

Howe Gastmeier Chapnik Limited 2000 Argentia Road, Plaza One, Suite 203 Mississauga, Ontario, Canada L5N 1P7 t: 905.826.4044

Noise Feasibility Study Proposed Residential Development 7769, 7751 & 7735 Thorold Stone Road Niagara Falls, Ontario

Prepared for:

Thorowest Construction Ltd. 8020 Oakwood Drive Kelowna, British Columbia, V1W 0A7

Y. K. V. Prepared by ton 100224844 vonne Lo, MEng, PEng BUNCE OF ONTARY and

heeles Paul!

Sheeba Paul, MEng, PEng

February 23, 2023 HGC Project No. 02100700

VERSION CONTROL

Noise Feasibility Study, 7769, 7751 & 7735 Thorold Stone Road,

Toronto, Ontario.

Ver.	Date	Version Description / Changelog	Prepared By
0	March 22, 2022	Noise Feasibility Study prepared as part of the planning and approvals process.	Y.Lo
1	February 23, 2023	Noise Feasibility Study update as part of the planning and approvals process.	Y.Lo

Limitations

This document was prepared solely for the addressed party and titled project or named part thereof, and should not be relied upon or used for any other project without obtaining prior written authorization from HGC Engineering. HGC Engineering accepts no responsibility or liability for any consequence of this document being used for a purpose other than for which it was commissioned. Any person or party using or relying on the document for such other purpose agrees, and will by such use or reliance be taken to confirm their agreement to indemnify HGC Engineering for all loss or damage resulting therefrom. HGC Engineering accepts no responsibility or liability or liability or liability or liability or present to any person or party other than the party by whom it was commissioned.

Any conclusions and/or recommendations herein reflect the judgment of HGC Engineering based on information available at the time of preparation, and were developed in good faith on information provided by others, as noted in the report, which has been assumed to be factual and accurate. Changed conditions or information occurring or becoming known after the date of this report could affect the results and conclusions presented.

Table of Contents

1	In	ntroduction and Summary	1
2	Si	ite Description and Sources of Sound	2
3	Cı	riteria for Acceptable Sound Levels	2
	3.1	Road Traffic Noise Criteria	2
4	Tr	raffic Sound Level Assessment	4
	4.1	Road Traffic Data	4
	4.2	Road Traffic Noise Predictions	5
5	Tr	raffic Noise Recommendations	5
	5.1	Outdoor Living Areas	6
	5.2	Indoor Living Areas	7
	5.3	Building Façade Constructions	7
	5.4	Warning Clauses	7
6	Su	ummary and Recommendations	9
	6.1	Implementation	10

Figure 1: Key Plan Figure 2: Proposed Site Plan Showing Prediction Locations

Appendix A: Road Traffic Data Appendix B: Sample STAMSON 5.04 Output

1 Introduction and Summary

HGC Engineering was retained by Thorowest Construction Ltd. to conduct a noise feasibility study for a proposed residential development to be located at 7769, 7751, and 7735 Thorold Stone Road in Niagara Falls, Regional Municipality of Niagara (RMON), Ontario. The study is required for submission for site plan approval by the RMON to address the road traffic on Thorold Stone Road, Montrose Road, and the Queen Elizabeth Way (QEW).

This study is being updated to reflect the latest site plan prepared by Upper Canada Consultants Engineers/Planners dated February 9, 2023.

The primary noise sources impacting the site are road traffic on Thorold Stone Road. Secondary sources of noise include road traffic on Montrose Road and the QEW. Road traffic data for Thorold Stone Road and Montrose Road was obtained from the RMON. Road traffic data for the QEW was obtained from Ministry of Transportation (MTO) personnel. The data was used to predict future traffic sound levels at various locations around the proposed development. The predicted sound levels were compared to the guidelines of the Ministry of the Environment, Conservation and Parks (MECP) and the RMON.

The sound level predictions indicate that future road traffic sound levels will exceed MECP guidelines at the proposed residential development. An acoustic barrier will be required at the rear yard of the dwelling unit with flanking exposure to Thorold Stone Road. Forced air ventilation systems with ductwork sized for the future installation of central air conditioning by the occupant will be required for all proposed dwelling units. Building constructions meeting the minimum requirements of the Ontario Building Code will provide sufficient acoustical insulation for all of the dwellings. Warning clauses are also recommended to inform future occupants of the traffic noise impacts, to address sound level excesses and to indicate the presence of the existing retail/commercial uses.

2 Site Description and Sources of Sound

A key plan showing the location of the proposed site is indicated in Figure 1. The development is located at 7769, 7751 & 7735 Thorold Stone Road in Niagara Falls, Ontario. A site plan prepared by Upper Canada Consultants Engineers/Planners dated February 9, 2023 is attached as Figure 2. The proposed residential development will consist of blocks of townhouses, semi-detached units, one single-detached unit, associated parking and roadways.

A site visit was performed by HGC Engineering personnel in November 2021 to investigate the surrounding land uses and to identify the significant noise sources in the vicinity. The primary sources of noise are road traffic on Thorold Stone Road and the QEW, with lesser contributions from Montrose Road. The surrounding lands comprise of existing residential uses. There are existing commercial/retail buildings located further east, adjacent to Montrose Road. An A&W with a drive-through and a commercial building with uses such as Thorowest Bakery, H&R Block, Quiznos, Mary Kraus Real Estate, Malibu Beach Tanning, Avondale Food Stores and Pho Vietnam. There are small rooftop units. During the site visit, traffic sounds dominated the site, nevertheless, a noise warning clause informing future owners and occupants of the building of the proximity to existing commercial/retail uses is recommended as included in Section 5.4. There are no other significant sources of stationary sound within 500 m of the subject site.

3 Criteria for Acceptable Sound Levels

3.1 Road Traffic Noise Criteria

Guidelines for acceptable levels of road traffic noise impacting residential developments are given in the MECP publication NPC-300, "Environmental Noise Guideline Stationary and Transportation Sources – Approval and Planning", Part C release date October 21, 2013 and are listed in Table 1 below. The values in Table 1 are energy equivalent (average) sound levels [L_{EQ}] in units of A weighted decibels [dBA]. These criteria have generally been adopted by the Regional Municipality of Niagara.

رن VIBRATION

	Daytime L _{EQ(16 hour)} Road	Nighttime L _{EQ(8 hour)} Road
Outdoor Living Areas	55 dBA	
Inside Living/Dining Rooms	45 dBA	45 dBA
Inside Bedrooms	45 dBA	40 dBA

Table 1: Road Traffic Noise Criteria

Daytime refers to the period between 07:00 and 23:00, while nighttime refers to the period between 23:00 and 07:00. The term "Outdoor Living Area" (OLA) is used in reference to an outdoor patio, a backyard, a terrace or other area where passive recreation is expected to occur. Balconies that are less than 4 m in depth are not considered to be outdoor living areas under MECP guidelines.

The guidelines in the MECP publication allow the sound level in an OLA to be exceeded by up to 5 dBA, without mitigation, if warning clauses are placed in the purchase and rental agreements and offers of purchase and sale for the property. When OLA sound levels exceed 60 dBA, physical mitigation is required to reduce the OLA sound level to below 60 dBA and as close to 55 dBA as technically, economically and administratively feasible.

A central air conditioning system as an alternative means of ventilation to open windows is required for dwellings where nighttime sound levels outside bedroom/living/dining room windows exceed 60 dBA or daytime sound levels exceed 65 dBA outside bedroom/living room windows. A forced air ventilation system with ducts sized for the future provision of air conditioning, or some other alternative form of mechanical ventilation, is required where nighttime sound levels at bedroom/living/dining room windows are in the range of 51 - 60 dBA or daytime sound levels are in the range of 56 - 65 dBA.

Building components such as walls, windows and doors must be designed to achieve indoor sound level criteria when the plane of bedroom/living/dining room window sound level is greater than 60 dBA or the daytime sound level is greater than 65 dBA due to road traffic noise.

Warning clauses are required to notify future residents of possible excesses when nighttime sound levels exceed 50 dBA at the plane of the bedroom/living/dining room window and daytime sound

levels exceed 55 dBA in the outdoor living area and at the plane of the bedroom/living/dining room window due to road traffic.

4 Traffic Sound Level Assessment

4.1 Road Traffic Data

Road traffic data for Thorold Stone Road and Montrose Road was provided by RMON personnel in the form of Turning Movement Counts and is included in Appendix A. A commercial vehicle percentage of 2.0% was further split into 1.2% heavy trucks and 0.8% medium trucks for Thorold Stone Road. A commercial vehicle percentage of 2.2% was further split into 1.4% heavy trucks and 0.8% medium trucks for Montrose Road. The data was projected 20 years to the year 2043 as per RMON requirements using a 2.5% growth rate. A day/night split of 90%/10% and a posted speed limit of 50 km/h were used in the analysis.

Road traffic data for the QEW was obtained from the Ministry of Transportation, included in Appendix B, and projected to the year 2033 at a conservative growth rate of 2.5%/yr. A 67%/33% day/night split was used in the analysis. A commercial vehicle percentage of 10% was further split into 3.8% medium trucks and 6.2% heavy trucks. These vehicles were assumed to be travelling at the posted maximum speed of 100 km/hr. The projected road traffic volumes are shown in Table 2 below.

Road Name		Cars	Medium Trucks	Heavy Trucks	Total
	Daytime	29 113	238	356	29 707
Thorold Stone Road	Nighttime	3 235	26	40	3 301
(projected to 2043)	Total	32 348	264	396	33 008
Manénaga Dagi	Daytime	19 102	156	273	19 531
Montrose Road	Nighttime	2 122	17	30	2 170
(projected to 2043)	Total	21 224	174	304	21 701
Queen Elizabeth Way	Daytime	61 537	2 598	4 239	68 375
Queen Elizabeth Way	Nighttime	30 764	1 299	2 119	34 182
(projected to 2033)	Total	92 301	3 897	6 359	102 557

Table 2: Projected Road Traffic Data

4.2 Road Traffic Noise Predictions

To assess the levels of road traffic noise which would impact the site in the future, road traffic predictions were made using STAMSON version 5.04, a computer algorithm developed by the MECP. Sample STAMSON output is included in Appendix B.

Prediction locations were chosen around the site to obtain a good representation of the future sound levels at various dwelling units with exposure to the surrounding roadways. Sound levels were also predicted at the top-storey façade during the daytime and nighttime hours to investigate ventilation requirements and building envelope construction and in the outdoor amenity areas to determine acoustic barrier requirements. The results of these predictions are summarized in Table 3.

Prediction Location	Unit No.	Description	Daytime in OLA LEQ-16 hr	Daytime at Façade LEQ-16 hr	Nighttime at Façade L _{EQ-8 hr}
[A]	34	Townhouse block with flanking exposure to Thorold Stone Road	62	64	59
[B]	32	Townhouse block with some exposure to Thorold Stone Road	58	60	57
[C]	39	Townhouse block with fronting exposure to Thorold Stone Road	<55	62	57
[D]	1	Semi-detached unit with flanking exposure to Thorold Stone Road	55	65	59
[E]	24	Single-detached unit with some exposure to Montrose Road	60	55	54

Table 3: Future Road Traffic Sound Levels, [dBA], Without Mitigation

5 Traffic Noise Recommendations

The predictions indicate that the future traffic sound levels will exceed MECP guidelines at the proposed residential development. Recommendations to address these excesses are discussed below.

5.1 Outdoor Living Areas

The predicted daytime sound level in the rear yard of the dwelling with flanking exposure to Thorold Stone Road (Prediction Location [A]) will be 62 dBA, 7 dBA in excess of the MECP's limit of 55 dBA. An acoustic barrier 2.0 m in height will reduce sound levels to 56 dBA in this area. Alternatively, an acoustic barrier 2.3 m in height will reduce sound levels to less than 55 dBA in this area.

The predicted daytime sound level in the rear yard of the second dwelling unit with exposure to Thorold Road (Prediction Location [B]) will be 58 dBA, 3 dBA in excess of the MECP's limit of 55 dBA. The 3 dBA sound level excess is acceptable to the MECP with the use of a noise warning clause, if it is acceptable to the municipality. The acoustic barrier located at the rear yard of the dwelling unit at location [A] with flanking exposure to Thorold Stone Road will reduce sound levels at location [B].

The predicted daytime sound level in the rear yard of the dwelling unit with flanking exposure to Thorold Road (Prediction Location [E]) will be 60 dBA, 5 dBA in excess of the MECP's limit of 55 dBA. The 5 dBA sound level excess is acceptable to the MECP with the use of a noise warning clause, if it is acceptable to the municipality.

The dwelling units in the remaining blocks will have sound levels that are 55 dBA or less. Physical mitigation in the form of an acoustic barrier will not be required.

When grading information is available for the site, acoustic barrier heights should be refined. As a general note, acoustic barriers may be a combination of an acoustic wall and an earth berm. The wall component of the barrier should be of a solid construction with a surface density of no less than 20 kg/m². The walls may be constructed from a variety of materials such as wood, brick, pre-cast concrete or other concrete/wood composite systems provided that it is free of gaps or cracks.

5.2 Indoor Living Areas

Provision for the Future Installation of Air Conditioning

The predicted future sound levels outside the top storey living/dining room/bedroom windows of all proposed dwelling units will be between 56 and 65 dBA during the daytime hours and between 51 and 60 dBA during the nighttime. To address this excess, the MECP guidelines recommend that this dwelling be equipped with a forced air ventilation system with ducts sized to accommodate the future installation of air conditioning by the occupant.

Window or through-the-wall air conditioning units are not recommended for any residential units because of the noise they produce and because the units penetrate through the exterior wall which degrades the overall noise insulating properties of the envelope. The location, installation and sound ratings of the outdoor air conditioning devices should minimize noise impacts and comply with criteria of MECP publication NPC-300, as applicable. The guidelines also recommend warning clauses for all units with ventilation requirements.

5.3 Building Façade Constructions

All proposed dwelling units in the development will have daytime sound levels less than 65 dBA and nighttime sound levels at the top storey façade that will be less than 60 dBA. For these dwellings, any exterior wall, and double glazed window construction meeting the minimum requirements of the Ontario Building Code (OBC) will provide adequate sound insulation for the dwelling units.

5.4 Warning Clauses

The MECP guidelines recommend that warning clauses be included in the property and tenancy agreements and offers of purchase and sale for all units with anticipated traffic sound level excesses. Examples are provided below.

Suggested wording for dwellings which have sound level excesses but do not require mitigation measures is given below.

Type A:

Purchasers/tenants are advised that sound levels due to increasing road traffic may occasionally interfere with some activities of the dwelling unit occupants as the sound levels exceed the Municipality's and the Ministry of the Environment, Conservation and Parks' noise criteria.

Suggested wording for future dwellings with daytime OLA sound levels exceeding the MECP

criteria by 6 dB or more, for which physical mitigation has been provided is given below.

Type B:

Purchasers/tenants are advised that despite the inclusion of noise control features in the development and within the building units, sound levels due to increasing road and rail traffic may occasionally interfere with some activities of the dwelling occupants as the sound levels exceed the City's and the Ministry of the Environment, Conservation and Parks' noise criteria. The acoustical barrier as installed shall be maintained, repaired or replaced by the owner. Any maintenance, repair or replacement shall be with the same material, to the same standards and having the same colour and appearance of the original.

A suggested wording for future dwellings requiring forced air ventilation systems is given below.

Type C:

This dwelling unit has been designed with the provision for adding central air conditioning at the occupant's discretion. Installation of central air conditioning by the occupant in low and medium density developments will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment, Conservation and Parks.

Suggested wording for future dwellings adjacent to commercial/retail facilities is given below.

Type D:

Purchasers are advised that due to the proximity of the existing commercial, and retail facilities, sound levels from these facilities may at times be audible.

These sample clauses are provided by the MECP as examples and can be modified by the

Municipality as required.

6 Summary and Recommendations

The following list and Table 4 summarize the recommendations made in this report.

- 1. An acoustic barrier is required in the rear yard of the proposed dwelling unit with flanking exposure to Thorold Road (Prediction Location [A]). When grading plans are available, the acoustic barrier height should be refined.
- Forced air ventilation systems with ductwork sized for the future installation of central air conditioning system will be required for all proposed dwelling units. The location, installation and sound ratings of the air conditioning devices should comply with NPC-300, as applicable.
- 3. Building constructions meeting the minimum requirements of the Ontario Building Code will provide sufficient acoustical insulation for the indoor spaces of all dwelling units.
- 4. Warning clauses should be used to inform future residents of the traffic noise issues and the presence of the surrounding commercial and retail facilities.

Prediction Location	Lot/Block No.	Acoustic Barrier	Ventilation Requirements *	Type of Warning Clause	Building Façade Constructions
[A]	34	✓	Forced Air	B, C, D	OBC
[B]	32		Forced Air	A, C, D	OBC
[C]	39		Forced Air	A, C, D	OBC
[D]	1		Forced Air	A, C, D	OBC
[E]	24		Forced Air	A, C, D	OBC

Table 4: Summary of Noise Control Requirements and Noise Warning Clauses

Notes:

-- no specific requirement

* The location, installation and sound rating of the air conditioning condensers must be compliant with MOE Guideline NPC-300, as applicable

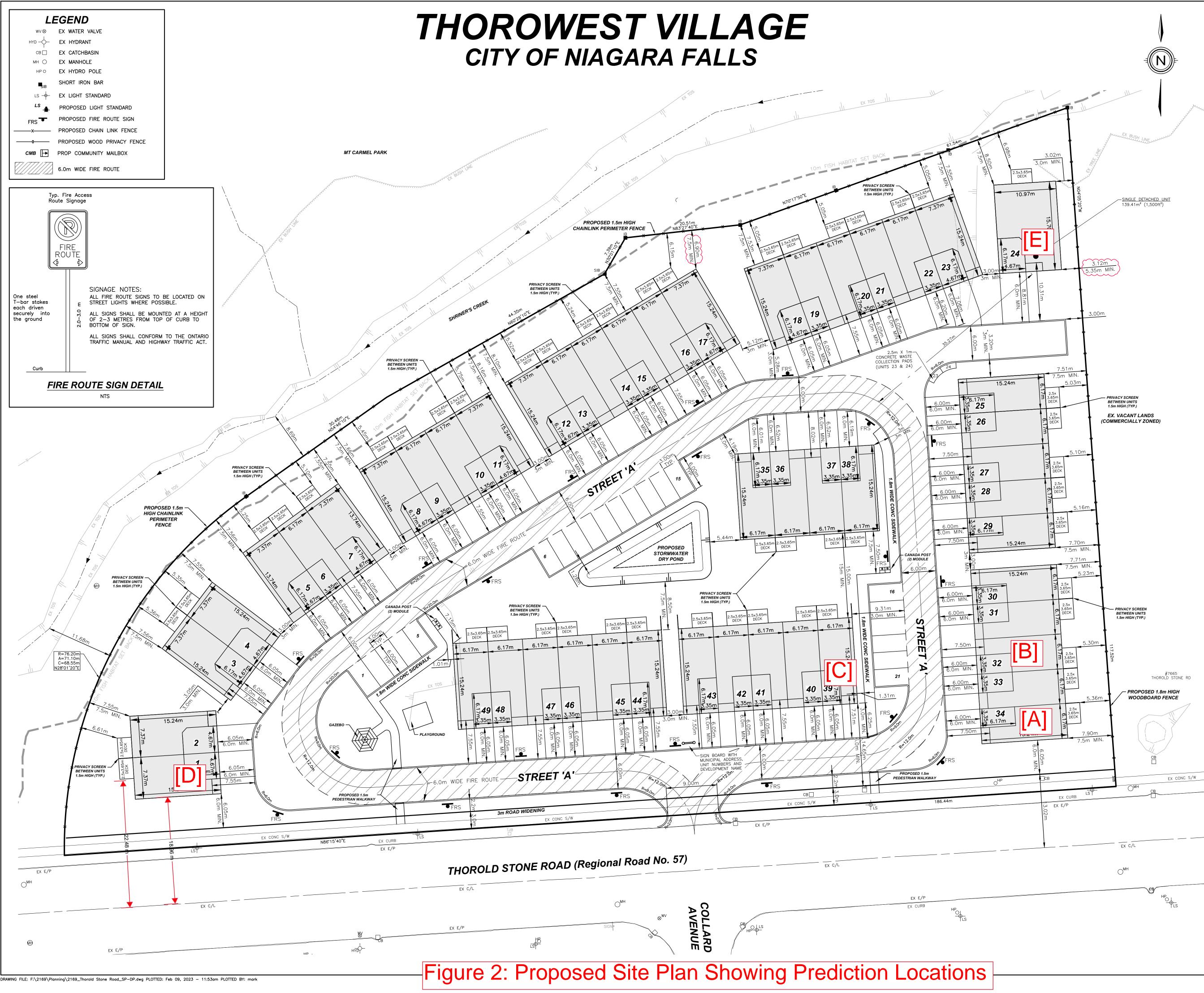
OBC - meeting the minimum requirements of the Ontario Building Code

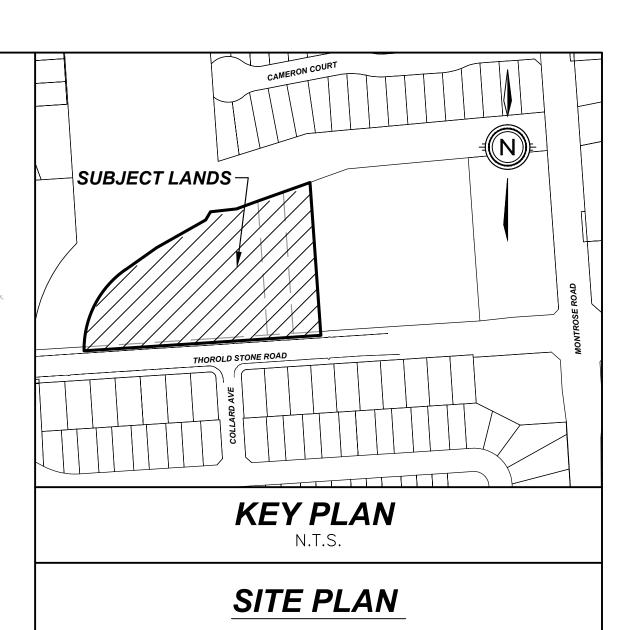
✓ Acoustic barrier required. When grading plans are available, the acoustic barrier height should be refined

6.1 Implementation

To ensure that the noise control recommendations outlined above are fully implemented, it is recommended that:

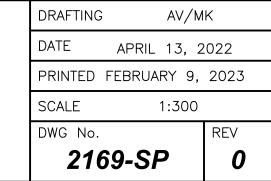
- Prior to an application for a building permit, a Professional Engineer qualified to provide acoustical engineering services in the Province of Ontario or the chief building official shall review the grading plan, to ensure that the acoustic barriers are adequately designed to ensure acceptable indoor and outdoor noise levels.
- Prior to assumption of the subdivision, the Municipality's building inspector or a Professional Engineer qualified to perform acoustical engineering services in the Province of Ontario should certify that the noise control measures have been properly installed and constructed.




Figure 1: Key Plan

ZONING MATRIX			
PROVISION	ZONING (R4)	PROVIDED	
BLOCK TOWNHOUSE DWELLING			
MIN. LOT AREA	250m² for each dwelling unit	326.62m²	
MIN. LOT FRONTAGE	30m	186.44m	
MIN. FRONT YARD DEPTH	6m + any applicable distance specified in section 4.27.1	6.05m	
MIN. REAR YARD DEPTH	7.5m + any applicable distance specified in section 4.27.1	6.90m	
MIN. INTERIOR SIDE YARD	one half the height of the building	3.00m	
MIN EXTERIOR SIDE YARD WIDTH	4.5m + any applicable distance specified in section 4.27.1	N/A	
MAX. LOT COVERAGE	35%	30.65%	
MAX. HEIGHT OF BUILDING OR STRUCTURE	10m subject to section 4.7	(11m)	
MIN. LANDSCAPED AREA OPEN SPACE	45m² for each dwelling unit	157.37m² for each dwelling unit	
MIN. PRIVACY AREA YARD DEPTH FOR EACH TOWNHOUSE DWELLING UNIT, AS MEASURED FROM THE EXTERIOR REAR WALL OF EVERY DWELLING UNIT	7.5m	7.5m	

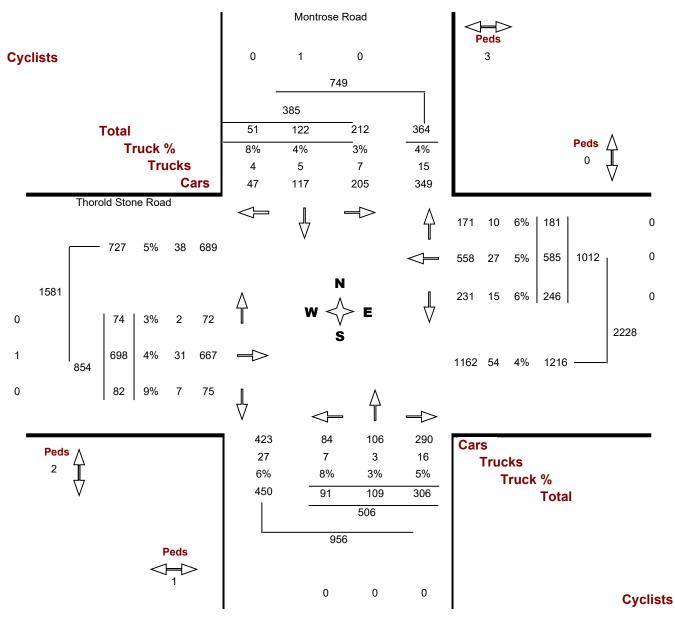
	% COVERAGE
0.491	30.67
0.282	17.61
0.771	48.16
0.057	3.56
1.601	100.00
_	49
	1.544Ha.
AREA)	31.74u/Ha.
4 SPACES	PER UNIT) 69
OTAL	77
	0.282 0.771 0.057 1.601 AREA) 4 SPACES


•	•	•	•
		•	•
0	ISSUED FOR APPROVAL	2023-02-09	M.K
#	REVISION	DATE	INIT

SITE PLAN

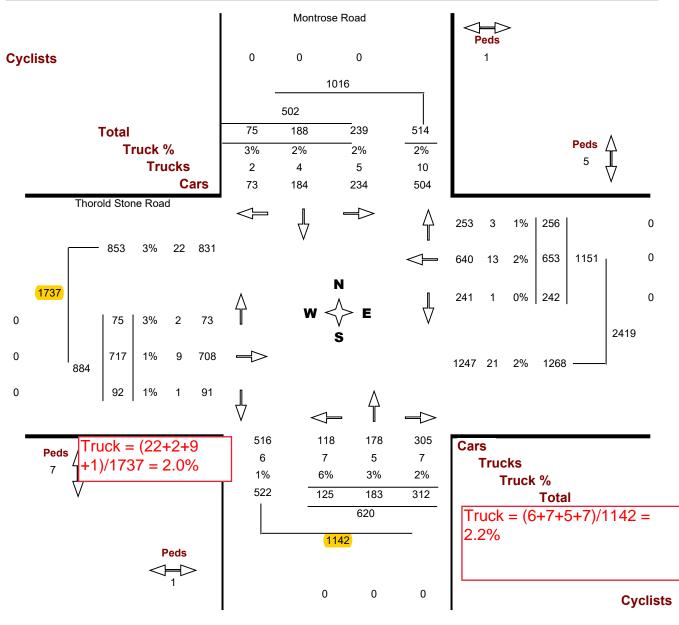
UPPER CANADA CONSULTANTS ENGINEERS / PLANNERS

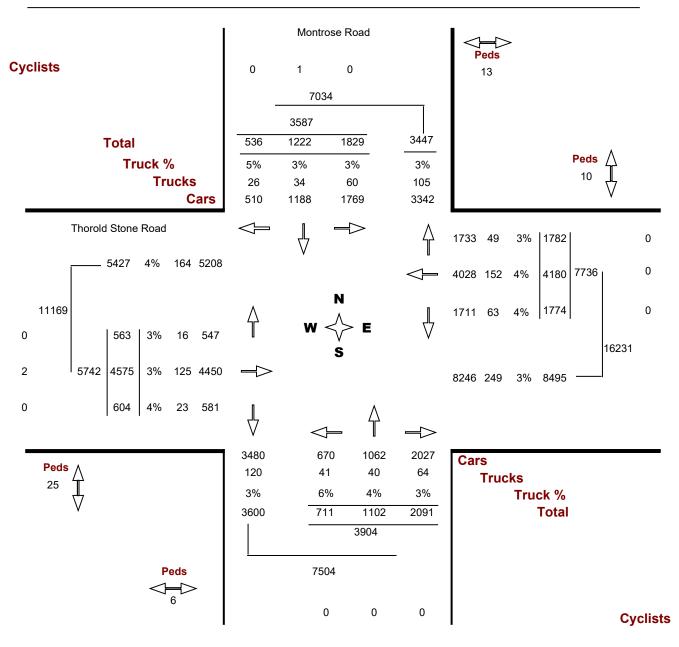
DRAWING	TITL
---------	------


APPENDIX A

Road Traffic Data

Location Montros	e Road @ Thorold Stone Road
Municipality. NIAGAF	RA FALLS
Traffic Cont.	
Major Dir East we	st


GeoID	01421
Count Date.	Tuesday, 07 February, 2017
Count Time.	07:00 AM — 09:00 AM
Peak Hour	08:00 AM — 09:00 AM


Location...... Montrose Road @ Thorold Stone Road Municipality. NIAGARA FALLS Traffic Cont. Major Dir..... East west

GeoID	01421
Count Date.	Tuesday, 07 February, 2017
Count Time.	03:00 PM — 06:00 PM
Peak Hour	04:15 PM — 05:15 PM

Location	Montrose Road @ Thorold Stone Road
Municipality	NIAGARA FALLS
GeoID	01421
Count Date	Tuesday, 07 February, 2017

Turning Movement Count - Details Report (15 min)

Location	Montrose Road @ Thorold Stone Road
Municipality	NIAGARA FALLS
Count Date	Tuesday, February 07, 2017

Montrose Road										Thorold Stone Road										
	North Approach South Approach							East Approach West Approach						bach						
Time Period	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT
07:00 07:15	30	18	4	0	52	11	12	24	0	47	22	62	32	0	116	9	55	15	0	79
07:15 07:30	36	16	12	0	64	15	17	33	0	65	40	91	22	0	153	14	74	17	0	105
07:30 07:45	51	27	13	0	91	21	23	50	0	94	38	113	27	0	178	14	139	7	0	160
07:45 08:00	60	30	8	0	98	14	29	67	0	110	59	123	37	0	219	14	164	27	0	205
Hourly Total	177	91	37	0	305	61	81	174	0	316	159	389	118	0	666	51	432	66	0	549
08:00 08:15	51	29	13	0	93	24	23	66	0	113	70	149	40	0	259	18	141	29	0	188
08:15 08:30	56	26	15	0	97	26	21	95	0	142	52	147	28	0	227	16	197	16	0	229
08:30 08:45	53	23	11	0	87	27	20	70	0	117	61	150	57	0	268	18	178	15	0	211
08:45 09:00	52	44	12	0	108	14	45	75	0	134	63	139	56	0	258	22	182	22	0	226
Hourly Total	212	122	51	0	385	91	109	306	0	506	246	585	181	0	1012	74	698	82	0	854
11:00 11:15	73	32	11	0	116	12	15	76	0	103	45	98	62	0	205	15	105	11	0	131
11:15 11:30	67	25	19	0	111	16	16	55	0	87	41	109	67	0	217	13	122	24	0	159
11:30 11:45	56	32	13	0	101	27	25	53	0	105	64	127	69	0	260	16	110	13	0	139
11:45 12:00	71	37	17	0	125	17	37	62	0	116	56	117	73	0	246	12	132	16	0	160
Hourly Total	267	126	60	0	453	72	93	246	0	411	206	451	271	0	928	56	469	64	0	589
12:00 12:15	40	59	24	0	123	25	55	69	0	149	62	114	59	0	235	20	122	16	0	158
12:15 12:30	51	63	23	0	137	24	47	84	0	155	57	116	78	0	251	9	128	16	0	153
12:30 12:45	72	46	27	0	145	23	41	68	0	132	53	125	70	0	248	25	94	17	0	136
12:45 13:00	71	51	24	0	146	17	44	62	0	123	63	128	50	0	241	19	137	21	0	177
Hourly Total	234	219	98	0	551	89	187	283	0	559	235	483	257	0	975	73	481	70	0	624
13:00 13:15	58	46	20	0	124	25	38	62	0	125	51	99	62	0	212	24	137	28	0	189
13:15 13:30	66	36	12	0	114	16	40	57	0	113	51	117	56	0	224	15	129	14	0	158
13:30 13:45	67	45	12	0	124	25	36	48	0	109	57	107	56	0	220	13	115	11	0	139
13:45 14:00	71	46	18	0	135	21	38	76	0	135	57	105	53	0	215	16	138	21	0	175
Hourly Total	262	173	62	0	497	87	152	243	0	482	216	428	227	0	871	68	519	74	0	661
15:00 15:15	45	46	24	0	115	25	51	75	0	151	65	174	62	0	301	18	142	16	0	176
15:15 15:30	57	41	16	0	114	24	51	64	0	139	66	145	44	0	255	23	152	25	0	200
15:30 15:45	56	43	17	0	116	13	41	66	0	120	53	145	68	0	266	24	190	30	0	244
15:45 16:00	58	33	23	0	114	24	28	56	0	108	67	161	61	0	289	23	141	12	0	176
Hourly Total	216	163	80	0	459	86	171	261	0	518	251	625	235	0	1111	88	625	83	0	796
16:00 16:15	44	37	19	0	100	29	41	85	0	155	56	172	61	0	289	24	167	18	0	209

Wednesday, October 27, 2021

Page 1 of 2

Montrose Road	
---------------	--

Thorold Stone Road

North Approach					South Approach				East Approach					West Approach						
Time Period	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT
16:15 16:30	63	51	20	0	134	25	42	63	0	130	60	164	55	0	279	18	181	27	0	226
16:30 16:45	52	37	17	0	106	31	47	90	0	168	65	162	60	0	287	19	143	28	0	190
16:45 17:00	46	52	21	0	119	27	41	71	0	139	58	167	69	0	294	17	212	23	0	252
Hourly Total	205	177	77	0	459	112	171	309	0	592	239	665	245	0	1149	78	703	96	0	877
17:00 17:15	78	48	17	0	143	42	53	88	0	183	59	160	72	0	291	21	181	14	0	216
17:15 17:30	65	38	20	0	123	17	37	76	0	130	52	119	66	0	237	19	171	23	0	213
17:30 17:45	66	31	15	0	112	26	28	50	0	104	55	140	51	0	246	20	153	12	0	185
17:45 18:00	47	34	19	0	100	28	20	55	0	103	56	135	59	0	250	15	143	20	0	178
Hourly Total	256	151	71	0	478	113	138	269	0	520	222	554	248	0	1024	75	648	69	0	792
Grand Total	1829	1222	536	0	3587	711	1102	2091	0	3904	1774	4180	1782	0	7736	563	4575	604	0	5742
Truck %	3%	3%	5%	0%	3%	6%	4%	3%	0%	4%	4%	4%	3%	0%	3%	3%	3%	4%	0%	3%

Yvonne Lo

From: Sent:	Bee, Christopher (MTO) <christopher.bee@ontario.ca> November 25, 2021 6:16 PM</christopher.bee@ontario.ca>
То:	Yvonne Lo
Cc:	Bee, Christopher (MTO)
Subject:	RE: Commercial Vehicle % - QEW at Thorold Stone Rd
Follow Up Flag:	Flag for follow up

Flag Status: Flagged

To Yvonne Lo, HGC:

I am well, thanks.

QEW at Thorold Stone Road has official MTO statistics of "% trucks" steady for the last 10 years to 2016, at 10%. There is no further official data past 2016.

"% trucks" include long trucks, short trucks, vans, buses, cars with trailer, and specials, but not regular cars. There is no further breakdown available within this group.

Regards.

Christopher Bee MTO CR STIRCS, TIMD

From: Yvonne Lo <ylo@hgcengineering.com>
Sent: November 24, 2021 3:13 PM
To: Bee, Christopher (MTO) <Christopher.Bee@ontario.ca>
Subject: Commercial Vehicle % - QEW at Thorold Stone Rd

CAUTION -- EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender. Hi Christopher,

How is it going? We're currently conducting a noise study for a proposed development located at 7769 Thorold Stone Road, in Niagara Falls, ON, as shown in the link below:

https://goo.gl/maps/sHCBHBTnVtDHE3cbA

Can you please provide commercial vehicle percentages for the QEW at Thorold Stone Road?

Thank you!

Best,

Yvonne Lo, MEng, PEng Project Consultant

		_							
		Dist.		Pattern			6 4 V 10 T		
Highway	Location Description	(KM)	Year	Туре	AADT	SADT		WADT	
			1995	UC	43,800	47,300	49,100	40,300	
			1996	UC	46,100	51,900	-	41,500	
			1997	UC	48,200	61,700	-	40,600	
			1998	UC	51,200	65,000		43,200	
			1999	UC	50,200	63,300	60,800	42,300	
			2000	UC	51,600	65,000	-	43,500	
			2001	UC	51,300	58,000	-	46,200	
			2002	UC	54,500	61,000	-	49,000	
			2003	UC	56,000	62,700	-	50,400	
			2004 2005	UC	57,400	64,100	-	51,800	
			2005	UC UC	56,200 57,500	62,600 63,900		50,500 51,700	
			2000	UC	58,800	65,300	-	52,800	
			2007	UC	60,200	66,400	-	54,000	
			2008	UC	61,500	67,900	-	55,300	
			2005	UC	62,800	69,200		56,500	
			2010	UC	64,300	70,700	-	57,800	
			2011	UC	66,000	72,600	-	59,400	
			2012	UC	66,800	73,500	72,800	60,100	
			2014	UC	68,100	68,100	-	64,700	
			2015	UC	69,200	69,200	-	65,700	
			2016	UC	70,400	70,400	-	66,900	
QEW	THOROLD STONE RD IC-32	2.5	1988	UC	39,200	50,800	-	32,800	
		_	1989	UC	41,100	52,100	49,700	35,300	
			1990	UC	, 43,000	, 53,600	-	, 37,300	
			1991	UC	40,400	50,900		35,100	
			1992	UC	40,300	50,700	-	34,200	
			1993	UC	40,800	50,100		35,400	
			1994	UC	40,500	51,800		34,200	
			1995	UC	44,500	57,000		37,500	
			1996	UC	45,500	58,200	56,000	38,400	1.1
			1997	UC	46,500	59,500	57,200	39,200	0.5
			1998	UC	47,500	60,300	58,000	40,100	0.3

		_							
		Dist.		Pattern					
Highway	Location Description	(KM)	Year	Туре	AADT	SADT		WADT	
			1999	UC	48,700	61,400	-	41,100	
			2000	UC	50,100	-		42,200	
			2001	UC	50,800	64,000	-	42,700	
			2002	UC	52,700	66,500	-	44,500	
			2003	UC	53,500	67,400	64,700	45,500	
			2004	UC	55,300	68,700	-	46,900	
			2005	UC	54,900	68,000		46,600	
			2006	UC	57,300	70,900	-	48,600	
			2007	UC	58,500	72,500		49,600	
			2008	UC	59,700	73,900	-	50,700	
			2009	UC	61,000	74,600		51,800	
			2010	UC	62,200	75,700		52,800	
			2011	UC	56,400	68,800	-	47,900	
			2012	UC	63,100	76,400		53,700	
			2013	UC	63,500	63,500	-	60,300	
			2014	UC	65,200	65,200	-	61,900	
			2015	UC	66,300	66,300	-	63,000	
			2016	UC	<mark>67,400</mark>	67,400	-	64,000	
QEW	MOUNTAIN RD IC-34	2.4	1988	IC	39,900	51,800	48,600	33,400	
			1989	IC	42,000	53,300	-	36,100	
			1990	IC	44,100	55,000		38,300	
			1991	IC	44,300	55,700		38,400	
			1992	IC	44,200	55,600	-	37,500	
			1993	IC	44,800	55,100	53,300	38,900	
			1994	IC	43,200	55,300		36,400	
			1995	IC	58,000	74,200	-	48,900	
			1996	IC	61,800	79,100	76,000	52,100	
			1997	IC	62,100				
			1998	IC	63,900	81,200		53,900	
			1999	IC	65 <i>,</i> 900	-	-	55,600	
			2000	IC	67,900	85,600	82,200	57,300	0.6
			2001	IC	73,500	92,600	88,900	61,700	0.6
			2002	IC	76,800	96,900	92,900	64,800	0.5

APPENDIX B

Sample STAMSON 5.04 Output

STAMSON 5.0 NORMAL REPORT Date: 23-02-2023 10:02:11 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: a.te Time Period: Day/Night 16/8 hours Description: Predicted daytime and nighttime sound levels 2-storey townhouse block with flanking exposure to Thorold Stone Road Unit 34, prediction location [A]. Road data, segment # 1: Thorold (day/night) _____ Car traffic volume : 29113/3235 veh/TimePeriod * Medium truck volume : 238/26 veh/TimePeriod * Heavy truck volume : 356/40 veh/TimePeriod * Posted speed limit : 50 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 17370 Percentage of Annual Growth: 2.50Number of Years of Growth: 26.00Medium Truck % of Total Volume: 0.80Heavy Truck % of Total Volume: 1.20Day (16 hrs) % of Total Volume: 90.00 Data for Segment # 1: Thorold (day/night) _____ Angle1Angle2: -90.00 deg90.00 degWood depth: 0(No woods.)No of house rows: 0 / 0Surface: 1(Absorptive ground surface) Receiver source distance : 21.50 / 21.50 m Receiver height : 4.50 / 4.50 m : 1 (Flat/gentle slope; no barrier) Topography Reference angle : 0.00 Road data, segment # 2: Montrose (day/night) -----Car traffic volume : 19102/2122 veh/TimePeriod * Medium truck volume : 156/17 veh/TimePeriod * Heavy truck volume : 273/30 veh/TimePeriod * Posted speed limit:50 km/hRoad gradient:0 %Road pavement:1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 11420 Percentage of Annual Growth : 2.50 Number of Years of Growth : 26.00 Medium Truck % of Total Volume. 20.00Heavy Truck % of Total Volume. 1.40

Day (16 hrs) % of Total Volume : 90.00 Data for Segment # 2: Montrose (day/night) _____ Angle1Angle2: -90.00 deg0.00 degWood depth: 0(No woods.)No of house rows: 0 / 0Surface: 1(Absorptive ground surface) Receiver source distance : 170.00 / 170.00 m Receiver height : 4.50 / 4.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Road data, segment # 3: QEW (day/night) _____ Car traffic volume : 61537/30764 veh/TimePeriod * Medium truck volume : 2598/1299 veh/TimePeriod * Heavy truck volume : 4239/2119 veh/TimePeriod * Posted speed limit : 100 km/h Road gradient : 0 % Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 67400 Percentage of Annual Growth : 2.50 Number of Years of Growth : 17.00 Medium Truck % of Total Volume:17.00Heavy Truck % of Total Volume:3.80Day (16 hrs) % of Total Volume:66.67 Data for Segment # 3: QEW (day/night) _____ Angle1Angle2: -90.00 deg0.00 degWood depth: 0(No woodsNo of house rows: 0 / 0 (No woods.) 0 / 0 1 (Absorptive ground surface) Surface : Receiver source distance : 500.00 / 500.00 m Receiver height : 4.50 / 4.50 m Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00 Results segment # 1: Thorold (day) _____ Source height = 1.05 mROAD (0.00 + 63.65 + 0.00) = 63.65 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ -90 90 0.58 67.45 0.00 -2.48 -1.33 0.00 0.00 0.00 63.65

_____ ___ Segment Leg : 63.65 dBA Results segment # 2: Montrose (day) _____ Source height = 1.09 mROAD (0.00 + 44.89 + 0.00) = 44.89 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ -90 0 0.58 65.91 0.00 -16.68 -4.33 0.00 0.00 0.00 44.89 _____ Segment Leq : 44.89 dBA Results segment # 3: QEW (day) _____ Source height = 1.58 mROAD (0.00 + 53.22 + 0.00) = 53.22 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ 0 0.57 81.40 0.00 -23.87 -4.31 0.00 0.00 0.00 -90 53.22 _____ Segment Leg : 53.22 dBA Total Leg All Segments: 64.08 dBA Results segment # 1: Thorold (night) _____ Source height = 1.05 mROAD (0.00 + 57.14 + 0.00) = 57.14 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ -90 90 0.58 60.94 0.00 -2.48 -1.33 0.00 0.00 0.00 57.14

[A]

_____ ___ Segment Leg : 57.14 dBA Results segment # 2: Montrose (night) -----Source height = 1.08 mROAD (0.00 + 38.33 + 0.00) = 38.33 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ -90 0 0.58 59.35 0.00 -16.68 -4.34 0.00 0.00 0.00 38.33 _____ Segment Leq : 38.33 dBA Results segment # 3: QEW (night) _____ Source height = 1.58 mROAD (0.00 + 53.22 + 0.00) = 53.22 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ -90 0 0.57 81.40 0.00 -23.87 -4.31 0.00 0.00 0.00 53.22 _____ ___ Segment Leq : 53.22 dBA Total Leq All Segments: 58.66 dBA TOTAL Leq FROM ALL SOURCES (DAY): 64.08 (NIGHT): 58.66