5578 George Street, Niagara Falls Phase Two Environmental Site Assessment

Project Location: 5578 George Street Niagara Falls, ON L2E 3E2

Prepared For:

1338284 Ontario Inc. 4-5602 George Street Niagara Falls, ON L2E 3E2

Prepared By:

Niagara Soils Solutions Ltd. 3300 Merrittville Highway, Unit 4 Thorold, ON L2V 4Y6

> Date: December 18, 2024 NSSL File No.: NS2491-02

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY
2.0	INTRODUCTION
2.1	SITE DESCRIPTION
2.2	PROPERTY OWNERSHIP
2.3	CURRENT AND PROPOSED FUTURE USES
2.4	Applicable Site Condition Standard
2.0	BACKGROUND INFORMATION
2.1	Physical Setting
3.0	SCOPE OF INVESTIGATION
3.1	OVERVIEW OF SITE INVESTIGATION
3.2	MEDIA INVESTIGATED
3.3	DEVIATION FROM SAMPLING AND ANALYSIS PLAN8
3.4	IMPEDIMENTS
4.0	INVESTIGATION METHOD
4.1	PHASE TWO ESA GENERAL OVERVIEW9
4.2	UTILITY CLEARANCE9
4.3	Drilling9
4.4	GROUND WATER: MONITORING WELL INSTALLATION9
4.5	SOIL SAMPLING10
4.6	SOIL: FIELD SCREENING MEASUREMENTS10
4.7	GROUND WATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS10
4.8	GROUND WATER: SAMPLING11
4.9	SEDIMENT SAMPLING
4.10	Analytical Testing
4.11	RESIDUE MANAGEMENT PROCEDURES
4.12	ELEVATION SURVEYING
4.13	QUALITY ASSURANCE AND QUALITY CONTROL MEASURES
5.0	REVIEW AND EVALUATION
5.1	GEOLOGY
5.2	GROUND WATER: ELEVATION AND FLOW DIRECTION12
5.3	GROUND WATER: HYDRAULIC GRADIENTS12
5.4	SOIL TEXTURE
5.5	SOIL QUALITY
5.6	GROUNDWATER QUALITY
5.7	SEDIMENT QUALITY14
5.8	QUALITY ASSURANCE AND QUALITY CONTROL RESULTS
6.0	SOIL DELINEATION

7.0	CONCLUSIONS	16
7.1	CLOSURE	16
8.0	LIMITATIONS	17
9.0	REFERENCES	18

FIGURES

Figure 1:	Site Location Plan
-----------	--------------------

- Figure 2: Site Layout & Features
- Figure 3: Potentially Contaminating Activities
- Figure 4: Areas of Potential Environmental Concern
- Figure 5: Borehole & Hand Auger Locations
- Figure 5B: Borehole & Hand Auger Locations & APEC
- Figure 6: Topographic Contour Map
- Figure 7: Groundwater Contour Map
- Figure 8: Borehole Soil Results
- Figure 8A: Hand Auger Soil Results
- Figure 9: Groundwater Results
- Figure 10: Cross Section Planview
- Figure 10A: Cross Section A-A'
- Figure 10B: Cross Section B-B'
- Figure 10C: Cross Section C-C'

TABLES

Table 1:	Site Condition Standards Applicable to the Phase Two Property
Table 2:	Groundwater Details
Table 3:	Hydraulic Gradient
Table 4:	Results of Grain Size Analysis
Table 5:	Soil Results versus Table 3 Residential/Parkland/Institutional Criteria
Table 6:	Delineation Soil Results versus Table 3 RPI Criteria

APPENDICES

- A. Field Logs & Borehole Logs
- B. Certificates of Analysis Soil
- C. Certificate of Analysis Groundwater
- D. Grain Size Analysis

ACRONYMS AND ABBREVIATIONS

APECs	Areas of Potential Environmental Concern
bgs	Below Ground Surface
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
COC	Chain of Custody
COPCs	Contaminants of Potential Concerns
EC	Electrical Conductivity
ESA	Environmental Site Assessment
MECP	Ministry of the Environment, Conservation and Parks
MOECC	Ministry of the Environment and Climate Change
NPCA	Niagara Peninsula Conservation Authority
O. Reg.	Ontario Regulation
PAHs	Polycyclic Aromatic Hydrocarbons
PCA	Potentially Contaminating Activity
PHCs	Petroleum Hydrocarbons
SAR	Sodium Adsorption Ratio
SOPs	Standard Operating Procedures
SCS	Site Condition Standard
VOCs	Volatile Organic Compounds

1.0 EXECUTIVE SUMMARY

Niagara Soils Solutions Ltd. (NSSL) was retained by 1338284 Ontario Inc. to conduct a Phase Two Environmental Site Assessment (ESA) of the residential property located at 5578 George Street in Niagara Falls, Ontario (herein referred to as the "Phase Two Property" or the "Site"). The Phase Two ESA is being requested to investigate the environmental conditions of the Site based upon areas of concern identified in the NSSL's Phase One ESA report (October 2024).

The Phase One ESA identified 27 potentially contaminating activities (PCAs) within the study area, which resulted in the creation of three on-site areas of potential environmental concern (APECs) to the Site's soil and groundwater. The activities involved the off-site storage of gasoline and related products in fixed tanks, and the maintenance and repair of vehicles. The scope of work included:

- Underground service utility locates were conducted by Ontario One Call and a private locating service.
- Three environmental boreholes were drilled across the Site, within the identified APEC areas, to a maximum depth of about 7.62 m bgs.
- Two soil hand auger samples were taken to a maximum depth of 0.75 m bgs.
- Three additional boreholes were drilled to approximately 12.19 m bgs for the installation of monitoring wells.
- Select soil and groundwater samples were submitted for laboratory testing of Metals, Hydride forming Metals (As, Sb, Se), Petroleum Hydrocarbons (PHCs) F1 to F4, Benzene, Toluene, Ethylbenzene and Xylene (BTEX), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs), and Other Regulated Parameters (ORPs): Boron Hot Water Soluble, (B-HWS), Cyanide (CN⁻), Chromium VI (Cr (VI)), Mercury (Hg), pH, Sodium Adsorption Ratio (SAR) and Electrical Conductivity (EC).
- Two soil samples indicated an exceedance to Metals (Barium and Lead). Delineation samples were taken surrounding the initial sample location and analysed with the results meeting applicable criteria.

NSSL therefore concludes that all soil and groundwater results met applicable Ontario Ministry of the Environment, Conservation, and Parks Table 3 Full Depth Generic Site Condition Standards for Use in a Non-Potable Groundwater Condition for Residential/Parkland/Institutional land use, fine/medium-grained soils. No additional work is required.

2.0 INTRODUCTION

Niagara Soils Solutions Ltd. (NSSL) was retained by 1338284 Ontario Inc. to conduct a Phase Two Environmental Site Assessment (ESA) of the residential property located at 5578 George Street in Niagara Falls, Ontario (herein referred to as the "Phase Two Property" or the "Site"). The Phase Two ESA is being requested to investigate the environmental conditions of the Site based upon areas of concern identified in the NSSL's Phase One ESA report (October 2024). See Figure 1 for Site Location.

The Phase One ESA identified 27 potentially contaminating activities (PCAs) within the study area, which resulted in the creation of three on-site areas of potential environmental concern (APECs) to the Site's soil and groundwater. The activities involved the off-site storage of gasoline and related products in fixed tanks, and the maintenance and repair of vehicles.

2.1 Site Description

The municipal and legal description of the subject property included in the Phase One ESA is stated as LT 10 PL 31 STAMFORD SURFACE ONLY AS IN R0754732; NIAGARA FALLS. The Property Identification Number (PIN) is 64323-0267 (LT).

The Phase Two ESA Property is approximately 0.056 hectares in size. The residential lot has one single dwelling with no basement on-site, two detached sheds are located in the rear yard along with bushes and shrubs. The study area exhibits a diverse mix of features, including residential properties, industrial businesses, and commercial properties.

2.2 Property Ownership

The current Owners of the Phase Two property are Murray Gault and Anita Gault.

2.3 Current and Proposed Future Uses

The current and proposed land use remains residential.

2.4 Applicable Site Condition Standard

Under O. Reg. 153/04, as amended, the Ministry of the Environment, Conservation and Parks (MECP) has outlined Site Condition Standards (SCS) in the document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011. The following criteria and supporting rationale were utilized to determine the applicable SCS for the Phase Two ESA property.

Property Use	The Site is used as residential, proposed future redevelopment will remain residential therefore, Residential/Parkland/Institutional standards were applied.
Grain Size	As per the Niagara Testing & Inspection (NTIL) report provided in Appendix D, the grain size analysis for selected samples was determined to be Fine/Medium-grained.
Water Wells	No domestic water wells were identified within 250 metres (m) of the Phase Two Property. Ten monitoring wells were found within the Study area. The Site and the surrounding properties are serviced by the municipal watermain.
Within 30 m of a Waterbody	In accordance with O. Reg. 153/04, no land on the Phase Two Property is located within 30 m of a waterbody.
Depth to Bedrock	Based on the drilling activities, there is not more than 2.0 m of soil between the ground surface and the top of the bedrock at the Site. Therefore, shallow soil criteria are applicable.
рН	The pH levels across the Site were recorded as above 5 and below 9 for the surface soil, and between 9 and 11 for the subsurface soil.
Environmentally Sensitive Area	The Phase Two Property has not been identified within an environmentally sensitive area.
Area of Natural Significance	The Phase Two Property is not classified as an environmentally sensitive area under O. Reg. 153/04, as amended. The Phase Two Property does not include land or is within 30 m of land that would be classified as an area of natural significance as defined by O. Reg. 153/04, as amended.

Table 1: Site Condition Standards Applicable to the Phase Two Property

Based upon the above characteristics, it was determined that Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional (R/P/I) land use and fine/medium textured soil criteria would be utilized for the Phase Two ESA investigation.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

A review of the Ministry of Northern Development and Mines, Geology Ontario Spatial Search tool as well as "Quaternary Geology of Southern Ontario" (Map2496) and "Bedrock Geology of Southern Ontario" (Map2544), indicate that the native overburden consists of glaciolacustrine nearshore deltaic sand and silt of the Late Wisconsinan, underlain by Lockport-Amabel dolomite of the Silurian Formation. Depth to groundwater ranges between 18 and 22 meters below ground surface (m bgs) in the study area, based on a review of local well records. The estimated depth to bedrock is > 13.2 m bgs, based on a nearby recent RSC filing (RSC# 226074) and the bedrock elevation map.

The Phase One Property land cover is characterized by a gravel parking area and overgrown vegetation. As the Site is predominately covered by a permeable surface, overland flow is considered to be limited and would be directed westward as per site gradient. Stormwater in the surrounding lands would flow westward into the street's catch basins and be directed into the hydro water channel west of the Site. The Site was observed to be relatively flat, with a slight westward slope. The inferred local groundwater direction in the study area is northwest, based on a review of the elevations and hydrogeology of the area.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The Phase Two ESA investigation at the Site encompassed the following key components:

- Underground service utility locates were conducted by Ontario One Call and a private locating service.
- Three environmental boreholes were drilled across the Site, within the identified APECs, to a maximum depth of about 7.62 m bgs.
- Two soil hand auger samples were taken to a maximum depth of 0.75 m bgs.
- Three additional boreholes were drilled to approximately 12.19 m bgs.
- All boreholes were converted into monitoring wells to a maximum depth of 12.19.
- Groundwater samples were collected from BH/MW4, BH/MW5 and BH/MW6 as initial well installations at BH/MW1, BH/MW2 and BH/MW3 were recorded as dry.
- Select soil and groundwater samples were submitted for laboratory testing of Metals, Hydride forming Metals (As, Sb, Se), Petroleum Hydrocarbons (PHCs) F1 to F4, Benzene, Toluene, Ethylbenzene and Xylene (BTEX), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs), and Other Regulated Parameters (ORPs): Boron Hot Water Soluble, (B-HWS), Cyanide (CN⁻), Chromium VI (Cr (VI)), Mercury (Hg), pH, Sodium Adsorption Ratio (SAR) and Electrical Conductivity (EC).

3.2 Media Investigated

The Phase Two ESA involved the investigation of soil and groundwater at the Site.

3.3 Deviation from Sampling and Analysis Plan

There were no deviations from the sampling and analysis plan.

3.4 Impediments

No physical impediments were encountered, and there was no denial of access during the Phase Two ESA.

4.0 INVESTIGATION METHOD

4.1 Phase Two ESA General Overview

The Phase Two ESA was carried out according to the Sampling and Analysis Plan and NSSL's Standard Operating Procedures (SOPs).

Groundwater monitoring wells were installed in accordance with the Ontario Water Resource Act, R.R.O. 1990, Ontario Regulation (O. Reg.) 903 – Amended to O. Reg. 128/03. The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols, and procedures were carried out in accordance with the 'Protocol for Analytical Methods Use in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

4.2 Utility Clearance

Prior to the commencement of the subsurface investigations, underground service utility locates were obtained for the Site through Ontario One Call. Additionally, a private underground service locating company, Ontario Utility Locates, located all on-site underground services (hydro, gas, water, sewer, and communications).

4.3 Drilling

Three boreholes, identified as BH1, BH2, and BH3, were advanced across the Site by Elite Drilling Ltd. Utilizing a Diedrich D50 Turbo with 150 mm hollow stem augers on October 29th, 2024. The boreholes were drilled to maximum depths of 7.62 m bgs. The locations of the field activities are shown in Figure 5, and details depicted on borehole logs are shown in Appendix A, respectively.

Two soil samples, HA1 and HA2, were taken using hand auger equipment to a maximum depth of 0.75 m bgs (see Figure 5).

Three addition monitoring wells were advanced at the Site on November 20th and 27th, 2024, by Elite Drilling Ltd. and Kodiak Drilling Inc. utilizing 150 mm solid stem augers to a maximum depth of 12.19 m bgs.

4.4 Ground Water: Monitoring Well Installation

Monitoring wells were installed into the initial three boreholes (BH1 to BH3); however, groundwater did not recover. As such three additional monitoring wells MW4 to MW6 were advanced to a depth of approximately 12.19 m bgs to allow for groundwater analysis. The monitoring wells were constructed to

Ontario Ministry of the Environment, Conservation and Parks (MECP)- recognized industry standards and consisted of a 50 mm (2-inch) diameter slotted PVC screen surrounded by a silica sand pack, attached beneath a solid 50 mm (2-inch) diameter PVC riser, surrounded by bentonite grout to ensure a seal between the ground surface and the water table. Two wells were fitted with a steel monument protective casing and four wells with a steel flush-mount protective casing. A waterra manual lift pump was installed into the well to allow purging and development and subsequent groundwater sample collection. The monitoring well locations are shown in Figure 5, and borehole logs are provided in Appendix A.

4.5 Soil Sampling

Nine soil samples were collected from boreholes BH/MW1, BH/MW2, and BH/MW3 as well as HA1 and HA2. Upon retrieval, the soil samples were logged for essential information such as soil type, moisture content, color, texture, and any visible evidence of impacts were recorded. Subsequently, the samples were stored for potential laboratory analyses and placed in clean coolers with ice to maintain their integrity. After field screening measurements were conducted, the chosen samples were transported and submitted to AGAT Laboratories Ltd. in strict adherence to Chain of Custody (COC) protocols for subsequent chemical analyses.

4.6 Soil: Field Screening Measurements

All soil samples were screened for combustible gases using an RKI Instrument, Eagle Portable Multi-gas detector (with Methane Elimination switch), operated in the methane elimination mode. The monitor has a range of 0 to 50,000 parts per million (ppm) and an accuracy of \pm 5%. The monitor was calibrated to hexane standards before field screening for both ppm and Lower Explosive Limit (LEL) in accordance with the calibration procedure outlined in the instrument's instructional manual. The instrument is regularly calibrated and tuned by the supplier, Pine Environmental. Each soil sample corresponding to either the upper or lower sample from the test pit was bagged for soil vapour analysis. Headspace vapour screening was conducted for all retrieved soil samples with a measurement registering of 0 ppm. Results for each sample are depicted on the test pit logs located in Appendix A.

4.7 Ground Water: Field Measurement of Water Quality Parameters

Several visits were undertaken to record the groundwater levels in the monitoring wells. From these recordings, the groundwater was considered to have stabilized from the installation dates. Groundwater observations were recorded for colour, clarity, the presence or absence of any free product/surface sheen, and any odours present during the purging of the wells. After each measurement, the water level measuring device was cleaned using AlconoxTM soap solution wash/scrub, followed by a distilled water rinse, to prevent potential cross-contamination between observation wells. Well purging occurred and continued until approximately eight well casing volumes were removed, and monitoring indicated that the condition in the purged well had stabilized. Purge water was contained and stored on-site in drums for future disposal.

4.8 Ground Water: Sampling

Groundwater sampling activities were conducted on November 27th and December 2nd, 2024, for MW4, MW5 and MW6. The activities were carried out using dedicated low-density polyethylene tubing and Spectra Field Pro III Peristaltic Pump. Groundwater samples were collected into laboratory-supplied containers prepared with preservatives for the analysis. Disposable latex gloves were worn at each sample location. The groundwater samples were immediately placed into coolers packed with ice, pending delivery to the analytical laboratory.

4.9 Sediment Sampling

NA.

4.10 Analytical Testing

The soil and groundwater sample analyses were completed by AGAT Laboratories Ltd., 835 Coopers Avenue, Mississauga, ON. AGAT is accredited by the Canadian Association for Laboratory Accreditation (CALA) in accordance with ISO/IEC 17025:1999 – "General Requirements for the Competence of Testing and Calibration Laboratories" for all the parameters analyzed during this investigation. This accreditation covers all the parameters that were analyzed during the course of this investigation, ensuring the reliability and quality of the analytical results.

4.11 Residue Management Procedures

Soil material, purge water, and wash water generated during equipment cleaning were conscientiously contained and stored on-site in steel drums. These drums have been designated for future disposal in accordance with appropriate environmental and regulatory protocols.

4.12 Elevation Surveying

The elevation of the existing ground surface at the sample locations was referenced to a local benchmark, noted as a manhole on George Street located southeast of the Site. Niagara Soils Solution Ltd assigned this data point a temporary elevation of 185 meters. The topographic contours of the Site, reflecting the varying elevations across the property, are visually represented in Figure 6.

4.13 Quality Assurance and Quality Control Measures

All activities undertaken as part of this Phase Two ESA were executed in strict accordance with the relevant and applicable regulatory requirements.

5.0 REVIEW AND EVALUATION

5.1 Geology

The Site exhibited an upper layer of topsoil in BH1, BH2, BH3, MW4, MW5, MW6, HA1 and HA2, ranging in depth from 0 to 0.10 m bgs. Fill and reworked material described as brown silty clay/clayey silt, with trace sand and gravel, soft and moist, extended from approximately 0.10 to 3.35 m bgs. The native silt underneath this surficial reworked material was found to be moist in all boreholes, reaching a maximum depth of 7.32 m bgs; likewise, native sand was found below the native silt between 4.11 and 12.19 m bgs. Borehole locations are illustrated in Figure 5.

5.2 Ground Water: Elevation and Flow Direction

Prior to initiating groundwater sampling activities, measurements of groundwater depths were taken from the monitoring wells. The recorded results are outlined below in Table 3. The measured groundwater at the Site provided information related to the level of unconfined groundwater across the Site. Note: BH/MW1, BH/MW2, and BH/MW3 did not intercept the water table; therefore, no measurements were taken.

		Scroon	November 27 th , 2024		December 2 nd , 2024	
Monitoring Well ID	Well Elevation (BM in meters)	Interval (meters bgs)	Groundwater Level (metres bgs)	Groundwater Elevation (metres)	Groundwater Level (metres bgs)	Groundwater Elevation (metres)
BH/MW1	185.16	4.57 – 7.62	Dry (Well not used)			
BH/MW2	185.78	4.57 – 7.62				
BH/MW3	185.38	4.57 – 7.62				
BH/MW4	185.16	9.15 – 12.19	10.26 174.90 10.05 175.11			
BH/MW5	185.38	9.15 - 12.19	10.38	175.00	10.01	175.37
BH/MW6	185.78	9.15 - 12.19	10.00	175.78	9.96	175.82

Table 2: Groundwater Details

5.3 Ground Water: Hydraulic Gradients

The average groundwater gradient was calculated to be 0.003, with minimum and maximum values of 0.002 and 0.003, respectively.

Table	3: H	lvdra	ulic	Grad	ient
IUNIC		.,		Giuu	CIIC

Monitoring Well	Water Level Difference (m)	Monitoring Well Distance (m)	Hydraulic Gradient
BH/MW4 - BH/MW5	0.04	19	0.002
BH/MW5 - BH/MW6	0.05	19	0.003
BH/MW6 - BH/MW4	0.09	36	0.003

5.4 Soil Texture

Grain size analysis conducted by NTIL on three specific samples revealed that 78.5 % (BH/MW2-5), 84.9 % (HA2-1) and 77.8 % (BH/MW3-3) of the soil matrices passed through the No. 200 sieve (Table 4), indicating a fine/medium soil texture. Fine-textured soil is characterized by containing more than 50 percent by mass of particles that are 75 micrometers or smaller in mean diameter. The detailed results can be found in Appendix D.

Table 4:	Results	of Grain	Size Analysis	

Sample ID	Sample #	Soil Sample Depth (m bgs)	Soil Type	Percent Passing 75 μm (No. 200) Sieve
BH/MW2-5	1	3.05 – 3.66	Silt trace Sand	78.5% - Fine/Medium Grained
HA2-1	2	0.15 – 0.75	Silty Clay / Clayey Silt	84.9% - Fine/Medium Grained
BH/MW3-3	3	1.52 – 2.13	Silt trace Sand	77.8% - Fine/Medium Grained

5.5 Soil Quality

Soil sampling activities were carried out on October 29th, 2024. A total of nine select soil samples, collected from the fill, reworked, and native materials were sent to AGAT Laboratories Ltd. for comprehensive analyses covering Metals, Hydride forming Metals (As, Sb, Se), PHCs (F1 to F4), BTEX, VOCs, PAHs, and ORPs: B-HWS, CN⁻, Cr (VI), Hg, pH, SAR, and EC. The results of the soil analyses revealed exceedances to Metals (Lead and Barium) at two of the sampled locations, HA2 and BH/MW3-1, versus Table 3 R/P/I Fine/Medium criteria. The results of the exceedances are summarized in Table 4 below, while the detailed lab reports are provided in Appendix B.

Table 5: Soil Results versus Table 3 RPI Criteria

Parameter Reg 153/04 (201 Table 3 RPI		HA2	BH/MW3-1			
Metals						
Lead	120 ug/g	12	135			
Barium	390 ug/g	455	242			

5.6 Groundwater Quality

The groundwater sampling was completed on December 2nd, 2024. Three groundwater samples were collected from the monitoring wells on-site and submitted for laboratory analysis of Metals, As, Sb, Se, Cr (VI), CN⁻, Hg, pH/EC, PHCs (F1-F4), VOCs, and PAHs. Groundwater samples revealed no exceedances as compared to MECP Table 3 Generic Site Condition Standards in a Non-Potable Groundwater Condition for Residential land use. Complete groundwater laboratory results are provided in Appendix D and displayed in Figure 9.

5.7 Sediment Quality

NA

5.8 Quality Assurance and Quality Control Results

All soil samples collected during the Phase Two ESA investigation were managed in strict adherence to the laboratory's analytical protocols, covering aspects such as holding time, preservation methods, storage conditions, and container specifications. A Certificate of Analysis has been obtained for each sample submitted for analysis, and these certificates are attached to this report. The overall quality of the field data gathered throughout this Phase Two ESA is deemed satisfactory, meeting the study's overarching objectives.

6.0 SOIL DELINEATION

On November 20th, 2024, eight hand auger samples were taken at the same depth and approximately 2.0 m around the initial exceeded locations (BH/MH3 and HA2) for delineation purposes. The average results of the delineation samples met the applicable criteria.

Table 6: Delineation Soil Results versus Table 3 RPI Criteria

Parameter	Reg 153/04 (2011) Table 3 RPI	BH/MW3	D1	D2	D3	D4	Average
Metals							
Lead	120 ug/g	135	33	62	66	61	71.4

Parameter	Reg 153/04 (2011) Table 3 RPI	HA2	D5	D6	D7	D8	Average			
Metals										
Barium	390 ug/g	455	273	166	155	218	253.4			

7.0 <u>CONCLUSIONS</u>

In conclusion, Niagara Soils Solutions Ltd. was engaged by 1338284 Ontario Inc. to carry out a Phase Two Environmental Site Assessment at 5578 George Street in Niagara Falls, Ontario. The key activities and outcomes of this Phase Two ESA include:

- Underground service utility locates were conducted by Ontario One Call and a private locating service.
- Three environmental boreholes were drilled across the Site, within the identified APECs, to a maximum depth of about 7.62 m bgs.
- Two soil hand auger samples were taken to a maximum depth of 0.75 m bgs.
- Three environmental monitoring wells were installed to a maximum depth of 12.19 m bgs.
- Select soil and groundwater samples were submitted for laboratory testing of Metals, Hydride forming Metals (As, Sb, Se), Petroleum Hydrocarbons (PHCs) F1 to F4, Benzene, Toluene, Ethylbenzene and Xylene (BTEX), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs), and Other Regulated Parameters (ORPs): Boron Hot Water Soluble, (B-HWS), Cyanide (CN⁻), Chromium VI (Cr (VI)), Mercury (Hg), pH, Sodium Adsorption Ratio (SAR) and Electrical Conductivity (EC).
- The results of the delineation samples around Metals-impacted BH/MW3-1 and HA2 met the applicable criteria.

NSSL therefore concludes that all soil and groundwater results met applicable Ontario Ministry of the Environment, Conservation, and Parks Table 3 Full Depth Generic Site Condition Standards for Use in a Non-Potable Groundwater Condition for Residential/Parkland/Institutional land use, fine/medium-grained soils. No additional work is required.

7.1 Closure

This report was prepared by Helen Pimentel under the direction of Philip Adene.

Respectively submitted, Niagara Soils Solutions Ltd.

Helen Pimentel, BSc, ET Environmental Technician

Philip Adene, P. Geo, QP_{ESA} Professional Geoscientist

8.0 **LIMITATIONS**

Niagara Soils Solutions Ltd. prepared this Report for the account of 1338284 Ontario Inc. and is intended to provide a Phase Two Environmental Site Assessment at 5578 George Street, Niagara Falls, ON. The material in it reflects Niagara Soils Solutions Ltd.'s best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Should additional parties require reliance on this report, written authorization from NSSL will be required. With respect to third parties, NSSL has no liability or responsibility for losses of any kind whatsoever, including direct or consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

The investigation undertaken by NSSL with respect to this report and any conclusions or recommendations made in this report reflect NSSL's judgment based on the site conditions observed at the time of the Site inspection on the date(s) set out in this report and on information available at the time of preparation of this report. This report has been prepared for specific application to this Site and it is based, in part, upon visual observation of the Phase Two Property, subsurface investigation at discrete locations and depths, and specific analysis of specific chemical parameters and materials during a specific time interval, all as described in this report. Unless otherwise stated, the findings cannot be extended to previous or future Site conditions, portions of the Phase Two Property, which were unavailable for direct investigation, subsurface locations, which were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Niagara Soils Solutions Ltd. has expressed professional judgement in gathering and analysing the information obtained and in the formulation of its conclusions.

NSSL makes no other representation whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this report, including but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and change. Such interpretations and regulatory changes should be reviewed with legal counsel.

Yours very truly, Niagara Soils Solutions Ltd.

fode glase

Jodie Glasier, M.MM, PD-EMA, EP Founder & CEO

9.0 <u>REFERENCES</u>

The following resources were utilized as references:

- Ontario Division of Mines' "Paleozoic Geology of Southern Ontario, Map 2254".
- Ministry of Natural Resources' "Quaternary Geology, Niagara-Welland, Map P2496.
- Water Wells Ontario site.
- Ontario Oil, Gas, and Salt Resources Library
- Interactive Map Niagara Navigator, https://navigator.niagararegion.ca/
- Ontario Base Mapping
- Niagara Peninsula Conservation Authority (NPCA) Watershed Explorer

FIGURES

- Figure 1: Site Location Map
- Figure 2: Site Layout & Features
- Figure 3: Potentially Contaminating Activities
- Figure 4: Areas of Potential Environmental Concern
- Figure 5: Borehole & Monitoring Well Location Plan
- Figure 6: Topographic Contour
- Figure 7: Groundwater Contour
- Figure 8: Soil/Delineation Results
- Figure 9: Groundwater Results
- Figure 10: Cross Section Plan View
- Figure 11A: Cross Section A-A'
- Figure 11B: Cross Section B-B'

POTENTIALLY CONTAMINATING ACTIVITIES

- **Other. De-Icing Activities** #1
- #2,5 52. Storage, Maintenance, Fuelling and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems.
- #3,4 28. Gasoline and Associated Products Storage in Fixed Tanks.
- #5 10. Commercial Autobody Shops.
- #6,8 39. Paints Manufacturing, Processing and Bulk
- #12 Storage.
- #7,11 10. Commercial Autobody Shops.
- #9 46. Rail Yards, Tracks and Spurs.
- #10 58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.
- 20. Explosives and Ammunition Manufacturing, #13 Production and Bulk Storage
- #14,16 22. Fertilizer Manufacturing, Processing and Bulk Storage
- #15 8. Chemical Manufacturing, Processing and Bulk Storage.
- #17 34. Metal Fabrication
- #18 1. Acid and Alkali Manufacturing, Processing and Bulk Storage.
- 2. Adhesives and Resins Manufacturing, Processing #19 and Bulk Storage.
- #20 8. Chemical Manufacturing, Processing and Bulk Storage.
- #21 28. Gasoline and Associated Products Storage in Fixed Tanks.
- #22,26 39. Paints Manufacturing, Processing and Bulk Storage.
- 41. Petroleum-derived Gas Refining, Manufacturing, #23 Processing and Bulk Storage.
- 46. Rail Yards, Tracks and Spurs. #24
- #25 51. Solvent Manufacturing, Processing and Bulk Storage.

REFERENCE: BASE MAP PROVIDED BY NIAGARA NAVIGATOR, https://maps-beta.niagararegion.ca/Navigator/2023

Phase Two ESA Property Boundary 250 m Study Area PCA not Generating APEC PCA Generating APEC Railway Underground Storage Tanks [UST] Inferred Groundwater Flow Direction 1338284 Ontario Inc. PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 5578 GEORGE STREET NIAGARA FALLS, ON POTENTIALLY CONTAMINATING ACTIVITIES DN/CN PA DECEMBER 2024 NS2491-02 AS SHOWN NO: Figure 3

APPENDIX A

FIELD LOGS

FIELD LOGS

Hand Auger No: 1	Site Address: 5578 (George St	reet	Date/Tin	ne:	10-29-2024						
Project type:	Phase Two ESA			Field Tec	hnician:	Helen Pime	entel					
Project No:	NS2491-02		Location:	Niagara Falls, ON								
Weather:	Cloudy/ Rainy		Temperature:	7 °C								
Coordinates:	17T 655622 E 47751	.54 N										
		Soil a	nd Groundwater (Conditions								
Depth (m) from-to	Description: Soil Ty Cohesive/ Granular,	oe, Featu Colour, (res, Inclusions, Ddour / Staining	Sample ID.	Sample Depth (m)	Sample Type	Fill, Reworked, or Native					
0.0 – 0.70	Topso Reworked- Brown Si some sand,	il – 0.10 i lty Clay/ soft and	n Clayey Silt with moist.	HA1	0.15-0.70	Grab	Reworked					
1. Hand Auger South	Oriented: North &			Ph	ioto(s)	-						
2. Hand Auge	r Size (m): 0.15			TITLE	1 1 1	No 11						
3. Water Enco	untered: No											
4. Hand auger	Remained Open: No											
5. Machine/To	ols: Hand Auger				a print	I AND P						
7. Additional l	nformation:											

FIELD LOGS

Hand Auger No: 2	Site Address: 5578 G	eorge St	reet	Date/Tin	ne:	10-29-2024						
Project type:	Phase Two ESA			Field Tec	hnician:	Helen Pime	entel					
Project No:	NS2491-02		Location:	Niagara F	alls, ON							
Weather:	Cloudy		Temperature:	7 °C								
Coordinates:	17T 655622 E 47751	60 N										
		Soil a	nd Groundwater C	onditions								
Depth (m) from-to	Description: Soil Typ Cohesive/ Granular,	oe, Featu Colour, C	res, Inclusions, Ddour / Staining	Sample ID.	Sample Depth (m)	Sample Type	Fill, Reworked, or Native					
0.0 – 0.75	Topsoi Reworked- Brown Si some sand,	il – 0.10 r Ity Clay/ soft and	n Clayey Silt with moist.	HA2	0.15-0.75	Grab	Reworked					
 Hand Auger South 	Oriented: North &			Ph	oto(s)							
2. Hand Auger	r Size (m): 0.15						1 and 1					
3. Water Enco	untered: No											
4. Hand auger	Remained Open: No	1		S. 1. 24								
5. Machine/To	ols: Hand Auger					47	- All					
7. Additional I	nformation:											

PROJECT NO.: NS2491-02 PROJECT: Phase Two ESA LOCATION: 5578 George Str CLIENT: 1338284 Ontario Inc	reet, c.	Nia	gara Falls		DRILL DRILL DRILL BORE	ING COMP ING METH RIG: Track HOLE COC	ANY: Elite Drilling OD: Directional Drilling mount ORDINATE (UTM): 4775166 N,	SHEE DATE DATE 633612 E DATU	ET 1 of 1 E STARTED: Novemb E COMPLETED: Nove JM: Local Benchmark	er 20, 2024 mber 20, 202
SOIL PROFILE	TYPE	NUMBER	SAMPLES	ECOVERY (%)	DEPTH SCALE ft / m	.EVATION (m / mbgs)	FIELD TESTING	LAB TESTING	WELL INSTALLATION	COMMENTS
Ground Surface 100 mm Rootlets and Organics Silty Clay / Clayey Silt Fill Material Brown with some sand and gravel Firm, dry Silt Native Brown with trace sand Very stiff, moist Sandy Silt Brown Compact sand, moist End of Borehole			σ		0.0 ft m 0.0 1.0 1.0 2.0 1.0 3.0 1.0 5.0 2.0 8.0 2.0 9.0 3.0 11.0 3.0 12.0 4.0 13.0 4.0 14.0 5.0 15.0 5.0 16.0 5.0 17.0 5.0 18.0 6.0 21.0 6.0 22.0 7.0 23.0 7.0 24.0 8.0 25.0 8.0 26.0 8.0 27.0 9.0 31.0 10.0 32.0 7.0 28.0 9.0 31.0 10.0 32.0 10.0 33.0 10.0 34.0 11.0 35.0 11.0 38.0 11.0 39.0 12.0 41.0 13.0	<u>ш</u> 185.16 0.00 181.81 3.35 177.84 7.32 172.97 12.19		GW: M&I, PHC/BTEX, VOC, PAH	F#3 Silca Sand Elentonite Concrete F = 2" Slot 10 Screen 1" Steel Casing	
Groundwater Level Upon Complet Secondary Groundwater Level:	tion		INITIAL WA	ATEI RY N E C/	44.0 45.0 R LEVEL: 10.2 NATER LEVE	26 mbgs EL: 10.05 ml	INITIAL WATH ogs SECONDARY N: N/A	ER LEVEL DATE: N	November 27, 2024 ATE: December 2, 20 LOGGED: HP COMPILED: DN CHECKED: PA	24

Thorold, Ontario, L2V 4Y6

interpretative assistance from a qualified Professional Engineer/Geoscientist.

APPENDIX B

CERTIFICATES OF ANALYSIS -SOIL

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD 3300 MERRITTVILLE HIGHWAY THOROLD, ON L2V 4Y6 289-407-6341 ATTENTION TO: Jodie Glasier PROJECT: NS2491-02 AGAT WORK ORDER: 24H215472 SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist DATE REPORTED: Nov 11, 2024 PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 17

AGAT WORK ORDER: 24H215472 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 GEORGE ST.

ATTENTION TO: Jodie Glasier

SAMPLED BY:HELEN PIMENTEL

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

DATE RECEIVED: 2024-10-30								l	DATE REPORT	ED: 2024-11-11	
		SAMPLE DES SAM DATE	CRIPTION: PLE TYPE: SAMPLED:	BH/MW1-1 Soil 2024-10-29	BH/MW1-2 Soil 2024-10-29	BH/MW2-1 Soil 2024-10-29	BH/MW2-2 Soil 2024-10-29	BH/MW3-1 Soil 2024-10-29	BH/MW3-2 Soil 2024-10-29	HA1 Soil 2024-10-29	HA2 Soil 2024-10-29
Parameter	Unit	G/S	RDL	6279758	6279760	6279761	6279762	6279763	6279764	6279765	6279766
Antimony	µg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	18	1	13	9	16	9	10	5	5	12
Barium	µg/g	390	2.0	233	236	149	78.5	242	90.3	126	455
Beryllium	µg/g	4	0.5	1.2	1.3	0.6	<0.5	0.9	<0.5	<0.5	0.9
Boron	µg/g	120	5	14	13	<5	5	7	<5	5	7
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	µg/g	160	5	25	32	16	10	24	8	16	28
Cobalt	µg/g	22	0.8	14.7	16.9	6.6	6.9	11.7	4.6	6.9	15.2
Copper	µg/g	140	1.0	29.6	25.3	13.1	9.8	19.4	6.4	12.3	17.8
Lead	µg/g	120	1	31	12	116	9	135	3	17	12
Molybdenum	µg/g	6.9	0.5	1.5	0.6	0.9	0.6	1.5	<0.5	<0.5	1.9
Nickel	µg/g	100	1	31	39	15	14	25	10	16	33
Selenium	µg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	µg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	µg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	µg/g	23	0.50	2.70	1.30	0.99	0.54	2.63	<0.50	0.79	2.12
Vanadium	µg/g	86	2.0	36.3	45.3	25.1	17.0	33.5	11.7	21.1	40.5
Zinc	µg/g	340	5	82	80	108	35	140	23	57	68
1											

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

> CHARTERED Balantar Las Rocking OHEMIAT

Certified By:

AGAT WORK ORDER: 24H215472 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 GEORGE ST.

ATTENTION TO: Jodie Glasier

SAMPLED BY:HELEN PIMENTEL

					5		,				
DATE RECEIVED: 2024-10-30								[DATE REPORTE	ED: 2024-11-11	
		SAMPLE DESC SAMF	CRIPTION: PLE TYPE:	BH/MW1-1 Soil	BH/MW1-2 Soil	BH/MW2-1 Soil	BH/MW2-2 Soil	BH/MW3-1 Soil	BH/MW3-2 Soil	HA1 Soil	HA2 Soil
Parameter	Unit	DATE S G / S	SAMPLED: RDL	2024-10-29 6279758	2024-10-29 6279760	2024-10-29 6279761	2024-10-29 6279762	2024-10-29 6279763	2024-10-29 6279764	2024-10-29 6279765	2024-10-29 6279766
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.26	0.19	0.34	<0.10	0.46	<0.10	0.26	0.11
Chromium, Hexavalent	µg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.00	7.14	7.09	7.10	6.93	7.14	6.99	6.84
Cyanide, WAD	µg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	µg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
		SAMPLE DESC SAMF DATE S	CRIPTION: PLE TYPE: CAMPLED:	BH/MW3-3 Soil 2024-10-29							
Parameter	Unit	G/S	RDL	6279767							
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	6.24							

O. Reg. 153(511) - ORPs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6279758-6279767 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil).

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 24H215472 PROJECT: NS2491-02

O. Reg. 153(511) - PAHs (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 GEORGE ST.

ATTENTION TO: Jodie Glasier

SAMPLED BY:HELEN PIMENTEL

DATE RECEIVED: 2024-10-30							DATE REPORTED: 2024-11-11					
Parameter	Unit	SAMPLE DESC SAMF DATE S G / S	CRIPTION: PLE TYPE: SAMPLED: RDL	BH/MW1-1 Soil 2024-10-29 6279758	BH/MW1-2 Soil 2024-10-29 6279760	BH/MW2-1 Soil 2024-10-29 6279761	BH/MW2-2 Soil 2024-10-29 6279762	BH/MW3-1 Soil 2024-10-29 6279763	BH/MW3-2 Soil 2024-10-29 6279764	HA1 Soil 2024-10-29 6279765	HA2 Soil 2024-10-29 6279766	
Naphthalene	µg/g	0.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	µg/g	0.15	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthene	µg/g	7.9	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluorene	µg/g	62	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenanthrene	µg/g	6.2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Anthracene	µg/g	0.67	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	µg/g	0.69	0.05	<0.05	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	
Pyrene	µg/g	78	0.05	<0.05	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(a)anthracene	µg/g	0.5	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Chrysene	µg/g	7	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Indeno(1,2,3-cd)pyrene	µg/g	0.38	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(g,h,i)perylene	µg/g	6.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
2-and 1-methyl Naphthalene	µg/g	0.99	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Moisture Content	%		0.1	18.0	20.3	15.6	11.2	19.2	7.5	21.3	22.6	
Surrogate	Unit	Acceptab	le Limits									
Naphthalene-d8	%	50-1	40	90	70	100	70	75	95	95	70	
Acridine-d9	%	50-1	40	95	100	90	95	105	95	95	100	
Terphenyl-d14	%	50-1	40	90	95	85	110	80	75	100	85	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6279758-6279766 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 24H215472 PROJECT: NS2491-02

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 GEORGE ST.

ATTENTION TO: Jodie Glasier

SAMPLED BY:HELEN PIMENTEL

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2	024-10-30
------------------	-----------

		SAMPLE DES	CRIPTION:	BH/MW1-1	BH/MW1-2	BH/MW2-1	BH/MW2-2	BH/MW3-1	BH/MW3-2	HA1	HA2
		SAM	PLE TYPE:	Soil							
		DATE	SAMPLED:	2024-10-29	2024-10-29	2024-10-29	2024-10-29	2024-10-29	2024-10-29	2024-10-29	2024-10-29
Parameter	Unit	G/S	RDL	6279758	6279760	6279761	6279762	6279763	6279764	6279765	6279766
F1 (C6 to C10)	µg/g	55	5	<5	<5	<5	<5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	<5	<5	<5	<5	<5	<5
F2 (C10 to C16)	µg/g	98	10	<10	<10	<10	<10	<10	<10	<10	<10
F2 (C10 to C16) minus Naphthalene	µg/g		10	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16 to C34)	µg/g	300	50	<50	<50	<50	<50	<50	<50	<50	<50
F3 (C16 to C34) minus PAHs	µg/g		50	<50	<50	<50	<50	<50	<50	<50	<50
F4 (C34 to C50)	µg/g	2800	50	<50	<50	<50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	µg/g	2800	50	NA							
Moisture Content	%		0.1	18.0	20.3	15.6	11.2	19.2	7.5	21.3	22.6
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	%	50-1	140	88	81	80	83	84	82	84	88
Terphenyl	%	60-1	40	98	102	96	86	87	99	90	83

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6279758-6279766 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolog

DATE REPORTED: 2024-11-11

AGAT WORK ORDER: 24H215472 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 GEORGE ST.

ATTENTION TO: Jodie Glasier

SAMPLED BY:HELEN PIMENTEL

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-10-30								I	DATE REPORTI	ED: 2024-11-11	
		SAMPLE DES SAMI	CRIPTION: PLE TYPE:	BH/MW1-1 Soil	BH/MW1-2 Soil	BH/MW2-1 Soil	BH/MW2-2 Soil	BH/MW3-1 Soil	BH/MW3-2 Soil	HA1 Soil	HA2 Soil
Parameter	Unit	DATE S	SAMPLED:	2024-10-29 6279758	2024-10-29 6279760	2024-10-29 6279761	2024-10-29 6279762	2024-10-29 6279763	2024-10-29 6279764	2024-10-29 6279765	2024-10-29 6279766
Dichlorodifluoromethane	ua/a	16	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	µ9/9	0.02	0.02	<0.02	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00
Bromomethane	ua/a	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	ua/a	4	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acetone	ua/a	16	0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50
1.1-Dichloroethvlene	ua/a	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methylene Chloride	uq/q	0.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	< 0.04	<0.04	< 0.04	<0.04	<0.04	<0.04
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	< 0.03
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzene	ug/g	0.21	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	< 0.03
Trichloroethylene	ug/g	0.061	0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	< 0.03
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	< 0.04
Toluene	ug/g	2.3	0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	< 0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	< 0.04
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	< 0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	< 0.04
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
m & p-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Certified By:

NPopukolof

AGAT WORK ORDER: 24H215472 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 GEORGE ST.

ATTENTION TO: Jodie Glasier

SAMPLED BY:HELEN PIMENTEL

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-10-30								ſ	DATE REPORTE	ED: 2024-11-11	
		SAMPLE DES	CRIPTION:	BH/MW1-1	BH/MW1-2	BH/MW2-1	BH/MW2-2	BH/MW3-1	BH/MW3-2	HA1	HA2
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE S	SAMPLED:	2024-10-29	2024-10-29	2024-10-29	2024-10-29	2024-10-29	2024-10-29	2024-10-29	2024-10-29
Parameter	Unit	G/S	RDL	6279758	6279760	6279761	6279762	6279763	6279764	6279765	6279766
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	ug/g	0.7	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
o-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes (Total)	ug/g	3.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-Dichloropropene (Cis + Trans)	µg/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Moisture Content	%		0.1	18.0	20.3	15.6	11.2	19.2	7.5	21.3	22.6
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	40	88	81	80	83	84	82	84	88
4-Bromofluorobenzene	% Recovery	50-1	40	92	86	82	82	88	92	85	90

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6279758-6279766 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

Exceedance Summary

AGAT WORK ORDER: 24H215472 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

ATTENTION TO: Jodie Glasier

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6279763	BH/MW3-1	ON T3 S RPI CT	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Lead	µg/g	120	135
6279766	HA2	ON T3 S RPI CT	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Barium	µg/g	390	455

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 GEORGE ST.

AGAT WORK ORDER: 24H215472 ATTENTION TO: Jodie Glasier SAMPLED BY:HELEN PIMENTEL

Soil Analysis

RPT Date: Nov 11, 2024			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lir	eptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - ORPs (Soil)															
Boron (Hot Water Soluble)	6279595		0.13	0.12	NA	< 0.10	98%	60%	140%	97%	70%	130%	101%	60%	140%
Chromium, Hexavalent	6282342		<0.2	<0.2	NA	< 0.2	93%	70%	130%	89%	80%	120%	70%	70%	130%
pH, 2:1 CaCl2 Extraction	6275941		7.32	7.22	1.4%	NA	100%	80%	120%						
Cyanide, WAD	6279764 62	279764	<0.040	<0.040	NA	< 0.040	92%	70%	130%	93%	80%	120%	84%	70%	130%
Mercury	6279226		<0.10	<0.10	NA	< 0.10	101%	70%	130%	97%	80%	120%	92%	70%	130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - ORPs (Soil)

pH, 2:1 CaCl2 Extraction	6279764 6279764	7.14	7.10	0.6%	NA	100%	80%	120%						
Mercury	6281395	<0.10	<0.10	NA	< 0.10	107%	70%	130%	91%	80%	120%	94%	70%	130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

Antimony	6279226	<0.8	<0.8	NA	< 0.8	115%	70%	130%	89%	80%	120%	73%	70%	130%
Arsenic	6279226	1	1	NA	< 1	122%	70%	130%	97%	80%	120%	99%	70%	130%
Barium	6279226	25.0	25.6	2.4%	< 2.0	97%	70%	130%	101%	80%	120%	92%	70%	130%
Beryllium	6279226	<0.5	<0.5	NA	< 0.5	102%	70%	130%	109%	80%	120%	124%	70%	130%
Boron	6279226	<5	<5	NA	< 5	78%	70%	130%	97%	80%	120%	100%	70%	130%
Cadmium	6279226	<0.5	<0.5	NA	< 0.5	101%	70%	130%	98%	80%	120%	98%	70%	130%
Chromium	6279226	7	7	NA	< 5	91%	70%	130%	101%	80%	120%	92%	70%	130%
Cobalt	6279226	3.3	3.3	NA	< 0.8	100%	70%	130%	100%	80%	120%	103%	70%	130%
Copper	6279226	7.5	7.8	3.9%	< 1.0	102%	70%	130%	97%	80%	120%	93%	70%	130%
Lead	6279226	4	4	NA	< 1	111%	70%	130%	96%	80%	120%	88%	70%	130%
Molybdenum	6279226	<0.5	<0.5	NA	< 0.5	105%	70%	130%	101%	80%	120%	105%	70%	130%
Nickel	6279226	8	7	13.3%	< 1	100%	70%	130%	99%	80%	120%	94%	70%	130%
Selenium	6279226	<0.8	<0.8	NA	< 0.8	116%	70%	130%	104%	80%	120%	103%	70%	130%
Silver	6279226	<0.5	<0.5	NA	< 0.5	91%	70%	130%	92%	80%	120%	90%	70%	130%
Thallium	6279226	<0.5	<0.5	NA	< 0.5	108%	70%	130%	95%	80%	120%	87%	70%	130%
Uranium	6279226	<0.50	<0.50	NA	< 0.50	108%	70%	130%	93%	80%	120%	95%	70%	130%
Vanadium	6279226	15.2	15.0	1.3%	< 2.0	120%	70%	130%	95%	80%	120%	98%	70%	130%
Zinc	6279226	31	31	0.0%	< 5	101%	70%	130%	105%	80%	120%	118%	70%	130%

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals	(Including Hydrides) (Soi	I)												
Antimony	6281395	<0.8	<0.8	NA	< 0.8	102%	70%	130%	88%	80%	120%	71%	70%	130%
Arsenic	6281395	1	1	NA	< 1	118%	70%	130%	111%	80%	120%	124%	70%	130%
AGAT QUALITY AS	SSURANCE REPORT (V1)												Page 9	of 17

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 GEORGE ST.

AGAT WORK ORDER: 24H215472 ATTENTION TO: Jodie Glasier SAMPLED BY:HELEN PIMENTEL

Soil Analysis (Continued)

RPT Date: Nov 11, 2024			D	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lin	ptable nits	Recovery	Acce Lir	ptable nits
		Ia					value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
Barium	6281395		56.8	62.9	10.2%	< 2.0	113%	70%	130%	103%	80%	120%	128%	70%	130%
Beryllium	6281395		<0.5	<0.5	NA	< 0.5	94%	70%	130%	111%	80%	120%	127%	70%	130%
Boron	6281395		<5	5	NA	< 5	81%	70%	130%	100%	80%	120%	111%	70%	130%
Cadmium	6281395		<0.5	<0.5	NA	< 0.5	96%	70%	130%	105%	80%	120%	112%	70%	130%
Chromium	6281395		13	15	NA	< 5	110%	70%	130%	108%	80%	120%	108%	70%	130%
Cobalt	6281395		4.2	4.7	11.2%	< 0.8	102%	70%	130%	109%	80%	120%	122%	70%	130%
Copper	6281395		8.5	10.0	16.2%	< 1.0	106%	70%	130%	107%	80%	120%	129%	70%	130%
Lead	6281395		3	3	NA	< 1	110%	70%	130%	110%	80%	120%	113%	70%	130%
Molybdenum	6281395		<0.5	<0.5	NA	< 0.5	102%	70%	130%	102%	80%	120%	113%	70%	130%
Nickel	6281395		7	8	13.3%	< 1	106%	70%	130%	112%	80%	120%	122%	70%	130%
Selenium	6281395		<0.8	<0.8	NA	< 0.8	118%	70%	130%	104%	80%	120%	126%	70%	130%
Silver	6281395		<0.5	<0.5	NA	< 0.5	102%	70%	130%	109%	80%	120%	112%	70%	130%
Thallium	6281395		<0.5	<0.5	NA	< 0.5	80%	70%	130%	97%	80%	120%	109%	70%	130%
Uranium	6281395		<0.50	<0.50	NA	< 0.50	95%	70%	130%	102%	80%	120%	108%	70%	130%
Vanadium	6281395		25.3	30.8	19.6%	< 2.0	113%	70%	130%	111%	80%	120%	103%	70%	130%
Zinc	6281395		22	27	NA	< 5	108%	70%	130%	106%	80%	120%	125%	70%	130%

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 17

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 GEORGE ST.

AGAT WORK ORDER: 24H215472 ATTENTION TO: Jodie Glasier SAMPLED BY:HELEN PIMENTEL

Trace Organics Analysis

					-		DEFER	-	TED: 4 -	METHON	DI AN	000			
RPT Date: Nov 11, 2024	1	1	D	UPLICAT	E		REFEREN		TERIAL	METHOD	BLANK	SPIKE	MAI		KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Blank	Measured Value	Acce Lir	ptable nits	Recovery	Acce	ptable nits	Recovery	Acce	ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (1	with PAHs	and VOC)	(Soil)												
F1 (C6 to C10)	6279766	6279766	<5	<5	NA	< 5	102%	60%	140%	87%	60%	140%	91%	60%	140%
F2 (C10 to C16)	6279766	6279766	< 10	< 10	NA	< 10	107%	60%	140%	105%	60%	140%	98%	60%	140%
F3 (C16 to C34)	6279766	6279766	< 50	< 50	NA	< 50	106%	60%	140%	123%	60%	140%	121%	60%	140%
F4 (C34 to C50)	6279766	6279766	< 50	< 50	NA	< 50	66%	60%	140%	121%	60%	140%	110%	60%	140%
O. Reg. 153(511) - VOCs (with PH	C) (Soil)														
Dichlorodifluoromethane	6279766	6279766	<0.05	<0.05	NA	< 0.05	91%	50%	140%	84%	50%	140%	118%	50%	140%
Vinyl Chloride	6279766	6279766	< 0.02	< 0.02	NA	< 0.02	105%	50%	140%	119%	50%	140%	112%	50%	140%
Bromomethane	6279766	6279766	<0.05	<0.05	NA	< 0.05	130%	50%	140%	108%	50%	140%	121%	50%	140%
Trichlorofluoromethane	6279766	6279766	<0.05	<0.05	NA	< 0.05	113%	50%	140%	79%	50%	140%	103%	50%	140%
Acetone	6279766	6279766	<0.50	<0.50	NA	< 0.50	83%	50%	140%	96%	50%	140%	105%	50%	140%
1,1-Dichloroethylene	6279766	6279766	<0.05	<0.05	NA	< 0.05	87%	50%	140%	98%	60%	130%	67%	50%	140%
Methylene Chloride	6279766	6279766	<0.05	<0.05	NA	< 0.05	87%	50%	140%	99%	60%	130%	84%	50%	140%
Trans- 1,2-Dichloroethylene	6279766	6279766	<0.05	<0.05	NA	< 0.05	104%	50%	140%	98%	60%	130%	94%	50%	140%
Methyl tert-butyl Ether	6279766	6279766	<0.05	<0.05	NA	< 0.05	60%	50%	140%	109%	60%	130%	109%	50%	140%
1,1-Dichloroethane	6279766	6279766	<0.02	<0.02	NA	< 0.02	93%	50%	140%	97%	60%	130%	98%	50%	140%
Methyl Ethyl Ketone	6279766	6279766	<0.50	<0.50	NA	< 0.50	85%	50%	140%	92%	50%	140%	103%	50%	140%
Cis- 1,2-Dichloroethylene	6279766	6279766	<0.02	<0.02	NA	< 0.02	98%	50%	140%	111%	60%	130%	99%	50%	140%
Chloroform	6279766	6279766	<0.04	< 0.04	NA	< 0.04	101%	50%	140%	102%	60%	130%	99%	50%	140%
1,2-Dichloroethane	6279766	6279766	<0.03	< 0.03	NA	< 0.03	94%	50%	140%	99%	60%	130%	98%	50%	140%
1,1,1-Trichloroethane	6279766	6279766	<0.05	<0.05	NA	< 0.05	78%	50%	140%	69%	60%	130%	66%	50%	140%
Carbon Tetrachloride	6279766	6279766	<0.05	<0.05	NA	< 0.05	67%	50%	140%	70%	60%	130%	76%	50%	140%
Benzene	6279766	6279766	<0.02	<0.02	NA	< 0.02	93%	50%	140%	109%	60%	130%	96%	50%	140%
1,2-Dichloropropane	6279766	6279766	< 0.03	<0.03	NA	< 0.03	67%	50%	140%	95%	60%	130%	83%	50%	140%
Trichloroethylene	6279766	6279766	< 0.03	<0.03	NA	< 0.03	100%	50%	140%	106%	60%	130%	97%	50%	140%
Bromodichloromethane	6279766	6279766	<0.05	<0.05	NA	< 0.05	90%	50%	140%	84%	60%	130%	81%	50%	140%
Methyl Isobutyl Ketone	6279766	6279766	<0.50	<0.50	NA	< 0.50	84%	50%	140%	85%	50%	140%	105%	50%	140%
1,1,2-Trichloroethane	6279766	6279766	<0.04	< 0.04	NA	< 0.04	68%	50%	140%	63%	60%	130%	67%	50%	140%
Toluene	6279766	6279766	<0.05	<0.05	NA	< 0.05	93%	50%	140%	78%	60%	130%	107%	50%	140%
Dibromochloromethane	6279766	6279766	<0.05	<0.05	NA	< 0.05	66%	50%	140%	61%	60%	130%	67%	50%	140%
Ethylene Dibromide	6279766	6279766	<0.04	<0.04	NA	< 0.04	106%	50%	140%	91%	60%	130%	78%	50%	140%
Tetrachloroethylene	6279766		<0.05	<0.05	NA	< 0.05	78%	50%	140%	99%	60%	130%	100%	50%	140%
1,1,1,2-Tetrachloroethane	6279766	6279766	<0.04	< 0.04	NA	< 0.04	88%	50%	140%	88%	60%	130%	84%	50%	140%
Chlorobenzene	6279766	6279766	<0.05	<0.05	NA	< 0.05	101%	50%	140%	84%	60%	130%	97%	50%	140%
Ethylbenzene	6279766	6279766	<0.05	<0.05	NA	< 0.05	99%	50%	140%	92%	60%	130%	93%	50%	140%
m & p-Xylene	6279766	6279766	<0.05	<0.05	NA	< 0.05	116%	50%	140%	91%	60%	130%	121%	50%	140%
Bromoform	6279766	6279766	<0.05	<0.05	NA	< 0.05	70%	50%	140%	68%	60%	130%	99%	50%	140%
Styrene	6279766	6279766	<0.05	<0.05	NA	< 0.05	94%	50%	140%	89%	60%	130%	99%	50%	140%
1,1,2,2-Tetrachloroethane	6279766	6279766	<0.05	<0.05	NA	< 0.05	65%	50%	140%	88%	60%	130%	77%	50%	140%
o-Xylene	6279766	6279766	<0.05	<0.05	NA	< 0.05	98%	50%	140%	95%	60%	130%	99%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 17

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 GEORGE ST.

AGAT WORK ORDER: 24H215472 ATTENTION TO: Jodie Glasier SAMPLED BY:HELEN PIMENTEL

Trace Organics Analysis (Continued)

RPT Date: Nov 11, 2024			C	UPLICAT	E		REFERE		TERIAL	METHOD	BLAN		MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	eptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
		IC					value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
1,3-Dichlorobenzene	6279766	6279766	<0.05	<0.05	NA	< 0.05	96%	50%	140%	90%	60%	130%	106%	50%	140%
1,4-Dichlorobenzene	6279766	6279766	<0.05	<0.05	NA	< 0.05	101%	50%	140%	90%	60%	130%	101%	50%	140%
1,2-Dichlorobenzene	6279766	6279766	<0.05	<0.05	NA	< 0.05	97%	50%	140%	87%	60%	130%	94%	50%	140%
n-Hexane	6279766	6279766	<0.05	<0.05	NA	< 0.05	92%	50%	140%	98%	60%	130%	67%	50%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	6283513		<0.05	<0.05	NA	< 0.05	110%	50%	140%	110%	50%	140%	85%	50%	140%
Acenaphthylene	6283513		<0.05	<0.05	NA	< 0.05	119%	50%	140%	83%	50%	140%	98%	50%	140%
Acenaphthene	6283513		<0.05	<0.05	NA	< 0.05	106%	50%	140%	83%	50%	140%	80%	50%	140%
Fluorene	6283513		<0.05	<0.05	NA	< 0.05	137%	50%	140%	95%	50%	140%	95%	50%	140%
Phenanthrene	6283513		<0.05	<0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	108%	50%	140%
Anthracene	6283513		<0.05	<0.05	NA	< 0.05	118%	50%	140%	95%	50%	140%	78%	50%	140%
Fluoranthene	6283513		<0.05	<0.05	NA	< 0.05	119%	50%	140%	80%	50%	140%	100%	50%	140%
Pyrene	6283513		<0.05	<0.05	NA	< 0.05	136%	50%	140%	88%	50%	140%	108%	50%	140%
Benzo(a)anthracene	6283513		<0.05	<0.05	NA	< 0.05	99%	50%	140%	88%	50%	140%	83%	50%	140%
Chrysene	6283513		<0.05	<0.05	NA	< 0.05	130%	50%	140%	88%	50%	140%	68%	50%	140%
Benzo(b)fluoranthene	6283513		<0.05	<0.05	NA	< 0.05	88%	50%	140%	98%	50%	140%	90%	50%	140%
Benzo(k)fluoranthene	6283513		<0.05	<0.05	NA	< 0.05	86%	50%	140%	100%	50%	140%	75%	50%	140%
Benzo(a)pyrene	6283513		<0.05	<0.05	NA	< 0.05	108%	50%	140%	110%	50%	140%	83%	50%	140%
Indeno(1,2,3-cd)pyrene	6283513		<0.05	<0.05	NA	< 0.05	104%	50%	140%	105%	50%	140%	73%	50%	140%
Dibenz(a,h)anthracene	6283513		<0.05	<0.05	NA	< 0.05	83%	50%	140%	90%	50%	140%	75%	50%	140%
Benzo(g,h,i)perylene	6283513		<0.05	<0.05	NA	< 0.05	103%	50%	140%	95%	50%	140%	73%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 17

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD PROJECT: NS2491-02

SAMPLING SITE:5578 GEORGE ST.

AGAT WORK ORDER: 24H215472 ATTENTION TO: Jodie Glasier

SAMPLED BY:HELEN PIMENTEL

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		•	
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD PROJECT: NS2491-02

SAMPLING SITE:5578 GEORGE ST.

AGAT WORK ORDER: 24H215472 **ATTENTION TO: Jodie Glasier**

SAMPLING SITE:5578 GEORGE ST.		SAMPLED BY:HE	ELEN PIMENTEL
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD PROJECT: NS2491-02

SAMPLING SITE:5578 GEORGE ST.

AGAT WORK ORDER: 24H215472 ATTENTION TO: Jodie Glasier

SAMPLED BY:HELEN PIMENTEL

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD PROJECT: NS2491-02

SAMPLING SITE:5578 GEORGE ST.

AGAT WORK ORDER: 24H215472 ATTENTION TO: Jodie Glasier

ATTENTION TO: Jodie Glasier SAMPLED BY:HELEN PIMENTEL

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Chain of Custody

Report Information:

Project Information:

Invoice Information:

1. BH/MW1-1

MUL

6. BHIMU12-2

BULMW3

Samples Relinquished By (Print Name and J

5. BRIMW

HA HA2

Helen

Samples Relinquished BV (Print

Mu11-2

Company: Contact: Address:

Phone: Reports to be sent to: 1. Email: 2. Email:

Project: Site Location: Sampled By:

AGAT Quote #:

Company: Contact: Address: Email:

2. PH BHIMW

3.

4. BU

7.

8. 9

10 11

of Custody Reco	aborate	Ories Drinking Water s	S ample, pleas	can here fo quick surve se use Drink	pr a py! Ph	: 905,71	2.510 w	0 Fax: ebeart ed by hu	905 1 n agat mans)	712 51 labs c	22 om	W Co Ar	ork Ord Doler Qu rival Te epot Ter	er #: uantity mpera mpera	y: atures: atures:	6	1 1 1 1 1	50	(DOL 2.9	62 7-3 10.9
formation:	SL			(Please of	ulatory Requirements: theck all applicable boxes)							Cu	ustody S otes:	Seal I	ntact:	BE	Yes	Er)	□No (Œ	□N/A
$3300 \mu e$ $3300 \mu e$ 0nt4, Tho 289 - 407 - 6 Tg1-s	e Glasi mtfuille mtfuille sold, or 341 Fax: ie c ng	e- Hyhuu 1. 1200 5. /. ca			aulation 153/04 Regulation 406 Implicate Dreend/Com Table	5 3	Sev Sev Pro Obj	ver Use anitary Region v. Wate ectives er Indicate	r Qua (PWC	Storm lity (O)		Tu Re Ru	rnaro gular sh TA Da Da O	DUNC TAT F(Rust Busin Bys R Dat	I Time Surcharg ess e Requi	e (TA	5 to 7 f 5 to 7 f 2 Busin Days ush Su	Busine ness rcharg	r ed: ss Days	ext Business ay oply):
NS 2 5578 Helen Pin 1033659 EC	6eorge nestel	2 57.			Site Condition (RSC)? Yes INO	Cen	Yes	Reg 15		lysis No		0	* 7/ For 'Sa . Reg 40	Plea AT is e me D	exclusive ay' ana 0. Reg 558	ride pri e of we lysis, p	ior notil eekends please	fication s and s contag	n for rush statutory st your A (TAT nolidays AT CSR
Please note: If quotation numb	er is not provided, cirent will b	II To Same: Yes	s X No	GW GW O P S	ple Matrix Legend Ground Water SD Sediment Oil SW Surface Water Paint R Rock/Shale Soil	Field Filtered - Metals, Hg, CrVI,	& thorganics	. 🗆 CrVI, 🗆 Hg, 🗆 HWSB	1-F4 PHCs		octors	on 406 Characterization Packag als. BTEX. F1-F4		Di 400 SFLF Railiwater Leadi	Disposal Characterization TCLP: 세ఓ □voCs □ABNs □B(a)P □PC	ity: Moisture Sulphide	ar, Hotween Sol	cuokent Chron	times	y Hazardous or High Concentration
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals	BTEX, F	VOC	PCBs: A	Regulati oH. Meta	EC, SAF	mSPLP:	Landfill I TCLP:	Corrosiv	200	3	Ne	Potential
101 1 - 1 101 1 - 2 101 2 - 1 101 2 - 2 101 3 - 1 101 3 - 3	10/29/24	AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM	0)	S S	only pot-			XXXXXXXXX	XXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							XXXXXXXXXX	XXXXXXXXX	××××××××××××××××××××××××××××××××××××××	
ed By (Print Name and Sign): ed By (Print Name and Sign): ed By (Print Name and Sign):	eles P1	Date Date DCT 31/2	24 7 24 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	em	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign) Samples Received By (Print Name and Sign):	ß) h		(0	Date	3	1 Time	4.4 -{r	Spr	N°:	Pag T -	je	Lof_ 567	<u>1</u> <u>86</u>

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD 3300 MERRITTVILLE HIGHWAY THOROLD, ON L2V 4Y6 289-407-6341 ATTENTION TO: Jodie Glasier PROJECT: NS2491-02 AGAT WORK ORDER: 24H222551 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead DATE REPORTED: Nov 28, 2024 PAGES (INCLUDING COVER): 6 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 6

AGAT WORK ORDER: 24H222551 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:Helen Pimentel

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

DATE RECEIVED: 2024-11-18

		SA	MPLE DES	CRIPTION:	HA2
l			SAMPLE TYPE:		
			DATES	SAMPLED:	2024-11-19
P	Parameter	Unit	G/S	RDL	6336072
Barium		µg/g	390	2.0	407

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

DATE REPORTED: 2024-11-28

	agat	Laboratories	AGAT WORK ORDER: 24H22255 PROJECT: NS2491-02	y 1		MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com
CLIENT NAM	IE: NIAGARA SOIL SOLUTIO	NS LTD		lasier		

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6336072	HA2	ON T3 S RPI MFT	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Barium	µg/g	390	407

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 George Street

AGAT WORK ORDER: 24H222551

ATTENTION TO: Jodie Glasier

SAMPLED BY:Helen Pimentel

				Soi	il Ana	alysi	S								
RPT Date: Nov 28, 2024 DUPLICATE					E		REFERENCE MATERIAL			METHOD	BLAN	(SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
							value	Lower	Upper		Lower	Upper	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Lower	Upper
O. Reg. 153(511) - Metals (Includi	ng Hydride	s) (Soil)													
Barium	6342546		226	206	9.3%	< 2.0	101%	70%	130%	101%	80%	120%	NA	70%	130%

Comments: Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 4 of 6

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD PROJECT: NS2491-02

AGAT WORK ORDER: 24H222551

ATTENTION TO: Jodie Glasier

SAMPLING SITE:5578 George Street

SAMPLED BY:Helen Pimentel

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	-		
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS

webearth.agatlabs.com

	Cooler Quantity:
1 A 1	Arrival Tamperatur

 $\{ \mu_i \}_{i \in I} \in \{ i \in I \}$

Laboratory Use Only

Work Order #: _____24H272551

 \sim

	Drinking Water	ase use Drin	king Water Chain of	f Custody Form (pive	are consumed by numans)						Depot Temperatures: 9818-983 Custody Seal Intact: 1985 DN/A								
Report Information:	ISSL	-		(Piease	Regulatory Requirements: (Please check all applicable boxes)							Cu	Custody Seal Intact: Yes No IN/A Notes: BAGGEO ICE						
Contact: Jodie Address: 3300 Merr	14 XR	Table Table Table Table Indicate One							Turnaround Time (TAT) Required:										
Phone: Reports to be sent to: 1. Email: 289-407-6341 Fax: Jelasier @ Assl.ca 2. Email:					Ind/Com Ind/Com Region Pres/Park Res/Park Prov. Water Quality Agriculture Agriculture Objectives (PWQ0) Soil Texture (check One) Regulation 558 Other					uality		Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days							
										(-)									
Project Information:				ls th	is submission f	for a Record	Re	aport G	licate One	ne on		OR Date Required (Rush Surcharges May Apply):							
Project: NS 24 Site Location: 55 7 3 66	91- (2058e s	2 treet			of Site Conditio	n (RSC) ? No	Cer	tificate Yes	of Ar	alysis] No		F	P *TAT	lease pi s exclus Dav' a	rovide sive of	prior no weeken	tification ds and st	for rush TA atutory ho	T lidays
AGAT Quote #: 1033659	EBPO:				al Sample 🔽	1	8	O. Re	g 153		T	0.	Reg 406	0. Re	g	र			
					Groupo water	D Sediment	0					N	2	- 1.44	(0)	No.			
Contact:				- 0 - P - S	Oil SI Paint R Soil	 D Sediment W Surface Water Rock/Shale 	Field Filtered - Meta	& Inorganics	1-F4 PHCs		oclors 🗆	on 406 Characteriz als, BTEX, F1-F4	on 406 SPLP Rainw	Jisposal Characteri		als Conf			
Contact:	Date Sampled	Time Sampled	# of Containers	- O P S Sample Matrix	Come Come Come Come Come Come Come Come	D Sediment W Surface Water Rock/Shale ments/ nstructions	K Field Filtered - Meta	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	PCBs: Aroclors	Regulation 406 Characteriz pH, Metals, BTEX, F1-F4	EC, SAR Regulation 406 SPLP Rainw	Landfill Disposal Characteri		Metals (only		10.00	
Contact: Address: Email: Sample Identification HA 2	Date Sampled	Time Sampled	# of Containers	- O P S Sample Matrix	Comi Special II	D Sediment W Surface Water Rock/Shale ments/ nstructions Bactum	 K Field Filtered - Meta 	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	PCBs: Aroclors	Regulation 406 Characteriz pH, Metals, BTEX, F1-F4	EC, SAR Regulation 406 SPLP Rainw	Landfill Disposal Characteri		× Metals (only			
Contact: Address: Email: Sample Identification HA2	Date Sampled	Time Sampled AN PN AN	# of Containers	- O P S Sample Matrix	Common Co	D Sediment W Surface Water Rock/Shale ments/ nstructions	 K Field Filtered - Meta 	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	PCBs: Aroctors	Regulation 406 Characteriz pH, Metals, BTEX, F1-F4	EC. SAR Regulation 406 SPLP Rainw	Landfill Disposal Characteri		× Metals (only			
Contact: Address: Email: Sample Identification HA2	Date Sampled	Time Sampled	# of Containers	- O P S Sample Matrix	Comi Special II	D Sediment W Surface Water Rock/Shale ments/ nstructions Barium	A Field Filtered - Meta	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	PCBs: Aroclors	Regulation 406 Characteriz pH, Metals, BTEX, F1-F4	EC, SAR Regulation 406 SPLP Rainw	Landfill Disposal Characteri		× Metals (only			
contact: ddress: mail: Sample Identification HA2	Date Sampled	Time Sampled An Ph An Ph An Ph An Ph An Ph An Ph	# of Containers	- O P S Sample Matrix	Common Special II	D Sediment W Surface Water Rock/Shale ments/ nstructions	A Field Filtered - Meta	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	PCBs: Aroclors	Regulation 406 Characteriz pH, Metals, BTEX, F1-F4	EC, SAR Regulation 406 SPLP Rainw	Landfill Disposal Characteri		× Metals (only			
Contact: Address: Email: Sample Identification HA2	Date Sampled	Time Sampled An Ph An Ph An Ph An Ph An An An An An An An An An	# of Containers	- O P S Sample Matrix	Common Special II	D Sediment W Surface Water Rock/Shale ments/ nstructions	 Field Filtered - Meta 	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	PCBs: Aroclors	Regulation 406 Characteriz pH, Metals, BTEX, F1-F4	EC. SAR Regulation 406 SPLP Rainw	Landfill Disposal Characteri		X Metals (only			
Contact:	Date Sampled	Time Sampled An Ph An Ph An Ph An Ph An Ph An An An An An An An	# of Containers	- O P S Sample Matrix	Communication of the second se	D Sediment W Surface Water Rock/Shale ments/ nstructions C 1 0 M	X Field Filtered - Meta	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	PCBs: Aroctors	Regulation 406 Characteriz pH, Metals, BTEX, F1-F4	EC. SAR Regulation 406 SPLP Rainw	Landfill Disposal Characteri		X Metals (only			
Contact: Address: Email: Sample Identification	Date Sampled	Time Sampled An Ph An Ph An Ph An Ph An Ph An Ph An Ph An Ph An An Ph An An Ph An An Ph An An An Ph An An An Ph An An An An An An An An An An An An An	# of Containers	- O P S Sample Matrix S	Common Water Si Oil St Paint R Soil Common Special II Only E	D Sediment W Surface Water Rock/Shale ments/ nstructions Bariam	A Field Filtered - Meta	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC PAHS	PCBs: Aroclors	Regulation 406 Characteriz pH, Metals, BTEX, F1-F4	EC, SAR Regulation 406 SPLP Rainw	Landfill Disposal Characteri		X Metals (only			
Contact: Address: Email: Sample Identification HA2	Date Sampled	Time Sampled An Ph An Ph An Ph An Ph An Ph An Ph An Ph An Ph An An Ph An An Ph An An Ph An An An Ph An An An An An An An An An An An An An	# of Containers	- O P S Sample Matrix S	Common Special II	D Sediment W Surface Water Rock/Shale ments/ nstructions Barrom	Z Field Filtered - Meta	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	PCBs: Aroctors	Regulation 406 Characteriz	EC, SAR Regulation 406 SPLP Rainw	Landfill Disposal Characteri		X Metals (only			
Contact: Address: Email: Sample Identification HA 2	Date Sampled 11/29/24	Time Sampled An Ph An Ph An Ph An Ph An Ph An Ph An Ph An Ph An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An An Ph An An An Ph An An An Ph An An An Ph An An An Ph An An An An An An An An An An An An An	# of Containers	- O P S Sample Matrix S	Comi Special II	D Sediment W Surface Water Rock/Shale ments/ nstructions	A Field Filtered - Meta	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC PAHS	PCBS: Anotors	Regulation 406 Characteriz	EC. SAR Regulation 406 SPLP Rainw	Landfill Disposal Characteri		X Metals (only			
Contact: Address:	Date Sampled 11/29/24	Time Sampled An Ph An Ph An Ph An Ph An Ph An Ph An Ph An Ph An Ph An Ph An Ph An An Ph An An Ph An Ph An Ph An Ph An Ph An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An Ph An An An Ph An An An An An An An An An An An An An	# of Containers	- O P S Sample Matrix S	Common Water Si Oil St Paint R Soil Common Special II Only E	D Sediment W Surface Water Rock/Shale ments/ nstructions Darium	A Field Filtered - Meta	Metals & Inorganics	BTEX, F1-F4 PHCs	Parts	PCBs: Arocions	Regulation 406 Characteria pH, Metals, BTEX, F1-F4	EC. SAR Regulation 406 SPLP Rainw	Landfill Disposal Characteria		X Metals Cont			
Contact: Address: Email: Sample Identification HA2	Date Sampled 11/29/24	Time Sampled An Ph An An Ph An An Ph An An Ph An An Ph An An An Ph An An An Ph An An An An An An An An An An An An An	# of Containers	- O P S Sample Matrix S	Communication of the second se	D Sediment W Surface Water Rock/Shale ments/ nstructions Darion	A Field Filtered - Meta	Metals & Inorganics	BTEX, F1-F4 PHCs	VOC	bCBS: Arocions	Regulation 406 Characteria	EC. SAR Regulation 406 SPLP Rainw			X Metals (only			

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD 3300 MERRITTVILLE HIGHWAY THOROLD, ON L2V 4Y6 289-407-6341 ATTENTION TO: Jodie Glasier PROJECT: NS2491-02 AGAT WORK ORDER: 24H223680 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead DATE REPORTED: Nov 28, 2024 PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 5

AGAT WORK ORDER: 24H223680 PROJECT: NS2491-02

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY: J. Toldi

			O. Reç	y. 153(511)	- Metals (In	cluding Hy	drides) (Soi	il)			
DATE RECEIVED: 2024-11-20 DATE REPORTED: 2024-11-28											
		SAMPLE DES	CRIPTION:	D1	D2	D3	D4	D5	D6	D7	D8
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	2024-11-20	2024-11-20	2024-11-20	2024-11-20	2024-11-20	2024-11-20	2024-11-20	2024-11-20
Parameter	Unit	G/S	RDL	6345581	6345582	6345583	6345584	6345585	6345586	6345587	6345588
Barium	µg/g	390	2.0					273	166	155	218
Lead	µg/g	120	1	33	62	66	61				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 George Street

AGAT WORK ORDER: 24H223680

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

Soil Analysis															
RPT Date: Nov 28, 2024			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recoverv	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Including Hydrides) (Soil) Lead 6345581 6345581			33	34	3.0%	< 1	112%	70%	130%	98%	80%	120%	101%	70%	130%
O. Reg. 153(511) - Metals (Includi Barium	n g Hydride 6345581 6	s) (Soil) 6345581	733	801	8.9%	< 2.0	116%	70%	130%	98%	80%	120%	96%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD AGAT WORK ORDER: 24H223680 PROJECT: NS2491-02 ATTENTION TO: Jodie Glasier SAMPLING SITE:5578 George Street SAMPLED BY:J. Toldi PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICA

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	•	•	
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS

Have feedback? Scan here for a quick survey! Chain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)							Laboratory Use Only Work Order #: 24423650 Cooler Quantity: LG COOLAR Arrival Temperatures: 3-83919-9 Description 1025100										
Report Information: SSS Contact: SSS Address: SSS Phone: SSS Reports to be sent to: Sga Garee Ssl.ca 1. Email: Sga Garee Ssl.ca			Regulatory Requirements: (Please check all applicable baxes) Regulation 153/04 Table Ind/Com Pres/Park Agriculture Soil Texture (Check One) Fine						Depot Temperatures: 10.8 0.2 10.5 Custody Seal Intact: Breaching INo IN/A Notes: Breaching ICE IN/A Turnaround Time (TAT) Required: Regular TAT Investor Investor Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days OB Date Description (Purch Surcharges Mark Surcharges Next Business								
Project Information: Project: Site Location: Sampled By: AGAT Quote #: D3659EB P0:			Is this submission for a Record of Site Condition (RSC)?			Report Guideline on Certificate of Analysis Yes No					Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CSR						
Please note: If quotation number Invoice Information: Company: Contact: Address: Email:	is not provided, client will be bill Bill To	o Same: Yes 🕢 No 🗌	Sample Matrix GW Ground Water O Oil P Paint S Soil	Legend SD Sediment SW Surface Water R Rock/Shale	Field Filtered - Metals, Hg, CrVI,	& Inorganics	- u сил, u нg, u нwsв 1-F4 PHCs		octors	on 406 Characterization Packag als, BTEX, F1-F4	t on 406 SPLP Rainwater Leach □ Metals □ VOCs □ SVOCs □0	Disposal Characterization TCLP: M&i ⊟vocs ⊟ABNs ⊟8(a)P⊟PCI		wat			y Hazardous or High Concentration
Sample Identification 1. D/ 2. DZ 3. D3 4. D4 5. D5 6. D6 7. D7 8. D7 9.	Date Sampled S	Time # of S Sampled Containers S AM AM A AM A A	Sample Co Matrix Specia	mments/ I Instructions	Y / N	Metals	BTEX, F	PAHS	POBS: Ar	Regulati pH, Met	Regulation model and mode						Potential
10. 11. Samples Refinguished By (Print Name and Sign) Samples Refinguished By (Print Name and Sign) Simmles Refinguished By (Print Name and Sign) Sources Refinguished By (Print Name and Sign) Document to DN-78: 1111.025 Any and all products	s and/or services provided	PM AM PM Dutor 100 Time Time Dutor 2/24 Time Dutor 100 Time Dutor 21/24 Time Time Dutor 100 Time	Samples Received By Samples Received By Samples Received By	(Print, Name and Sign): (Print Name and Sign): (Print Name and Sign):	2h	andcondit	dons unles		ate Date Date	21/24 21 ed in a cur	Time Time Time	YSP F	n∘: I docum	Page [-] ent.	of 60	10:	1

APPENDIX C

CERTIFICATES OF ANALYSIS – GROUNDWATER

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD 3300 MERRITTVILLE HIGHWAY THOROLD, ON L2V 4Y6 289-407-6341 ATTENTION TO: Jodie Glasier PROJECT: NS2491-02 AGAT WORK ORDER: 24H226139 TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead DATE REPORTED: Dec 05, 2024 PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 17

AGAT WORK ORDER: 24H226139 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2024-11-27

	:	SAMPLE DESC	CRIPTION:	BH/MW4	
		SAMF	PLE TYPE:	Water	
		DATE S	SAMPLED:	2024-11-27	
Parameter	Unit	G/S	RDL	6364491	
Naphthalene	µg/L	11	0.20	<0.20	
Acenaphthylene	µg/L	1	0.20	<0.20	
Acenaphthene	μg/L	4.1	0.20	<0.20	
Fluorene	µg/L	120	0.20	<0.20	
Phenanthrene	μg/L	1	0.10	<0.10	
Anthracene	µg/L	2.4	0.10	<0.10	
Fluoranthene	µg/L	0.41	0.20	<0.20	
Pyrene	µg/L	4.1	0.20	<0.20	
Benzo(a)anthracene	µg/L	1	0.20	<0.20	
Chrysene	µg/L	0.1	0.10	<0.10	
Benzo(b)fluoranthene	µg/L	0.1	0.10	<0.10	
Benzo(k)fluoranthene	µg/L	0.1	0.10	<0.10	
Benzo(a)pyrene	μg/L	0.01	0.01	<0.01	
ndeno(1,2,3-cd)pyrene	µg/L	0.2	0.20	<0.20	
Dibenz(a,h)anthracene	µg/L	0.2	0.20	<0.20	
Benzo(g,h,i)perylene	µg/L	0.2	0.20	<0.20	
2-and 1-methyl Napthalene	µg/L	3.2	0.20	<0.20	
Sediment				1	
Surrogate	Unit	Acceptabl	e Limits		
Naphthalene-d8	%	50-1	40	85	
Acridine-d9	%	50-1	40	96	
Terphenyl-d14	%	50-1	40	97	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

6364491

Certified By:

NPopukolij

DATE REPORTED: 2024-12-05

AGAT WORK ORDER: 24H226139 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2024-11-27

	S	SAMPLE DESC	RIPTION:	BH/MW4
		SAMP	LE TYPE:	Water
		DATE S	AMPLED:	2024-11-27
Parameter	Unit	G/S	RDL	6364491
F1 (C6 to C10)	µg/L	750	25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25
F2 (C10 to C16)	µg/L	150	100	<100
F2 (C10 to C16) minus Naphthalene	µg/L		100	<100
F3 (C16 to C34)	µg/L	500	100	<100
F3 (C16 to C34) minus PAHs	µg/L		100	<100
F4 (C34 to C50)	µg/L	500	100	<100
Gravimetric Heavy Hydrocarbons	µg/L		500	NA
Sediment				1
Surrogate	Unit	Acceptabl	e Limits	
Toluene-d8	%	50-1	40	98
Terphenyl	% Recovery	60-1	40	77

Certified By:

NPopukolof

DATE REPORTED: 2024-12-05

AGAT WORK ORDER: 24H226139 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2024-11-27

DATE REPORTED: 2024-12-05

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 6364491 The C6-C10 fraction is calculated using toluene response factor. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene. C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene). This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test. Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 24H226139 PROJECT: NS2491-02

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY: J. Toldi

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2024-11-27

DATE RECEIVED: 2024-11-27					DATE REPORTED: 2024-12-05
		SAMPLE DESCRIP	TION: B	H/MW4	
		SAMPLE	TYPE:	Nater	
		DATE SAM	PLED: 202	24-11-27	
Parameter	Unit	G/S F	RDL 6	364491	
Dichlorodifluoromethane	µg/L	590 0	.40	<0.40	
Vinyl Chloride	µg/L	1.7 0	0.17	<0.17	
Bromomethane	µg/L	0.89 0	.20	<0.20	
Trichlorofluoromethane	µg/L	150 C	.40	<0.40	
Acetone	µg/L	2700	1.0	<1.0	
1,1-Dichloroethylene	µg/L	14 C	.30	<0.30	
Methylene Chloride	µg/L	50 C	.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	17 0	.20	<0.20	
Methyl tert-butyl ether	µg/L	15 C	.20	<0.20	
1,1-Dichloroethane	µg/L	5 0	.30	<0.30	
Methyl Ethyl Ketone	µg/L	1800	1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	17 0	.20	<0.20	
Chloroform	µg/L	22 0	.20	<0.20	
1,2-Dichloroethane	µg/L	5 C	.20	<0.20	
1,1,1-Trichloroethane	µg/L	200 0	.30	<0.30	
Carbon Tetrachloride	µg/L	5.0 0	.20	<0.20	
Benzene	µg/L	5.0 0	.20	<0.20	
1,2-Dichloropropane	µg/L	5 0	.20	<0.20	
Trichloroethylene	µg/L	5 C	.20	<0.20	
Bromodichloromethane	µg/L	16 C	.20	<0.20	
Methyl Isobutyl Ketone	µg/L	640	1.0	<1.0	
1,1,2-Trichloroethane	µg/L	5 0	.20	<0.20	
Toluene	µg/L	24 0	.20	<0.20	
Dibromochloromethane	µg/L	25 0	.10	<0.10	
Ethylene Dibromide	µg/L	0.2 0	.10	<0.10	
Tetrachloroethylene	µg/L	17 0	.20	<0.20	
1,1,1,2-Tetrachloroethane	µg/L	1.1 0	0.10	<0.10	
Chlorobenzene	µg/L	30 0	0.10	<0.10	
Ethylbenzene	µg/L	2.4 0	0.10	<0.10	
m & p-Xylene	µg/L	C	.20	<0.20	

Certified By:

NPopukoloj

AGAT WORK ORDER: 24H226139 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2024-11-27

	SA	AMPLE DES	CRIPTION:	BH/MW4
		SAM	PLE TYPE:	Water
		DATES	SAMPLED:	2024-11-27
Parameter	Unit	G/S	RDL	6364491
Bromoform	µg/L	25	0.10	<0.10
Styrene	µg/L	5.4	0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	1	0.10	<0.10
o-Xylene	µg/L		0.10	<0.10
1,3-Dichlorobenzene	µg/L	59	0.10	<0.10
1,4-Dichlorobenzene	µg/L	1	0.10	<0.10
1,2-Dichlorobenzene	µg/L	3	0.10	<0.10
1,3-Dichloropropene	µg/L	0.5	0.30	<0.30
Xylenes (Total)	µg/L	300	0.20	<0.20
n-Hexane	µg/L	520	0.20	<0.20
Surrogate	Unit	Acceptab	le Limits	
Toluene-d8	% Recovery	50-1	40	98
4-Bromofluorobenzene	% Recovery	50-1	40	85

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6364491 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2024-12-05

AGAT WORK ORDER: 24H226139 PROJECT: NS2491-02

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY: J. Toldi

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2024-11-27

DATE RECEIVED: 2024-11-2	7				DATE REPORTED: 2024-12-05
	S	AMPLE DESC	RIPTION:	BH/MW4	
		SAMF	LE TYPE:	Water	
		DATE S	AMPLED:	2024-11-27	
Parameter	Unit	G/S	RDL	6364491	
Dissolved Antimony	µg/L	6	1.0	<1.0	
Dissolved Arsenic	µg/L	25	1.0	1.2	
Dissolved Barium	µg/L	1000	2.0	50.6	
Dissolved Beryllium	µg/L	4	0.50	<0.50	
Dissolved Boron	µg/L	5000	10.0	74.7	
Dissolved Cadmium	µg/L	2.7	0.20	0.43	
Dissolved Chromium	µg/L	50	2.0	<2.0	
Dissolved Cobalt	µg/L	3.8	0.50	52.5	
Dissolved Copper	µg/L	87	1.0	3.0	
Dissolved Lead	µg/L	10	0.50	<0.50	
Dissolved Molybdenum	µg/L	70	0.50	6.24	
Dissolved Nickel	µg/L	100	1.0	46.6	
Dissolved Selenium	µg/L	10	1.0	1.2	
Dissolved Silver	µg/L	1.5	0.20	<0.20	
Dissolved Thallium	µg/L	2	0.30	<0.30	
Dissolved Uranium	µg/L	20	0.50	14.5	
Dissolved Vanadium	µg/L	6.2	0.40	0.42	
Dissolved Zinc	µg/L	1100	5.0	11.3	
Mercury	µg/L	1	0.02	<0.02	
Chromium VI	µg/L	25	2.000	<2.000	
Cyanide, WAD	µg/L	66	2	<2	
Dissolved Sodium	µg/L	490000	50	83000	
Chloride	µg/L	790000	100	129000	
Electrical Conductivity	uS/cm	NA	2	1700	
рН	pH Units		NA	7.78	

Certified By:

AGAT WORK ORDER: 24H226139 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2024-11-27

DATE REPORTED: 2024-12-05

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Medium and Fine Textured Soils

6364491 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results

Analysis performed at AGAT Toronto (unless marked by *)

AGGAT Laboratories	Exceedance Summary AGAT WORK ORDER: 24H226139 PROJECT: NS2491-02	5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 bttp://www.gatilob.com	
CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD	ATTENTION TO: Jodie Glasier		

PARAMETER

Dissolved Cobalt

UNIT GUIDEVALUE

3.8

µg/L

RESULT

52.5

ANALYSIS PACKAGE

O. Reg. 153(511) - Metals & Inorganics (Water)

SAMPLEID

6364491

SAMPLE TITLE

BH/MW4

GUIDELINE

ON T2 PGW MFT

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 George Street

AGAT WORK ORDER: 24H226139 ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

Trace Organics Analysis

			J										1		
RPT Date: Dec 05, 2024			C	UPLICAT	E		REFERE		TERIAL	. METHOD BLANK SPIKE			MA	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lii	eptable mits	Recoverv	Acce	eptable mits	Recover	Acce	ptable mits
		IG					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PAHs (Wate	r)														
Naphthalene	6364491	6364491	<0.20	<0.20	NA	< 0.20	96%	50%	140%	87%	50%	140%	89%	50%	140%
Acenaphthylene	6364491	6364491	<0.20	<0.20	NA	< 0.20	96%	50%	140%	88%	50%	140%	88%	50%	140%
Acenaphthene	6364491	6364491	<0.20	<0.20	NA	< 0.20	92%	50%	140%	89%	50%	140%	92%	50%	140%
Fluorene	6364491	6364491	<0.20	<0.20	NA	< 0.20	99%	50%	140%	95%	50%	140%	99%	50%	140%
Phenanthrene	6364491	6364491	<0.10	<0.10	NA	< 0.10	100%	50%	140%	97%	50%	140%	99%	50%	140%
Anthracene	6364491	6364491	<0.10	<0.10	NA	< 0.10	72%	50%	140%	89%	50%	140%	97%	50%	140%
Fluoranthene	6364491	6364491	<0.20	<0.20	NA	< 0.20	104%	50%	140%	100%	50%	140%	100%	50%	140%
Pyrene	6364491	6364491	<0.20	<0.20	NA	< 0.20	104%	50%	140%	99%	50%	140%	101%	50%	140%
Benzo(a)anthracene	6364491	6364491	<0.20	<0.20	NA	< 0.20	97%	50%	140%	90%	50%	140%	103%	50%	140%
Chrysene	6364491	6364491	<0.10	<0.10	NA	< 0.10	102%	50%	140%	92%	50%	140%	95%	50%	140%
Benzo(b)fluoranthene	6364491	6364491	<0.10	<0.10	NA	< 0.10	102%	50%	140%	95%	50%	140%	86%	50%	140%
Benzo(k)fluoranthene	6364491	6364491	<0.10	<0.10	NA	< 0.10	102%	50%	140%	93%	50%	140%	99%	50%	140%
Benzo(a)pyrene	6364491	6364491	<0.01	<0.01	NA	< 0.01	95%	50%	140%	87%	50%	140%	87%	50%	140%
Indeno(1,2,3-cd)pyrene	6364491	6364491	<0.20	<0.20	NA	< 0.20	91%	50%	140%	82%	50%	140%	87%	50%	140%
Dibenz(a,h)anthracene	6364491	6364491	<0.20	<0.20	NA	< 0.20	91%	50%	140%	79%	50%	140%	89%	50%	140%
Benzo(g,h,i)perylene	6364491	6364491	<0.20	<0.20	NA	< 0.20	95%	50%	140%	88%	50%	140%	91%	50%	140%
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs	and VOC)	(Water)												
F1 (C6 to C10)	6350989		<25	<25	NA	< 25	90%	60%	140%	84%	60%	140%	85%	60%	140%
F2 (C10 to C16)	6368391		1260	1474	15.7%	< 100	116%	60%	140%	82%	60%	140%	88%	60%	140%
F3 (C16 to C34)	6368391		< 100	< 100	NA	< 100	127%	60%	140%	83%	60%	140%	88%	60%	140%
F4 (C34 to C50)	6368391		< 100	< 100	NA	< 100	83%	60%	140%	88%	60%	140%	100%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)													
Dichlorodifluoromethane	6350989	-	<0.40	<0.40	NA	< 0.40	93%	50%	140%	105%	50%	140%	108%	50%	140%
Vinyl Chloride	6350989		<0.17	<0.17	NA	< 0.17	115%	50%	140%	107%	50%	140%	110%	50%	140%
Bromomethane	6350989		<0.20	<0.20	NA	< 0.20	96%	50%	140%	98%	50%	140%	84%	50%	140%
Trichlorofluoromethane	6350989		<0.40	<0.40	NA	< 0.40	84%	50%	140%	95%	50%	140%	100%	50%	140%
Acetone	6350989		<1.0	<1.0	NA	< 1.0	93%	50%	140%	103%	50%	140%	72%	50%	140%
1,1-Dichloroethylene	6350989		<0.30	<0.30	NA	< 0.30	75%	50%	140%	66%	60%	130%	85%	50%	140%
Methylene Chloride	6350989		<0.30	<0.30	NA	< 0.30	65%	50%	140%	69%	60%	130%	72%	50%	140%
trans- 1,2-Dichloroethylene	6350989		<0.20	<0.20	NA	< 0.20	63%	50%	140%	63%	60%	130%	75%	50%	140%
Methyl tert-butyl ether	6350989		<0.20	<0.20	NA	< 0.20	63%	50%	140%	70%	60%	130%	69%	50%	140%
1,1-Dichloroethane	6350989		<0.30	<0.30	NA	< 0.30	92%	50%	140%	89%	60%	130%	95%	50%	140%
Methyl Ethyl Ketone	6350989		<1.0	<1.0	NA	< 1.0	118%	50%	140%	92%	50%	140%	77%	50%	140%
cis- 1,2-Dichloroethylene	6350989		<0.20	<0.20	NA	< 0.20	104%	50%	140%	95%	60%	130%	110%	50%	140%
Chloroform	6350989		<0.20	<0.20	NA	< 0.20	100%	50%	140%	101%	60%	130%	120%	50%	140%
1,2-Dichloroethane	6350989		<0.20	<0.20	NA	< 0.20	100%	50%	140%	94%	60%	130%	92%	50%	140%
1,1,1-Trichloroethane	6350989		<0.30	<0.30	NA	< 0.30	118%	50%	140%	106%	60%	130%	104%	50%	140%
Carbon Tetrachloride	6350989		<0.20	<0.20	NA	< 0.20	114%	50%	140%	102%	60%	130%	93%	50%	140%
														2000 40	

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 17

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 George Street

AGAT WORK ORDER: 24H226139 ATTENTION TO: Jodie Glasier SAMPLED BY:J. Toldi

Trace Organics Analysis (Continued)

RPT Date: Dec 05, 2024			DUPLICATE				REFERE	NCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lii	eptable nits	Recovery	Acce Lir	eptable nits	Recovery	Acce Lir	ptable nits
		ia	-	-			value	Lower Upper			Lower	Upper	-	Lower	Upper
Benzene	6350989		<0.20	<0.20	NA	< 0.20	100%	50%	140%	86%	60%	130%	102%	50%	140%
1,2-Dichloropropane	6350989		<0.20	<0.20	NA	< 0.20	111%	50%	140%	111%	60%	130%	106%	50%	140%
Trichloroethylene	6350989		<0.20	<0.20	NA	< 0.20	97%	50%	140%	85%	60%	130%	70%	50%	140%
Bromodichloromethane	6350989		<0.20	<0.20	NA	< 0.20	112%	50%	140%	87%	60%	130%	118%	50%	140%
Methyl Isobutyl Ketone	6350989		<1.0	<1.0	NA	< 1.0	95%	50%	140%	81%	50%	140%	99%	50%	140%
1,1,2-Trichloroethane	6350989		<0.20	<0.20	NA	< 0.20	92%	50%	140%	116%	60%	130%	112%	50%	140%
Toluene	6350989		<0.20	<0.20	NA	< 0.20	117%	50%	140%	109%	60%	130%	113%	50%	140%
Dibromochloromethane	6350989		<0.10	<0.10	NA	< 0.10	94%	50%	140%	100%	60%	130%	90%	50%	140%
Ethylene Dibromide	6350989		<0.10	<0.10	NA	< 0.10	99%	50%	140%	120%	60%	130%	83%	50%	140%
Tetrachloroethylene	6350989		<0.20	<0.20	NA	< 0.20	96%	50%	140%	96%	60%	130%	79%	50%	140%
1,1,1,2-Tetrachloroethane	6350989		<0.10	<0.10	NA	< 0.10	87%	50%	140%	96%	60%	130%	94%	50%	140%
Chlorobenzene	6350989		<0.10	<0.10	NA	< 0.10	110%	50%	140%	102%	60%	130%	100%	50%	140%
Ethylbenzene	6350989		<0.10	<0.10	NA	< 0.10	93%	50%	140%	91%	60%	130%	96%	50%	140%
m & p-Xylene	6350989		<0.20	<0.20	NA	< 0.20	92%	50%	140%	83%	60%	130%	93%	50%	140%
Bromoform	6350989		<0.10	<0.10	NA	< 0.10	86%	50%	140%	106%	60%	130%	63%	50%	140%
Styrene	6350989		<0.10	<0.10	NA	< 0.10	89%	50%	140%	91%	60%	130%	83%	50%	140%
1,1,2,2-Tetrachloroethane	6350989		<0.10	<0.10	NA	< 0.10	88%	50%	140%	113%	60%	130%	102%	50%	140%
o-Xylene	6350989		<0.10	<0.10	NA	< 0.10	93%	50%	140%	90%	60%	130%	88%	50%	140%
1,3-Dichlorobenzene	6350989		<0.10	<0.10	NA	< 0.10	92%	50%	140%	92%	60%	130%	96%	50%	140%
1,4-Dichlorobenzene	6350989		<0.10	<0.10	NA	< 0.10	91%	50%	140%	97%	60%	130%	94%	50%	140%
1,2-Dichlorobenzene	6350989		<0.10	<0.10	NA	< 0.10	86%	50%	140%	79%	60%	130%	90%	50%	140%
n-Hexane	6350989		<0.20	<0.20	NA	< 0.20	63%	50%	140%	102%	60%	130%	76%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukok

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 17

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 George Street

AGAT WORK ORDER: 24H226139

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

Water Analysis

RPT Date: Dec 05, 2024			- C	UPLICAT	E		REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		Id					value	Lower	Upper		Lower Uppe			Lower	Upper
O. Reg. 153(511) - Metals & In	organics (Wate	er)													
Dissolved Antimony	6361282		<1.0	<1.0	NA	< 1.0	103%	70%	130%	100%	80%	120%	101%	70%	130%
Dissolved Arsenic	6361282		1.4	1.1	NA	< 1.0	111%	70%	130%	104%	80%	120%	104%	70%	130%
Dissolved Barium	6361282		74.7	75.0	0.4%	< 2.0	104%	70%	130%	105%	80%	120%	105%	70%	130%
Dissolved Beryllium	6361282		<0.50	<0.50	NA	< 0.50	88%	70%	130%	90%	80%	120%	92%	70%	130%
Dissolved Boron	6361282		30.5	32.5	NA	< 10.0	92%	70%	130%	93%	80%	120%	95%	70%	130%
Dissolved Cadmium	6361282		<0.20	<0.20	NA	< 0.20	99%	70%	130%	100%	80%	120%	99%	70%	130%
Dissolved Chromium	6361282		2.1	2.6	NA	< 2.0	102%	70%	130%	104%	80%	120%	100%	70%	130%
Dissolved Cobalt	6361282		<0.50	<0.50	NA	< 0.50	103%	70%	130%	101%	80%	120%	103%	70%	130%
Dissolved Copper	6361282		<1.0	1.1	NA	< 1.0	103%	70%	130%	103%	80%	120%	101%	70%	130%
Dissolved Lead	6361282		<0.50	<0.50	NA	< 0.50	99%	70%	130%	98%	80%	120%	96%	70%	130%
Dissolved Molybdenum	6361282		5.23	5.08	3.0%	< 0.50	94%	70%	130%	93%	80%	120%	94%	70%	130%
Dissolved Nickel	6361282		4.1	4.6	NA	< 1.0	105%	70%	130%	104%	80%	120%	102%	70%	130%
Dissolved Selenium	6361282		1.1	1.1	NA	< 1.0	96%	70%	130%	100%	80%	120%	96%	70%	130%
Dissolved Silver	6361282		<0.20	<0.20	NA	< 0.20	109%	70%	130%	103%	80%	120%	101%	70%	130%
Dissolved Thallium	6361282		<0.30	<0.30	NA	< 0.30	103%	70%	130%	101%	80%	120%	99%	70%	130%
Dissolved Uranium	6361282		0.59	0.63	NA	< 0.50	110%	70%	130%	110%	80%	120%	112%	70%	130%
Dissolved Vanadium	6361282		3.35	3.51	4.5%	< 0.40	104%	70%	130%	103%	80%	120%	104%	70%	130%
Dissolved Zinc	6361282		<5.0	5.1	NA	< 5.0	103%	70%	130%	99%	80%	120%	102%	70%	130%
Mercury	6364020		<0.02	<0.02	NA	< 0.02	102%	70%	130%	106%	80%	120%	99%	70%	130%
Chromium VI	6367584		<2.000	<2.000	NA	< 2	100%	70%	130%	105%	80%	120%	99%	70%	130%
Cyanide, WAD	6359105		<2	<2	NA	< 2	106%	70%	130%	91%	80%	120%	100%	70%	130%
Dissolved Sodium	6361282		171000	170000	0.7%	< 50	104%	70%	130%	106%	80%	120%	103%	70%	130%
Chloride	6364160		365000	360000	1.6%	< 100	96%	70%	130%	101%	80%	120%	NA	70%	130%
Electrical Conductivity	6364160		1780	1790	0.1%	< 2	103%	90%	110%						
pH	6364160		7.73	7.75	0.3%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 17

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

AGAT WORK ORDER: 24H226139

ATTENTION TO: Jodie Glasier SAMPLED BY:J. Toldi

SAMPLING SITE:5578 George Street		SAMPLED BY:J. Toldi							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis		1							
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
2-and 1-methyl Napthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS						
Sediment			N/A						
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID						
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID						
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE						
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID						
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

AGAT WORK ORDER: 24H226139 ATTENTION TO: Jodie Glasier

SAMPLING SITE:5578 George Street

SAMPLED BY:J. Toldi

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

AGAT WORK ORDER: 24H226139 ATTENTION TO: Jodie Glasier

SAMPLING SITE:5578 George Street

SAMPLED BY:J. Toldi

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02 SAMPLING SITE:5578 George Street

AGAT WORK ORDER: 24H226139

SAMI LING SITE.3370 George Street		CAMILLED BT.0. 1					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALY IICAL TECHNIQUE				
Water Analysis							
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS				
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA				
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS				
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS				
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH				
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE				
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE				

5835 Coopers Avenue

Laboratory Use Only

Nucleisa

AGAT L Chain of Custody Reco	aborat	Ories	H S sample, plea	ave feedba Scan here f quick surv	ack? for a Ph ey! Ph	M : 905.72	ississa L2 5100 Wi	uga, O O Fax: ebeart ed by hi	ntario 905,7 h.agat	L4Z 1 712.51 labs.co	.Y2 22 om	V (Vork (Coole: Arrival	Drder #: r Quanti I Tempe	ty:	s: 8	244	2261. 00(E	39. R 17-8
Report Information: Company: Contact: Address: 3300 Membra Phone: Reports to be sent to: 1. Email: 2. Email:	Ise use Drink	Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table Ind/Com Res/Park Agriculture Soil Texture (Check One) Fine Is this submission for a Record of Site Condition (RSC)? Yes No			6 Sawer Use Sanitary Storm Sanitary Storm Region Prov. Water Quality Objectives (PWQO) 8 Other Indicate One Indicate One Report Guideline on Certificate of Analysis X Yes No					Custody Seal Intact: Vess Notes: Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days Days Days Day OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays									
Sampled By: AGAT Quote #: Please note: If quotation number Please note: If quotation number Invoice Information: Company: Contact: Address: Email:	PO: r is not provided, client will b Bi	ne billed full price for a	analysis.	Leg San GW O P S	al Sample sple Matrix Legend Ground Water SD Sediment Oil SW Surface Water Paint R Rock/Shale Soil	ield Filtered - Metals, Hg, CrVI, DOC	& Inorganics	. Reg 15 GCVI, DHg, DHWSB	L-F4 PHCs			on 406 Characterization Package	IS, BIEX, F1-F4	on 406 SPLP Rainwater Leach 906 SPLP Rainwater Leach 906 SPLP Rainwater Leach 907 100 100 100 100 100 100 100 100 100 1	Disposal Characterization TCLP: 14.00	aliant average and the second average a	lease cor	Itact your	AGAT CSR
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	K Metals &	Metals -	X BTEX, F	VOC	DCRc. Ar	Regulati	pH, Meta EC. SAR	Regulation mSPLP: [Landfill [Corrosiv			
2	11/2/21	AM	')	Cu)				-				
3	- 1.54	AM				-							+-					-	-
4	TO THE COL	AM		1	I- CAULT	C.T.	-					00		-	-			- 231	
		AM						1				100			-				
6.		AM			The second se							1	-		-			- 1854	
7.		AM			and the second s		portan		-	111		m		0			_		1.0.0
8.		AM		1	There is a second second	-	146.3		-		-			200					
9.		AM		-										1					
10		AM				1				.9		SIL					-	- 20	
11		PM AM							- /-			-		-		-		-	
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	6 Toldi	Date 1/10/2		3pm	Samples Received By (Prim Vame and Sign): Samples Received By (Print Vame and Sign): Samples Received By (Print Name and Sign):	- 40	24			~	Date Date Date	s s	24		45	2h 2r N	Page	of	1244
coment ID: DIV-78-1511.024 Any and all product	s and/or services provi	ded by AGAT Labs	are pursuant	to the terms a	nd conditions as set forth at www.agatlabs.c	om/term	sandcor	ditions	unlass	otherw	ise ag	reed in a	: ourre	nt writte	n contra	ctual cool	actorat.	Dane Mar Page 1	7 of 17

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD 3300 MERRITTVILLE HIGHWAY THOROLD, ON L2V 4Y6 289-407-6341 ATTENTION TO: Jodie Glasier PROJECT: NS2491-02 AGAT WORK ORDER: 24H227781 TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead DATE REPORTED: Dec 11, 2024 PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 16

AGAT WORK ORDER: 24H227781 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2024-12-03

		SAMPLE DESC	RIPTION:	BH/MW5	BH/MW6
		SAMF	'LE TYPE:	Water	Water
		DATE S	AMPLED:	2024-12-02	2024-12-02
Parameter	Unit	G/S	RDL	6376672	6376676
Naphthalene	µg/L	1400	0.20	<0.20	<0.20
Acenaphthylene	µg/L	1.8	0.20	<0.20	<0.20
Acenaphthene	µg/L	600	0.20	<0.20	<0.20
Fluorene	µg/L	400	0.20	<0.20	<0.20
Phenanthrene	µg/L	580	0.10	<0.10	<0.10
Anthracene	µg/L	2.4	0.10	<0.10	<0.10
Fluoranthene	µg/L	130	0.20	<0.20	<0.20
Pyrene	µg/L	68	0.20	<0.20	<0.20
Benzo(a)anthracene	µg/L	4.7	0.20	<0.20	<0.20
Chrysene	µg/L	1	0.10	<0.10	<0.10
Benzo(b)fluoranthene	µg/L	0.75	0.10	<0.10	<0.10
Benzo(k)fluoranthene	µg/L	0.4	0.10	<0.10	<0.10
Benzo(a)pyrene	µg/L	0.81	0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	µg/L	0.2	0.20	<0.20	<0.20
Dibenz(a,h)anthracene	µg/L	0.52	0.20	<0.20	<0.20
Benzo(g,h,i)perylene	µg/L	0.2	0.20	<0.20	<0.20
2-and 1-methyl Napthalene	µg/L	1800	0.20	<0.20	<0.20
Sediment				1	1
Surrogate	Unit	Acceptabl	e Limits		
Naphthalene-d8	%	50-1	40	115	114
Acridine-d9	%	50-1	40	101	90
Terphenyl-d14	%	50-1	40	111	93

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6376672-6376676 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2024-12-11

AGAT WORK ORDER: 24H227781 PROJECT: NS2491-02

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY: J. Toldi

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2024-12-03

DATE RECEIVED: 2024-12-03						DATE REPORTED: 2024-12-11
	\$	SAMPLE DES SAMI	CRIPTION: PLE TYPE:	BH/MW5 Water	BH/MW6 Water	
Demonstern	11	DATES	SAMPLED:	2024-12-02	2024-12-02	
Parameter	Unit	G/S	RDL	63/66/2	63/66/6	
F1 (C6 to C10)	µg/L	750	25	<25	<25	
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	<25	
F2 (C10 to C16)	µg/L	150	100	<100	<100	
F2 (C10 to C16) minus Naphthalene	µg/L		100	<100	<100	
F3 (C16 to C34)	µg/L	500	100	<100	<100	
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	
F4 (C34 to C50)	µg/L	500	100	<100	<100	
Gravimetric Heavy Hydrocarbons	µg/L		500	NA	NA	
Sediment				1	1	
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	%	50-1	40	102	96	
Terphenyl	% Recovery	60-1	40	96	85	

Certified By:

NPopukolof

AGAT WORK ORDER: 24H227781 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2024-12-03

DATE REPORTED: 2024-12-11

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 6376672-6376676 The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test. Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoly

AGAT WORK ORDER: 24H227781 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2024-12-03

		SAMPLE DESC	RIPTION:	BH/MW5	BH/MW6	
		SAMP	LE TYPE:	Water	Water	
		DATE S	AMPLED:	2024-12-02	2024-12-02	
Parameter	Unit	G/S	RDL	6376672	6376676	
Dichlorodifluoromethane	µg/L	4400	0.40	<0.40	<0.40	
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17	
Bromomethane	µg/L	5.6	0.20	<0.20	<0.20	
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	<0.40	
Acetone	µg/L	130000	1.0	<1.0	<1.0	
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	<0.30	
Methylene Chloride	µg/L	610	0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	<0.20	
1,1-Dichloroethane	µg/L	320	0.30	<0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	
Chloroform	µg/L	2.4	0.20	<0.20	<0.20	
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	<0.20	
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	<0.30	
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	<0.20	
Benzene	µg/L	44	0.20	<0.20	<0.20	
1,2-Dichloropropane	µg/L	16	0.20	<0.20	<0.20	
Trichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	
Bromodichloromethane	µg/L	85000	0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	<0.20	
Toluene	µg/L	18000	0.20	<0.20	<0.20	
Dibromochloromethane	µg/L	82000	0.10	<0.10	<0.10	
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	<0.10	
Tetrachloroethylene	µg/L	1.6	0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.10	<0.10	<0.10	
Chlorobenzene	µg/L	630	0.10	<0.10	<0.10	
Ethylbenzene	µg/L	2300	0.10	<0.10	<0.10	
m & p-Xylene	µg/L		0.20	<0.20	<0.20	

Certified By:

NPopukolof

DATE REPORTED: 2024-12-11

AGAT WORK ORDER: 24H227781 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2024-12-03

		SAMPLE DES	CRIPTION:	BH/MW5	BH/MW6
		SAM	PLE TYPE:	Water	Water
		DATE \$	SAMPLED:	2024-12-02	2024-12-02
Parameter U	Unit	G/S	RDL	6376672	6376676
Bromoform µç	µg/L	380	0.10	<0.10	<0.10
Styrene µç	µg/L	1300	0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane µç	µg/L	3.2	0.10	<0.10	<0.10
o-Xylene µự	µg/L		0.10	<0.10	<0.10
1,3-Dichlorobenzene µç	µg/L	9600	0.10	<0.10	<0.10
1,4-Dichlorobenzene µç	µg/L	8	0.10	<0.10	<0.10
1,2-Dichlorobenzene µç	µg/L	4600	0.10	<0.10	<0.10
1,3-Dichloropropene µç	µg/L	5.2	0.30	<0.30	<0.30
Xylenes (Total) μι	µg/L	4200	0.20	<0.20	<0.20
n-Hexane µç	µg/L	51	0.20	<0.20	<0.20
Surrogate U	Unit	Acceptab	le Limits		
Toluene-d8 % Re [,]	Recovery	y 50-1	140	102	96
4-Bromofluorobenzene % Re	lecovery	y 50-1	140	94	94
1,4-Dichlorobenzene μg 1,2-Dichlorobenzene μg 1,3-Dichloropropene μg Xylenes (Total) μg n-Hexane μg Surrogate U Toluene-d8 % Re 4-Bromofluorobenzene % Re	μg/L μg/L μg/L μg/L μg/L Unit Recovery	8 4600 5.2 4200 51 Acceptab y 50-1 y 50-1	0.10 0.10 0.30 0.20 0.20 0.20 0.10 140 140	<0.10 <0.10 <0.30 <0.20 <0.20 102 94	<0.10 <0.10 <0.30 <0.20 <0.20 96 94

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6376672-6376676 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2024-12-11

AGAT WORK ORDER: 24H227781 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2024-12-03						DATE REPORTED: 2024-12-11
		SAMPLE DESC SAMP DATE S	RIPTION: LE TYPE: AMPLED:	BH/MW5 Water 2024-12-02	BH/MW6 Water 2024-12-02	
Parameter	Unit	G/S	RDL	6376672	6376676	
Dissolved Antimony	µg/L	20000	1.0	<1.0	<1.0	
Dissolved Arsenic	µg/L	1900	1.0	<1.0	<1.0	
Dissolved Barium	µg/L	29000	2.0	32.6	24.0	
Dissolved Beryllium	µg/L	67	0.50	<0.50	<0.50	
Dissolved Boron	µg/L	45000	10.0	127	86.3	
Dissolved Cadmium	µg/L	2.7	0.20	<0.20	<0.20	
Dissolved Chromium	µg/L	810	2.0	2.2	<2.0	
Dissolved Cobalt	µg/L	66	0.50	0.57	<0.50	
Dissolved Copper	µg/L	87	1.0	1.6	1.7	
Dissolved Lead	µg/L	25	0.50	<0.50	<0.50	
Dissolved Molybdenum	µg/L	9200	0.50	3.28	2.49	
Dissolved Nickel	µg/L	490	1.0	3.8	4.0	
Dissolved Selenium	µg/L	63	1.0	<1.0	1.9	
Dissolved Silver	µg/L	1.5	0.20	<0.20	<0.20	
Dissolved Thallium	µg/L	510	0.30	<0.30	<0.30	
Dissolved Uranium	µg/L	420	0.50	22.5	19.2	
Dissolved Vanadium	µg/L	250	0.40	<0.40	0.41	
Dissolved Zinc	µg/L	1100	5.0	<5.0	<5.0	
Mercury	µg/L	0.29	0.02	<0.02	<0.02	
Chromium VI	µg/L	140	2.000	<2.000	<2.000	
Cyanide, WAD	µg/L	66	2	<2	<2	
Dissolved Sodium	µg/L	2300000	50	80000	79400	
Chloride	µg/L	2300000	100	110000	101000	
Electrical Conductivity	uS/cm	NA	2	1180	1300	
рН	pH Units		NA	7.76	7.82	

Certified By:

AGAT WORK ORDER: 24H227781 PROJECT: NS2491-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:5578 George Street

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2024-12-03

DATE REPORTED: 2024-12-11

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 6376672-6376676 Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 George Street

AGAT WORK ORDER: 24H227781

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Dec 11, 2024			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce	ptable mits
		Ια					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs a	and VOC)	(Water)												
F1 (C6 to C10)	6376676 6	6376676	<25	<25	NA	< 25	84%	60%	140%	87%	60%	140%	78%	60%	140%
F2 (C10 to C16)	6378520		< 100	< 100	NA	< 100	118%	60%	140%	77%	60%	140%	81%	60%	140%
F3 (C16 to C34)	6378520		< 100	< 100	NA	< 100	126%	60%	140%	76%	60%	140%	91%	60%	140%
F4 (C34 to C50)	6378520		< 100	< 100	NA	< 100	82%	60%	140%	93%	60%	140%	90%	60%	140%
O. Reg. 153(511) - PAHs (Wate	er)														
Naphthalene	6376672 6	6376672	<0.20	<0.20	NA	< 0.20	91%	50%	140%	89%	50%	140%	72%	50%	140%
Acenaphthylene	6376672 6	6376672	<0.20	<0.20	NA	< 0.20	94%	50%	140%	94%	50%	140%	92%	50%	140%
Acenaphthene	6376672 6	6376672	<0.20	<0.20	NA	< 0.20	92%	50%	140%	99%	50%	140%	98%	50%	140%
Fluorene	6376672 6	6376672	<0.20	<0.20	NA	< 0.20	97%	50%	140%	107%	50%	140%	115%	50%	140%
Phenanthrene	6376672 6	6376672	<0.10	<0.10	NA	< 0.10	101%	50%	140%	118%	50%	140%	117%	50%	140%
Anthracene	6376672 6	6376672	<0.10	<0.10	NA	< 0.10	79%	50%	140%	111%	50%	140%	108%	50%	140%
Fluoranthene	6376672 6	6376672	<0.20	<0.20	NA	< 0.20	107%	50%	140%	113%	50%	140%	104%	50%	140%
Pyrene	6376672 6	6376672	<0.20	<0.20	NA	< 0.20	107%	50%	140%	112%	50%	140%	104%	50%	140%
Benzo(a)anthracene	6376672 6	6376672	<0.20	<0.20	NA	< 0.20	100%	50%	140%	111%	50%	140%	115%	50%	140%
Chrysene	6376672 6	6376672	<0.10	<0.10	NA	< 0.10	103%	50%	140%	92%	50%	140%	89%	50%	140%
Benzo(b)fluoranthene	6376672 6	6376672	<0.10	<0.10	NA	< 0.10	99%	50%	140%	97%	50%	140%	82%	50%	140%
Benzo(k)fluoranthene	6376672 6	6376672	<0.10	<0.10	NA	< 0.10	103%	50%	140%	82%	50%	140%	98%	50%	140%
Benzo(a)pyrene	6376672 6	6376672	<0.01	<0.01	NA	< 0.01	94%	50%	140%	76%	50%	140%	80%	50%	140%
Indeno(1,2,3-cd)pyrene	6376672 6	6376672	<0.20	<0.20	NA	< 0.20	90%	50%	140%	85%	50%	140%	85%	50%	140%
Dibenz(a,h)anthracene	6376672 6	6376672	<0.20	<0.20	NA	< 0.20	91%	50%	140%	81%	50%	140%	73%	50%	140%
Benzo(g,h,i)perylene	6376672 6	6376672	<0.20	<0.20	NA	< 0.20	92%	50%	140%	76%	50%	140%	74%	50%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	6376676 6	6376676	<0.40	<0.40	NA	< 0.40	65%	50%	140%	67%	50%	140%	87%	50%	140%
Vinyl Chloride	6376676 6	6376676	<0.17	<0.17	NA	< 0.17	73%	50%	140%	103%	50%	140%	82%	50%	140%
Bromomethane	6376676 6	6376676	<0.20	<0.20	NA	< 0.20	97%	50%	140%	90%	50%	140%	109%	50%	140%
Trichlorofluoromethane	6376676 6	6376676	<0.40	<0.40	NA	< 0.40	65%	50%	140%	120%	50%	140%	66%	50%	140%
Acetone	6376676 6	6376676	<1.0	<1.0	NA	< 1.0	60%	50%	140%	93%	50%	140%	113%	50%	140%
1,1-Dichloroethylene	6376676 6	6376676	<0.30	<0.30	NA	< 0.30	77%	50%	140%	94%	60%	130%	104%	50%	140%
Methylene Chloride	6376676 6	6376676	<0.30	<0.30	NA	< 0.30	79%	50%	140%	105%	60%	130%	93%	50%	140%
trans- 1,2-Dichloroethylene	6376676 6	6376676	<0.20	<0.20	NA	< 0.20	80%	50%	140%	94%	60%	130%	84%	50%	140%
Methyl tert-butyl ether	6376676 6	6376676	<0.20	<0.20	NA	< 0.20	81%	50%	140%	118%	60%	130%	81%	50%	140%
1,1-Dichloroethane	6376676 6	6376676	<0.30	<0.30	NA	< 0.30	80%	50%	140%	98%	60%	130%	99%	50%	140%
Methyl Ethyl Ketone	6376676 6	6376676	<1.0	<1.0	NA	< 1.0	91%	50%	140%	109%	50%	140%	86%	50%	140%
cis- 1,2-Dichloroethylene	6376676 6	6376676	<0.20	<0.20	NA	< 0.20	85%	50%	140%	101%	60%	130%	94%	50%	140%
Chloroform	6376676 6	6376676	<0.20	<0.20	NA	< 0.20	93%	50%	140%	104%	60%	130%	97%	50%	140%
1,2-Dichloroethane	6376676	6376676	<0.20	<0.20	NA	< 0.20	94%	50%	140%	107%	60%	130%	93%	50%	140%
1,1,1-Trichloroethane	6376676 6	6376676	<0.30	<0.30	NA	< 0.30	81%	50%	140%	86%	60%	130%	92%	50%	140%
Carbon Tetrachloride	6376676 6	6376676	<0.20	<0.20	NA	< 0.20	75%	50%	140%	69%	60%	130%	83%	50%	140%
AGAT QUALITY ASSUR	ANCE REPOR	RT (V1)												Page 9) of 16

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 George Street

AGAT WORK ORDER: 24H227781 ATTENTION TO: Jodie Glasier SAMPLED BY:J. Toldi

Trace Organics Analysis (Continued)

RPT Date: Dec 11, 2024			DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK		MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits Lower Upper		Recovery	Acce Lir	eptable nits	Recovery	Acce Lir	ptable nits
		Ia					value			-	Lower	Upper		Lower	Upper
Benzene	6376676	6376676	<0.20	<0.20	NA	< 0.20	88%	50%	140%	100%	60%	130%	95%	50%	140%
1,2-Dichloropropane	6376676	6376676	<0.20	<0.20	NA	< 0.20	93%	50%	140%	102%	60%	130%	90%	50%	140%
Trichloroethylene	6376676	6376676	<0.20	<0.20	NA	< 0.20	90%	50%	140%	97%	60%	130%	93%	50%	140%
Bromodichloromethane	6376676	6376676	<0.20	<0.20	NA	< 0.20	89%	50%	140%	99%	60%	130%	88%	50%	140%
Methyl Isobutyl Ketone	6376676	6376676	<1.0	<1.0	NA	< 1.0	90%	50%	140%	109%	50%	140%	90%	50%	140%
1,1,2-Trichloroethane	6376676	6376676	<0.20	<0.20	NA	< 0.20	111%	50%	140%	120%	60%	130%	106%	50%	140%
Toluene	6376676	6376676	<0.20	<0.20	NA	< 0.20	103%	50%	140%	109%	60%	130%	104%	50%	140%
Dibromochloromethane	6376676	6376676	<0.10	<0.10	NA	< 0.10	103%	50%	140%	113%	60%	130%	89%	50%	140%
Ethylene Dibromide	6376676	6376676	<0.10	<0.10	NA	< 0.10	94%	50%	140%	110%	60%	130%	88%	50%	140%
Tetrachloroethylene	6376676	6376676	<0.20	<0.20	NA	< 0.20	105%	50%	140%	103%	60%	130%	103%	50%	140%
1,1,1,2-Tetrachloroethane	6376676	6376676	<0.10	<0.10	NA	< 0.10	94%	50%	140%	105%	60%	130%	88%	50%	140%
Chlorobenzene	6376676	6376676	<0.10	<0.10	NA	< 0.10	108%	50%	140%	105%	60%	130%	95%	50%	140%
Ethylbenzene	6376676	6376676	<0.10	<0.10	NA	< 0.10	104%	50%	140%	102%	60%	130%	99%	50%	140%
m & p-Xylene	6376676	6376676	<0.20	<0.20	NA	< 0.20	107%	50%	140%	107%	60%	130%	105%	50%	140%
Bromoform	6376676	6376676	<0.10	<0.10	NA	< 0.10	109%	50%	140%	118%	60%	130%	105%	50%	140%
Styrene	6376676	6376676	<0.10	<0.10	NA	< 0.10	106%	50%	140%	108%	60%	130%	100%	50%	140%
1,1,2,2-Tetrachloroethane	6376676	6376676	<0.10	<0.10	NA	< 0.10	101%	50%	140%	111%	60%	130%	87%	50%	140%
o-Xylene	6376676	6376676	<0.10	<0.10	NA	< 0.10	113%	50%	140%	111%	60%	130%	107%	50%	140%
1,3-Dichlorobenzene	6376676	6376676	<0.10	<0.10	NA	< 0.10	108%	50%	140%	113%	60%	130%	103%	50%	140%
1,4-Dichlorobenzene	6376676	6376676	<0.10	<0.10	NA	< 0.10	114%	50%	140%	111%	60%	130%	99%	50%	140%
1,2-Dichlorobenzene	6376676	6376676	<0.10	<0.10	NA	< 0.10	112%	50%	140%	110%	60%	130%	98%	50%	140%
n-Hexane	6376676	6376676	<0.20	<0.20	NA	< 0.20	116%	50%	140%	91%	60%	130%	84%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoli

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 16

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

SAMPLING SITE:5578 George Street

AGAT WORK ORDER: 24H227781

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

Water Analysis

RPT Date: Dec 11, 2024	DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	(SPIKE	MATRIX SPIKE			
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	eptable nits	Recovery	Acce Lir	eptable nits	Recovery	Acce Lir	ptable nits
						value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & In	organics (Water)													
Dissolved Antimony	6367350	<1.0	<1.0	NA	< 1.0	99%	70%	130%	102%	80%	120%	99%	70%	130%
Dissolved Arsenic	6367350	<1.0	<1.0	NA	< 1.0	97%	70%	130%	104%	80%	120%	104%	70%	130%
Dissolved Barium	6367350	205	198	3.5%	< 2.0	94%	70%	130%	100%	80%	120%	100%	70%	130%
Dissolved Beryllium	6367350	<0.50	<0.50	NA	< 0.50	112%	70%	130%	115%	80%	120%	108%	70%	130%
Dissolved Boron	6367350	126	130	3.1%	< 10.0	99%	70%	130%	108%	80%	120%	99%	70%	130%
Dissolved Cadmium	6367350	<0.20	<0.20	NA	< 0.20	100%	70%	130%	101%	80%	120%	99%	70%	130%
Dissolved Chromium	6367350	<2.0	<2.0	NA	< 2.0	98%	70%	130%	106%	80%	120%	112%	70%	130%
Dissolved Cobalt	6367350	0.77	0.51	NA	< 0.50	100%	70%	130%	111%	80%	120%	107%	70%	130%
Dissolved Copper	6367350	<1.0	<1.0	NA	< 1.0	97%	70%	130%	105%	80%	120%	103%	70%	130%
Dissolved Lead	6367350	<0.50	<0.50	NA	< 0.50	98%	70%	130%	97%	80%	120%	91%	70%	130%
Dissolved Molybdenum	6367350	1.18	1.68	NA	< 0.50	100%	70%	130%	102%	80%	120%	99%	70%	130%
Dissolved Nickel	6367350	1.7	1.4	NA	< 1.0	97%	70%	130%	110%	80%	120%	108%	70%	130%
Dissolved Selenium	6367350	2.1	<1.0	NA	< 1.0	99%	70%	130%	101%	80%	120%	100%	70%	130%
Dissolved Silver	6367350	<0.20	<0.20	NA	< 0.20	90%	70%	130%	93%	80%	120%	90%	70%	130%
Dissolved Thallium	6367350	<0.30	<0.30	NA	< 0.30	92%	70%	130%	100%	80%	120%	101%	70%	130%
Dissolved Uranium	6367350	2.47	2.51	NA	< 0.50	83%	70%	130%	102%	80%	120%	100%	70%	130%
Dissolved Vanadium	6367350	0.45	0.49	NA	< 0.40	101%	70%	130%	116%	80%	120%	116%	70%	130%
Dissolved Zinc	6367350	13.4	<5.0	NA	< 5.0	101%	70%	130%	115%	80%	120%	129%	70%	130%
Mercury	6376783	<0.02	<0.02	NA	< 0.02	100%	70%	130%	102%	80%	120%	96%	70%	130%
Chromium VI	6376672 6376672	<2.000	<2.000	NA	< 2	100%	70%	130%	99%	80%	120%	126%	70%	130%
Cyanide, WAD	6383149	<2	<2	NA	< 2	105%	70%	130%	91%	80%	120%	108%	70%	130%
Dissolved Sodium	6367350	73500	70300	4.5%	< 50	114%	70%	130%	119%	80%	120%	96%	70%	130%
Chloride	6376297	175000	172000	1.7%	< 100	92%	70%	130%	98%	80%	120%	NA	70%	130%
Electrical Conductivity	6376672 6376672	1180	1180	0.0%	< 2	102%	90%	110%						
рН	6376672 6376672	7.76	7.83	0.9%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Certified By:

Page 11 of 16

AGAT QUALITY ASSURANCE REPORT (V1)

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

AGAT WORK ORDER: 24H227781

SAMPLING SITE:5578 George Street		SAMPLED BY:J. Toldi										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE									
Trace Organics Analysis												
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
2-and 1-methyl Napthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS									
Sediment			N/A									
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID									
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID									
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS									
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID									
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID									
+3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID									
(C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID									
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID									
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE									
lerpnenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID									
Dichlorodifluoromethane	VOL-91-5001	moainea from EPA 5030B & EPA 8260D	(P&T)GC/MS									

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

AGAT WORK ORDER: 24H227781

SAMPLING SITE:5578 George Stree	et	SAMPLED BY:J. Toldi							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

AGAT WORK ORDER: 24H227781

SAMPLING SITE:5578 George Stree	t	SAMPLED BY:J. Toldi					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS2491-02

AGAT WORK ORDER: 24H227781

SAMPLING SITE:5578 George Stre	et	SAMPLED BY:J. Toldi							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Water Analysis		·							
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Mercury	MET-93-6100	modified from EPA 245.2 and SM 311 B	¹² CVAAS						
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA						
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SI 4500-CN- I, G-387	^M SEGMENTED FLOW ANALYSIS						
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS						
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE						
рн	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE						

AGAT La Chain of Custody Record	borat	orie		ve feedb an here quick surv	ack?	M 905.71	5 ississau .2.5100 we	835 Co ga, Oni Fax: 9 bearth	oopers tario 905,7: agatl	Avenu L4Z 1Y L2 512 abs.coi	e 2 2 11	La Wa Co Ar	a boi ork Or ooler (rival T	ratory der #: Quantity Tempera	y Use	Only L	1HZ 16 31	277 CODI 4.2	-81 (ER + 4	-1
Report Information:	If this is a L	FINKING Water s	ample, plea	Reg (Please	Sulatory Requirements: e check all applicable boxes)	e water (consume	a by nur	nans)			De Cu	epot T Istody	empera / Seal Ir	atures: ntact:	30 DYe	s 6150	1.8- □No 1 Œ	<u>42</u> 9	 □N/A
Company: Contact: Address: Phone: Reports to be sent to: 1. Email: 2. Email:	Bliss Aville F an h 34 Fax	tight and	I Un H		egulation 153/04 Regulation 406 Table Indicate One Ind/Com Res/Park Agriculture Exture (Check One) ICoarse Fine Regulation 406 Table Indicate One Indicate One	-	Sew Sa Prov Obje	er Use nitary <i>Region</i> Water ctives (er	Quali PWQ	orm ty D)		Tu Re: Ru	rnar gula sh T	round ar TAT AT (Rush 3 Busin Days OR Dat	d Time h Surcharg ness te Requi	e (TAT) Required to 7 Business ays	ness Day	/s Next E Day y Apply)	Business
Project Information: Project: Site Location: Site Location:	91-02	street		is the	nis submission for a Record of Site Condition (RSC) ? Yes INO	Re Cer	eport rtifica (Yes	Guide te of J	line Anal	on ysis No			* For 'S	Plea TAT is e ame D	ase prov exclusive ay' ana	vide prio e of wee lysis, plo	notificat kends an ease con	ion for ru d statuto tact you r	sh TAT ry holid AGAT (ays SSR
AGAT Quote #: Please note: If quotation number is not	PO:	e billed full price for a	nalysis	Leg	al Sample 🔲	rvi, Doc,	0.	Reg 153				ckage 0	Reg 4	406 40 40	O. Reg 558 SBOA	0				stion (Y/N)
Invoice Information: Company: Contact: Address: Email:	Bi	II To Same: Ye	Mo □	- Gw - O - P - S	nple Matrix LegendGround WaterSDSedimentOilSWSurface WaterPaintRRock/ShaleSoilSoilSoil	Field Fittered - Metals, Hg, C	e & Inorganics	- CrVI, CHg, CHWSB	F1-F4 PHCs		Aroclors	tion 406 Characterization Pa tals, BTEX, F1-F4	R .	tion 406 SPLP Rainwater Lea	Disposal Characterization TC JM&I □voCs □ABNs □B(a)PE	ivity: 🗆 Moisture 🔲 Sulphide		10		ally Hazardous or High Concentra
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals	BTEX,	PAHS	PCBs: /	Regula pH, Me	EC, SA	Regula	TCLP:	Corros	-			Potentia
1. BH/MANS	12/02/24	AM	13	Gu			X	7	XX											
2. BHIMWG	4	AM PM	V.			1	メ	6	xC	NO		- El								
3.	11.5-01	AM PM					100		-							12				
4.		AM PM																		
5.		AM PM								-				-	_					
6.	TAUX III III	AM PM							2											
7.		AM PM	- <u>1</u> - 1			83.5		_						12.5						
8.		AM PM		1							-							_		
9.		PM									-	- The	_		-			_	_	
<u>i</u> 10.		AM PM						_									_		_	
		PM																		
Sample Reibuuster By (Print Name and Bunt) A Sa	als Tol	d 12/02	125		Samples Received By (Print Name and Sign):	F	3	h		4	Sec	3/2	9	Sa	m					
Demonse Presidence of the set of	3th	Dec3	24	Spin	nth			1	1	>0	1	3		3	14=	1-	Page	of	- 1	-
Samples Relinouished By (Print Name and Sign):		0 /	Time		Samples Received By (Print Name and Sign):					Da	ite -		Т	ime		N:	T - 1	61	69	8
Any and all products an	d/or services provi	ded by AGAT Labs	are pursuant	to the terms a	and conditions as set forth at www.agatlabs.co	m/term	sandcon	ditiona u	Inless	otherwis	ie agre	ed in a	curren	t written	contract	tual docur	nent,	Page	16 of 1	6

APPENDIX D

GRAIN SIZE ANALYSIS

Project No.: NT24236

November 25, 2024

Niagara Soils Solutions Ltd. 3300 Merrittville Highway, Unit 5 Thorold, Ontario L2V 4Y6

Attention: Ms. Jodie Glasier, President

RE: Laboratory Analysis for Soil Texture Classification Niagara Soils Solutions Ltd. Project No. NS2491-02 5578 George Street, Niagara Falls, Ontario

Dear Ms. Glasier:

As requested, Niagara Testing and Inspection Ltd. [NTIL] was retained to perform laboratory analysis on soil samples for soil texture classification [i.e., fine/medium or coarse grain soil determination] as defined in Ontario Regulation 153/04 [as amended].

On Thursday October 31^{st} , 2024, three [3] soil samples were delivered by Niagara Soils Solutions Ltd. to NTIL soils laboratory for 75-micron [µm] [#200] single-sieve grain size analysis. Results for the analysis are summarized in the table below.

Sample I.D.	Percent Passing 75 µm [#200] Sieve	Percent Retained on 75 μm [#200] Sieve	Soil Texture
BH/MW 2-5	78.5 %	21.5 %	Fine/Medium Grained
BH/MW 3-3	84.9 %	15.1 %	Fine/Medium Grained
HA 2	77.8 %	22.2 %	Fine/Medium Grained

We trust that this information is satisfactory for your purposes. Should you have any queries please do not hesitate to contact the undersigned.

Regards:

Niagara Testing and Inspection Ltd.

Prepared by:

Dwayne Neill, P.Eng. Project Engineer

Distribution: Jodie Glasier – <u>jglasier@nssl.ca</u>

Niagara Testing and Inspection Ltd. 3300 Merrittville Hwy, Unit 5 Thorold, ON, L2V 4Y6 www.ntil.ca

