<u>Phase Two Environmental Site Assessment</u> <u>7701 Lundy's Lane, Niagara Falls, ON</u>

Project Location:

7701 Lundy's Lane, Niagara Falls, ON L2H 1H3

Prepared For:

Gatta Homes Inc. P O BOX 870 Niagara on the Lake, ON LOS 1J0

Prepared By:

Niagara Soils Solutions Ltd. 3300 Merrittville Highway, Unit 4 Thorold, ON L2V 4Y6

> **Date:** November 22, 2023 **NSSL File No.:** NS23108-02

EXECUTIVE SUMMARY

Niagara Soils Solutions Ltd. (NSSL) was retained by Gatta Homes Inc. c/o Mr. Cyrus Gatta to conduct a Phase Two Environmental Site Assessment [ESA] of the property located at 7701 Lundy's Lane, in the City of Niagara Falls, ON [herein referred to as the "Phase Two Property" or the "Site"]. The Phase Two ESA was completed following a recommendation made by the finding of the Phase One ESA report that documented a historic underground storage tank onsite relating to previous commercial use as a service station. The site plans include conversion of the existing commercial motel into affordable housing units.

The primary findings of this Phase Two ESA are summarized as follows:

- Eight boreholes were advanced at the Site via track mounted drill rig.
- Boreholes were drilled to a maximum depth of 6.71 m bgs.
- Three environmental monitoring wells were installed at the site into three of the boreholes.
- Ten select soil samples were submitted for laboratory analysis of target parameters Metals by Inductively Coupled Mass Spectrometry (ICP-MS), Hydride forming Metals Arsenic (As), Antimony (Sb), Selenium (Se), Petroleum Hydrocarbons (PHCs) F1-F4, Benzene, Toluene, Ethylbenzene and Xylene (BTEX), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs) and Inorganics: Sodium Adsorption Ratio (SAR)/Electrical Conductivity (EC), Free Cyanide (CN-), Chromium VI (Cr VI), Hot Water Boron Soluble (HWB-S), Mercury (Hg).
- Three groundwater samples were submitted for laboratory analysis of target parameters Metals, Hydride Forming Metals- Arsenic (As), Antimony (Sb), Selenium (Se), PHCs F1-F4, BTEX, VOCs, PAHs and Inorganics: EC, CN-, Cr VI, Sodium (Na), Hg, Chlorine (Cl).
- All tested soil and groundwater results met applicable Table 3 Residential/Parkland/Institutional criteria for all target contaminants.

Therefore, based upon the Phase Two ESA study, current soil and groundwater conditions at the site satisfy applicable Table 3 Residential Site Condition standards. NSSL recommends removal of the Underground Storage Tank followed by verification soil sampling of the tank nest. Once confirmatory sampling is complete the documents for filing a Record of Site Condition with the Ministry of the Environment, Conservation and Parks can be prepared.

NOTE: This executive summary provides a brief overview of the study findings. It is not intended to be substituted for the complete report, nor does it detail specific issues discussed within the report. This summary is not to be adopted in lieu of reading the complete report.

TABLE OF CONTENTS

1.0	INTRODUCTION
1.1	SITE DESCRIPTION
1.2	Past Investigations
1.3	Applicable Site Condition Standard
2.0	BACKGROUND INFORMATION
21	PHYSICAL SETTING
2.1	
3.0	SCOPE OF INVESTIGATION
3.1	Overview of Site Investigation
3.2	Media Investigated
3.3	DEVIATION FROM SAMPLING AND ANALYSIS PLAN
3.4	IMPEDIMENTS
4.0	INVESTIGATION METHOD7
4.1	GENERAL
4.2	UTILITY CLEARANCE
4.3	Drilling
4.4	Soil Sampling
4.5	FIELD SCREENING MEASUREMENTS
4.6	GROUND WATER: MONITORING WELL INSTALLATION
4.7	GROUND WATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS
4.8	GROUND WATER: SAMPLING
4.9	ANALYTICAL TESTING
4.10	9 Residue Management Procedures
4.11	Elevation Surveying
4.12	QUALITY ASSURANCE AND QUALITY CONTROL MEASURES
5.0	REVIEW AND EVALUATION
5.1	GEOLOGY
5.2	GROUND WATER: ELEVATIONS AND FLOW DIRECTION
5.3	ESTIMATED HYDRAULIC GRADIENT AND CONDUCTIVITY
5.4	Soil Texture
5.5	Soil: Field Screening
5.6	Soil Quality
5.7	GROUND WATER QUALITY
5.5	QUALITY ASSURANCE AND QUALITY CONTROL RESULTS
6.0	CONCLUSIONS
6.1	LIMITATIONS AND USE OF THE REPORT
7.0	REFERENCES

TABLES

- Table 1 Phase One & Two ESA Areas of Potential Environmental Concern
- Table 2 Site Compared to Table 3 Residential/Parkland/Institutional Land Use
- Table 3 Monitoring Wells Elevation and Screen Intervals
- Table 4 Monitoring Wells Estimated Hydraulic Gradient
- Table 5 Monitoring Wells Conductivity
- Table 6 Soil Texture Results

FIGURES

- 1. Site Location Plan
- 2. Site Layout and Features
- 3. Potentially Contaminating Activities
- 4. Areas of Potential Environmental Concern
- 5. Borehole and Monitoring Well Location Plan
- 6. Topographic Contour Map
- 7. Groundwater Contour Map
- 8. Soil Results
- 9. Groundwater Results
- 10. Cross Section Plan View: A-A', & B-B'
- 11. Cross Section A-A'
- 11B. Cross Section B-B'

APPENDICES

- A. Borehole Logs
- B. Certificates of Analysis Soil & Groundwater
- C. Grain Size Analysis

1.0 INTRODUCTION

Niagara Soils Solutions Ltd. (NSSL) was retained by Gatta Homes Inc. c/o Mr. Cyrus Gatta to conduct a Phase Two Environmental Site Assessment [ESA] of the property located at 7701 Lundy's Lane, in the City of Niagara Falls, ON [herein referred to as the "Phase Two Property" or the "Site"]. The Phase Two ESA was completed following a recommendation made by the finding of the Phase One ESA report that documented a historic underground storage tank onsite relating to previous commercial use as a service station. The site plans include conversion of the existing commercial motel into affordable housing units.

1.1 Site Description

The Phase Two ESA Property is an irregularly-shaped parcel, occupying approximately 0.70 hectares, and currently utilized for commercial purposes as Rockwell Resort and Little Wedding Chapel. The Site is located at the intersection of Lundy's Lane (to the south) and Beaverdams Road (to the east). The northern property boundary is bordered by an open grassy land with sparse trees in front of established residential dwellings. The west side of the Site is occupied by a commercial building (Travelodge Hotel). Historically, the Site was owned by private individuals, the Regional Municipal of Niagara, and various corporate organizations dating from 1802 to 2018. The current owner of the Phase Two property is recorded as 10743186 Corporation, which has owned the property since May 15, 2018. The municipal and legal descriptions of the Site included in the Phase One ESA are stated as; PT TWP LT 133 STAMFORD AS IN RO336724 & RO372665; PT TWP LT 133 STAMFORD PT 1 & 2, 59R4604, PT TWP LT 133 STAMFORD PT 1, 59R4311; NIAGARA. The Property Identification Number (PIN) is 64305-0471 (LT).

1.2 Past Investigations

Phase One Environmental Site Assessment, Niagara Soils Solutions Ltd. [2023]

A Phase One Environmental Site Assessment was completed by Niagara Soils Solutions Ltd. in October 2023. The Phase One ESA identified four potentially contaminating activities (PCAs) that resulted in two on-site areas of potential environmental concerns (APECs) as per below.

Area of potential environmental concern ¹	Location of the area of potential environmental concern on phase one property	Potentially contaminating activity ²	Location of PCA (on-site or off-site)	Contaminants of potential concern ³	Media potentially impacted (Groundwater, soil, and/or sediment)
APEC-1	East/southeastern portion of Phase One Property	#28. Gasoline and Associated Products Storage in Fixed Tanks	On-site	Metals, PHCs, BTEX, PAHs, VOCs	Soil and Groundwater

Table 1: Phase One & Two ESA Areas of Potential Environmental Concern

Area of potential environmental concern ¹	Location of the area of potential environmental concern on phase one property	Potentially contaminating activity ²	Location of PCA (on-site or off-site)	Contaminants of potential concern ³	Media potentially impacted (Groundwater, soil, and/or sediment)
APEC-2	Eastern portion of Phase One Property	#30. Importation of Fill Material of Unknown Quality	On-site	Metals, PHCs, BTEX, PAHs, pH/SAR/EC	Soil

1.3 Applicable Site Condition Standard

Under O. Reg. 153/04, as amended, the Ministry of the Environment, Conservation and Parks (MECP) has outlined Site Condition Standards (SCS) in the document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011. The SCS applicable to the Phase Two ESA property has been evaluated based upon the following rationale:

Table 2: Site Compared to Table	3 Residential/Parkland/Institutional Land Use
---------------------------------	---

Property Use	The property use for the site will be residential therefore Residential/			
	Parkland/Institutional land use criteria applies.			
Grain Size	As per the Niagara Testing and Inspection report available in Appendix C, the grain size was			
	determined to be coarse-grained. Therefore, coarse-grained texture was utilized.			
Water Wells	Domestic water wells were not identified within 250 metres (m) of the Phase Two			
	Property. The site is supplied with municipal services. Therefore, non-potable criteria was			
	applied.			
Within 30 m of a	In accordance with O. Reg. 153/04, the Study Site does not include parcels / lots of land			
Waterbody	that are within 30 m of a waterbody.			
Depth to Bedrock	More than 2.0 m of soil was encountered within boreholes across the site.			
рН	Soil pH values were reported between 7.29 to 7.42 in the native soil samples.			
Environmentally	The Phase Two Property is not classified as an environmentally sensitive area under O. Reg.			
Sensitive Area	153/04 as amended.			
Area of Natural	The Phase Two Property is not considered as an Area of Natural Significance under O. Reg.			
Significance	153/04 as amended, as the Site does not include land, or is within 30 m of land, that would			
	be classified as an Area of Natural Significance as defined by O. Reg. 153/04 as amended.			

Therefore, based on the above, the soil and groundwater results were compared to Ministry of the Environment, Conservation and Parks 2011 Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, for Residential/Parkland/Institutional land use, for coarse grained soils.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The ground surface of the Site is relatively flat lying, with an elevation of 194.83 m above sea level (masl). The elevation of the Study Area was noted as decreasing from south-southeast. Groundwater depths at the Phase Two Property ranged between 3.15 and 3.25 m bgs. Surface water drainage was directed towards the catchment basins located onsite and south/southeast of the Site at Lundy's Lane and Beaverdams Road. The groundwater flow direction was inferred to be south-southeast based on the topography of the Study Area. A review of the Ministry of Northern Development and Mines, "Quaternary Geology of Southern Ontario", Map 2496, reveals that the Site is situated within Late Wisconsinan characterized by Glaciolacustrine nearshore and deltaic sand and silt. Map 2544, showing the "Bedrock Geology of Southern Ontario", reveals that the Study Area is underlain by Sandstone, shale, dolostone, and siltstone, which belong to the Lockport Formation in the Middle and Lower Silurian.

The majority of the Phase Two Property landcover is impermeable compact gravel and asphaltic concrete cover. Field observations documents stratigraphy as brown Silt Fill over native Silt with a trace of gravel moving from firm to loose with depth.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The Phase Two ESA investigation at the Site consisted of the following components:

- Underground service locates were completed using Ontario One Call and a private locating service.
- GPR scan was conducted to verify the presence of any tanks within the suspected UST area.
- Eight boreholes were advanced at the Site via track mounted drill rig.
- Boreholes were drilled to a maximum depth of 6.71 m bgs.
- Three environmental monitoring wells were installed at the site into three of the boreholes.
- Soil samples were obtained from each borehole location on-site and submitted to Paracel Laboratories Ltd. for target contaminants of concern.
- Groundwater samples from each monitoring well were collected and submitted to AGAT Laboratories Ltd. for analysis.
- A topographic survey was completed for each borehole location.
- The Phase Two ESA was completed in accordance with the requirements of O. Reg. 153/04 as amended.

3.2 Media Investigated

Soil and groundwater media were assessed as part of this Phase Two investigation.

3.3 Deviation from Sampling and Analysis Plan

There were no deviations from NSSL's sampling and analysis plan.

3.4 Impediments

There were no physical impediments or denial of access during the Preliminary Phase Two ESA. The borehole drilling locations were blocked off ahead of time to prevent any cars from entering or parking within the proposed work area.

4.0 INVESTIGATION METHOD

4.1 General

The Phase Two ESA was carried out in accordance with the Sampling and Analysis Plan, and in accordance with NSSL's Standard Operating Procedures (SOPs). The Phase Two ESA consisted of advancing eight boreholes across the Site to a maximum depth of 6.71 m bgs. All boreholes were found to terminate in native soils. Three of the boreholes were converted to monitoring wells to a maximum depth of 6.71 m bgs.

Groundwater monitoring wells were installed in accordance with the Ontario Water Resource Act, R.R.O. 1990, Ontario Regulation [O. Reg] 903 – Amended to O. Reg 128/03.

The sampling and decontamination procedures were conducted in accordance with the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", May 1996, revised December 1996, as amended by O. Reg. 511/09.

Laboratory analytical methods, protocols, and procedures were carried out in accordance with the 'Protocol for Analytical Methods Use in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011, in accordance with O. Reg. 511/09 and O. Reg. 269/11.

4.2 Utility Clearance

Prior to the commencement of the subsurface investigation, underground service locates were obtained for the Site through Ontario One Call. Additionally, a private underground service locating company, Ontario Utility Locating, identified all on-site underground services including hydro, gas, water, sewer, and communications. A GPR scan was conducted on October 17th, 2023, to verify the presence of any underground storage tank (UST) as identified in the Phase One ESA conducted by NSSL.

4.3 Drilling

Eight boreholes were advanced across the Site by Davis Drilling Ltd. CME-55 track-mounted drill on October 31st, 2023. The locations of the boreholes are depicted in Figure 5.

4.4 Soil Sampling

A total of 52 soil samples were collected from boreholes BH1 to BH8 during field activities. Recovered soil samples were immediately logged for soil type, moisture, colour, texture and visual evidence of impacts. The samples were then divided into two representative portions: one portion for possible laboratory analysis and one portion for soil headspace combustive gas screening. The samples for laboratory analyses were immediately placed into laboratory supplied sample jars and stored in a cooler with ice. Samples to be used for screening were placed in a sealed bag.

Soil samples intended for analysis of VOCs and F1 fractions of PHCs were collected using a laboratorysupplied soil core sampler, placed into the vials containing methanol for preservation purposes, and sealed using Teflon lined septa lids. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontracting laboratory (Paracel Laboratories). The samples were transported and submitted to Paracel Laboratories following Chain of Custody (COC) protocols.

4.5 Field Screening Measurements

All soil samples were screened using RKI Instruments, Eagle Potable Multi-gas detector operated in the VOC detection mode. The instrument measures combustible gases in the atmosphere. The monitor has a range of 0 ppm to 50,000 ppm and an accuracy of \pm 5%. The instrument is calibrated to hexane standards for both ppm and LEL prior to each use and in accordance with the calibration procedures outlined in the instruction manual for the instrument. The instrument is calibrated or tuned up by the supplier, Pine Environmental, on an annual or as needed basis. Samples, based on depth, were bagged from each borehole with the soil vapour measurements recorded. Borehole logs are provided in Appendix A with the measured readings.

4.6 Ground Water: Monitoring Well Installation

Three environmental monitoring wells (MW1, MW2 and MW3) were installed into boreholes (BH1, BH2 and BH3) on October 31st, 2023. The monitoring wells were constructed to MECP recognized industry standards and consisted of a 2-inch diameter slotted PVC screen surrounded by a silica sand pack, attached beneath a solid 2-inch diameter PVC riser, surrounded by bentonite grout to ensure a seal between the ground surface and the water table. The wells were fitted with a flush mount metal protective casing. A Waterra manual lift pump was installed into each well to allow purging and development and subsequent groundwater sample collection. The monitoring well locations are shown in Figure 5, with field logs located in Appendix A.

4.7 Ground Water: Field Measurement of Water Quality Parameters

Groundwater monitoring wells were considered to have stabilized from installation date on November 6th, 2023. Groundwater observations were recorded for colour, clarity, the presence or absence of any free product/surface sheen and any odours present during the purging of the wells. The water level measuring device was cleaned after each measurement using Alconox[™] soap solution wash/scrub, followed by a distilled water rinse and a methanol rinse, to prevent cross-contamination between observation wells. Well purging continued until approximately 3 to 5 total well volumes were removed, and monitoring indicated the condition in the purged well had stabilized, and no further improvement was required.

4.8 Ground Water: Sampling

The wells were purged on November 6th, 2023. Purging is completed for well development purposes and to safeguard against any potential impact from drilling operations. Purged water was contained and stored on-site for future disposal. The groundwater sampling activities were carried out using dedicated low-density polyethylene tubing and a low-flow pump. Groundwater samples were collected into laboratory-supplied containers, prepared with preservatives for the analysis being conducted. Disposable latex gloves were worn at each sample location. Once obtained, the groundwater samples were immediately placed into coolers packed with ice pending delivery to the analytical laboratory.

4.9 Analytical Testing

The soil and groundwater sample analyses were completed by Paracel Laboratories., York Road, Niagaraon-the-Lake, ON. Paracel is accredited by the Canadian Association for Laboratory Accreditation [CALA] in accordance with ISO/IEC 17025:1999 – "General Requirements for the Competence of Testing and Calibration Laboratories" for all the parameters analyzed during this investigation.

4.10 Residue Management Procedures

Soil cuttings and purge and wash water from equipment cleaning were contained and stored on-site in soil disposal drums for future off-site disposal pending laboratory analysis.

4.11 Elevation Surveying

The elevation of the existing ground surface at each borehole location was referenced to a Site benchmark, described as the top of the catch basin located to the east of the property in the parking lot [assigned Elevation – 100 meters by Niagara Soils Solution Ltd.]. The topographic contours of the Site are found in Figure 6.

4.12 Quality Assurance and Quality Control Measures

All activities completed as part of this Preliminary Phase Two ESA were conducted as per applicable regulatory requirements.

5.0 REVIEW AND EVALUATION

5.1 Geology

The soil stratigraphy for the study site generally consisted of a thin layer of asphaltic concrete and compact granular material underlain by an upper layer of fill material – Silt, trace gravel, dry to loose between ground surface about 0.15 to 1.52 m bgs. Native silt was noted from 1.52 to 6.71 m bgs to borehole termination. This was evident in all boreholes but was most visible in BH5 and BH6. Bedrock was not encountered at termination of all the boreholes.

5.2 Ground Water: Elevations and Flow Direction

Prior to groundwater sampling activities, the depth of the groundwater within each monitoring well was measured to determine if the groundwater could be considered to have stabilized and that the wells were developed sufficiently for representative groundwater samples. Findings are reported below.

	Wall	Scroon	Eve	ent 1	Eve	nt 2
Monitoring Well ID	Elevation [TBM in metres]	Interval [metres bgs]	Ground- water Level [metres bgs]	Ground- water Elevation [metres]	Ground- water Level [metres bgs]	Ground- water Elevation [metres]
BH/MW-1	100.23	1 5 1 5 7	3.20	97.03	3.14	97.09
BH/MW-2	100.18	1.52 - 4.57	3.20	96.98	3.25	96.93
BH/MW-3	100.13	3.05 - 6.71	3.15	96.98	3.18	96.95

Table 3: Monitoring Wells Elevation and Screen Intervals

BM = benchmark, m bgs = metres below ground surface

5.3 Estimated Hydraulic Gradient and Conductivity

Based on the water level measurements, groundwater was interpreted as flowing in a southwestern direction. See Figure 7 for the groundwater contour map. The average groundwater gradient was calculated as 0.004.

Monitoring Well	Water Level Difference (m)	Monitoring Well Distance (m)	Hydraulic Gradient
MW1-MW2	0.11	13	0.008
MW3 – MW2	0.07	24	0.003
MW3 – MW1	0.04	20	0.002

Table 4: Monitoring Wells Estimated Hydraulic Gradient

The K values for the hydraulic conductivity of the soils were estimated based on the results obtained from grain size analyses of selected soil sample and interpreted recovery rates per soil type.

Table 5: Monitoring Wells Conductivity

Monitoring Well	Screen Depth (mbgs)	Soil Type	Conductivity (cm/s)
MW1	1.52 – 4.57	Silt	1 x (10 ⁻⁵ - 10 ⁻⁷)

5.4 Soil Texture

Grain size analysis was performed by NTIL as part of the Phase Two ESA and indicated that 4.1 % (BH4-5), 76.0 % (BH5-1) and 11.6 % (BH8-4) of the soil matrix passed the No. 200 sieve resulting in a fine medium and coarse soil texture. Coarse soil texture was utilized in the Phase Two assessment. Coarse-grained soil is classified as soil that contains more than 50 percent by mass of particles that are 75 micrometres or smaller in mean diameter. NTIL's reported results are located in Appendix C.

Table 6: Soil Texture Results

Sample ID	Sample Depth (m bgs)	Soil Type	% Passing
BH4-5	3.05-3.66	Fine/Medium	4.1%
BH5-1	0.15 - 0.61	Coarse	76.0%
BH8-4	2.29 – 2.90	Fine/Medium	11.6%

5.5 Soil: Field Screening

Head space vapour screening was conducted for all retrieved soil samples using a combustible gas detector [RKI Eagle] in methane elimination mode, calibrated with hexane and having a minimum detection level of \pm 5%. Soil vapour measurements were recorded to be 0 ppm to a maximum value of 25 ppm at BH's 1 and 2.

5.6 Soil Quality

Soil sampling was conducted on October 31st, 2023. Ten representative soil samples were obtained from within the fill and native material at the site and submitted to Paracel Laboratories for analysis of Metals by Inductively Coupled Mass Spectrometry (ICP-MS), Hydride forming Metals Arsenic (As), Antimony (Sb), Selenium (Se), Petroleum Hydrocarbons (PHCs) F1-F4, Benzene, Toluene, Ethylbenzene and Xylene (BTEX), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs) and Inorganics: Sodium Adsorption Ratio (SAR)/Electrical Conductivity (EC), Free Cyanide (CN-), Chromium VI (Cr VI), Hot Water Boron Soluble (HWB-S), Mercury (Hg). A summary of the soil results is presented below and depicted on Figure 8, with full laboratory reports provided in Appendix B.

рΗ

The pH of all sampled borehole soils were found to be between 7.29 and 7.42. These pH values are within the limits for use, above 5 and below 9, for the generic criteria in O. Reg. 153/04, as amended.

Metals and Inorganics, PHCs, BTEX, PAHs PAHs

The soil test results met applicable O. Reg 153/04, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional property use, for coarse textured soils.

VOCs

The soil test results for VOCs were non-detect.

5.7 Ground Water Quality

Groundwater samples from the three monitoring wells (BH/MW1 to BH/MW3) were submitted to AGAT Laboratories Ltd. for analysis of dissolved Metals, Hydride Forming Metals- Arsenic (As), Antimony (Sb), Selenium (Se), PHCs F1-F4, BTEX, VOCs, PAHs and Inorganics: EC, CN-, Cr VI, Sodium (Na), Hg, Chlorine (Cl). The sample results for BH-1/MW-1 and BH-3/MW-3 were returned meeting applicable Table 3 standards for all target contaminant groups.

The groundwater sample from BH-2/MW-2 was returned with a PHC F2 results of 378 ug/g versus applicable 100 ug/g limit. Comments from the lab indicated the result may be attributed to sediment interference in the sample. To verify the groundwater condition within the well accurately, NSSL returned to the site, re-purged the well and allowed for the groundwater to recover prior to re-sampling. Subsequent laboratory results for BH-2/MW-2 were non-detect for PHCs (F1-F4) and VOCs and met Table 3 criteria for Metals. Complete groundwater laboratory test results are provided in Appendix D.

5.5 Quality Assurance and Quality Control Results

All soil and groundwater samples submitted as part of this Phase Two ESA investigation were handled in accordance with Paracel and AGAT's laboratory analytical protocols regarding holding time, preservation method, storage requirements, and container type. A Certificate of Analysis has been received for each sample submitted for analysis, and all Certificates of Analysis are appended to this report. The quality of the field data collected during this Phase Two ESA is considered to be sufficient to meet the overall objective of this is study.

6.0 <u>CONCLUSIONS</u>

NSSL was retained by Gatta Homes Inc. c/o Mr. Cyrus Gatta to conduct a Phase Two Environmental Site Assessment (ESA) of the occupied motel located at 7701 Lundy's Lane, Niagara Falls, Ontario. The primary findings of this Phase Two ESA are summarized as follows:

- Eight boreholes were advanced at the Site via track mounted drill rig.
- Boreholes were drilled to a maximum depth of 6.71 m bgs.
- Three environmental monitoring wells were installed at the site into three of the boreholes.
- Ten select soil samples were submitted for laboratory analysis of target parameters Metals by Inductively Coupled Mass Spectrometry (ICP-MS), Hydride forming Metals Arsenic (As), Antimony (Sb), Selenium (Se), Petroleum Hydrocarbons (PHCs) F1-F4, Benzene, Toluene, Ethylbenzene and Xylene (BTEX), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs) and Inorganics: Sodium Adsorption Ratio (SAR)/Electrical Conductivity (EC), Free Cyanide (CN-), Chromium VI (Cr VI), Hot Water Boron Soluble (HWB-S), Mercury (Hg).
- Three groundwater samples were submitted for laboratory analysis of target parameters Metals, Hydride Forming Metals- Arsenic (As), Antimony (Sb), Selenium (Se), PHCs F1-F4, BTEX, VOCs, PAHs and Inorganics: EC, CN-, Cr VI, Sodium (Na), Hg, Chlorine (Cl).
- All tested soil and groundwater results met applicable Table 3 Residential/Parkland/Institutional criteria for all target contaminants.

Therefore, based upon the Phase Two ESA study, current soil and groundwater conditions at the site satisfy applicable Table 3 Residential Site Condition standards. NSSL recommends removal of the Underground Storage Tank followed by verification soil sampling of the tank nest. Once confirmatory sampling is complete the documents for filing a Record of Site Condition with the Ministry of the Environment, Conservation and Parks can be prepared.

6.1 Limitations and Use of the Report

Niagara Soils Solutions Ltd. [NSSL] prepared this Report for Gatta Homes Inc. c/o Mr. Cyrus Gatta and is intended to provide a Phase Two Environmental Site Assessment of 7701 Lundy's Lane, Niagara Falls, ON. The material in it reflects Niagara Soils Solutions Ltd.'s best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Should additional parties require reliance on this report, written authorization from NSSL will be required. With respect to third parties, NSSL has no liability or responsibility for losses of any kind whatsoever, including direct or consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

The investigation undertaken by NSSL with respect to this report and any conclusions or recommendations made in this report reflect NSSL's judgment based on the site conditions observed at the time of the Site inspection on the date[s] set out in this report and on information available at the time of preparation of this report. This report has been prepared for specific application to this Site and it is based, in part, upon visual observation of the Phase Two Property, subsurface investigation at discrete locations and depths, and specific analysis of specific chemical parameters and materials during a specific time interval, all as described in this report. Unless otherwise stated, the findings cannot be extended to previous or future Site conditions, portions of the Phase Two Property, which were unavailable for direct investigation, subsurface locations, which were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Niagara Soils Solutions Ltd. has expressed professional judgement in gathering and analysing the information obtained and in the formulation of its conclusions.

NSSL makes no other representation whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this report, including but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and change. Such interpretations and regulatory changes should be reviewed with legal counsel.

Yours very truly, Niagara Soils Solutions Ltd.

odre Slase

Jodie Glasier, M.MM, PD-EMA, EP President & Senior Project Manager

Philip Adene, P. Geo, QP_{ESA} Professional Geoscientist

7.0 <u>REFERENCES</u>

The following resources were utilized as references:

- Ontario Division of Mines' "Paleozoic Geology of Southern Ontario".
- Ministry of Natural Resources' Quaternary Geology
- Water Wells Ontario site.
- Ontario Oil, Gas, and Salt Resources Library
- Interactive Map Niagara Navigator, <u>https://navigator.niagararegion.ca/</u>
- Ontario Base Mapping
- Niagara Peninsula Conservation Authority [NPCA] Watershed Explorer

FIGURES

- Figure 1: Site Location Plan
- Figure 2: Current Site Layout & Features
- Figure 3: Potentially Contaminating Activities
- Figure 4: Areas of Potential Environmental Concern
- Figure 5: Borehole & Monitoring Well Location Plan
- Figure 6: Topographic Contour
- Figure 7: Groundwater Contour
- Figure 8: Soil Results
- Figure 9: Groundwater Results
- Figure 10: Cross Section Plan View
- Figure 11A: Cross Section A-A'
- Figure 11B: Cross Section B-B'

DATE:

L2H 1H3

Site Layout & Features: Phase Two Property Boundary Areas of Potentially Environmental Concern (APEC): APEC Area Sampling: Borehole/Monitoring Well Location BH/MW-XX Borehole Location BH-XX

1. For Illustration Purposes only, All Locations are Approximate.

BOREHOLES TABLE:

LEGEND:

Borehole ID	Borehole Depth (m)	Sample Range (m bgs)
BH-1	6.71	BH 1-5 [3.05 - 3.65] BH 1-7 [6.10 - 6.70]
BH-2	6.71	BH 2-3 [1.55 - 2.15]
BH-3	6.71	BH 3-3 [1.55 - 2.15] BH 3-6 [4.60 - 5.20]
BH-4	6.71	BH 4-4 [2.30 - 2.90]
BH-5	3.66	BH 5-2 [0.75 - 1.35]
BH-6	3.66	BH 6-1 [0.00 - 0.60]
BH-7	6.71	BH 7-5 [3.05 - 3.65]
BH-8	6.71	BH 8-3 [1.55 - 2.15]

MONITORING WELLS TABLE:

Monitoring Well ID	Monitoring Well Depth (m)	Screen Range (m bgs)
MW-1	6.71	1.52 - 4.57
MW-2	6.71	1.52 - 4.57
MW-3	6.71	3.05 - 6.10

REFERENCES:

TITLE:

ZAH

CHK. BY:

APP. BY:

N

BASEMAP REFERENCE: Imagery Provided by Google Earth, (04/2022) https://earth.google.com/

BOREHOLES & MONITORING WELLS LOCATIONS

CAD:	Projects/-02 PHASE TWO ESA's/NS23108-02/Figures/ AUTOCAD/NS23108-02.DWG	 5
		 -

ADDRESS:			_				
	7701	Lundy'	s	Lane,	Niagara	Falls,	ON

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

WGS 84

UTM 17T

AS SHOWN

PROJECTION:

SCALE:

00100 00	NIAGARA SOILS SOLUTIONS LTD						
ov-2023	3300 Merrittville Hwy, Unit 4 Thorold, Ontario, L2V 4Y6						
	CLIENT: Gatta Homes						

DATUM:

SCALE:

PROJECTION:

1. For Illustration Purposes only, All Locations are Approximate.

ELEVATION TABLE:

Borehole ID	Benchmark Elev. (m)	Geodetic Elev. (m)
BH-1	100.23	195.05
BH-2	100.18	195.00
BH-3	100.13	194.95
BH-4	100.15	194.98
BH-5	100.23	195.05
BH-6	100.13	194.95
BH-7	100.20	195.02
BH-8	100.18	195.00

REFERENCES:

UTM 17T											_	 Nov-2023
	ADDRESS:									 		
AS SHOWN		7701	Lundy's	Lane,	Niagara	Falls,	ON.	L2H	1H3			

DATE:

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

PROJECTION:

SCALE:

2100 02	NIAGARA SOILS SOLUTIONS LTD.							
-2023	3300 Merrittville Hwy, Unit 4 Thorold, Ontario, L2V 4Y6							
	CLIENT: Gatta Homes							

GROUND-WATER CONTOUR

Projects/-02 PHASE TWO ESA's/NS23108-02/Figures/

AUTOCAD/NS23108-02. DWG

7

CHK. BY:

APP. BY:

CAD:

APPENDIX A

BOREHOLE LOGS

APPENDIX B

CERTIFICATES OF ANALYSIS -SOIL

Niagara Soils	s Solutions Ltd.				
3300 Merrittvill	e Highway				
Thorold, ON L2	2V 4Y6				
Attn: Jodie Gla	sier				
Client PO:			Report Date: 22-Nov-2023		
Droject: NS2210	0.02		Order Date: 1-Nov-2023		
F10ject. N32310	10-02		Order #: 2344316		
Custody:		Revised Report			
This Certificate	of Analysis contains analytical data applicable to the following samples as submitted:				
Paracel ID	Client ID				
2344316-01	BH/MW1-5				
2344316-02	BH/MW1-7				
2344316-03	BH/MW2-3				
2344316-04	BH/MW3-3				
2344316-05	BH/MW3-6				
2344316-06	BH4-4				
2344316-07	BH5-2				
2344316-08	BH6-1				
2344316-09	BH7-5				

2344316-10 BH8-3

Approved By:

All min

Milan Ralitsch, PhD

Senior Technical Manager

Client: Niagara Soils Solutions Ltd.

Client PO:

Analysis Summary Table

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.8 - ICP-MS	3-Nov-23	3-Nov-23
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	2-Nov-23	3-Nov-23
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	2-Nov-23	3-Nov-23
Conductivity	MOE E3138 - probe @25 °C, water ext	3-Nov-23	3-Nov-23
Cyanide, free	MOE E3015 - Auto Colour, water extraction	3-Nov-23	3-Nov-23
Mercury by CVAA	EPA 7471B - CVAA, digestion	3-Nov-23	3-Nov-23
PHC F1	CWS Tier 1 - P&T GC-FID	2-Nov-23	3-Nov-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	2-Nov-23	3-Nov-23
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	3-Nov-23	3-Nov-23
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	2-Nov-23	3-Nov-23
REG 153: pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	2-Nov-23	3-Nov-23
REG 153: VOCs by P&T GC-MS	EPA 8260 - P&T GC-MS	2-Nov-23	3-Nov-23
SAR	Calculated	3-Nov-23	6-Nov-23
Solids, %	CWS Tier 1 - Gravimetric	6-Nov-23	7-Nov-23

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

Summary of Criteria Exceedances

(If this page is blank then there are no exceedances)

Only those criteria that a sample exceeds will be highlighted in red

Regulatory Comparison:

Paracel Laboratories has provided regulatory guidelines on this report for informational purposes only and makes no representations or warranties that the data is accurate or reflects the current regulatory values. The user is advised to consult with the appropriate official regulations to evaluate compliance. Sample results that are highlighted have exceeded the selected regulatory limit. Calculated uncertainty estimations have not been applied for determining regulatory exceedances.

Sample	Analyte	MDL / Units	Result	Reg 153/04 -T3	Reg 153/04 -T3 Res/Park,
				Res/Park, coarse	fine

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH/MW1-5	BH/MW1-7	BH/MW2-3	BH/MW3-3	Crit	eria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-01	2344316-02	2344316-03	2344316-04	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics	-				•		
% Solids	0.1 % by Wt.	88.5	83.0	81.4	84.8	-	-
General Inorganics			-				
SAR	0.01 N/A	0.43	2.06	3.35	1.18	5 N/A	5 N/A
Conductivity	5 uS/cm	198	347	380	448	0.7 mS/cm	0.7 mS/cm
Cyanide, free	0.03 ug/g	<0.03	<0.03	<0.03	<0.03	0.051 ug/g	0.051 ug/g
рН	0.05 pH Units	7.37	7.39	7.42	7.29	5.00 - 9.00 pH Units	5.00 - 9.00 pH Units
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	7.5 ug/g	7.5 ug/g
Arsenic	1.0 ug/g	3.9	2.3	2.1	4.4	18 ug/g	18 ug/g
Barium	1.0 ug/g	88.8	51.1	19.3	95.7	390 ug/g	390 ug/g
Beryllium	0.5 ug/g	0.6	<0.5	<0.5	0.6	4 ug/g	5 ug/g
Boron	5.0 ug/g	5.6	<5.0	<5.0	5.6	120 ug/g	120 ug/g
Boron, available	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	1.5 ug/g	1.5 ug/g
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	1.2 ug/g	1.2 ug/g
Chromium (VI)	0.2 ug/g	<0.2	<0.2	<0.2	<0.2	8 ug/g	10 ug/g
Chromium	5.0 ug/g	18.0	8.1	6.8	19.6	160 ug/g	160 ug/g
Cobalt	1.0 ug/g	9.1	3.7	3.2	8.9	22 ug/g	22 ug/g
Copper	5.0 ug/g	17.2	5.7	11.5	18.2	140 ug/g	180 ug/g
Lead	1.0 ug/g	7.1	3.4	3.3	7.3	120 ug/g	120 ug/g
Mercury	0.1 ug/g	<0.1	<0.1	<0.1	<0.1	0.27 ug/g	1.8 ug/g
Molybdenum	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	6.9 ug/g	6.9 ug/g
Nickel	5.0 ug/g	15.2	<5.0	<5.0	12.0	100 ug/g	130 ug/g
Selenium	1.0 ug/g	<1.0	1.1	<1.0	<1.0	2.4 ug/g	2.4 ug/g
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	20 ug/g	25 ug/g
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	1 ug/g	1 ug/g

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH/MW1-5	BH/MW1-7	BH/MW2-3	BH/MW3-3	Crite	eria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-01	2344316-02	2344316-03	2344316-04	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Metals			_			_	
Uranium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	23 ug/g	23 ug/g
Vanadium	10.0 ug/g	24.9	12.9	16.4	26.6	86 ug/g	86 ug/g
Zinc	20.0 ug/g	44.1	<20.0	20.0	42.5	340 ug/g	340 ug/g
Volatiles							
Acetone	0.50 ug/g	<0.50	<0.50	<0.50	<0.50	16 ug/g	28 ug/g
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.21 ug/g	0.17 ug/g
Bromodichloromethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	13 ug/g	13 ug/g
Bromoform	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.27 ug/g	0.26 ug/g
Bromomethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.05 ug/g	0.05 ug/g
Carbon Tetrachloride	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.05 ug/g	0.12 ug/g
Chlorobenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	2.4 ug/g	2.7 ug/g
Chloroform	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.05 ug/g	0.18 ug/g
Dibromochloromethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	9.4 ug/g	9.4 ug/g
Dichlorodifluoromethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	16 ug/g	25 ug/g
1,2-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	3.4 ug/g	4.3 ug/g
1,3-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	4.8 ug/g	6 ug/g
1,4-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.083 ug/g	0.097 ug/g
1,1-Dichloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	3.5 ug/g	11 ug/g
1,2-Dichloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.05 ug/g	0.05 ug/g
1,1-Dichloroethylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.05 ug/g	0.05 ug/g
cis-1,2-Dichloroethylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	3.4 ug/g	30 ug/g
trans-1,2-Dichloroethylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.084 ug/g	0.75 ug/g
1,2-Dichloropropane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.05 ug/g	0.085 ug/g
cis-1,3-Dichloropropylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
trans-1,3-Dichloropropylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
			-		-		

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH/MW1-5	BH/MW1-7	BH/MW2-3	BH/MW3-3	Crite	ria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-01	2344316-02	2344316-03	2344316-04	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles					•		
1,3-Dichloropropene, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.05 ug/g	0.083 ug/g
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	2 ug/g	15 ug/g
Ethylene dibromide (dibromoethane,	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.05 ug/g	0.05 ug/g
Hexane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	2.8 ug/g	34 ug/g
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g	<0.50	<0.50	<0.50	<0.50	16 ug/g	44 ug/g
Methyl Isobutyl Ketone	0.50 ug/g	<0.50	<0.50	<0.50	<0.50	1.7 ug/g	4.3 ug/g
Methyl tert-butyl ether	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.75 ug/g	1.4 ug/g
Methylene Chloride	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.1 ug/g	0.96 ug/g
Styrene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.7 ug/g	2.2 ug/g
1,1,1,2-Tetrachloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.058 ug/g	0.05 ug/g
1,1,2,2-Tetrachloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.05 ug/g	0.05 ug/g
Tetrachloroethylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.28 ug/g	2.3 ug/g
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	2.3 ug/g	6 ug/g
1,1,1-Trichloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.38 ug/g	3.4 ug/g
1,1,2-Trichloroethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.05 ug/g	0.05 ug/g
Trichloroethylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	0.061 ug/g	0.52 ug/g
Trichlorofluoromethane	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	4 ug/g	5.8 ug/g
Vinyl chloride	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.02 ug/g	0.022 ug/g
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	3.1 ug/g	25 ug/g
4-Bromofluorobenzene	Surrogate	83.1%	84.3%	82.8%	82.8%	-	-
Dibromofluoromethane	Surrogate	77.7%	78.3%	77.3%	77.5%	-	-
Toluene-d8	Surrogate	107%	107%	107%	106%	-	-
Hydrocarbons							

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH/MW1-5	BH/MW1-7	BH/MW2-3	BH/MW3-3	Crite	eria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-01	2344316-02	2344316-03	2344316-04	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Hydrocarbons					•		
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	55 ug/g	65 ug/g
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	98 ug/g	150 ug/g
F3 PHCs (C16-C34)	8 ug/g	57	53	43	39	300 ug/g	1300 ug/g
F4 PHCs (C34-C50)	6 ug/g	<6	<6	<6	<6	2800 ug/g	5600 ug/g
Semi-Volatiles							
Acenaphthene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	7.9 ug/g	58 ug/g
Acenaphthylene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.15 ug/g	0.17 ug/g
Anthracene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.67 ug/g	0.74 ug/g
Benzo [a] anthracene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.5 ug/g	0.63 ug/g
Benzo [a] pyrene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.3 ug/g	0.3 ug/g
Benzo [b] fluoranthene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.78 ug/g	0.78 ug/g
Benzo [g,h,i] perylene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	6.6 ug/g	7.8 ug/g
Benzo [k] fluoranthene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.78 ug/g	0.78 ug/g
Chrysene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	7 ug/g	7.8 ug/g
Dibenzo [a,h] anthracene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.1 ug/g	0.1 ug/g
Fluoranthene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.69 ug/g	0.69 ug/g
Fluorene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	62 ug/g	69 ug/g
Indeno [1,2,3-cd] pyrene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.38 ug/g	0.48 ug/g
1-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.99 ug/g	3.4 ug/g
2-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.99 ug/g	3.4 ug/g
Methylnaphthalene (1&2)	0.03 ug/g	<0.03	<0.03	<0.03	<0.03	0.99 ug/g	3.4 ug/g
Naphthalene	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	0.6 ug/g	0.75 ug/g
Phenanthrene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	6.2 ug/g	7.8 ug/g
Pyrene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	78 ug/g	78 ug/g
2-Fluorobiphenyl	Surrogate	70.2%	46.4% [2]	69.1%	63.5%	-	-

Client: Niagara Soils Solutions Ltd.

Client PO:

Order #: 2344316

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH/MW1-5	BH/MW1-7	BH/MW2-3	BH/MW3-3	Criteria:	
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-01	2344316-02	2344316-03	2344316-04	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Semi-Volatiles			-				
Terphenyl-d14	Surrogate	87.2%	72.8%	73.5%	81.0%	-	-

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH/MW3-6	BH4-4	BH5-2	BH6-1	Crit	eria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-05	2344316-06	2344316-07	2344316-08	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics							
% Solids	0.1 % by Wt.	85.0	81.2	90.1	82.6	-	-
General Inorganics				-		-	
SAR	0.01 N/A	0.37	-	-	-	5 N/A	5 N/A
Conductivity	5 uS/cm	164	-	-	-	0.7 mS/cm	0.7 mS/cm
Cyanide, free	0.03 ug/g	<0.03	-	-	-	0.051 ug/g	0.051 ug/g
рН	0.05 pH Units	7.34	-	-	-	5.00 - 9.00 pH Units	5.00 - 9.00 pH Units
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	7.5 ug/g	7.5 ug/g
Arsenic	1.0 ug/g	1.9	4.2	4.7	4.0	18 ug/g	18 ug/g
Barium	1.0 ug/g	33.1	117	54.0	81.9	390 ug/g	390 ug/g
Beryllium	0.5 ug/g	<0.5	0.7	<0.5	0.6	4 ug/g	5 ug/g
Boron	5.0 ug/g	<5.0	8.3	<5.0	<5.0	120 ug/g	120 ug/g
Boron, available	0.5 ug/g	<0.5	-	-	-	1.5 ug/g	1.5 ug/g
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	1.2 ug/g	1.2 ug/g
Chromium (VI)	0.2 ug/g	<0.2	-	-	-	8 ug/g	10 ug/g
Chromium	5.0 ug/g	8.7	21.3	10.4	18.0	160 ug/g	160 ug/g
Cobalt	1.0 ug/g	4.6	9.1	4.9	6.9	22 ug/g	22 ug/g
Copper	5.0 ug/g	6.6	16.9	13.5	17.3	140 ug/g	180 ug/g
Lead	1.0 ug/g	3.1	8.1	87.1	7.7	120 ug/g	120 ug/g
Mercury	0.1 ug/g	<0.1	-	-	-	0.27 ug/g	1.8 ug/g
Molybdenum	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	6.9 ug/g	6.9 ug/g
Nickel	5.0 ug/g	<5.0	15.3	<5.0	8.7	100 ug/g	130 ug/g
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	2.4 ug/g	2.4 ug/g
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	20 ug/g	25 ug/g
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	1 ug/g	1 ug/g

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH/MW3-6	BH4-4	BH5-2	BH6-1	Crite	ria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-05	2344316-06	2344316-07	2344316-08	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Metals						-	
Uranium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	23 ug/g	23 ug/g
Vanadium	10.0 ug/g	13.9	28.4	18.9	26.7	86 ug/g	86 ug/g
Zinc	20.0 ug/g	21.0	50.4	58.2	37.9	340 ug/g	340 ug/g
Volatiles							
Acetone	0.50 ug/g	<0.50	<0.50	-	-	16 ug/g	28 ug/g
Benzene	0.02 ug/g	<0.02	<0.02	-	-	0.21 ug/g	0.17 ug/g
Bromodichloromethane	0.05 ug/g	<0.05	<0.05	-	-	13 ug/g	13 ug/g
Bromoform	0.05 ug/g	<0.05	<0.05	-	-	0.27 ug/g	0.26 ug/g
Bromomethane	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
Carbon Tetrachloride	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.12 ug/g
Chlorobenzene	0.05 ug/g	<0.05	<0.05	-	-	2.4 ug/g	2.7 ug/g
Chloroform	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.18 ug/g
Dibromochloromethane	0.05 ug/g	<0.05	<0.05	-	-	9.4 ug/g	9.4 ug/g
Dichlorodifluoromethane	0.05 ug/g	<0.05	<0.05	-	-	16 ug/g	25 ug/g
1,2-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	-	-	3.4 ug/g	4.3 ug/g
1,3-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	-	-	4.8 ug/g	6 ug/g
1,4-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	-	-	0.083 ug/g	0.097 ug/g
1,1-Dichloroethane	0.05 ug/g	<0.05	<0.05	-	-	3.5 ug/g	11 ug/g
1,2-Dichloroethane	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
1,1-Dichloroethylene	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
cis-1,2-Dichloroethylene	0.05 ug/g	<0.05	<0.05	-	-	3.4 ug/g	30 ug/g
trans-1,2-Dichloroethylene	0.05 ug/g	<0.05	<0.05	-	-	0.084 ug/g	0.75 ug/g
1,2-Dichloropropane	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.085 ug/g
cis-1,3-Dichloropropylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
						-	

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH/MW3-6	BH4-4	BH5-2	BH6-1	Crite	ria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-05	2344316-06	2344316-07	2344316-08	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles							
1,3-Dichloropropene, total	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.083 ug/g
Ethylene dibromide (dibromoethane,	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
Ethylbenzene	0.05 ug/g	<0.05	<0.05	-	-	2 ug/g	15 ug/g
Hexane	0.05 ug/g	<0.05	<0.05	-	-	2.8 ug/g	34 ug/g
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g	<0.50	<0.50	-	-	16 ug/g	44 ug/g
Methyl Isobutyl Ketone	0.50 ug/g	<0.50	<0.50	-	-	1.7 ug/g	4.3 ug/g
Methyl tert-butyl ether	0.05 ug/g	<0.05	<0.05	-	-	0.75 ug/g	1.4 ug/g
Methylene Chloride	0.05 ug/g	<0.05	<0.05	-	-	0.1 ug/g	0.96 ug/g
Styrene	0.05 ug/g	<0.05	<0.05	-	-	0.7 ug/g	2.2 ug/g
1,1,1,2-Tetrachloroethane	0.05 ug/g	<0.05	<0.05	-	-	0.058 ug/g	0.05 ug/g
1,1,2,2-Tetrachloroethane	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
Tetrachloroethylene	0.05 ug/g	<0.05	<0.05	-	-	0.28 ug/g	2.3 ug/g
Toluene	0.05 ug/g	<0.05	<0.05	-	-	2.3 ug/g	6 ug/g
1,1,1-Trichloroethane	0.05 ug/g	<0.05	<0.05	-	-	0.38 ug/g	3.4 ug/g
1,1,2-Trichloroethane	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
Trichloroethylene	0.05 ug/g	<0.05	<0.05	-	-	0.061 ug/g	0.52 ug/g
Trichlorofluoromethane	0.05 ug/g	<0.05	<0.05	-	-	4 ug/g	5.8 ug/g
Vinyl chloride	0.02 ug/g	<0.02	<0.02	-	-	0.02 ug/g	0.022 ug/g
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	-	-	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	-	-	3.1 ug/g	25 ug/g
4-Bromofluorobenzene	Surrogate	84.0%	82.8%	-	-	-	-
Toluene-d8	Surrogate	106%	106%	-	-	-	-
Dibromofluoromethane	Surrogate	77.6%	78.1%	-	-	-	-
Benzene	0.02 ug/g	-	-	<0.02	<0.02	0.21 ug/g	0.17 ug/g

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH/MW3-6	BH4-4	BH5-2	BH6-1	Crite	eria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-05	2344316-06	2344316-07	2344316-08	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles					•	•	
Ethylbenzene	0.05 ug/g	-	-	<0.05	<0.05	2 ug/g	15 ug/g
Toluene	0.05 ug/g	-	-	<0.05	<0.05	2.3 ug/g	6 ug/g
m,p-Xylenes	0.05 ug/g	-	-	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	-	-	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	-	-	<0.05	<0.05	3.1 ug/g	25 ug/g
Toluene-d8	Surrogate	-	-	106%	105%	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	55 ug/g	65 ug/g
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	98 ug/g	150 ug/g
F3 PHCs (C16-C34)	8 ug/g	48	45	251	77	300 ug/g	1300 ug/g
F4 PHCs (C34-C50)	6 ug/g	<6	<6	306	268	2800 ug/g	5600 ug/g
Semi-Volatiles							
Acenaphthene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	7.9 ug/g	58 ug/g
Acenaphthylene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.15 ug/g	0.17 ug/g
Anthracene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.67 ug/g	0.74 ug/g
Benzo [a] anthracene	0.02 ug/g	<0.02	<0.02	0.03	<0.02	0.5 ug/g	0.63 ug/g
Benzo [a] pyrene	0.02 ug/g	<0.02	<0.02	0.03	<0.02	0.3 ug/g	0.3 ug/g
Benzo [b] fluoranthene	0.02 ug/g	<0.02	<0.02	0.03	<0.02	0.78 ug/g	0.78 ug/g
Benzo [g,h,i] perylene	0.02 ug/g	<0.02	<0.02	0.06	<0.02	6.6 ug/g	7.8 ug/g
Benzo [k] fluoranthene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.78 ug/g	0.78 ug/g
Chrysene	0.02 ug/g	<0.02	<0.02	0.03	<0.02	7 ug/g	7.8 ug/g
Dibenzo [a,h] anthracene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.1 ug/g	0.1 ug/g
Fluoranthene	0.02 ug/g	<0.02	<0.02	0.06	<0.02	0.69 ug/g	0.69 ug/g
Fluorene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	62 ug/g	69 ug/g
Indeno [1,2,3-cd] pyrene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.38 ug/g	0.48 ug/g

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

	Client ID:	BH/MW3-6	BH4-4	BH5-2	BH6-1	Crite	eria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	31-Oct-23 09:00	Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-05	2344316-06	2344316-07	2344316-08	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Semi-Volatiles						-	
1-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.99 ug/g	3.4 ug/g
2-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	0.99 ug/g	3.4 ug/g
Methylnaphthalene (1&2)	0.03 ug/g	<0.03	<0.03	<0.03	<0.03	0.99 ug/g	3.4 ug/g
Naphthalene	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	0.6 ug/g	0.75 ug/g
Phenanthrene	0.02 ug/g	<0.02	<0.02	0.05	<0.02	6.2 ug/g	7.8 ug/g
Pyrene	0.02 ug/g	<0.02	<0.02	0.05	<0.02	78 ug/g	78 ug/g
2-Fluorobiphenyl	Surrogate	63.6%	68.1%	67.9%	64.6%	-	-
Terphenyl-d14	Surrogate	65.9%	79.5%	75.5%	74.5%	-	-

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH7-5	BH8-3			Crite	eria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00			Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-09	2344316-10			Res/Park, coarse	Res/Park, fine
	Matrix:	Soll	Soll				
	MDL/Units						
Physical Characteristics							
% Solids	0.1 % by Wt.	83.4	81.5	-	-	-	-
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	-	-	7.5 ug/g	7.5 ug/g
Arsenic	1.0 ug/g	2.0	3.6	-	-	18 ug/g	18 ug/g
Barium	1.0 ug/g	28.9	54.0	-	-	390 ug/g	390 ug/g
Beryllium	0.5 ug/g	<0.5	0.5	-	-	4 ug/g	5 ug/g
Boron	5.0 ug/g	<5.0	<5.0	-	-	120 ug/g	120 ug/g
Cadmium	0.5 ug/g	<0.5	<0.5	-	-	1.2 ug/g	1.2 ug/g
Chromium	5.0 ug/g	8.0	15.2	-	-	160 ug/g	160 ug/g
Cobalt	1.0 ug/g	4.2	7.8	-	-	22 ug/g	22 ug/g
Copper	5.0 ug/g	6.4	15.2	-	-	140 ug/g	180 ug/g
Lead	1.0 ug/g	2.9	6.1	-	-	120 ug/g	120 ug/g
Molybdenum	1.0 ug/g	<1.0	<1.0	-	-	6.9 ug/g	6.9 ug/g
Nickel	5.0 ug/g	<5.0	10.4	-	-	100 ug/g	130 ug/g
Selenium	1.0 ug/g	<1.0	<1.0	-	-	2.4 ug/g	2.4 ug/g
Silver	0.3 ug/g	<0.3	<0.3	-	-	20 ug/g	25 ug/g
Thallium	1.0 ug/g	<1.0	<1.0	-	-	1 ug/g	1 ug/g
Uranium	1.0 ug/g	<1.0	<1.0	-	-	23 ug/g	23 ug/g
Vanadium	10.0 ug/g	13.4	24.0	-	-	86 ug/g	86 ug/g
Zinc	20.0 ug/g	<20.0	36.9	-	-	340 ug/g	340 ug/g
Volatiles							
Acetone	0.50 ug/g	<0.50	<0.50	-	-	16 ug/g	28 ug/g
Benzene	0.02 ug/g	<0.02	<0.02	-	-	0.21 ug/g	0.17 ug/g
Bromodichloromethane	0.05 ug/g	<0.05	<0.05	-	-	13 ug/g	13 ug/g
Bromoform	0.05 ug/g	<0.05	<0.05	-	-	0.27 ug/g	0.26 ug/g

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH7-5	BH8-3			Crite	ria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00			Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-09	2344316-10			Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil				
	MDL/Units						
Volatiles							
Bromomethane	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
Carbon Tetrachloride	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.12 ug/g
Chlorobenzene	0.05 ug/g	<0.05	<0.05	-	-	2.4 ug/g	2.7 ug/g
Chloroform	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.18 ug/g
Dibromochloromethane	0.05 ug/g	<0.05	<0.05	-	-	9.4 ug/g	9.4 ug/g
Dichlorodifluoromethane	0.05 ug/g	<0.05	<0.05	-	-	16 ug/g	25 ug/g
1,2-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	-	-	3.4 ug/g	4.3 ug/g
1,3-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	-	-	4.8 ug/g	6 ug/g
1,4-Dichlorobenzene	0.05 ug/g	<0.05	<0.05	-	-	0.083 ug/g	0.097 ug/g
1,1-Dichloroethane	0.05 ug/g	<0.05	<0.05	-	-	3.5 ug/g	11 ug/g
1,2-Dichloroethane	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
1,1-Dichloroethylene	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
cis-1,2-Dichloroethylene	0.05 ug/g	<0.05	<0.05	-	-	3.4 ug/g	30 ug/g
trans-1,2-Dichloroethylene	0.05 ug/g	<0.05	<0.05	-	-	0.084 ug/g	0.75 ug/g
1,2-Dichloropropane	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.085 ug/g
cis-1,3-Dichloropropylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
1,3-Dichloropropene, total	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.083 ug/g
Ethylbenzene	0.05 ug/g	<0.05	<0.05	-	-	2 ug/g	15 ug/g
Ethylene dibromide (dibromoethane,	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
Hexane	0.05 ug/g	<0.05	<0.05	-	-	2.8 ug/g	34 ug/g
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g	<0.50	<0.50	-	-	16 ug/g	44 ug/g
Methyl Isobutyl Ketone	0.50 ug/g	<0.50	<0.50	-	-	1.7 ug/g	4.3 ug/g
Methyl tert-butyl ether	0.05 ug/g	<0.05	<0.05	-	-	0.75 ug/g	1.4 ug/g
Methylene Chloride	0.05 ug/g	<0.05	<0.05	-	-	0.1 ug/g	0.96 ug/g

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID: Sample Date: Sample ID:	BH7-5 31-Oct-23 09:00 2344316-09	BH8-3 31-Oct-23 09:00 2344316-10			Crite Reg 153/04 -T3 Res/Park. coarse	ria: Reg 153/04 -T3 Res/Park. fine
	Matrix:	Soil	Soil			,	,
Г	MDL/Units						
Volatiles	ļ				Į		
Styrene	0.05 ug/g	<0.05	<0.05	-	-	0.7 ug/g	2.2 ug/g
1,1,1,2-Tetrachloroethane	0.05 ug/g	<0.05	<0.05	-	-	0.058 ug/g	0.05 ug/g
1,1,2,2-Tetrachloroethane	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
Tetrachloroethylene	0.05 ug/g	<0.05	<0.05	-	-	0.28 ug/g	2.3 ug/g
Toluene	0.05 ug/g	<0.05	<0.05	-	-	2.3 ug/g	6 ug/g
1,1,1-Trichloroethane	0.05 ug/g	<0.05	<0.05	-	-	0.38 ug/g	3.4 ug/g
1,1,2-Trichloroethane	0.05 ug/g	<0.05	<0.05	-	-	0.05 ug/g	0.05 ug/g
Trichloroethylene	0.05 ug/g	<0.05	<0.05	-	-	0.061 ug/g	0.52 ug/g
Trichlorofluoromethane	0.05 ug/g	<0.05	<0.05	-	-	4 ug/g	5.8 ug/g
Vinyl chloride	0.02 ug/g	<0.02	<0.02	-	-	0.02 ug/g	0.022 ug/g
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	-	-	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	-	-	3.1 ug/g	25 ug/g
4-Bromofluorobenzene	Surrogate	82.5%	82.5%	-	-	-	-
Toluene-d8	Surrogate	106%	106%	-	-	-	-
Dibromofluoromethane	Surrogate	78.3%	77.9%	-	-	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g	<7	<7	-	-	55 ug/g	65 ug/g
F2 PHCs (C10-C16)	4 ug/g	<4	<4	-	-	98 ug/g	150 ug/g
F3 PHCs (C16-C34)	8 ug/g	<8	<8	-	-	300 ug/g	1300 ug/g
F4 PHCs (C34-C50)	6 ug/g	<6	<6	-	-	2800 ug/g	5600 ug/g
Semi-Volatiles							
Acenaphthene	0.02 ug/g	<0.02	<0.02	-	-	7.9 ug/g	58 ug/g
Acenaphthylene	0.02 ug/g	<0.02	<0.02	-	-	0.15 ug/g	0.17 ug/g
Anthracene	0.02 ug/g	<0.02	<0.02	-	-	0.67 ug/g	0.74 ug/g

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

	Client ID:	BH7-5	BH8-3			Crite	ria:
	Sample Date:	31-Oct-23 09:00	31-Oct-23 09:00			Reg 153/04 -T3	Reg 153/04 -T3
	Sample ID:	2344316-09	2344316-10			Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil				
	MDL/Units						
Semi-Volatiles	• • • •						
Benzo [a] anthracene	0.02 ug/g	<0.02	<0.02	-	-	0.5 ug/g	0.63 ug/g
Benzo [a] pyrene	0.02 ug/g	<0.02	<0.02	-	-	0.3 ug/g	0.3 ug/g
Benzo [b] fluoranthene	0.02 ug/g	<0.02	<0.02	-	-	0.78 ug/g	0.78 ug/g
Benzo [g,h,i] perylene	0.02 ug/g	<0.02	<0.02	-	-	6.6 ug/g	7.8 ug/g
Benzo [k] fluoranthene	0.02 ug/g	<0.02	<0.02	-	-	0.78 ug/g	0.78 ug/g
Chrysene	0.02 ug/g	<0.02	<0.02	-	-	7 ug/g	7.8 ug/g
Dibenzo [a,h] anthracene	0.02 ug/g	<0.02	<0.02	-	-	0.1 ug/g	0.1 ug/g
Fluoranthene	0.02 ug/g	<0.02	<0.02	-	-	0.69 ug/g	0.69 ug/g
Fluorene	0.02 ug/g	<0.02	<0.02	-	-	62 ug/g	69 ug/g
Indeno [1,2,3-cd] pyrene	0.02 ug/g	<0.02	<0.02	-	-	0.38 ug/g	0.48 ug/g
1-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	-	-	0.99 ug/g	3.4 ug/g
2-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	-	-	0.99 ug/g	3.4 ug/g
Methylnaphthalene (1&2)	0.03 ug/g	<0.03	<0.03	-	-	0.99 ug/g	3.4 ug/g
Naphthalene	0.01 ug/g	<0.01	<0.01	-	-	0.6 ug/g	0.75 ug/g
Phenanthrene	0.02 ug/g	<0.02	<0.02	-	-	6.2 ug/g	7.8 ug/g
Pyrene	0.02 ug/g	<0.02	<0.02	-	-	78 ug/g	78 ug/g
2-Fluorobiphenyl	Surrogate	65.6%	66.6%	-	-	-	-
Terphenyl-d14	Surrogate	49.7% [2]	77.1%	-	-	-	-

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics								
SAR	ND	0.01	N/A					
Conductivity	ND	5	uS/cm					
Cyanide, free	ND	0.03	ug/g					
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
Metals								
Antimony	ND	1.0	ug/g					
Arsenic	ND	1.0	ug/g					
Barium	ND	1.0	ug/g					
Beryllium	ND	0.5	ug/g					
Boron, available	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium (VI)	ND	0.2	ug/g					
Chromium	ND	5.0	ug/g					
Cobalt	ND	1.0	ug/g					
Copper	ND	5.0	ug/g					
Lead	ND	1.0	ug/g					
Mercury	ND	0.1	ug/g					
Molybdenum	ND	1.0	ug/g					
Nickel	ND	5.0	ug/g					
Selenium	ND	1.0	ug/g					
Silver	ND	0.3	ug/g					
Thallium	ND	1.0	ug/g					
Uranium	ND	1.0	ug/g					
Vanadium	ND	10.0	ug/g					
Zinc	ND	20.0	ug/g					
Semi-Volatiles								
Acenaphthene	ND	0.02	ug/g					

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Order #: 2344316

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Client: Niagara Soils Solutions Ltd.

Client PO:

Method Quality Control: Blank

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Acenaphthylene	ND	0.02	ug/g					
Anthracene	ND	0.02	ug/g					
Benzo [a] anthracene	ND	0.02	ug/g					
Benzo [a] pyrene	ND	0.02	ug/g					
Benzo [b] fluoranthene	ND	0.02	ug/g					
Benzo [g,h,i] perylene	ND	0.02	ug/g					
Benzo [k] fluoranthene	ND	0.02	ug/g					
Chrysene	ND	0.02	ug/g					
Dibenzo [a,h] anthracene	ND	0.02	ug/g					
Fluoranthene	ND	0.02	ug/g					
Fluorene	ND	0.02	ug/g					
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g					
1-Methylnaphthalene	ND	0.02	ug/g					
2-Methylnaphthalene	ND	0.02	ug/g					
Methylnaphthalene (1&2)	ND	0.03	ug/g					
Naphthalene	ND	0.01	ug/g					
Phenanthrene	ND	0.02	ug/g					
Pyrene	ND	0.02	ug/g					
Surrogate: 2-Fluorobiphenyl	0.444		%	88.7	50-140			
Surrogate: Terphenyl-d14	0.476		%	95.2	50-140			
Volatiles								
Acetone	ND	0.50	ug/g					
Benzene	ND	0.02	ug/g					
Bromodichloromethane	ND	0.05	ug/g					
Bromoform	ND	0.05	ug/g					
Bromomethane	ND	0.05	ug/g					
Carbon Tetrachloride	ND	0.05	ug/g					
Chlorobenzene	ND	0.05	ug/g					
Chloroform	ND	0.05	ug/g					
Dibromochloromethane	ND	0.05	ug/g					
Dichlorodifluoromethane	ND	0.05	ug/g					
1,2-Dichlorobenzene	ND	0.05	ug/g					

Client: Niagara Soils Solutions Ltd.

Client PO:

Method Quality Control: Blank

Order	#:	2344316
OIGO		

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
1,3-Dichlorobenzene	ND	0.05	ug/g					
1,4-Dichlorobenzene	ND	0.05	ug/g					
1,1-Dichloroethane	ND	0.05	ug/g					
1,2-Dichloroethane	ND	0.05	ug/g					
1,1-Dichloroethylene	ND	0.05	ug/g					
cis-1,2-Dichloroethylene	ND	0.05	ug/g					
trans-1,2-Dichloroethylene	ND	0.05	ug/g					
1,2-Dichloropropane	ND	0.05	ug/g					
cis-1,3-Dichloropropylene	ND	0.05	ug/g					
trans-1,3-Dichloropropylene	ND	0.05	ug/g					
1,3-Dichloropropene, total	ND	0.05	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.05	ug/g					
Hexane	ND	0.05	ug/g					
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g					
Methyl Isobutyl Ketone	ND	0.50	ug/g					
Methyl tert-butyl ether	ND	0.05	ug/g					
Methylene Chloride	ND	0.05	ug/g					
Styrene	ND	0.05	ug/g					
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g					
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g					
Tetrachloroethylene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
1,1,1-Trichloroethane	ND	0.05	ug/g					
1,1,2-Trichloroethane	ND	0.05	ug/g					
Trichloroethylene	ND	0.05	ug/g					
Trichlorofluoromethane	ND	0.05	ug/g					
Vinyl chloride	ND	0.02	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					
Xylenes, total	ND	0.05	ug/g					
Surrogate: 4-Bromofluorobenzene	7.00		%	86.8	50-140			

Client: Niagara Soils Solutions Ltd.

Client PO:

Method Quality Control: Blank

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Dibromofluoromethane	7.19		%	89.4	50-140			
Surrogate: Toluene-d8	8.34		%	104	50-140			
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					
Xylenes, total	ND	0.05	ug/g					
Surrogate: Toluene-d8	8.34		%	104	50-140			

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Method Quality Control: Duplicate

	rd	or	# •	234	13	16
U	r u	er	#.	234	43	10

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
SAR	2.80	0.01	N/A	2.74			2.2	30	
Conductivity	514	5	uS/cm	514			0.1	5	
Cyanide, free	ND	0.03	ug/g	ND			NC	35	
рН	7.92	0.05	pH Units	7.89			0.4	10	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	98	8	ug/g	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g	ND			NC	30	
Metals									
Antimony	ND	1.0	ug/g	ND			NC	30	
Arsenic	5.1	1.0	ug/g	6.0			15.9	30	
Barium	40.1	1.0	ug/g	39.0			3.0	30	
Beryllium	ND	0.5	ug/g	ND			NC	30	
Boron, available	0.55	0.5	ug/g	0.55			0.6	35	
Boron	ND	5.0	ug/g	ND			NC	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g	ND			NC	35	
Chromium	9.7	5.0	ug/g	10.0			2.5	30	
Cobalt	3.6	1.0	ug/g	3.9			7.9	30	
Copper	19.2	5.0	ug/g	14.2			29.5	30	
Lead	8.0	1.0	ug/g	7.2			10.1	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	1.6	1.0	ug/g	1.7			4.5	30	
Nickel	ND	5.0	ug/g	ND			NC	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	16.7	10.0	ug/g	17.5			4.9	30	

Physical Characteristics

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Analyte

% Solids

Semi-Volatiles Acenaphthene

Acenaphthylene

Benzo [a] pyrene

Benzo [a] anthracene

Anthracene

Zinc

Method Quality Control: Duplicate

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

Notes

Benzo [g,h,i] perylene ND 0.02 ug/g ND NC 40 Benzo [k] fluoranthene ND 0.02 ug/g ND NC 40 Chrysene ND 0.02 ug/g ND NC 40 Dibenzo [a,h] anthracene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluorene ND 0.02 ug/g ND NC 40
Benzo [k] fluoranthene ND 0.02 ug/g ND NC 40 Chrysene ND 0.02 ug/g ND NC 40 Dibenzo [a,h] anthracene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluorene ND 0.02 ug/g ND NC 40
Chrysene ND 0.02 ug/g ND NC 40 Dibenzo [a,h] anthracene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluorene ND 0.02 ug/g ND NC 40
Dibenzo [a,h] anthracene ND 0.02 ug/g ND NC 40 Fluoranthene ND 0.02 ug/g ND NC 40 Fluorene ND 0.02 ug/g ND NC 40
Fluoranthene ND 0.02 ug/g ND NC 40 Fluorene ND 0.02 ug/g ND NC 40
Fluorene ND 0.02 ug/g ND NC 40
Indeno [1,2,3-cd] pyrene ND 0.02 ug/g ND NC 40
1-Methylnaphthalene ND 0.02 ug/g ND NC 40
2-Methylnaphthalene ND 0.02 ug/g ND NC 40
Naphthalene ND 0.01 ug/g ND NC 40
Phenanthrene ND 0.02 ug/g ND NC 40
Pyrene ND 0.02 ug/g ND NC 40
Surrogate: 2-Fluorobiphenyl 0.409 % 70.3 50-140
Surrogate: Terphenyl-d14 0.442 % 76.0 50-140
Volatiles
Acetone ND 0.50 ug/g ND NC 50
Benzene ND 0.02 ug/g ND NC 50
Bromodichloromethane ND 0.05 ug/g ND NC 50
Bromoform ND 0.05 ug/g ND NC 50
Bromomethane ND 0.05 ug/g ND NC 50
Carbon Tetrachloride ND 0.05 ug/g ND NC 50

Source

Result

41.4

83.2

ND

ND

ND

ND

ND

Units

ug/g

% by Wt.

ug/g

ug/g

ug/g

ug/g

ug/g

%REC

Limit

%REC

RPD

Limit

30

25

40

40

40

40

40

RPD

5.7

1.9

NC

NC

NC

NC

NC

Reporting

Limit

20.0

0.1

0.02

0.02

0.02

0.02

0.02

Result

39.1

81.6

ND

ND

ND

ND

ND

Client: Niagara Soils Solutions Ltd.

Client PO:

Analyte

Method Quality Control: Duplicate

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

Notes

Chlorobenzene	ND	0.05	ug/g	ND	NC	50		
Chloroform	ND	0.05	ug/g	ND	NC	50		
Dibromochloromethane	ND	0.05	ug/g	ND	NC	50		
Dichlorodifluoromethane	ND	0.05	ug/g	ND	NC	50		
1,2-Dichlorobenzene	ND	0.05	ug/g	ND	NC	50		
1,3-Dichlorobenzene	ND	0.05	ug/g	ND	NC	50		
1,4-Dichlorobenzene	ND	0.05	ug/g	ND	NC	50		
1,1-Dichloroethane	ND	0.05	ug/g	ND	NC	50		
1,2-Dichloroethane	ND	0.05	ug/g	ND	NC	50		
1,1-Dichloroethylene	ND	0.05	ug/g	ND	NC	50		
cis-1,2-Dichloroethylene	ND	0.05	ug/g	ND	NC	50		
trans-1,2-Dichloroethylene	ND	0.05	ug/g	ND	NC	50		
1,2-Dichloropropane	ND	0.05	ug/g	ND	NC	50		
cis-1,3-Dichloropropylene	ND	0.05	ug/g	ND	NC	50		
trans-1,3-Dichloropropylene	ND	0.05	ug/g	ND	NC	50		
Ethylbenzene	ND	0.05	ug/g	ND	NC	50		
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.05	ug/g	ND	NC	50		
Hexane	ND	0.05	ug/g	ND	NC	50		
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g	ND	NC	50		
Methyl Isobutyl Ketone	ND	0.50	ug/g	ND	NC	50		
Methyl tert-butyl ether	ND	0.05	ug/g	ND	NC	50		
Methylene Chloride	ND	0.05	ug/g	ND	NC	50		
Styrene	ND	0.05	ug/g	ND	NC	50		
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g	ND	NC	50		
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g	ND	NC	50		
Tetrachloroethylene	ND	0.05	ug/g	ND	NC	50		
Toluene	ND	0.05	ug/g	ND	NC	50		
1,1,1-Trichloroethane	ND	0.05	ug/g	ND	NC	50		
1,1,2-Trichloroethane	ND	0.05	ug/g	ND	NC	50		
Trichloroethylene	ND	0.05	ug/g	ND	NC	50		
Trichlorofluoromethane	ND	0.05	ug/g	ND	NC	50		

Source

Result

Units

Reporting

Limit

Result

%REC

Limit

%REC

RPD

Limit

RPD

Client: Niagara Soils Solutions Ltd.

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

Surrogate: Toluene-d8

Client PO:

Analyte

Vinyl chloride

m,p-Xylenes

o-Xylene

Benzene

Toluene

o-Xylene

Ethylbenzene

m,p-Xylenes

Method Quality Control: Duplicate

Reporting

Limit

0.02

0.05

0.05

0.02

0.05

0.05

0.05

0.05

Result

ND

ND

ND

5.95

5.95

7.31

ND

ND

ND

ND

ND

7.31

Order	±٠	234431	6
UIUEI	π .	234431	U

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

Notes

|--|

Source

Result

ND

ND

ND

ND

ND

ND

ND

ND

Units

ug/g

ug/g

ug/g

%

%

%

ug/g

ug/g

ug/g

ug/g

ug/g

%

%REC

Limit

50-140

50-140

50-140

50-140

%REC

85.4

85.8

105

105

RPD

Limit

50

50

50

50

50

50

50

50

RPD

NC

NC

NC

NC

NC

NC

NC

NC

Certificate of Analysis

Client: Niagara Soils Solutions Ltd.

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Cyanide, free	0.306	0.03	ug/g	ND	88.3	70-130			
Hydrocarbons									
F1 PHCs (C6-C10)	64	7	ug/g	ND	89.8	80-120			
F2 PHCs (C10-C16)	120	4	ug/g	ND	118	60-140			
F3 PHCs (C16-C34)	281	8	ug/g	ND	123	60-140			
F4 PHCs (C34-C50)	206	6	ug/g	ND	125	60-140			
Metals									
Antimony	49.9	1.0	ug/g	ND	99.2	70-130			
Arsenic	56.0	1.0	ug/g	2.4	107	70-130			
Barium	70.4	1.0	ug/g	15.6	110	70-130			
Beryllium	49.5	0.5	ug/g	ND	98.7	70-130			
Boron, available	4.95	0.5	ug/g	0.55	88.1	70-122			
Boron	49.2	5.0	ug/g	ND	95.3	70-130			
Cadmium	53.4	0.5	ug/g	ND	107	70-130			
Chromium (VI)	5.6	0.2	ug/g	ND	96.0	70-130			
Chromium	58.6	5.0	ug/g	ND	109	70-130			
Cobalt	52.3	1.0	ug/g	1.6	101	70-130			
Copper	55.3	5.0	ug/g	5.7	99.1	70-130			
Lead	56.8	1.0	ug/g	2.9	108	70-130			
Mercury	1.38	0.1	ug/g	ND	92.3	70-130			
Molybdenum	54.7	1.0	ug/g	ND	108	70-130			
Nickel	52.5	5.0	ug/g	ND	102	70-130			
Selenium	55.6	1.0	ug/g	ND	111	70-130			
Silver	44.9	0.3	ug/g	ND	89.7	70-130			
Thallium	53.7	1.0	ug/g	ND	107	70-130			
Uranium	56.6	1.0	ug/g	ND	113	70-130			
Vanadium	60.3	10.0	ug/g	ND	107	70-130			
Zinc	69.4	20.0	ug/g	ND	106	70-130			
Semi-Volatiles									
Acenaphthene	0.401	0.02	ug/g	ND	68.9	50-140			

Order #: 2344316

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

Client: Niagara Soils Solutions Ltd.

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Acenaphthylene	0.430	0.02	ug/g	ND	73.9	50-140			
Anthracene	0.387	0.02	ug/g	ND	66.5	50-140			
Benzo [a] anthracene	0.425	0.02	ug/g	ND	73.1	50-140			
Benzo [a] pyrene	0.394	0.02	ug/g	ND	67.7	50-140			
Benzo [b] fluoranthene	0.407	0.02	ug/g	ND	70.0	50-140			
Benzo [g,h,i] perylene	0.415	0.02	ug/g	ND	71.4	50-140			
Benzo [k] fluoranthene	0.406	0.02	ug/g	ND	69.9	50-140			
Chrysene	0.423	0.02	ug/g	ND	72.7	50-140			
Dibenzo [a,h] anthracene	0.436	0.02	ug/g	ND	75.0	50-140			
Fluoranthene	0.491	0.02	ug/g	ND	84.4	50-140			
Fluorene	0.458	0.02	ug/g	ND	78.8	50-140			
Indeno [1,2,3-cd] pyrene	0.444	0.02	ug/g	ND	76.4	50-140			
1-Methylnaphthalene	0.485	0.02	ug/g	ND	83.4	50-140			
2-Methylnaphthalene	0.458	0.02	ug/g	ND	78.7	50-140			
Naphthalene	0.414	0.01	ug/g	ND	71.1	50-140			
Phenanthrene	0.414	0.02	ug/g	ND	71.2	50-140			
Pyrene	0.398	0.02	ug/g	ND	68.5	50-140			
Surrogate: 2-Fluorobiphenyl	0.412		%		70.9	50-140			
Surrogate: Terphenyl-d14	0.413		%		71.1	50-140			
Volatiles									
Acetone	8.84	0.50	ug/g	ND	88.4	50-140			
Benzene	3.83	0.02	ug/g	ND	95.3	60-130			
Bromodichloromethane	3.76	0.05	ug/g	ND	93.5	60-130			
Bromoform	3.94	0.05	ug/g	ND	97.6	60-130			
Bromomethane	4.12	0.05	ug/g	ND	103	50-140			
Carbon Tetrachloride	3.79	0.05	ug/g	ND	94.4	60-130			
Chlorobenzene	3.94	0.05	ug/g	ND	97.5	60-130			
Chloroform	4.30	0.05	ug/g	ND	107	60-130			
Dibromochloromethane	3.77	0.05	ug/g	ND	93.3	60-130			
Dichlorodifluoromethane	6.10	0.05	ug/g	ND	152	50-140			QS-02
1,2-Dichlorobenzene	3.82	0.05	ug/g	ND	95.0	60-130			

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Order #: 2344316

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Client: Niagara Soils Solutions Ltd.

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,3-Dichlorobenzene	3.87	0.05	ug/g	ND	95.8	60-130			
1,4-Dichlorobenzene	3.77	0.05	ug/g	ND	93.3	60-130			
1,1-Dichloroethane	3.91	0.05	ug/g	ND	97.2	60-130			
1,2-Dichloroethane	3.85	0.05	ug/g	ND	95.3	60-130			
1,1-Dichloroethylene	3.92	0.05	ug/g	ND	97.6	60-130			
cis-1,2-Dichloroethylene	3.76	0.05	ug/g	ND	94.0	60-130			
trans-1,2-Dichloroethylene	3.69	0.05	ug/g	ND	91.8	60-130			
1,2-Dichloropropane	3.85	0.05	ug/g	ND	95.2	60-130			
cis-1,3-Dichloropropylene	3.76	0.05	ug/g	ND	93.6	60-130			
trans-1,3-Dichloropropylene	4.00	0.05	ug/g	ND	99.6	60-130			
Ethylbenzene	3.84	0.05	ug/g	ND	95.4	60-130			
Ethylene dibromide (dibromoethane, 1,2-)	3.78	0.05	ug/g	ND	94.0	60-130			
Hexane	4.08	0.05	ug/g	ND	102	60-130			
Methyl Ethyl Ketone (2-Butanone)	9.25	0.50	ug/g	ND	92.5	50-140			
Methyl Isobutyl Ketone	10.7	0.50	ug/g	ND	107	50-140			
Methyl tert-butyl ether	9.03	0.05	ug/g	ND	90.3	50-140			
Methylene Chloride	3.98	0.05	ug/g	ND	99.0	60-130			
Styrene	3.80	0.05	ug/g	ND	94.6	60-130			
1,1,1,2-Tetrachloroethane	3.75	0.05	ug/g	ND	93.4	60-130			
1,1,2,2-Tetrachloroethane	3.20	0.05	ug/g	ND	79.6	60-130			
Tetrachloroethylene	3.88	0.05	ug/g	ND	96.4	60-130			
Toluene	4.00	0.05	ug/g	ND	100	60-130			
1,1,1-Trichloroethane	3.77	0.05	ug/g	ND	93.8	60-130			
1,1,2-Trichloroethane	3.91	0.05	ug/g	ND	97.3	60-130			
Trichloroethylene	4.24	0.05	ug/g	ND	105	60-130			
Trichlorofluoromethane	4.15	0.05	ug/g	ND	103	50-140			
Vinyl chloride	4.05	0.02	ug/g	ND	101	50-140			
m,p-Xylenes	7.68	0.05	ug/g	ND	95.7	60-130			
o-Xylene	3.92	0.05	ug/g	ND	97.4	60-130			
Surrogate: 4-Bromofluorobenzene	8.03		%		99.5	50-140			
Surrogate: Dibromofluoromethane	8.83		%		110	50-140			

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Project Description: NS23108-02

Client: Niagara Soils Solutions Ltd.

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Toluene-d8	8.06		%		100	50-140			
Benzene	3.83	0.02	ug/g	ND	95.3	60-130			
Ethylbenzene	3.84	0.05	ug/g	ND	95.4	60-130			
Toluene	4.00	0.05	ug/g	ND	100	60-130			
m,p-Xylenes	7.68	0.05	ug/g	ND	95.7	60-130			
o-Xylene	3.92	0.05	ug/g	ND	97.4	60-130			
Surrogate: Toluene-d8	8.06		%		100	50-140			

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Client: Niagara Soils Solutions Ltd.

Client PO:

Qualifier Notes:

Sample Qualifiers :

2: Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

QC Qualifiers:

QS-02

Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions:

None

Order #: 2344316

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

Client: Niagara Soils Solutions Ltd.

Client PO:

.....

REVISION 1 - This report includes an updated regulation as per the client.

Other Report Notes:

- n/a: not applicable
- ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 22-Nov-2023

Order Date: 1-Nov-2023

PARAC	Paracel ID: 2344316											Chain Of Custody (Lab Use Only)							
Client Name: NSSL						Project Ref: NS22/08-07										of	1		
Contact Name: Jacke Glasks						23-030	0	1					1	Ð	urnaro	und Ti	me		
Address: 3300 Merittville Highway, Unit 4					:								1 0	1 day			🗖 3 dar	v	
Thorald, ON LZV 440					il:	Takara	~1 ~							2 day			D Regular		
Telephone: 289-407-	6341					Jusian	\$1.09						Date	Requir	ed:		7	incari.	
REG 153/04 REG 406/19	Other Re	gulation		Matrix	Type:	S(Soil/Sod) CW/	Crown d War a		~	221	10.2	94. A. A.		- 113	-			=	
Table 1 Res/Park Med/Fine	e 🗖 REG 558	D PWQO	1 '	SW (Su	atrix Type: S (Soil/Sed.) GW (Ground Water) W (Surface Water) SS (Storm/Sanitary Sewer)			ŝ			Re	quired	uired Analysis						
🕅 Table 2 🛛 Ind/Comm 🗖 Coarse	ССМЕ	MISA			P (F	Paint) A (Air) O (O	ther)		å)	T	TE	1				-	TT		
Table 3 Agri/Other	🔲 SU - Sani	SU - Storm			2			Ē	1		3	X							
Table	Mun:			e	taine	Sampl	e Taken	and	S K S										
For RSC: 💢 Yes 🔲 No	For RSC: 🔯 Yes 🗌 No 🔤 Other:				f Cor	f Cor				I	S	-\$	0						
Sample ID/Location Name			Š	Air	io #	Date	Time	N.	A	F	Ž	PH							
1 15H/MW1-S	<i>k</i>		S		3	10/31/23		X		X					┱╴	┱╴	╈	۲	
2 BH/MW1-7			1		3			\times	X	\times		F	H		╬	╡╢──	╬╧╬╞	╡	
3 BA/MW2-3					3			X	\checkmark	\times	i	H		╤╬	╡	╬═	╬╧╬╞	╡	
4 BH/MW 3-3					5			X		$\overline{\times}$		H	╞═╬	═╬	╡╠═	╬═	╬╧╬╧	╡	
5 BH/MW 3-6					й				R		╞═	⊢	┝═╢╞	═╬	╡╠╴	╬	╬╧╬╧	╡	
6 BH4-4			+		5			H	l C			H	╘═╢┝	_#	ᆗ┝	╝		╡	
7 BHS-Z			+		5			╞╡	L_		9	닉	Ьł	┛╟╴	╧╟╧	╧			
8 RH (1					5			닏	R	Ц		\leq							
9 RH 7-5			+		2			Ľ	\square		\propto	\times							
10 RH C-2					5	-17-			*	\propto	×								
Comments:			\vee		5	V			\propto	\propto	\propto								
Relinquished By (Sign):	lu	Received By Driv	ver/De	pot:	11		Received at Lab:	щ				Method Verified	By:	ery:	N				
Date/Time:	10/07	Temperature	100	13	23 Date/Time: 1102/23				73	8:1	20	Date/Time: 11 102123 9:00							
Imperature: 18				°c			Temperature: 6.3						pH Verified: 🔲 By:						
APPENDIX C

GRAIN SIZE ANALYSIS

Project No.: NT23233

November 7, 2023

Niagara Soils Solutions Ltd. 3300 Merrittville Highway, Unit 5 Thorold, Ontario L2V 4Y6

Attention: Ms. Jodie Glasier, Vice President

RE: Laboratory Analysis for Soil Texture Classification Niagara Soils Solutions Ltd. Project No. NS23108-02 7701 Lundy's Lane, Niagara Falls, Ontario

Dear Ms. Glasier:

As requested, Niagara Testing and Inspection Ltd. [NTIL] was retained to perform laboratory analysis on soil samples for soil texture classification [i.e., fine/medium or coarse grain soil determination] as defined in Ontario Regulation 153/04 [as amended].

On Wednesday November 1st, 2023, three [3] soil samples were delivered by Niagara Soils Solutions Ltd. to NTIL soils laboratory for 75-micron [μ m] [#200] single-sieve grain size analysis. Results for the analysis are summarized in the table below.

Sample I.D.	Percent Passing 75 μm [#200] Sieve	Percent Retained on 75 μm [#200] Sieve	Soil Texture
BH 4-5	95.9 %	4.1 %	Fine/Medium Grained
BH 5-1	24.0 %	76.0 %	Coarse Grained
BH 8-4	88.4 %	11.6 %	Fine/Medium Grained

We trust that this information is satisfactory for your purposes. Should you have any queries please do not hesitate to contact the undersigned.

Regards: Niagara Testing and Inspection Ltd.

Prepared by:

Dwayne Neill, P.Eng. Project Engineer

Distribution: Jodie Glasier – jglasier@nssl.ca

Niagara Testing and Inspection Ltd. 3300 Merrittville Hwy, Unit 5 Thorold, ON, L2V 4Y6 www.ntil.ca

APPENDIX D

CERTIFICATES OF ANALYSIS - GROUNDWATER

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD 3300 MERRITTVILLE HIGHWAY THOROLD, ON L2V 4Y6 289-407-6341 ATTENTION TO: Jodie Glasier PROJECT: NS23108-02 AGAT WORK ORDER: 23T090294 TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead DATE REPORTED: Nov 22, 2023 PAGES (INCLUDING COVER): 18 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

ľ

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Envire Agricultural Laboratory Association (M/EALA)	

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 18

AGAT WORK ORDER: 23T090294 PROJECT: NS23108-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 Lundys Lane

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2023-11-07

		SAMPLE DESC	RIPTION:	BH/MW1	BH/MW2	BH/MW3	
		SAMP	LE TYPE:	Water	Water	Water	
		DATE S	AMPLED:	2023-11-06	2023-11-06	2023-11-06	
Parameter	Unit	G/S	RDL	5436555	5436558	5436559	
Naphthalene	µg/L	1400	0.20	<0.20	<0.20	<0.20	
Acenaphthylene	μg/L	1.8	0.20	<0.20	<0.20	<0.20	
Acenaphthene	µg/L	600	0.20	<0.20	<0.20	<0.20	
Fluorene	µg/L	400	0.20	<0.20	<0.20	<0.20	
Phenanthrene	µg/L	580	0.10	<0.10	<0.10	<0.10	
Anthracene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	
Fluoranthene	µg/L	130	0.20	<0.20	<0.20	<0.20	
Pyrene	µg/L	68	0.20	<0.20	<0.20	<0.20	
Benzo(a)anthracene	µg/L	4.7	0.20	<0.20	<0.20	<0.20	
Chrysene	µg/L	1	0.10	<0.10	<0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	
Benzo(k)fluoranthene	µg/L	0.4	0.10	<0.10	<0.10	<0.10	
Benzo(a)pyrene	µg/L	0.81	0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	µg/L	0.2	0.20	<0.20	<0.20	<0.20	
Dibenz(a,h)anthracene	µg/L	0.52	0.20	<0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	µg/L	0.2	0.20	<0.20	<0.20	<0.20	
2-and 1-methyl Naphthalene	µg/L	1800	0.20	<0.20	<0.20	<0.20	
Sediment				3	3	3	
Surrogate	Unit	Acceptable	e Limits				
Naphthalene-d8	%	50-14	40	110	63	99	
Acridine-d9	%	50-14	40	105	68	79	
Terphenyl-d14	%	50-14	40	102	72	86	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5436555-5436559 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2023-11-22

AGAT WORK ORDER: 23T090294 PROJECT: NS23108-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 Lundys Lane

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-11-07

		SAMPLE DESC	CRIPTION:	BH/MW1	BH/MW2	BH/MW3
		SAMF	PLE TYPE:	Water	Water	Water
		DATE S	AMPLED:	2023-11-06	2023-11-06	2023-11-06
Parameter	Unit	G/S	RDL	5436555	5436558	5436559
⁻¹ (C6 to C10)	μg/L	750	25	<25	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25
⁼ 2 (C10 to C16)	µg/L	150	100	<100	378	<100
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	378	<100
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	<100
⁼ 4 (C34 to C50)	μg/L	500	100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA
Sediment				3	3	3
Surrogate	Unit	Acceptabl	e Limits			
Toluene-d8	%	50-1	40	99	102	98
Terphenyl	% Recovery	60-1	40	72	73	68

Certified By:

NPopukolof

DATE REPORTED: 2023-11-22

AGAT WORK ORDER: 23T090294 PROJECT: NS23108-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 Lundys Lane

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEI	/ED: 2023-11-07	DATE REPORTED: 2023-11-22
Comments:	RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Types of Property Uses - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may r	Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All ot be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
5436555	 The C6-C10 fraction is calculated using toluene response factor. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average r Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only of The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F3-PAH (PAH Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene). This method complies with the Reference Method for the CWS PHC and is validated for nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample. 	BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are esponse factor for n-C10, n-C16, and n-C34. etermined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. Naphthalene. : sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, ir use in the laboratory.
	Sediment parameter is comment only based on visual inspection of the sample prior to Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace	extraction and is not an accredited test. amounts
5436558	 The C6-C10 fraction is calculated using toluene response factor. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus accredited. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average r Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only of The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F3-PAH (PAH Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene). This method complies with the Reference Method for the CWS PHC and is validated for nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample. The F2 result is due to the presence of one large individual unidentified compound. 	BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are esponse factor for n-C10, n-C16, and n-C34. etermined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. Naphthalene. : sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, or use in the laboratory.
	Sediment parameter is comment only based on visual inspection of the sample prior to Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace	extraction and is not an accredited test. amounts

5436559 The C6-C10 fraction is calculated using toluene response factor.

Certified By:

AGAT WORK ORDER: 23T090294 PROJECT: NS23108-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 Lundys Lane

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-11-07

DATE REPORTED: 2023-11-22

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test. Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 23T090294 PROJECT: NS23108-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 Lundys Lane

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-11-07

		SAMPLE DESC	RIPTION:	BH/MW1	BH/MW2	BH/MW3	
		SAMP	LE TYPE:	Water	Water	Water	
		DATE S	AMPLED:	2023-11-06	2023-11-06	2023-11-06	
Parameter	Unit	G/S	RDL	5436555	5436558	5436559	
Dichlorodifluoromethane	µg/L	4400	0.40	<0.40	<0.40	<0.40	
Vinyl Chloride	µg/L	0.5	0.17	<0.17	<0.17	<0.17	
Bromomethane	µg/L	5.6	0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	<0.40	<0.40	
Acetone	µg/L	130000	1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	<0.30	<0.30	
Methylene Chloride	µg/L	610	0.30	<0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	µg/L	320	0.30	<0.30	<0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	
Chloroform	µg/L	2.4	0.20	<0.20	1.52	<0.20	
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	<0.30	<0.30	
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	<0.20	<0.20	
Benzene	µg/L	44	0.20	<0.20	0.46	<0.20	
1,2-Dichloropropane	µg/L	16	0.20	<0.20	<0.20	<0.20	
Trichloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	µg/L	85000	0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	<0.20	<0.20	
Toluene	µg/L	18000	0.20	<0.20	0.48	<0.20	
Dibromochloromethane	µg/L	82000	0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.10	<0.10	<0.10	<0.10	
Chlorobenzene	µg/L	630	0.10	<0.10	<0.10	<0.10	
Ethylbenzene	µg/L	2300	0.10	<0.10	<0.10	<0.10	
m & p-Xylene	µg/L		0.20	<0.20	<0.20	<0.20	

Certified By:

NPopukolof

DATE REPORTED: 2023-11-22

AGAT WORK ORDER: 23T090294 PROJECT: NS23108-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 Lundys Lane

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-11-07

	S	SAMPLE DESC	CRIPTION:	BH/MW1	BH/MW2	BH/MW3	
		SAMF	PLE TYPE:	Water	Water	Water	
		DATE S	SAMPLED:	2023-11-06	2023-11-06	2023-11-06	
Parameter	Unit	G/S	RDL	5436555	5436558	5436559	
Bromoform	µg/L	380	0.10	<0.10	<0.10	<0.10	
Styrene	µg/L	1300	0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	<0.10	<0.10	
o-Xylene	µg/L		0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30	<0.30	<0.30	
Xylenes (Total)	µg/L	4200	0.20	<0.20	<0.20	<0.20	
n-Hexane	µg/L	51	0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits				
Toluene-d8	% Recovery	50-1	40	99	102	98	
4-Bromofluorobenzene	% Recovery	50-1	40	111	115	110	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5436555-5436559 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2023-11-22

AGAT WORK ORDER: 23T090294 PROJECT: NS23108-02

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 Lundys Lane

ATTENTION TO: Jodie Glasier

SAMPLED BY: J. Toldi

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-11-07

DATE RECEIVED: 2023-11-07								DATE REPORTED: 2023-11-22
	9	SAMPLE DESC	RIPTION:	BH/MW1		BH/MW2	BH/MW3	
		SAMP	LE TYPE:	Water		Water	Water	
		DATE S	AMPLED:	2023-11-06		2023-11-06	2023-11-06	
Parameter	Unit	G/S	RDL	5436555	RDL	5436558	5436559	
Dissolved Antimony	µg/L	20000	1.0	<1.0	1.0	<1.0	<1.0	
Dissolved Arsenic	µg/L	1900	1.0	<1.0	1.0	<1.0	<1.0	
Dissolved Barium	µg/L	29000	2.0	243	2.0	143	99.0	
Dissolved Beryllium	µg/L	67	0.50	<0.50	0.50	<0.50	<0.50	
Dissolved Boron	µg/L	45000	10.0	16.6	10.0	85.9	171	
Dissolved Cadmium	µg/L	2.7	0.20	<0.20	0.20	0.50	<0.20	
Dissolved Chromium	µg/L	810	2.0	2.3	2.0	<2.0	<2.0	
Dissolved Cobalt	µg/L	66	5.0	<5.0	0.50	48.7	7.79	
Dissolved Copper	µg/L	87	1.0	2.2	1.0	1.1	1.4	
Dissolved Lead	µg/L	25	0.50	1.09	0.50	1.51	1.79	
Dissolved Molybdenum	µg/L	9200	0.50	<0.50	0.50	3.10	2.07	
Dissolved Nickel	µg/L	490	1.0	2.4	1.0	35.0	5.5	
Dissolved Selenium	µg/L	63	1.0	3.3	1.0	3.3	2.2	
Dissolved Silver	µg/L	1.5	0.20	<0.20	0.20	<0.20	<0.20	
Dissolved Thallium	µg/L	510	0.30	<0.30	0.30	<0.30	0.57	
Dissolved Uranium	µg/L	420	0.50	0.53	0.50	4.42	4.07	
Dissolved Vanadium	µg/L	250	0.40	1.02	0.40	0.46	0.68	
Dissolved Zinc	µg/L	1100	5.0	<5.0	5.0	22.6	9.9	
Mercury	µg/L	0.29	0.02	<0.02	0.02	<0.02	<0.02	
Chromium VI	µg/L	140	2.000	<2.000	2.000	<2.000	<2.000	
Cyanide, WAD	µg/L	66	2	<2	2	<2	<2	
Dissolved Sodium	µg/L	2300000	500	936000	50	102000	39600	
Chloride	µg/L	2300000	122	2020000	100	415000	116000	
Electrical Conductivity	uS/cm	NA	2	6160	2	1780	1110	
H	pH Units		NA	7.62	NA	7.36	7.64	

AGAT WORK ORDER: 23T090294 PROJECT: NS23108-02

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 Lundys Lane

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-11-07

DATE REPORTED: 2023-11-22

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 5436555-5436559 Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Exceedance Summary

AGAT WORK ORDER: 23T090294 PROJECT: NS23108-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

ATTENTION TO: Jodie Glasier

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
5436558	BH/MW2	ON T3 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	F2 (C10 to C16)	µg/L	150	378

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS23108-02

SAMPLING SITE:7701 Lundys Lane

AGAT WORK ORDER: 23T090294

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

Trace Organics Analysis

					J								1		
RPT Date: Nov 22, 2023			DUPLICATE				REFERENCE MATERIAL		METHOD BLANK SPIKE			MAT	RIX SPI		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lii	eptable nits	Recovery	Acce Lir	eptable nits	Recovery	Acce	ptable nits
							value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4	(with PAHs	and VOC)	(Water)												
F1 (C6 to C10)	5436254		<25	<25	NA	< 25	83%	60%	140%	100%	60%	140%	92%	60%	140%
F2 (C10 to C16)	5436555		NA	NA	NA	< 100	75%	60%	140%	74%	60%	140%	78%	60%	140%
F3 (C16 to C34)	5436555		NA	NA	NA	< 100	82%	60%	140%	75%	60%	140%	89%	60%	140%
F4 (C34 to C50)	5436555		NA	NA	NA	< 100	85%	60%	140%	100%	60%	140%	95%	60%	140%
O. Reg. 153(511) - VOCs (with F	PHC) (Water)														
Dichlorodifluoromethane	5436254		<0.40	<0.40	NA	< 0.40	119%	50%	140%	101%	50%	140%	102%	50%	140%
Vinyl Chloride	5436254		<0.17	<0.17	NA	< 0.17	113%	50%	140%	102%	50%	140%	100%	50%	140%
Bromomethane	5436254		<0.20	<0.20	NA	< 0.20	100%	50%	140%	89%	50%	140%	95%	50%	140%
Trichlorofluoromethane	5436254		<0.40	<0.40	NA	< 0.40	98%	50%	140%	84%	50%	140%	83%	50%	140%
Acetone	5436254		<1.0	<1.0	NA	< 1.0	82%	50%	140%	88%	50%	140%	107%	50%	140%
1,1-Dichloroethylene	5436254		<0.30	<0.30	NA	< 0.30	84%	50%	140%	91%	60%	130%	86%	50%	140%
Methylene Chloride	5436254		<0.30	<0.30	NA	< 0.30	76%	50%	140%	104%	60%	130%	113%	50%	140%
trans- 1,2-Dichloroethylene	5436254		<0.20	<0.20	NA	< 0.20	84%	50%	140%	106%	60%	130%	94%	50%	140%
Methyl tert-butyl ether	5436254		<0.20	<0.20	NA	< 0.20	99%	50%	140%	90%	60%	130%	84%	50%	140%
1,1-Dichloroethane	5436254		<0.30	<0.30	NA	< 0.30	100%	50%	140%	118%	60%	130%	112%	50%	140%
Methyl Ethyl Ketone	5436254		<1.0	<1.0	NA	< 1.0	85%	50%	140%	92%	50%	140%	120%	50%	140%
cis- 1,2-Dichloroethylene	5436254		<0.20	<0.20	NA	< 0.20	103%	50%	140%	115%	60%	130%	107%	50%	140%
Chloroform	5436254		<0.20	<0.20	NA	< 0.20	102%	50%	140%	113%	60%	130%	110%	50%	140%
1,2-Dichloroethane	5436254		<0.20	<0.20	NA	< 0.20	72%	50%	140%	77%	60%	130%	83%	50%	140%
1,1,1-Trichloroethane	5436254		<0.30	<0.30	NA	< 0.30	80%	50%	140%	86%	60%	130%	72%	50%	140%
Carbon Tetrachloride	5436254		<0.20	<0.20	NA	< 0.20	80%	50%	140%	90%	60%	130%	76%	50%	140%
Benzene	5436254		0.69	0.74	NA	< 0.20	106%	50%	140%	117%	60%	130%	117%	50%	140%
1,2-Dichloropropane	5436254		<0.20	<0.20	NA	< 0.20	115%	50%	140%	110%	60%	130%	117%	50%	140%
Trichloroethylene	5436555		2.30	2.20	4.4%	< 0.20	74%	50%	140%	77%	60%	130%	104%	50%	140%
Bromodichloromethane	5436254		<0.20	<0.20	NA	< 0.20	94%	50%	140%	103%	60%	130%	98%	50%	140%
Methyl Isobutyl Ketone	5436254		<1.0	<1.0	NA	< 1.0	94%	50%	140%	96%	50%	140%	102%	50%	140%
1,1,2-Trichloroethane	5436254		<0.20	<0.20	NA	< 0.20	109%	50%	140%	96%	60%	130%	104%	50%	140%
Toluene	5436254		0.70	0.69	NA	< 0.20	101%	50%	140%	88%	60%	130%	94%	50%	140%
Dibromochloromethane	5436254		<0.10	<0.10	NA	< 0.10	105%	50%	140%	94%	60%	130%	106%	50%	140%
Ethylene Dibromide	5436254		<0.10	<0.10	NA	< 0.10	112%	50%	140%	94%	60%	130%	108%	50%	140%
Tetrachloroethylene	5436254		<0.20	<0.20	NA	< 0.20	80%	50%	140%	71%	60%	130%	76%	50%	140%
1,1,1,2-Tetrachloroethane	5436254		<0.10	<0.10	NA	< 0.10	91%	50%	140%	81%	60%	130%	86%	50%	140%
Chlorobenzene	5436254		<0.10	<0.10	NA	< 0.10	95%	50%	140%	79%	60%	130%	88%	50%	140%
Ethylbenzene	5436254		<0.10	<0.10	NA	< 0.10	111%	50%	140%	113%	60%	130%	104%	50%	140%
m & p-Xylene	5436254		<0.20	<0.20	NA	< 0.20	94%	50%	140%	112%	60%	130%	115%	50%	140%
Bromoform	5436254		<0.10	<0.10	NA	< 0.10	105%	50%	140%	91%	60%	130%	113%	50%	140%
Styrene	5436254		<0.10	<0.10	NA	< 0.10	105%	50%	140%	104%	60%	130%	100%	50%	140%
1,1,2,2-Tetrachloroethane	5436254		<0.10	<0.10	NA	< 0.10	114%	50%	140%	96%	60%	130%	73%	50%	140%
o-Xylene	5436254		<0.10	<0.10	NA	< 0.10	103%	50%	140%	106%	60%	130%	111%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 18

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS23108-02

SAMPLING SITE:7701 Lundys Lane

AGAT WORK ORDER: 23T090294 ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

Trace Organics Analysis (Continued)

RPT Date: Nov 22, 2023	PT Date: Nov 22, 2023				E	-	REFEREN		TERIAL	METHOD BLANK SPIK						
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce	ptable nits	Recovery	Acce Lir	eptable nits	Recovery	Acce	ptable nits	
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper	
1,3-Dichlorobenzene	5436254		<0.10	<0.10	NA	< 0.10	. 101%	50%	140%	85%	60%	130%	104%	50%	140%	
1,4-Dichlorobenzene	5436254		<0.10	<0.10	NA	< 0.10	103%	50%	140%	85%	60%	130%	104%	50%	140%	
1,2-Dichlorobenzene	5436254		<0.10	<0.10	NA	< 0.10	101%	50%	140%	82%	60%	130%	102%	50%	140%	
n-Hexane	5436254		1.14	1.24	8.4%	< 0.20	108%	50%	140%	114%	60%	130%	114%	50%	140%	
O. Reg. 153(511) - PAHs (Water)																
Naphthalene	5425964		<0.20	<0.20	NA	< 0.20	107%	50%	140%	84%	50%	140%	83%	50%	140%	
Acenaphthylene	5425964		<0.20	<0.20	NA	< 0.20	108%	50%	140%	90%	50%	140%	84%	50%	140%	
Acenaphthene	5425964		<0.20	<0.20	NA	< 0.20	120%	50%	140%	87%	50%	140%	108%	50%	140%	
Fluorene	5425964		<0.20	<0.20	NA	< 0.20	113%	50%	140%	86%	50%	140%	94%	50%	140%	
Phenanthrene	5425964		<0.10	<0.10	NA	< 0.10	108%	50%	140%	93%	50%	140%	97%	50%	140%	
Anthracene	5425964		<0.10	<0.10	NA	< 0.10	112%	50%	140%	93%	50%	140%	108%	50%	140%	
Fluoranthene	5425964		<0.20	<0.20	NA	< 0.20	114%	50%	140%	93%	50%	140%	98%	50%	140%	
Pyrene	5425964		<0.20	<0.20	NA	< 0.20	115%	50%	140%	91%	50%	140%	104%	50%	140%	
Benzo(a)anthracene	5425964		<0.20	<0.20	NA	< 0.20	82%	50%	140%	70%	50%	140%	94%	50%	140%	
Chrysene	5425964		<0.10	<0.10	NA	< 0.10	112%	50%	140%	81%	50%	140%	112%	50%	140%	
Benzo(b)fluoranthene	5425964		<0.10	<0.10	NA	< 0.10	64%	50%	140%	89%	50%	140%	85%	50%	140%	
Benzo(k)fluoranthene	5425964		<0.10	<0.10	NA	< 0.10	96%	50%	140%	99%	50%	140%	114%	50%	140%	
Benzo(a)pyrene	5425964		<0.01	<0.01	NA	< 0.01	83%	50%	140%	71%	50%	140%	77%	50%	140%	
Indeno(1,2,3-cd)pyrene	5425964		<0.20	<0.20	NA	< 0.20	69%	50%	140%	91%	50%	140%	74%	50%	140%	
Dibenz(a,h)anthracene	5425964		<0.20	<0.20	NA	< 0.20	110%	50%	140%	82%	50%	140%	94%	50%	140%	
Benzo(g,h,i)perylene	5425964		<0.20	<0.20	NA	< 0.20	76%	50%	140%	85%	50%	140%	78%	50%	140%	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoli

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 18

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS23108-02

SAMPLING SITE:7701 Lundys Lane

AGAT WORK ORDER: 23T090294

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. Toldi

Water Analysis

				, , , , , , , , , , , , , , , , , , ,										
RPT Date: Nov 22, 2023			OUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
	Id					value	Lower	Upper	-	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	rganics (Water)													
Dissolved Antimony	5435770	1.3	<1.0	NA	< 1.0	98%	70%	130%	101%	80%	120%	105%	70%	130%
Dissolved Arsenic	5435770	1.3	<1.0	NA	< 1.0	97%	70%	130%	96%	80%	120%	107%	70%	130%
Dissolved Barium	5435770	164	158	3.7%	< 2.0	98%	70%	130%	102%	80%	120%	101%	70%	130%
Dissolved Beryllium	5435770	<0.50	<0.50	NA	< 0.50	85%	70%	130%	103%	80%	120%	98%	70%	130%
Dissolved Boron	5435770	93.1	90.5	2.8%	< 10.0	102%	70%	130%	119%	80%	120%	108%	70%	130%
Dissolved Cadmium	5435770	<0.20	<0.20	NA	< 0.20	100%	70%	130%	104%	80%	120%	104%	70%	130%
Dissolved Chromium	5435770	2.9	<2.0	NA	< 2.0	100%	70%	130%	97%	80%	120%	108%	70%	130%
Dissolved Cobalt	5435770	1.05	<0.50	NA	< 0.50	98%	70%	130%	92%	80%	120%	102%	70%	130%
Dissolved Copper	5435770	4.1	1.4	NA	< 1.0	101%	70%	130%	105%	80%	120%	97%	70%	130%
Dissolved Lead	5435770	0.78	1.82	NA	< 0.50	94%	70%	130%	99%	80%	120%	99%	70%	130%
Dissolved Molybdenum	5435770	18.3	15.8	14.7%	< 0.50	102%	70%	130%	105%	80%	120%	103%	70%	130%
Dissolved Nickel	5435770	2.8	<1.0	NA	< 1.0	103%	70%	130%	98%	80%	120%	106%	70%	130%
Dissolved Selenium	5435770	2.5	<1.0	NA	< 1.0	101%	70%	130%	101%	80%	120%	105%	70%	130%
Dissolved Silver	5435770	<0.20	<0.20	NA	< 0.20	101%	70%	130%	92%	80%	120%	94%	70%	130%
Dissolved Thallium	5435770	<0.30	0.32	NA	< 0.30	98%	70%	130%	104%	80%	120%	101%	70%	130%
Dissolved Uranium	5435770	3.19	<0.50	NA	< 0.50	92%	70%	130%	103%	80%	120%	100%	70%	130%
Dissolved Vanadium	5435770	2.32	1.06	NA	< 0.40	102%	70%	130%	92%	80%	120%	115%	70%	130%
Dissolved Zinc	5435770	<5.0	<5.0	NA	< 5.0	98%	70%	130%	100%	80%	120%	95%	70%	130%
Mercury	5433725	<0.02	<0.02	NA	< 0.02	103%	70%	130%	100%	80%	120%	97%	70%	130%
Chromium VI	5436555 5436555	<2.000	<2.000	NA	< 2	99%	70%	130%	103%	80%	120%	113%	70%	130%
Cyanide, WAD	5433725	<2	<2	NA	< 2	92%	70%	130%	107%	80%	120%	104%	70%	130%
Dissolved Sodium	5435770	NA	NA	0.0%	< 50	96%	70%	130%	105%	80%	120%	91%	70%	130%
Chloride	5439078	382000	395000	3.3%	< 100	99%	70%	130%	104%	80%	120%	NA	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 18

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS23108-02

AGAT WORK ORDER: 23T090294

SAMPLING SITE:7701 Lundys Lane

ATTENTION TO: Jodie Glasier SAMPLED BY:J. Toldi

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis		1					
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Sediment			N/A				
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID				
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE				
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

AGAT WORK ORDER: 23T090294 ATTENTION TO: Jodie Glasier

PROJECT: NS23108-02 SAMPLING SITE:7701 Lundys Lane SAMPLED BY: J. Toldi PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIQUE modified from EPA 5030B & EPA Vinyl Chloride VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA VOL-91-5001 (P&T)GC/MS Bromomethane 8260D modified from EPA 5030B & EPA Trichlorofluoromethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Acetone VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1,1-Dichloroethylene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA VOL-91-5001 (P&T)GC/MS Methylene Chloride 8260D modified from EPA 5030B & EPA trans- 1,2-Dichloroethylene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Methyl tert-butyl ether VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1,1-Dichloroethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Methyl Ethyl Ketone VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA cis- 1,2-Dichloroethylene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Chloroform VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1.2-Dichloroethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1.1.1-Trichloroethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Carbon Tetrachloride VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Benzene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1,2-Dichloropropane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Trichloroethylene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Bromodichloromethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Methyl Isobutyl Ketone VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1,1,2-Trichloroethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Toluene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Dibromochloromethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Ethylene Dibromide VOI -91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA Tetrachloroethylene VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA 1,1,1,2-Tetrachloroethane VOL-91-5001 (P&T)GC/MS 8260D modified from EPA 5030B & EPA (P&T)GC/MS Chlorobenzene VOL-91-5001 8260D modified from EPA 5030B & EPA Ethylbenzene VOL-91-5001 (P&T)GC/MS 8260D

Method Summary

8260D

8260D

8260D

8260D

modified from EPA 5030B & EPA

modified from EPA 5030B & EPA

modified from EPA 5030B & EPA

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PF

n-Hexane

Toluene-d8

4-Bromofluorobenzene

AGAT WORK ORDER: 23T090294

(P&T)GC/MS

(P&T)GC/MS

(P&T)GC/MS

PROJECT: NS23108-02		ATTENTION TO: Jodie Glasier									
SAMPLING SITE:7701 Lundys Lane		SAMPLED BY:J. Toldi									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA	(P&T)GC/MS								

VOL-91-5001

VOL-91-5001

VOL-91-5001

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS23108-02 SAMPLING SITE:7701 Lundvs Lane

AGAT WORK ORDER: 23T090294

ATTENTION TO: Jodie Glasier

SAMPLING SITE:7701 Lundys Lane		SAMPLED BY:J. Toldi									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Water Analysis			1								
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS								
Mercury	MET-93-6100	modified from EPA 245.2 and SM 311 B	² CVAAS								
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA								
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SN 4500-CN- I, G-387	^A SEGMENTED FLOW ANALYSIS								
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS								
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH								
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE								
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE								

1. 2. 3. 4. 1 5. 6. 7.

Pink Copy - Client 1 Yellow Cupy - AGAT 1 white

5835 Coopers Avenue Minningaura Ontaria 1 47 4VO

Laboratory Use Only

Page 18 of 18

Chain of Custody Record	here for a ck survey! Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com	Work Order #: 23TO 20794 Cooler Quantity: LAKCE Arrival Temperatures: 9.2 9.0 9.0						
Report Information: NSS2 Company: Docke Glasvel un 1	Regulatory Requirements: (Please check all applicable boxes)	Custody Seal Intact: Yes No N/A Notes: 00 100 N/A						
Address: 2300 Mernit Ville Highuran, Unit 9 Thorold, ON L2V 476 Phone: Reports to be sent to: 1. Email: 2. Email:	Table Indicate One Isanitary Storm Ind/Com Indicate One Region Region Agriculture Regulation 558 Prov. Water Quality Objectives (PWQO) Soil Texture (Check One) CCME Other Indicate One Fine Indicate One Indicate One Indicate One	Iurnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush surcharges Apply) 3 Business 2 Business Days Days OR Date Required (Rush Surcharges May Apply):						
Project Information: Project: Site Location: Sampled By: Sampled By:	Is this submission for a Report Guideline on Record of Site Condition? Certificate of Analysis ☐ Yes ☐ No	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM						
AGAT Quote #:	Sample Matrix Legend 0 0. Reg 153 GW Ground Water 0 O 0il 100 P Paint 100 SD Sediment SW Surface Water	oclors Mai D'vocs Mai D'voc						
Sample Identification Date Sampled Time Sampled # of Containers Si M 1. PAH/MW1 IN/06/23 PM 13 4 2. BH/MW2 PM 13 4 3. BH/MW3 V PM 13 4. PM 13 4 5. PM 13 4 6. PM 14 14 7. PM 14 14 9. PM 14 14	mple Comments/ atrix Special Instructions Y/N Bar A X	PCBs: Arc Imutation						
10. AM 11. AM Sparster Willinguished By (Print Home and Sign): AM Samples Relinguished By (Print Name and Sign): Date	Samples Roceived By (Print Name and Sign): Market Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Batter	7/23 The dim 17 436 Page of						

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agatlabs.com/termsandconditions unless otherwise agreed in a current written contractual document.

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD 3300 MERRITTVILLE HIGHWAY THOROLD, ON L2V 4Y6 289-407-6341 ATTENTION TO: Jodie Glasier PROJECT: NS23108-02 AGAT WORK ORDER: 23H095178 TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead DATE REPORTED: Nov 22, 2023 PAGES (INCLUDING COVER): 12 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

ľ

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Envire Agricultural Laboratory Association (M/EALA)	

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 12

AGAT WORK ORDER: 23H095178 PROJECT: NS23108-02

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 LUNDRYS LANE, NIAGARA FALLS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Jodie Glasier

SAMPLED BY:J. TOLDI

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Water)

DATE RECEIVED: 2023-11-20

5476084

	S	AMPLE DESCR	RIPTION:	BH/MW2	
		SAMPL	E TYPE:	Water	
		DATE SA	MPLED:	2023-11-20	
Parameter	Unit	G/S	RDL	5476084	
F1 (C6 to C10)	µg/L	750	25	<25	
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25	
F2 (C10 to C16)	µg/L	150	100	<100	
F3 (C16 to C34)	µg/L	500	100	<100	
F4 (C34 to C50)	µg/L	500	100	<100	
Gravimetric Heavy Hydrocarbons	µg/L		500	NA	
Sediment				1	
Surrogate	Unit	Acceptable	Limits		
Toluene-d8	%	50-140)	101	
Terphenyl	% Recovery	60-140)	85	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client. NA = Not Applicable

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test. Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

DATE REPORTED: 2023-11-22

Certified By:

AGAT WORK ORDER: 23H095178 PROJECT: NS23108-02

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 LUNDRYS LANE, NIAGARA FALLS

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

DATE REPORTED: 2023-11-22

5835 COOPERS AVENUE

ATTENTION TO: Jodie Glasier

SAMPLED BY: J. TOLDI

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-11-20

		SAMPLE DESC	RIPTION:	BH/MW2	
		SAMP	LE TYPE:	Water	
		DATE S	AMPLED:	2023-11-20	
Parameter	Unit	G/S	RDL	5476084	
Dichlorodifluoromethane	µg/L	4400	0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	
Bromomethane	µg/L	5.6	0.20	<0.20	
Trichlorofluoromethane	μg/L	2500	0.40	<0.40	
Acetone	μg/L	130000	1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	<0.30	
Methylene Chloride	μg/L	610	0.30	<0.30	
rans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	μg/L	190	0.20	<0.20	
1,1-Dichloroethane	μg/L	320	0.30	<0.30	
Methyl Ethyl Ketone	μg/L	470000	1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Chloroform	μg/L	2.4	0.20	<0.20	
I,2-Dichloroethane	μg/L	1.6	0.20	<0.20	
1,1,1-Trichloroethane	μg/L	640	0.30	<0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	
Benzene	μg/L	44	0.20	<0.20	
,2-Dichloropropane	μg/L	16	0.20	<0.20	
Frichloroethylene	μg/L	1.6	0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	140000	1.0	<1.0	
I,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	
Dibromochloromethane	µg/L	82000	0.10	<0.10	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	
Fetrachloroethylene	μg/L	1.6	0.20	<0.20	
I,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	
m & p-Xylene	µg/L		0.20	<0.20	

Certified By:

AGAT WORK ORDER: 23H095178 PROJECT: NS23108-02

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 LUNDRYS LANE, NIAGARA FALLS

ATTENTION TO: Jodie Glasier

SAMPLED BY: J. TOLDI

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-11-20

	S	AMPLE DESC	CRIPTION:	BH/MW2
		SAMF	PLE TYPE:	Water
		DATE S	SAMPLED:	2023-11-20
Parameter	Unit	G/S	RDL	5476084
Bromoform	µg/L	380	0.10	<0.10
Styrene	µg/L	1300	0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10
o-Xylene	μg/L		0.10	<0.10
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10
1,3-Dichloropropene	μg/L	5.2	0.30	<0.30
Xylenes (Total)	µg/L	4200	0.20	<0.20
n-Hexane	µg/L	51	0.20	<0.20
Surrogate	Unit	Acceptab	le Limits	
Toluene-d8	% Recovery	50-1	40	101
4-Bromofluorobenzene	% Recovery	50-1	40	111
	, e : te e e i e i j			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5476084 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

finkal Jata

DATE REPORTED: 2023-11-22

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 23H095178 PROJECT: NS23108-02

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

SAMPLING SITE:7701 LUNDRYS LANE, NIAGARA FALLS

ATTENTION TO: Jodie Glasier

SAMPLED BY: J. TOLDI

O. Reg. 153(511) - Metals (Including Hydrides) (Water)

DATE RECEIVED: 2023-11-20

DATE RECEIVED: 2023-11-2	0				DATE REPORTED: 2023-11-22
	5	SAMPLE DES	CRIPTION:	BH/MW2	
		SAM	PLE TYPE:	Water	
		DATES	SAMPLED:	2023-11-20	
Parameter	Unit	G/S	RDL	5476084	
Dissolved Antimony	µg/L	20000	1.0	<1.0	
Dissolved Arsenic	µg/L	1900	1.0	<1.0	
Dissolved Barium	µg/L	29000	2.0	135	
Dissolved Beryllium	µg/L	67	0.50	<0.50	
Dissolved Boron	µg/L	45000	10.0	85.2	
Dissolved Cadmium	µg/L	2.7	0.20	0.20	
Dissolved Chromium	μg/L	810	2.0	<2.0	
Dissolved Cobalt	µg/L	66	0.50	12.8	
Dissolved Copper	μg/L	87	1.0	2.0	
Dissolved Lead	μg/L	25	0.50	<0.50	
Dissolved Molybdenum	µg/L	9200	0.50	1.89	
Dissolved Nickel	μg/L	490	1.0	9.1	
Dissolved Selenium	µg/L	63	1.0	<1.0	
Dissolved Silver	μg/L	1.5	0.20	<0.20	
Dissolved Thallium	µg/L	510	0.30	<0.30	
Dissolved Uranium	µg/L	420	0.50	4.02	
Dissolved Vanadium	µg/L	250	0.40	1.01	
Dissolved Zinc	µg/L	1100	5.0	10.6	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5476084 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS23108-02

SAMPLING SITE:7701 LUNDRYS LANE, NIAGARA FALLS

AGAT WORK ORDER: 23H095178 **ATTENTION TO: Jodie Glasier**

SAMPLED BY: J. TOLDI

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Nov 22, 2023				UPLICAT	E		REFERE		TERIAL	METHOD	BLANK		MATRIX SPIKE		
PARAMETER	Batch	Sample	Dun #1	Dun #2	RPD	Method Blank	Measured	Acce Lii	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
		ld	- up				Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (with VOC) (Water)													
F1 (C6 to C10)	5471106		<25	<25	NA	< 25	116%	60%	140%	108%	60%	140%	101%	60%	140%
F2 (C10 to C16)	5468463		< 100	< 100	NA	< 100	118%	60%	140%	68%	60%	140%	75%	60%	140%
F3 (C16 to C34)	5468463		< 100	< 100	NA	< 100	116%	60%	140%	68%	60%	140%	77%	60%	140%
F4 (C34 to C50)	5468463		< 100	< 100	NA	< 100	67%	60%	140%	100%	60%	140%	69%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	5471106		<0.40	<0.40	NA	< 0.40	71%	50%	140%	89%	50%	140%	107%	50%	140%
Vinyl Chloride	5471106		<0.17	<0.17	NA	< 0.17	100%	50%	140%	96%	50%	140%	100%	50%	140%
Bromomethane	5471106		<0.20	<0.20	NA	< 0.20	102%	50%	140%	78%	50%	140%	92%	50%	140%
Trichlorofluoromethane	5471106		<0.40	<0.40	NA	< 0.40	105%	50%	140%	102%	50%	140%	104%	50%	140%
Acetone	5471106		<1.0	<1.0	NA	< 1.0	104%	50%	140%	85%	50%	140%	114%	50%	140%
1,1-Dichloroethylene	5471106		<0.30	<0.30	NA	< 0.30	99%	50%	140%	91%	60%	130%	92%	50%	140%
Methylene Chloride	5471106		<0.30	<0.30	NA	< 0.30	95%	50%	140%	95%	60%	130%	112%	50%	140%
trans- 1,2-Dichloroethylene	5471106		<0.20	<0.20	NA	< 0.20	113%	50%	140%	103%	60%	130%	97%	50%	140%
Methyl tert-butyl ether	5471106		<0.20	<0.20	NA	< 0.20	115%	50%	140%	99%	60%	130%	90%	50%	140%
1,1-Dichloroethane	5471106		<0.30	<0.30	NA	< 0.30	101%	50%	140%	119%	60%	130%	115%	50%	140%
Methyl Ethyl Ketone	5471106		<1.0	<1.0	NA	< 1.0	101%	50%	140%	108%	50%	140%	95%	50%	140%
cis- 1,2-Dichloroethylene	5471106		<0.20	<0.20	NA	< 0.20	96%	50%	140%	103%	60%	130%	110%	50%	140%
Chloroform	5471106		<0.20	<0.20	NA	< 0.20	114%	50%	140%	99%	60%	130%	103%	50%	140%
1,2-Dichloroethane	5471106		<0.20	<0.20	NA	< 0.20	93%	50%	140%	83%	60%	130%	85%	50%	140%
1,1,1-Trichloroethane	5471106		<0.30	<0.30	NA	< 0.30	111%	50%	140%	100%	60%	130%	100%	50%	140%
Carbon Tetrachloride	5471106		<0.20	<0.20	NA	< 0.20	118%	50%	140%	85%	60%	130%	94%	50%	140%
Benzene	5471106		<0.20	<0.20	NA	< 0.20	109%	50%	140%	117%	60%	130%	114%	50%	140%
1,2-Dichloropropane	5471106		<0.20	<0.20	NA	< 0.20	103%	50%	140%	99%	60%	130%	97%	50%	140%
Trichloroethylene	5471106		<0.20	<0.20	NA	< 0.20	88%	50%	140%	80%	60%	130%	75%	50%	140%
Bromodichloromethane	5471106		<0.20	<0.20	NA	< 0.20	100%	50%	140%	94%	60%	130%	102%	50%	140%
Methyl Isobutyl Ketone	5471106		<1.0	<1.0	NA	< 1.0	99%	50%	140%	108%	50%	140%	84%	50%	140%
1,1,2-Trichloroethane	5471106		<0.20	<0.20	NA	< 0.20	97%	50%	140%	97%	60%	130%	90%	50%	140%
Toluene	5471106		<0.20	<0.20	NA	< 0.20	92%	50%	140%	103%	60%	130%	85%	50%	140%
Dibromochloromethane	5471106		<0.10	<0.10	NA	< 0.10	109%	50%	140%	114%	60%	130%	101%	50%	140%
Ethylene Dibromide	5471106		<0.10	<0.10	NA	< 0.10	92%	50%	140%	110%	60%	130%	96%	50%	140%
Tetrachloroethylene	5471106		<0.20	<0.20	NA	< 0.20	103%	50%	140%	89%	60%	130%	93%	50%	140%
1,1,1,2-Tetrachloroethane	5471106		<0.10	<0.10	NA	< 0.10	84%	50%	140%	86%	60%	130%	87%	50%	140%
Chlorobenzene	5471106		<0.10	<0.10	NA	< 0.10	114%	50%	140%	93%	60%	130%	79%	50%	140%
Ethylbenzene	5471106		<0.10	<0.10	NA	< 0.10	115%	50%	140%	100%	60%	130%	112%	50%	140%
m & p-Xylene	5471106		<0.20	<0.20	NA	< 0.20	112%	50%	140%	111%	60%	130%	105%	50%	140%
Bromoform	5471106		<0.10	<0.10	NA	< 0.10	90%	50%	140%	113%	60%	130%	106%	50%	140%
Styrene	5471106		<0.10	<0.10	NA	< 0.10	97%	50%	140%	100%	60%	130%	108%	50%	140%
1,1,2,2-Tetrachloroethane	5471106		<0.10	<0.10	NA	< 0.10	96%	50%	140%	99%	60%	130%	93%	50%	140%
o-Xylene	5471106		<0.10	<0.10	NA	< 0.10	105%	50%	140%	115%	60%	130%	99%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 12

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS23108-02

SAMPLING SITE:7701 LUNDRYS LANE, NIAGARA FALLS

AGAT WORK ORDER: 23H095178

ATTENTION TO: Jodie Glasier

SAMPLED BY: J. TOLDI

Trace Organics Analysis (Continued)

			-			-	•			•					
RPT Date: Nov 22, 2023		DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
							value	Lower	Upper		Lower	Upper	ſ	Lower	Upper
1,3-Dichlorobenzene	5471106		<0.10	<0.10	NA	< 0.10	100%	50%	140%	81%	60%	130%	74%	50%	140%
1,4-Dichlorobenzene	5471106		<0.10	<0.10	NA	< 0.10	100%	50%	140%	82%	60%	130%	75%	50%	140%
1,2-Dichlorobenzene	5471106		<0.10	<0.10	NA	< 0.10	100%	50%	140%	82%	60%	130%	73%	50%	140%
n-Hexane	5471106		<0.20	<0.20	NA	< 0.20	90%	50%	140%	89%	60%	130%	100%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Imkal Jata

AGAT QUALITY ASSURANCE REPORT (V1)

Page 7 of 12

Quality Assurance

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS23108-02

SAMPLING SITE:7701 LUNDRYS LANE, NIAGARA FALLS

AGAT WORK ORDER: 23H095178 ATTENTION TO: Jodie Glasier

SAMPLED BY: J. TOLDI

Water Analysis

							-										
RPT Date: Nov 22, 2023			DUPLICATE				REFERE	REFERENCE MATERIAL			BLANK	SPIKE	MATRIX SPIKE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acce Lir	ptable nits		
		ia	-	-			value	Lower	Upper	-	Lower	Upper	-	Lower	Upper		
O. Reg. 153(511) - Metals (Includi	ng Hydrid	es) (Water))														
Dissolved Antimony	5476084	5476084	<1.0	<1.0	NA	< 1.0	100%	70%	130%	100%	80%	120%	96%	70%	130%		
Dissolved Arsenic	5476084	5476084	<1.0	<1.0	NA	< 1.0	104%	70%	130%	112%	80%	120%	113%	70%	130%		
Dissolved Barium	5476084	5476084	135	132	2.2%	< 2.0	102%	70%	130%	100%	80%	120%	105%	70%	130%		
Dissolved Beryllium	5476084	5476084	<0.50	<0.50	NA	< 0.50	97%	70%	130%	108%	80%	120%	102%	70%	130%		
Dissolved Boron	5476084	5476084	85.2	84.6	0.7%	< 10.0	96%	70%	130%	102%	80%	120%	98%	70%	130%		
Dissolved Cadmium	5476084	5476084	0.20	0.28	NA	< 0.20	101%	70%	130%	101%	80%	120%	111%	70%	130%		
Dissolved Chromium	5476084	5476084	<2.0	<2.0	NA	< 2.0	99%	70%	130%	100%	80%	120%	104%	70%	130%		
Dissolved Cobalt	5476084	5476084	12.8	12.7	0.8%	< 0.50	99%	70%	130%	99%	80%	120%	100%	70%	130%		
Dissolved Copper	5476084	5476084	2.0	2.3	NA	< 1.0	100%	70%	130%	100%	80%	120%	93%	70%	130%		
Dissolved Lead	5476084	5476084	<0.50	<0.50	NA	< 0.50	93%	70%	130%	91%	80%	120%	85%	70%	130%		
Dissolved Molybdenum	5476084	5476084	1.89	1.87	NA	< 0.50	101%	70%	130%	102%	80%	120%	107%	70%	130%		
Dissolved Nickel	5476084	5476084	9.1	9.1	0.0%	< 1.0	102%	70%	130%	98%	80%	120%	97%	70%	130%		
Dissolved Selenium	5476084	5476084	<1.0	2.2	NA	< 1.0	102%	70%	130%	110%	80%	120%	110%	70%	130%		
Dissolved Silver	5476084	5476084	<0.20	<0.20	NA	< 0.20	100%	70%	130%	101%	80%	120%	103%	70%	130%		
Dissolved Thallium	5476084	5476084	<0.30	<0.30	NA	< 0.30	99%	70%	130%	98%	80%	120%	92%	70%	130%		
Dissolved Uranium	5476084	5476084	4.02	4.11	2.2%	< 0.50	101%	70%	130%	120%	80%	120%	120%	70%	130%		
Dissolved Vanadium	5476084	5476084	1.01	1.07	NA	< 0.40	101%	70%	130%	104%	80%	120%	110%	70%	130%		
Dissolved Zinc	5476084	5476084	10.6	8.9	NA	< 5.0	98%	70%	130%	100%	80%	120%	96%	70%	130%		

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 12

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS23108-02

AGAT WORK ORDER: 23H095178 ATTENTION TO: Jodie Glasier

SAMPLING SITE:7701 LUNDRYS LA	NE, NIAGARA FALLS	SAMPLED BY:J. TOLDI									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Trace Organics Analysis		1	1								
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID								
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID								
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID								
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID								
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID								
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE								
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID								
Sediment			N/A								
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS								

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD

PROJECT: NS23108-02

SAMPLING SITE:7701 LUNDRYS LANE. NIAGARA FALLS

AGAT WORK ORDER: 23H095178 ATTENTION TO: Jodie Glasier

SAMPLING SITE: 7701 LUNDRYS LA	ANE, NIAGARA FALLS	SAMPLED BT:J.								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							

Method Summary

CLIENT NAME: NIAGARA SOIL SOLUTIONS LTD PROJECT: NS23108-02

AGAT WORK ORDER: 23H095178

CAMDI	INC SITE	·7701 IN	IND V S I ANI	FVIC
SAIVIFL		.//01 LUN	UNIS LAN	V FALLS

ATTENTION TO: Jodie Glasier SAMPLED BY:J. TOLDI

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Water Analysis							
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS				

Pink Copy - Client 1 Yellow Copy - AGAT 1 White Copy- AGAT

Page 12 of 12

Chain of Custody Record	If this is a	Drinking Wate	H S r sample, plea	lave feedt Scan here quick sur	Pack? for a vey! P king Water Chain of Custody Form (pote	M h: 905.71	5 ississau L2.5100 we consume	835 Coo ga, Onta Fax: 90 bearth a d by huma	bers Ave io L4Z 5 712.5: gatlabs (ns)	nue 1Y2 L22 :om	La Wa Co Arr	a bor ork Or ooler (rival T	der #: Quantity	Use 2 : tures:	Only 3H	695 1 ne	178	, 14	-+
Report Information: NSSL Company: Sodie Glassie Address: Sodie Glassie Address: Sodie Glassie Phone: Sodie Glassie Reports to be sent to: Sodie Glassie 1. Email: Sodie Glassie 2. Email: Sodie Glassie Project Information: Project: NS23108-02 Site Location: Dol Lundys Lane, Nisgena Fail		Reg (Pieas) Ta Ta Soil T Soil T Soil T Soil T	Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table Indicate One Indicate One Indicate One Res/Park Agriculture Soil Texture (check One) Coarse Fine Is this submission for a Record of Site Condition? Yes		able water consumed by humans) D6 Sewer Use Sanitary Storm ne Region 58 Prov. Water Quality Objectives (PWQO) Other Indicate One Indicate One Report Guideline on Certificate of Analysis X Yes No			Custody Seal Intact: Yes No N/A Notes: Bugged Lice No N/A Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Next Business Days Days Next Business Day OR Date Required (Rush Surcharges May Apply): Next Business Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays Next Business Statutory holidays											
AGAT Quote #: 76396168 Piease note: If quotation number is n Invoice Information: Company: Contact: Address: Email:	PO:B	be billed full price fo	ranalysis. es 🕰 No 🗆	San GW O P S SD SW	nple Matrix Legend Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg. CrVI, DOC	s & Inorganics	5 - D CrVI, D Hg, D HWSB F1-F4 PHCs	'PHC.		Aroclors	I UISPOSAI UNATACIENIZAUON ICLP:]M&I □VOCs □ABNs □B(a)P□PCBs 000	tion 406 SPLP Rainwater Leach	tion 406 Characterization Package 65 MS Metals, BTEX, F1-F4	ivity: 🗆 Moisture 🔲 Sulphide	121101			Ily Hazardous or High Concentration (Y/N)
Sample Identification 1. BH/MUQ 2. 3. 4. 5. 6. 7. 8.	Date Sampled	Time Sampled	H of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metal	BTEX,		PCBs	PCBS: /		Regula SPLP: [Regula pH, ICP	Corros				Potentia
9. 10. 11. Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	6 Toldí	Date Date	Time Time Time		Samples Received By (Print Name and Sign) Samples Received By (Print Name and Sign) Samples Received By (Print Name and Sign):	Ang O	ler	Zeel		ate 3 - 1 / 2 atq	1.20	Tim, Tim	3: 2	0p	M.,	Page _			