: K(Sol Sol) GW (Ground worth SW Portace Water)	SS (Seemi)	Sanitary 5	ewer) P	(Paint) A (Au) (O)	ilher)	Ret	puire	dAr	alyse	4						1	
Paracel Order Number: 1701123		1	12 IS		an a	2			T	-			1		.4	Ø-	
1/2022		The	ainc	Sample	⊤aken	27 27 11			4					Re	NIC	117	
4022002	N N	(olui	ont	internation and the		1.1.1			by R		13	U		1	nV	1	
Sample ID/Location Name	Matr	Air V	of	Data	Tino	IK.	\$ 30.	AHS	letuk:	SI.	(HW)	Ш		0	Dr.	-R\$	
1 TP 224-1	<		40	0. 22/6	1 (1) 5		~	-	<i>4</i> . <u>-</u>	10			10	Nr.	1.3		
2 TP224-2	12	-	1	Vicario								Ă	1	MU)CIK	1		
3 TP224-3	13		1		19.9.9.9. 1999au - 10.1.			-		-			-				
1 TO224-4	12				*******							0	-				
5 TP 20 5-1	12									-		Ø_		<u></u>			
· ( x2)	1				gan in an						_	X					
· 180205-2	2									_		X					
1 11 225 2	5				and the second second		_		_	-							
8 7 7 225 - 4	5											(X)					
» 17226-1	5	4		/								X		$\mathbb{N}^{2}$			
10 7 P 2 2 6 - 2	15			V								X		1			
comments: See notes on	pag	o. ] .												Method	of Deliv	ery:	
etinquished By (Sign) This Than	Receive	ed by Driv	en Depot		Rep	ived at 1 UNE	ab.	RN	(	01	Kr	Verili MA1	ed By:	alart	Cui	int	<u>.</u>
elinquished (1) (Print): Kevin Haines	Date Ti	us:			Date	/Time: (	DEC	29	201	6	(1	20 Dates	lime:	D	DU	a III.	
/ate/Time:	Temper	aiore:	6	C	Tem	porature:	5.	2	C	AL MORE OF		pli V	arified M	BUN	A	11	.031

Jan 4/17. 4:25

Client Name Aprec Foster Wheeler	6	E.	Head Office 303-2315 St La Offawa, Ontario 011-800-749 15 9 paracel@par				surent eiva. 3 K1G 4,8 947 racellabs com		Chain of Clustody (Lab Use Only) Nº 110386							
Cheminame Aprec taster Wheeles		••••••••••••••••••••••••••••••••••••••												Page	4 of 1	4
Carlos N				Project Reference	TG16	1164	1							Turnar	ound I	Time:
Contact Name: Kelly Patterson				Quoty ¥	Tier 2						And seeing and	Yorkingan ang ang ang ang ang ang ang ang ang	Tai D	ay	(	13 Dav
Means 3300 Mean Hurle Hury, The	add,	GN .		PO 8											1	
Telephrone 866-687-6616	1-21	147	6	Email Address	Kelly-pa	Hers	on (	à a	me.	i hu	Ç., Ç.	y 94	Date	lay Recture	di C	&Regular
Criteria: 50, Reg. (59/04/Rs Smended) Table _ CIRSC	Piling D	10. Reg	. 558.00		CCNRE II SU	B (Ste	m)	<b>13</b> St	) (Sa	ilary	) M	nicipality!	l	0.01	her:	
Matrix Type: HSoil Seil) GW (Ground Water) SW (Surface Water) S	S (Storn S	vanitary S	sweb P	(Paint) A (Ait) () (	(19),94	Ret	nire	el An	alvee	C.	han Principi				Alapan dia Ny INSEE dia mampina	
Paravel Order Number:	T	1	1.0		and the state of the				T	-	1			· · · · · · · · · · · · · · · · · · ·		
1701133	S IN	Volume	Containes	Sample	Taken	318++4-14-5	-	X	15. DY 16.17		NS)	J				
Sample ID/Location Name	Mar	An:	31 31	Date	Time	DHC	NOC	HVH	NICES	CrWI	13 (H)	41				
1 TP 226 - 3	5		1	Dec 22/16						a ni golena-	- Contractor			257	mi	
2 TP226-4	5		1									$(\mathbf{X})$				181.00.01.00.00
3 TP227-1	5				9							X				
4 TP227-2	5		1		- 77 March 19	-					1	X	• • •			
5 TP 227-3	5		1			- 1			1	-		$\overline{(x)}$		1		
· TP227-4	5		1	1	frei fan Antonio Stanian					1	1	0				
7 TP228-1	5	4.00.0 ×	1						T	1	1	X	-			
8 TP228-2	5	F Discollation and second	1						1	-		X				
" TP 228-3	5		1			1			+	-		<u></u>	-			
10 TP228-4	15		7	V						-		$\bigotimes$		Ni		
Comments: See notes on p	nage	1.	A	Anness no managementer d			L				James		_	Method o	fDelivery	• • •
Relinquished By (Sign)	Recaive	d by Drív	eaDepo	с. 82	Recei	ed at L	ab: Ff	Ocko	V	24	)M/	M. Veriti	ed By: Ra	chel	St	ibreot
Date Time	Date/Th	ile:			Date I	ind/	200	AT .	111		11	20 Date	ime;	De	c 2	9116

Jan 4/17. 4:25

GPARACEL	-   TR Re Re	UST SPO LIAB	ED . NSIV LE .	Έ.					Head 300-2 Ottaw p: 1-8 e: par	Office 319 St a, Ont 00-749 acel @	. Laure ario K 1-1947 parace	ent Bivo 1G 4J8 Illabs p	i. om	Chain of Custody (Lab Use, Only) Nº 1410387			845	
Chent Name A real 1 Start				1											Pag	夏	17	4
Contact Names in it is a still				Project Reference:	TGIL	164		and Only Souther							Turna	roun	d Time	h
Address 7. 1. 11 11 1	7 11			Ounter Tie	42									DID	ll y		03D	ay
5700 Memitruite itwy, 1	horold, 0	N 11410	4	POR				**						20			6	7
Telephone 905 - 687 - 6616			6	kasail Address: K	elly p	Her	fan I	(e) a	ril (	- tw	cc.	~		Date I	ay Regur	ed:	(Bolles	ular)
Criteria: 70. Reg. 153/04 (As Amended) Table 🗌 🗆	RSC Filmg C	1 (). Reg	558/0	D D PWQO D CCN	AE ID SU	B (Sto	m) I	D SUE	(San	itary)	Munje	apality	·			ther.		
Mattin Type S (Soi Se) ) GIT (Ground Water) SW (Surface W	aidi) - Six (Sici) (no)	san tary s	ever) P	(Parel) A (Air: O (Dille	f (	Req	uire	l Ani	lyses				Marine In you	·····				
Psracel-Order [®] Number: 1701133 4653032		V DINITIC	Containers	Sample Ta	ken	VIII CAL		- No. ICP			(S)		(,					
Sample ID/Location Name	Mai	Air	10 a	Date	Time	1.11	007	"Alth."	20	S	1		e l					
1 TP229-1	5		1	Dec 22/16					1		-	$\overline{\chi}^{\dagger}$		-	- 95	Inn	1	171
2 TP229-2	5		1		New York Streets				1			X			<u>,                                    </u>	<u>v r</u>	V.	
3 TP 229-3	5		1											-				
4 TP 229-24	5		1									2	****				-	
5 Dup Al	5		1								-++	7		-			-	
6 Dup A2	5		1		an airte an the second						3	K		· · · · · · · · · · · · · · · · · ·			Contractor of the second se	
7 Duo A3	5		T						1		243		$\overline{\langle}$					<u> </u>
8 Dup AY	5		1	V								µ3€∕			 	sr		
9																and a		
10			1		E-mainten-organization											F		14
Comments: See notes on	paye	2	-1							<u> </u>	!!	ana			Method	of Deli	very:	
Relinquished By (Sign):	Receive	d hy Driv	ver/Depo	i.	Recei	ved at La VM	ite UPI	JR N		Do	ИM	n V	erified	By	nol	S	him	+
Relinquished By Print) Kourn Hatnes	Date/Th	tić.			Date/	fime:	D	(9)	1, 20	16	](),	200	ate/Tin	ne:	D	°C	291	16
PARE TRBC	Temper	ature:		C	Temp	erature:	91	7 .0	1			p	A Veri	fied (X)	By: N	5/A-	1	:00

Rachel Subject Jan 4/17 4:25



RELIABLE.

# Certificate of Analysis

### Amec Foster Wheeler (Thorold)

3300 Merrittville Hwy, Unit 5 Thorold, ON L2V 4Y6 Attn: Pat Shriner

Client PO: Project: TG151118 Custody: 26547

Report Date: 28-Jan-2016 Order Date: 22-Jan-2016

Order #: 1604330

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1604330-01	BH/MW 202
1604330-02	Dup A
1604330-03	BH/MW 201
1604330-04	BH/MW 102
1604330-05	BH/MW 101
1604330-06	BH/MW 104
1604330-07	BH/MW 103
1604330-08	Trip Blank
1604330-09	Trip Spike
1604330-10	Field Blank

Approved By:

ZMYC

Tim McCooeye Senior Advisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



# Order #: 1604330

Report Date: 28-Jan-2016 Order Date: 22-Jan-2016 Project Description: TG151118

# **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	26-Jan-16	26-Jan-16
PHC F1	CWS Tier 1 - P&T GC-FID	26-Jan-16	27-Jan-16
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	25-Jan-16	25-Jan-16
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	26-Jan-16	27-Jan-16



Client PO:

Order #: 1604330

Report Date: 28-Jan-2016 Order Date: 22-Jan-2016

Project Description: TG151118

	Client ID: Sample Date: Sample ID:	BH/MW 202 20-Jan-16 1604330-01 Water	Dup A 20-Jan-16 1604330-02 Water	BH/MW 201 20-Jan-16 1604330-03 Water	BH/MW 102 20-Jan-16 1604330-04 Water
Metals	MDL/Units	Water	Water	Water	Water
Antimony	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Arsenic	1 ug/L	<1	<1	<1	<1
Barium	1 ug/L	25	25	18	75
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Boron	10 ug/L	124	115	92	385
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Chromium	1 ug/L	<1	<1	<1	<1
Cobalt	0.5 ug/L	<0.5	<0.5	<0.5	0.6
Copper	0.5 ug/L	<0.5	0.8	0.7	1.0
Lead	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Molybdenum	0.5 ug/L	0.6	<0.5	<0.5	7.6
Nickel	1 ug/L	2	2	<1	2
Selenium	1 ug/L	<1	<1	<1	1
Silver	0.1 ug/L	0.5	<0.1	<0.1	<0.1
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Uranium	0.1 ug/L	8.5	8.5	5.5	6.1
Vanadium	0.5 ug/L	<0.5	<0.5	<0.5	0.6
Zinc	5 ug/L	<5	<5	12	<5
Volatiles				-	
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5



Order #: 1604330

Report Date: 28-Jan-2016 Order Date: 22-Jan-2016

Project Description: TG151118

	Client ID: Sample Date: Sample ID: MDL/Units	BH/MW 202 20-Jan-16 1604330-01 Water	Dup A 20-Jan-16 1604330-02 Water	BH/MW 201 20-Jan-16 1604330-03 Water	BH/MW 102 20-Jan-16 1604330-04 Water
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylene dibromide (dibromoethar	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	108%	110%	108%	90.2%
Dibromofluoromethane	Surrogate	81.9%	81.8%	82.2%	82.8%
Toluene-d8	Surrogate	114%	111%	112%	114%
Hydrocarbons	05				
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100
F1 + F2 PHCs	125 ug/L	<125	<125	<125	<125
F3 + F4 PHCs	200 ug/L	<200	<200	<200	<200



# Certificate of Analysis

### Client: Amec Foster Wheeler (Thorold)

Client PO:

Report Date: 28-Jan-2016 Order Date: 22-Jan-2016

Project Description: TG151118

	Client ID: Sample Date:	BH/MW 101 20-Jan-16	BH/MW 104 20-Jan-16	BH/MW 103 20-Jan-16	Trip Blank 18-Jan-16
	Sample ID:	1604330-05	1604330-06	1604330-07	1604330-08
Matala	MDL/Units	Water	Water	Water	Water
Antimony	0.5 ug/l	-0.5	<0.5	-0.5	
Anumony	1 ug/l	<0.5	1	<0.5	-
Barium	1 ug/L	108	23	42	
Bendlium	0.5 ug/L	<0.5	<0.5	-0.5	
Boron	10 ug/L	11/	299	369	
Cadmium	0.1 ug/L	<01	<0.1	<0.1	-
Chromium	1 ug/L	<1	<1	<1	_
Cobalt	0.5 ug/L	0.7	1.7	5.0	-
Copper	0.5 ug/L	<0.5	1.9	1.9	-
Lead	0.1 ug/L	<0.1	<0.1	<0.1	-
Molybdenum	0.5 ug/L	0.7	5.6	4.5	-
Nickel	1 ug/L	<1	4	8	-
Selenium	1 ug/L	<1	2	2	-
Silver	0.1 ug/L	<0.1	<0.1	<0.1	-
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	-
Uranium	0.1 ug/L	0.5	25.6	53.7	-
Vanadium	0.5 ug/L	<0.5	0.9	1.2	-
Zinc	5 ug/L	<5	6	8	-
Volatiles	•			·	1
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0 [1]
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2 [1]
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0 [1]
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]

# Order #: 1604330



Client PO:

Order #: 1604330

Report Date: 28-Jan-2016 Order Date: 22-Jan-2016

Project Description: TG151118

	Client ID:	BH/MW 101	BH/MW 104	BH/MW 103	Trip Blank
	Sample Date:	20-Jan-16	20-Jan-16	20-Jan-16	18-Jan-16
	Sample ID:	Water	Water	Water	Water
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Ethylene dibromide (dibromoethar	0.2 ug/L	<0.2	<0.2	<0.2	<0.2 [1]
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0 [1]
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0 [1]
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0 [1]
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0 [1]
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0 [1]
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0 [1]
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5 [1]
4-Bromofluorobenzene	Surrogate	107%	106%	103%	109% [1]
Dibromofluoromethane	Surrogate	83.4%	82.6%	83.0%	78.5% [1]
Toluene-d8	Surrogate	112%	112%	113%	116% [1]
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	-
F1 + F2 PHCs	125 ug/L	<125	<125	<125	-


Order #: 1604330

Report Date: 28-Jan-2016 Order Date: 22-Jan-2016

Project Description: TG151118

	Client ID: Sample Date:	BH/MW 101 20-Jan-16 1604330-05	BH/MW 104 20-Jan-16 1604330-06	BH/MW 103 20-Jan-16 1604330-07	Trip Blank 18-Jan-16 160/330-08
	MDL/Units	Water	Water	Water	Water
F3 + F4 PHCs	200 ug/L	<200	<200	<200	-



# Certificate of Analysis

#### Client: Amec Foster Wheeler (Thorold)

**Client PO:** 

Report Date: 28-Jan-2016

Order #: 1604330

Order Date: 22-Jan-2016

Project Description: TG151118

	Client ID:	Trip Spike	Field Blank	-	-
	Sample Date: Sample ID:	1604330-09	20-Jan-16 1604330-10	-	-
	MDL/Units	Water	Water	-	-
Volatiles			Ī	1	Ĩ
Acetone	5.0 ug/L	98.5 [1] [3]	<5.0 [1]	-	-
Benzene	0.5 ug/L	26.3 [1] [3]	<0.5 [1]	-	-
Bromodichloromethane	0.5 ug/L	30.0 [1] [3]	<0.5 [1]	-	-
Bromoform	0.5 ug/L	47.1 [1] [3]	<0.5 [1]	-	-
Bromomethane	0.5 ug/L	23.5 [1] [3]	<0.5 [1]	-	-
Carbon Tetrachloride	0.2 ug/L	33.8 [1] [3]	<0.2 [1]	-	-
Chlorobenzene	0.5 ug/L	38.0 [1] [3]	<0.5 [1]	-	-
Chloroform	0.5 ug/L	28.5 [1] [3]	<0.5 [1]	-	-
Dibromochloromethane	0.5 ug/L	48.1 [1] [3]	<0.5 [1]	-	-
Dichlorodifluoromethane	1.0 ug/L	21.7 [1] [3]	<1.0 [1]	-	-
1,2-Dichlorobenzene	0.5 ug/L	42.1 [1] [3]	<0.5 [1]	-	-
1,3-Dichlorobenzene	0.5 ug/L	39.6 [1] [3]	<0.5 [1]	-	-
1,4-Dichlorobenzene	0.5 ug/L	39.6 [1] [3]	<0.5 [1]	-	-
1,1-Dichloroethane	0.5 ug/L	32.5 [1] [3]	<0.5 [1]	-	-
1,2-Dichloroethane	0.5 ug/L	32.5 [1] [3]	<0.5 [1]	-	-
1,1-Dichloroethylene	0.5 ug/L	27.9 [1] [3]	<0.5 [1]	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	31.8 [1] [3]	<0.5 [1]	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	29.8 [1] [3]	<0.5 [1]	-	-
1,2-Dichloropropane	0.5 ug/L	27.1 [1] [3]	<0.5 [1]	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	29.5 [1] [3]	<0.5 [1]	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	29.0 [1] [3]	<0.5 [1]	-	-
1,3-Dichloropropene, total	0.5 ug/L	58.5 [1] [3]	<0.5 [1]	-	-
Ethylbenzene	0.5 ug/L	42.8 [1] [3]	<0.5 [1]	-	-
Ethylene dibromide (dibromoethar	0.2 ug/L	39.1 [1] [3]	<0.2 [1]	-	-
Hexane	1.0 ug/L	27.8 [1] [3]	<1.0 [1]	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	107 [1] [3]	<5.0 [1]	-	-
Methyl Isobutyl Ketone	5.0 ug/L	87.6 [1] [3]	<5.0 [1]	-	-
Methyl tert-butyl ether	2.0 ug/L	88.1 [1] [3]	<2.0 [1]	-	-
Methylene Chloride	5.0 ug/L	30.2 [1] [3]	<5.0 [1]	-	-
Styrene	0.5 ug/L	44.7 [1] [3]	<0.5 [1]	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	45.5 [1] [3]	<0.5 [1]	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	38.0 [1] [3]	<0.5 [1]	-	-
Tetrachloroethylene	0.5 ug/L	40.5 [1] [3]	<0.5 [1]	-	-
Toluene	0.5 ug/L	39.2 [1] [3]	<0.5 [1]	-	-
1,1,1-Trichloroethane	0.5 ug/L	32.5 [1] [3]	<0.5 [1]	-	-



#### Order #: 1604330

Report Date: 28-Jan-2016 Order Date: 22-Jan-2016 Project Description: TG151118

	-				
	Client ID:	Trip Spike	Field Blank	-	-
	Sample Date:	18-Jan-16	20-Jan-16	-	-
	Sample ID:	1604330-09	1604330-10	-	-
	MDL/Units	Water	Water	-	-
1,1,2-Trichloroethane	0.5 ug/L	27.1 [1] [3]	<0.5 [1]	-	-
Trichloroethylene	0.5 ug/L	29.5 [1] [3]	<0.5 [1]	-	-
Trichlorofluoromethane	1.0 ug/L	28.4 [1] [3]	<1.0 [1]	-	-
Vinyl chloride	0.5 ug/L	23.4 [1] [3]	<0.5 [1]	-	-
m,p-Xylenes	0.5 ug/L	85.0 [1] [3]	<0.5 [1]	-	-
o-Xylene	0.5 ug/L	44.4 [1] [3]	<0.5 [1]	-	-
Xylenes, total	0.5 ug/L	129 [1] [3]	<0.5 [1]	-	-
4-Bromofluorobenzene	Surrogate	96.8% [1] [3]	107% [1]	-	-
Dibromofluoromethane	Surrogate	65.1% [1] [3]	86.5% [1]	-	-
Toluene-d8	Surrogate	95.9% [1] [3]	112% [1]	-	-



#### Order #: 1604330

Report Date: 28-Jan-2016

Order Date: 22-Jan-2016

Project Description: TG151118

### Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
		0.5							
Anumony		0.5	ug/L						
Barium	ND	1	ug/L						
Bervllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead		0.1	ug/L						
Nickel		0.5	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromotorm	ND	0.5	ug/L						
Diomometriane Carbon Tetrachloride		0.5	ug/L						
Chlorobenzene	ND	0.2	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane		0.5	ug/L						
1 1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	uğ/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane		0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2.2 Tetrachloroethane		0.5	ug/L						
1,1,2,2-Tetrachioroethylene		0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
			-						



Report Date: 28-Jan-2016 Order Date: 22-Jan-2016

Project Description: TG151118

### Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	86.2		ug/L		108	50-140			
Surrogate: Dibromofluoromethane	53.1		ug/L		66.4	50-140			
Surrogate: Toluene-d8	82.4		ug/L		103	50-140			



Order #: 1604330

Report Date: 28-Jan-2016

Order Date: 22-Jan-2016

Project Description: TG151118

### Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
		25						20	
	ND	25	ug/L	ND				30	
Metals									
Antimony	ND	0.5	ug/L	ND			0.0	20	
Arsenic	ND	1	ug/L	ND			0.0	20	
Barium	24.8	1	ug/L	25.0			0.6	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	127	10	ug/L	124			2.4	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium	ND	1	ug/L	ND			0.0	20	
Copart	ND	0.5	ug/L				0.0	20	
	ND 0.12	0.5	ug/L				0.0	20	
Leau Malubdanum	0.12	0.1	ug/L				0.0	20	
Nickel	2.0	0.5	ug/L	0.57			0.1 // 1	20	
Selenium		1	ug/L				0.0	20	
Selemen		01	ug/L	0.51			0.0	20	
Thallium	ND	0.1	ug/L				0.0	20	
Uranium	87	0.1	ug/L	85			1.8	20	
Vanadium	ND	0.5	ug/L	ND			0.0	20	
Zinc	ND	5	ug/L	ND			0.0	20	
		•	~g/=				0.0		
volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene Dromoniski promotikova	ND	0.5	ug/L	ND				30	
Bromodicniorometnane		0.5	ug/L					30	
Biomomothana		0.5	ug/L					30	
Biomomethane Carbon Tatrashlarida		0.5	ug/L					30	
Chlorobenzene		0.2	ug/L					30	
Chloroform		0.5	ug/L					30	
Dibromochloromethane		0.5	ug/L					30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1 2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1.3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Ethylene dibromide (dibromoethane	ND	0.2	ug/L	ND				30	
Hexane Mathyl Ethyl Katana (2 Butanana)		1.0	ug/L					30	
Methyl Isobutyl Kotono		5.0	ug/L					30	
Methyl tert-butyl ether		2.0	ug/L					30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1 1 1 2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1.1.2.2-Tetrachloroethane	ND	0.5	ua/L	ND				30	
Tetrachloroethylene	ND	0.5	ua/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	



#### Order #: 1604330

Report Date: 28-Jan-2016 Order Date: 22-Jan-2016

Project Description: TG151118

### Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	85.1		ug/L	ND	106	50-140			
Surrogate: Dibromofluoromethane	64.1		ug/L	ND	80.1	50-140			
Surrogate: Toluene-d8	88.3		ug/L	ND	110	50-140			



### Method Quality Control: Spike

Report Date: 28-Jan-2016

Order Date: 22-Jan-2016

Project Description: TG151118

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2070	25	ug/L	ND	103	68-117			
F3 PHCs (C16-C34)	2940	100	ug/L	ND	79.0	60-140			
F4 PHCs (C34-C50)	2180	100	ug/L	ND	87.9	60-140			
Metals									
Antimony	48.3		ug/L	0.19	96.3	80-120			
Arsenic	52.8		ug/L	0.2	105	80-120			
Barium	72.2		ug/L	25.0	94.5	80-120			
Beryllium	43.0		ug/L	0.01	86.0	80-120			
Boron	156		ug/L	112	87.9	80-120			
Cadmium	45.6		ug/L	0.04	91.2	80-120			
Chromium	49.0		ug/L	0.3	97.3	80-120			
Cobalt	46.5		ug/L	0.11	92.7	80-120			
Copper	43.5		ug/L	0.17	86.7	80-120			
Lead	45.8		ug/L	0.08	91.4	80-120			
Molybdenum	48.0		ug/L	0.57	94.8	80-120			
Nickel	45.5		ua/L	1.9	87.3	80-120			
Selenium	55.3		ua/L	0.2	110	80-120			
Silver	43.8		ua/L	0.51	86.5	80-120			
Thallium	46.3		ua/L	0.03	92.5	80-120			
Uranium	56.1		ug/L	8.5	95.2	80-120			
Vanadium	50.5		ug/L	0.25	100	80-120			
Zinc	48		ug/L	2	90.5	80-120			
Volatiles			-						
Acetone	80.5	5.0	ua/L	ND	80.5	50-140			
Benzene	29.1	0.5	ug/L	ND	72.8	50-140			
Bromodichloromethane	27.3	0.5	ug/L	ND	68.2	50-140			
Bromoform	44.5	0.5	ug/L	ND	111	50-140			
Bromomethane	20.5	0.5	ug/L	ND	51.2	50-140			
Carbon Tetrachloride	34.9	0.2	ug/L	ND	87.4	50-140			
Chlorobenzene	33.7	0.5	ug/L	ND	84.2	50-140			
Chloroform	27.5	0.5	ug/L	ND	68.6	50-140			
Dibromochloromethane	47.3	0.5	ug/L	ND	118	50-140			
Dichlorodifluoromethane	18.7	1.0	ug/L	ND	46.7	50-140		C	)S-02
1 2-Dichlorobenzene	37.4	0.5	ug/L	ND	93.6	50-140			0 02
1 3-Dichlorobenzene	35.3	0.5	ug/L	ND	88.4	50-140			
1.4-Dichlorobenzene	35.3	0.5	ug/L	ND	88.4	50-140			
1 1-Dichloroethane	28.8	0.5	ug/L	ND	72.0	50-140			
1 2-Dichloroethane	28.8	0.5	ug/L	ND	72.0	50-140			
1 1-Dichloroethylene	24.7	0.5	ug/L	ND	61.8	50-140			
cis-1 2-Dichloroethylene	29.7	0.5	ug/L	ND	74.2	50-140			
trans-1 2-Dichloroethylene	27.0	0.5	ug/L	ND	67.6	50-140			
1 2-Dichloropropage	24.5	0.5	ug/L		61.0	50-140			
cis-1 3-Dichloropropulene	24.0	0.5	ug/L	ND	68.2	50-140			
trans-1 3-Dichloropropylene	26.6	0.5	ug/L		66.4	50-140			
Ethylbenzene	20.0	0.5	ug/L	ND	52.8	50-140			
Ethylene dibromide (dibromoethane	21.1	0.3	ug/L		101	50-140			
	2 22	1.0	ug/L		8 09	50-140		~	15-02
Methyl Ethyl Ketone (2 Butanona)	3.23 20 0	5.0	ug/L		0.00 80 9	50-140		G	10-0Z
Mothyl Isobutyl Kotopo	00.0	5.0	ug/L		102	50 140			
Mothyl fort butyl othor	103	0.0 2.0	ug/L	טא סא	05 6	50 140			
Methylene Chleride	95.0	2.U E C	ug/L		90.0 50.7	50-140			
weunyiene Unioride	23.5	5.0	ug/L	ND	58.7	50-140			



#### Order #: 1604330

Report Date: 28-Jan-2016

Order Date: 22-Jan-2016

Project Description: TG151118

### Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Styrene	34.8	0.5	ug/L	ND	87.1	50-140			
1,1,1,2-Tetrachloroethane	43.3	0.5	ug/L	ND	108	50-140			
1,1,2,2-Tetrachloroethane	38.1	0.5	ug/L	ND	95.2	50-140			
Tetrachloroethylene	43.7	0.5	ug/L	ND	109	50-140			
Toluene	42.7	0.5	ug/L	ND	107	50-140			
1,1,1-Trichloroethane	32.9	0.5	ug/L	ND	82.3	50-140			
1,1,2-Trichloroethane	27.0	0.5	ug/L	ND	67.4	50-140			
Trichloroethylene	24.8	0.5	ug/L	ND	62.1	50-140			
Trichlorofluoromethane	24.2	1.0	ug/L	ND	60.6	50-140			
Vinyl chloride	28.1	0.5	ug/L	ND	70.2	50-140			
m,p-Xylenes	55.2	0.5	ug/L	ND	69.0	50-140			
o-Xylene	38.5	0.5	ug/L	ND	96.3	50-140			
Surrogate: 4-Bromofluorobenzene	76.1		ua/L		95.1	50-140			



#### **Qualifier Notes:**

#### Sample Qualifiers :

- 1: Trip blank hold time based on preparation date for this QA sample and the associated analytical requirements. Hold time exceedances do not preclude the validity of the Trip Blank data.
- 3: VOC Trip Spike prepared at 40 ug/L for all parameters, except for m/p-Xylene which is at 80 ug/L and ketones at 100 ug/L.

#### QC Qualifiers :

QS-02: Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

#### Sample Data Revisions

None

#### Work Order Revisions / Comments:

None

#### Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Project Description: TG151118

Report Date: 28-Jan-2016

Order Date: 22-Jan-2016

GPARACEL LABORATORIES LTD.	TRUSTED . RESPONSIVE . D. RELIABLE .					He: 300 Ott: p: 1 e: p	ad Offici )-2319 S awa, On I-800-74 paracel@	e St. Laurent Blvd Itario K1G 4J8 9-1947 ≬paracellabs.co	l. om	Chain of Custody (Lab Use Only) Nº 26547				
Cliant Nama				18		ww	w.parac	eliabs.com			Р	age _/	_ of _]	_
Contact Name: Pat Shriner	TOATI	71/	Project Quote # PO #	Reference: 7 # 15-0.	5 151118 31-					TAT: Regular [] 3 Day				
Telephone: 905 6876676	UN C	Email Address: Datricle shonerpaneetwaan Date Re								ite Required:				
Criteria: X O. Reg. 153/04 (As Amended) Table 1	RSC Filing	[]0.	Reg. 558	/00 [] PWQO	]CCME []S	UB (Storn	n) []S	UB (Sanitary) M	lunicipali	ty:		[] Other	1	11120
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm/S	anitary S	ewer) P (	Paint) A (Air) O (	Other)				Requ	ired A	nalyses			
Paracel Order Number: 1604330 Sample ID/Location Name 18//MU 202 200 A 38//MU 201 48//MU 102 58//MU 101 68//MU 104 78//MU 103 86000000000000000000000000000000000000	Watrix	Air Volume	A of Containers	Sampl Date <i>Tar 20//6</i>	Taken Time 9:35- 10:45 11:50 100 2:00 3:05.	X X X X X ICOINS	X X X X X PHCS	X X X X X X X X X X X X X X X X X X X						
9 Top Spile 9 Top Spile 10 Field Black Comments:		9 11 7 P	1 2	18-kin-16 18-kin-16 20-kin-16	1			X X X				Method	of Deliver	
Relinquished By (Sign): Relinquished By (Print): Date/Time: 21/01/16	Receive B Date/Tin Temper	d by Dri Gr me: 20 ature: 4	Ver/Depor	«Niagan ek 6 10/10 0	Q Receiv Date T Tempe	ed at Lab	1.4 .	A \$16C	-45	Verified Date/T/ pH Veri	1 By. me:	P I Tave By: By	23//c 23//c	A 0 11:

Chain of Custody (Blank) - Rev 0.3 Oct. 2014



RELIABLE.

# Certificate of Analysis

### Amec Foster Wheeler (Thorold)

3300 Merrittville Hwy, Unit 5 Thorold, ON L2V 4Y6 Attn: Kelly Patterson

Client PO: Project: TG161164 Custody: 34705

Report Date: 9-Jan-2017 Order Date: 4-Jan-2017

Order #: 1701115

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

**Client ID** Paracel ID 1701115-01 **BH/MW 202** 1701115-02 Dup A

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.



Order #: 1701115

Report Date: 09-Jan-2017 Order Date: 4-Jan-2017 Project Description: TG161164

### **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	6-Jan-17	6-Jan-17



Order #: 1701115

Report Date: 09-Jan-2017

Order Date: 4-Jan-2017

Project Description: TG161164

	F				
	Client ID:	BH/MW 202	Dup A	-	-
	Sample Date:	03-Jan-17	03-Jan-17	-	-
	Sample ID:	1701115-01	1701115-02	-	-
	MDL/Units	Water	Water	-	-
Metals					
Antimony	0.5 ug/L	<0.5	<0.5	-	-
Arsenic	1 ug/L	<1	<1	-	-
Barium	1 ug/L	25	25	-	-
Beryllium	0.5 ug/L	<0.5	<0.5	-	-
Boron	10 ug/L	71	68	-	-
Cadmium	0.1 ug/L	<0.1	<0.1	-	-
Chromium	1 ug/L	<1	<1	-	-
Cobalt	0.5 ug/L	<0.5	<0.5	-	-
Copper	0.5 ug/L	<0.5	<0.5	-	-
Lead	0.1 ug/L	<0.1	<0.1	-	-
Molybdenum	0.5 ug/L	<0.5	<0.5	-	-
Nickel	1 ug/L	1	1	-	-
Selenium	1 ug/L	1	<1	-	-
Silver	0.1 ug/L	<0.1	<0.1	-	-
Thallium	0.1 ug/L	<0.1	<0.1	-	-
Uranium	0.1 ug/L	8.1	7.9	-	-
Vanadium	0.5 ug/L	<0.5	<0.5	-	-
Zinc	5 ug/L	<5	<5	-	-



Order #: 1701115

Report Date: 09-Jan-2017

Order Date: 4-Jan-2017

Project Description: TG161164

### Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						



Order #: 1701115

Report Date: 09-Jan-2017

Order Date: 4-Jan-2017

Project Description: TG161164

### Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony	ND	0.5	ug/L	ND			0.0	20	
Arsenic	ND	1	ug/L	ND			0.0	20	
Barium	ND	1	ug/L	ND			0.0	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	ND	10	ug/L	ND			0.0	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium	ND	1	ug/L	ND			0.0	20	
Cobalt	ND	0.5	ug/L	ND			0.0	20	
Copper	ND	0.5	ug/L	ND				20	
Lead	ND	0.1	ug/L	ND			0.0	20	
Molybdenum	ND	0.5	ug/L	ND			0.0	20	
Nickel	ND	1	ug/L	ND				20	
Selenium	ND	1	ug/L	ND			0.0	20	
Silver	ND	0.1	ug/L	ND				20	
Sodium	ND	200	ug/L	ND			0.0	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	ND	0.1	ug/L	ND			0.0	20	
Vanadium	ND	0.5	ug/L	ND			0.0	20	
Zinc	ND	5	ug/L	ND			0.0	20	



### Order #: 1701115

Report Date: 09-Jan-2017

Order Date: 4-Jan-2017

Project Description: TG161164

### Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	46.8		ug/L	ND	93.5	80-120			
Arsenic	52.6		ug/L	ND	105	80-120			
Barium	52.5		ug/L	ND	105	80-120			
Beryllium	50.0		ug/L	ND	99.9	80-120			
Boron	48		ug/L	ND	85.5	80-120			
Cadmium	52.2		ug/L	ND	104	80-120			
Chromium	53.0		ug/L	ND	105	80-120			
Cobalt	51.6		ug/L	ND	103	80-120			
Copper	48.9		ug/L	ND	97.8	80-120			
Lead	48.8		ug/L	ND	97.6	80-120			
Molybdenum	45.8		ug/L	ND	91.4	80-120			
Nickel	51.0		ug/L	ND	102	80-120			
Selenium	51.2		ug/L	ND	102	80-120			
Silver	48.9		ug/L	ND	97.8	80-120			
Sodium	1060		ug/L	ND	104	80-120			
Thallium	49.6		ug/L	ND	99.1	80-120			
Uranium	51.6		ug/L	ND	103	80-120			
Vanadium	52.9		ug/L	ND	106	80-120			
Zinc	54		ug/L	ND	107	80-120			



#### **Qualifier Notes:**

None

Sample Data Revisions None

#### Work Order Revisions / Comments:

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

GPARACEL   TRUSTED. LABORATORIES LTD.   RESPONSIVE. RELIABLE.							Office 19 St. Lau , Ontario 0-749-194 cel@para	rrent Blvd. K1G 4J8 7 cellabs.com	Chain of Custody (Lab Use Only) Nº 34705					
										Page of				
Chent Name: Amec Foster Wheeler Project Reference: TG161164										Tur	narou	nd Tin	ie:	
Contact Name: Kelly Patterson, Quote # Tier 2									] o 1 D	ay		□ 3	Day	
Address: 3300 Merrithville Hwy, Thorold, ON PO#										673 		-		
L2V 4Y6 Email Address: Kelly. patterson@amecfw.com									lay		<b>X</b> . F	legular		
Telephone: 905 -687 -6616								Date Required:						
Criteria: IX O. Reg. 153/04 (As Amended) Table ⊥ □ RSC Filing	🗆 O. Re	g. 558	/00 PWQO D	ICCME IS	UB (Stor	m) 🗆 S	SUB (Sani	tary) Munici	pality:		0	ther:		
Matrix Type: S (Soil Sed.) (W (Ground Water) SW (Surface Water) SS (Storm/Sani	itary Sewe	er) P (P	aint) A (Air) O (Otl	ner)				Requ	ired Ai	nalyses				
Paracel Order Number:	Volume	Sample Taken Super-												
Sample ID/Location Name	Air	o #	Date	Time	FT									
1 BH/MW 202 GW		1	Jan. 3117	1:30pm	X									
2 Dup A GW		1	Jan 3/17		X				6					
3														
4								1						
5														
6														
7														
8			-											
9														
10														
Comments: Governeed by SNA07-003	3. Ho	fd-	samples	for fu	ture	ана	lysis .		1	1	Method	of Deliver	n.	
Relinquished By (Sign) This Received By	by Driver	t/Depot	Niagan	Receive	ed at Lab:	C	2		Verifie	d By: Rack	el	Subi	ect	
Relinquished By (Print): Kevin Harnes Date/Tim	ie: 4	Jar	17 14:	40 Date	me: Z	ant5	177 (	0 10:3	Date/T	ime:	Jan	51	17	
Date/Time: DDD14/14 Temperat	ture:	1 0	C	Temper	rature:	.7 °(			pH Ver	ified M	šy:	zent	12:3	

Chain of Custody (Blank) - Rev 0.4 Feb 2016

GR (CAN) Investments Co., Ltd. Phase Two Environmental Site Assessment Thundering Waters Development, Niagara Falls, Ontario April 2017



# APPENDIX F

## LIMITATIONS



#### Limitations

- 1. The work performed in the preparation of this report and the conclusions presented are subject to the following:
  - (a) The Standard Terms and Conditions which form a part of Amec Foster Wheeler's proposal dated October 16, 2015 and signed by the Client on November 15, 2015 and proposal dated December 2, 2016 and authorization to proceed, signed by the Client on December 3, 2016;
  - (b) The Scope of Services;
  - (c) Time and Budgetary limitations as described in our Contract; and,
  - (d) The Limitations stated herein.
- 2. No other warranties or representations, either expressed or implied, are made as to the professional services provided under the terms of our Contract, or the conclusions presented.
- 3. The conclusions presented in this report were based, in part, on visual observations of the site and attendant structures. Our conclusions cannot and are not extended to include those portions of the site or structures which were not reasonably available, in Amec Foster Wheeler's opinion, for direct observation.
- 4. The environmental conditions at the site were assessed, within the limitations set out above, having due regard for applicable environmental regulations as of the date of the inspection. A review of compliance by past owners or occupants of the site with any applicable local, provincial or federal by-laws, orders-in-council, legislative enactments and regulations was not performed.
- 5. The site history research included obtaining information from third parties and employees or agents of the owner. No attempt has been made to verify the accuracy of any information provided, unless specifically noted in our report.
- 6. Where testing was performed, it was carried out in accordance with the terms of our contract providing for testing. Other substances, or different quantities of substances testing for, may be present on site and may be revealed by different of other testing not provided for in our contract.
- 7. Because of the limitations referred to above, different environmental conditions from those stated in our report may exist. Should such different conditions be encountered, Amec Foster Wheeler must be notified in order that it may determine if modifications to the conclusions in the report are necessary.
- 8. The utilization of Amec Foster Wheeler's services during the implementation of any remedial measures will allow Amec Foster Wheeler to observe compliance with the conclusions and recommendations contained in the report. Amec Foster Wheeler's involvement will also allow for changes to be made as necessary to suit field conditions as they are encountered.
- 9. This report is for the sole use of the party to whom it is addressed unless expressly stated otherwise in the report or contract. Any use which any third party makes of the report, in whole or in part, or any reliance thereon, or decisions made based on any information of conclusions in the report, is the sole responsibility of such third party. Amec Foster Wheeler accepts no responsibility whatsoever for damages or loss of any nature or kind suffered by any such third party as a result of actions taken or not taken or decisions made in reliance on the report or anything set out therein.
- 10. This report is not to be given over to any third party for any purpose whatsoever without the written permission of Amec Foster Wheeler.
- 11. Provided that the report is still reliable, and less than 12 months old, Amec Foster Wheeler will issue a thirdparty reliance letter to parties client identifies in writing, upon payment of the then current fee for such letters. All third parties relying on Amec Foster Wheeler's report, by such reliance agree to be bound by our proposal and Amec Foster Wheeler's standard reliance letter. Amec Foster Wheeler's standard reliance letter indicates that in no event shall Amec Foster Wheeler be liable for any damages, howsoever arising, relating to thirdparty reliance on Amec Foster Wheeler's report. No reliance by any party is permitted without such agreement.