

Upper Canada Planning & Engineering Ltd. 3-30 Hannover Drive St. Catharines, ON L2W 1A3 Phone 905-688-9400 Fax 905-688-5274

File: 24016

FUNCTIONAL SERVICING REPORT

NEWCASTLE STANLEY

July 2024

INTRODUCTION

This report addresses the servicing needs and requirements for the proposed development located at 2220 Stanley Avenue in the City of Niagara Falls, as part of the Zoning By-Law Amendment application process. The site is located at the east side of Stanley Avenue, north of Morning Glory Court and south of Fruitbelt Parkway. Historically, the property has been occupied by a single detached dwelling.

The development site is approximately 0.26 hectares in size, and shall consist of 28 stacked townhouse units. The site will include an associated asphalt parking lot, concrete curbs, catch basins, storm sewers, sanitary service, and water service.

The objectives of this study are as follows:

- 1. Identify domestic and fire protection water service needs for the site;
- 2. Identify sanitary servicing needs for the site; and,
- 3. Identify stormwater management needs for the site.

WATER SERVICING

There is an existing 200mm diameter municipal watermain and 400mm diameter regional watermain on Stanley Avenue (Regional Road #102). It is proposed to connect a 150mm diameter watermain to the existing 200mm diameter municipal watermain to provide water supply and fire protection to the proposed development.

Table 1 summarizes the projected water demand calculations for the proposed 28 stacked townhouse units. The water demands were calculated based on the 2021 Niagara Water Master Servicing Plan Update (MSPU).

	Table 1. Water Demand Calculations											
Number of Units	Density Population (persons) Rate Avg. Day Demand (1.6)		Max Dem		Peak Hour Demand							
		(L/cap/day) (L/s)		Peak Factor	(L/s)	Peak Factor	(L/s)					
28	1.81	51	240	0.14	1.65	0.23	3.00	0.42				

As shown on Table 1, an assumed per capita rate of 1.81 people per unit was apply. Using a rate of 240L/cap/day for residential per MSPU, it is expected than the proposed development generates an Average Day Demand of 0.14L/s. A peak factor of 1.65 was apply to calculate the expected Max Day Demand of 0.23L/s, and the Peak Hour Demand of 0.42L/s was calculated using a peak factor of 3 per 2021 MSPU.

There is an existing municipal fire hydrant on the west side of Stanley Avenue fronting the site. To provide adequate fire protection, it is proposed to place a private hydrant within the site. An analysis has been conducted per the Fire Underwriters Survey (FUS) to determine the minimum fire flow required. The calculation determined that a minimum of approximately 151.67 L/s fire flow is required with the inclusion of fire walls and 172.92 L/s without the fire walls. The fire flow calculations are attached in Appendix A.

Therefore, the existing 200mm diameter watermain on Stanley Avenue (RR #102) will adequately provide domestic water supply, and the proposed fire hydrant will provide adequate fire protection for the site.

SANITARY SERVICING

There is an existing 375mm diameter municipal sanitary sewer on Stanley Avenue (RR #102) conveying flows southerly, which has a full flow capacity of approximately 70.84L/s. It is proposed to connect a 200mm sanitary sewer from the proposed site to the existing 375mm diameter sanitary sewer system.

The proposed development was included in the sanitary area plan for the sanitary sewer design of the 200mm diameter sanitary sewer on Morning Glory Court, as shown in the Sanitary Drainage Area Plan 05-CB-123, attached in Appendix B. Under the original sewer design is expected a sanitary peak flow of approximately 1.54L/s from drainage areas A1 & A2, occupying approximately 2.2% of the receiving 375mm diameter sanitary sewer on Stanley Avenue.

Figure 1, attached in Appendix B, delineates the future sanitary drainage areas contributing to the existing sanitary sewer systems. The proposed 28 stacked townhouse units will generate a peak sanitary flow of 0.68L/s. The analysis shows that approximately 2.9% of the existing 375mm

diameter sanitary sewer capacity will be utilized with the inclusion of the sanitary flows form the existing 200mm sanitary sewer on Morning Glory Court.

Table 2 summarizes the sanitary peak flows and compares the existing and proposed sanitary sewer conditions. All the sanitary sewer calculations can be found in Appendix B.

Table 2. Sanitary Peak Flow Summary										
	Рори	lation	Peak Flow (L/s)							
Location	Original Design	Proposed	Original Design	Proposed	Change					
Stanley Avenue	72	113	1.54	2.04	+ 0.5					

As shown in Table 2, the proposed sanitary peak flow to discharge into the 375mm diameter sanitary sewer on Stanley Avenue is 0.5L/s more than the original sanitary sewer design and will occupy 0.7% of the 375mm sanitary sewer total capacity.

Therefore, it is expected that this will be an acceptable addition to the current capacity of the existing municipal 375mm diameter sanitary sewer on Stanley Avenue.

STORMWATER MANAGEMENT

The existing stormwater flows from the site currently flow overland to the catch basin in the adjacent rear yard. The collected stormwater is then conveyed south to the existing 450mm diameter stormwater sewer on Morning Glory Court and directed west to discharge into a 525mm diameter stormwater sewer flowing south, as shown in Figure 2, attached in Appendix C.

An existing 300mm diameter municipal stormwater sewer on Morning Glory Court currently flows east to the existing 525mm diameter stormwater sewer. It is proposed to connect a new stormwater sewer along Stanley Avenue from the site to the existing stormwater system on Morning Glory Court, as illustrated in Figure 3 attached in Appendix C.

The site was allocated in the original stormwater sewer design of Golia Estates subdivision with a Runoff Coefficient of 0.4, as shown in the attached Storm Drainage Area Plan 05-CA-174 in Appendix C. The proposed drainage areas and associated Runoff Coefficient is shown in Figure 2. The drainage area being collected by the site system is 0.39ha, and its associated Runoff Coefficient from the impervious areas is 0.53.

The Modified Rational Method (MRM) was used to determine the peak flows and storage volume required for the 5 year storm event as shown in Appendix C. From the MRM analysis, Table 3 shows a comparison of the existing, allowable and proposed stormwater peak flows.

As shown in Table 3, the allowable outflow to the existing storm sewer system on Morning Glory Court is approximately 32.6L/s. The proposal includes controlling stormwater outflow prior to Page 3

discharge to the existing stormwater system in order to maintain the existing 300mm diameter pipe from MH S4 to MH S3. The required stormwater storage to control the proposed outflow of 23.5L/s is 9.5m³, which is equivalent to 58 metres of 450mm diameter pipe. The major flows from the site driveway and parking will be directed via overland sheet flow to Stanley Avenue.

	Table 3. Peak Flow Summary										
Area Area Runoff Coefficient Peak Flows (L/s) Controlled Outflow (L/s)											
#	(ha)	Existing	Existing Proposed Existing Proposed Allowable Proposed								
5 Year l	5 Year Design Storm Event										
A1	0.35	0.40		32.6							
A10	0.39		0.53		48.2	32.6	23.5				

To improve stormwater quality, an oil/grit separator typically provides Enhanced Level Protection (80% Total Suspended Solids) prior to discharging to the existing 300 mm diameter stormwater sewer on Morning Glory Court. The complete stormwater design for this development shall be identified as part of the future detailed design.

CONCLUSIONS AND RECOMMENDATIONS

Therefore, based on the above comments and design calculations provided for this site, the following summarizes the servicing for this site.

- 1. The existing municipal 200mm diameter watermain on Stanley Avenue will have sufficient capacity to provide both domestic and fire protection water supply.
- 2. The existing 375mm diameter sanitary sewer on Stanley Avenue will have adequate capacity for the proposed residential development.
- 3. Stormwater quantity controls are being provided on site to the allowable capacity of the existing Morning Glory Court storm sewer.
- 4. Stormwater quality controls will be provided to MECP Enhanced protection (80% TSS removal) levels prior discharge from the site.
- 5. The site overland flow route from the site is to Stanley Avenue.

In conclusion, there exists adequate municipal infrastructure to service the proposed development. We trust the above comments and enclosed calculations are satisfactory for approval. If you have any questions or require additional information, please do not hesitate to contact our office.

Yours very truly,

Prepared by:

Roberto A. Duarte, B.Eng.

Encl.

PROFESSION Reviewed by: LICENSED J. P. SCHOOLEY ROLINCE OF ONT Jason Schooley

APPENDICES

APPENDIX A

Fire Underwriters Survey (FUS) Calculation Sheet

Fire Underwriters Survey

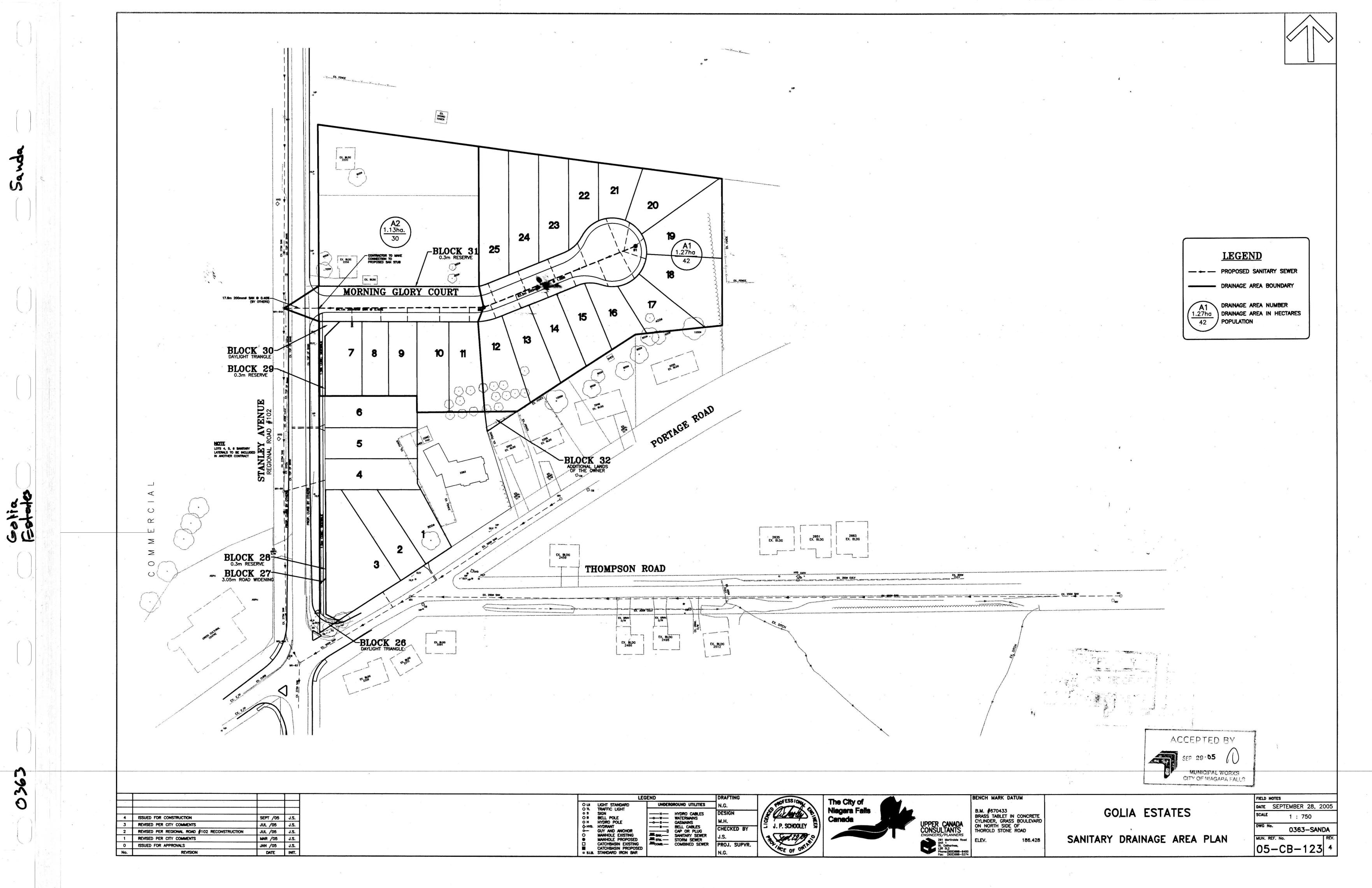
Water Supply for Public Fire Protection (2020) Calculations

Newcastle Stanley, Niagara Falls

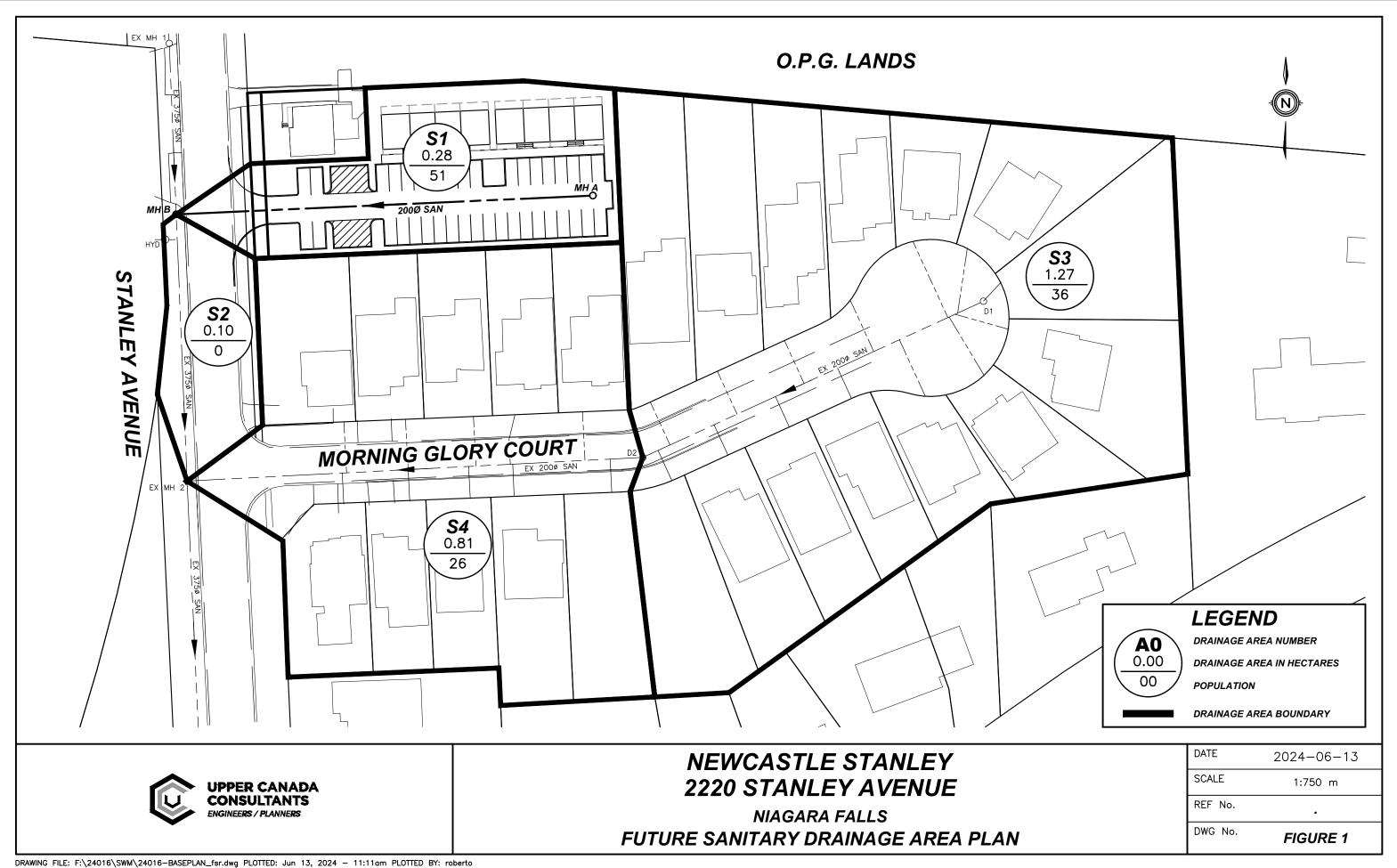
Required Fire Flow in Litres per Minute	F= 9,100 (L/m) 151.67 (L/s) 2,404 (USgmp)
Type of Construction	
Ordinary Construction (brick or other masonry walls, combustible floor and interior).	C= 1.00
Total Floor Area in square metres	A= 92.5 (m2)
Note: Fire wall every 2 units.	
Total Number of Floors	3
2. Combustibility of Contents (may not reduce fire flow demand below 2,000 L/min)	
Limited Combustible	= -15%
3. Sprinkler Systems	
Is there a complete automatic sprinkler protection system per NFPA (Yes/No).	No 0%
Water supply standard for both system and fire department hose lines (Yes/No).	No 0%
Is system fully monitored (Yes/No).	No 0%
Total Sprinker Reduction to Overall Fire Flow Demand	0%
4. Spacial Separation of Neighbouring Structures (within 45 metres)	
Location of Building:	
2220 Stanley Avenue, Niagara Falls (Units 1-14)	
Distance to Nearest Building to the North	34.0 m 5%
Distance to Nearest Building to the South	33.0 m 5%
Distance to Nearest Building to the East	1.5 m 25%
Distance to Nearest Building to the West	10.7 m 15%
Total Spacial Separation to Adjacent Structures	50%
Additions	
Is roof wood shingles or shakes (Yes/No).	Yes

Fire Underwriters Survey

Water Supply for Public Fire Protection (2020) Calculations


Newcastle Stanley, Niagara Falls

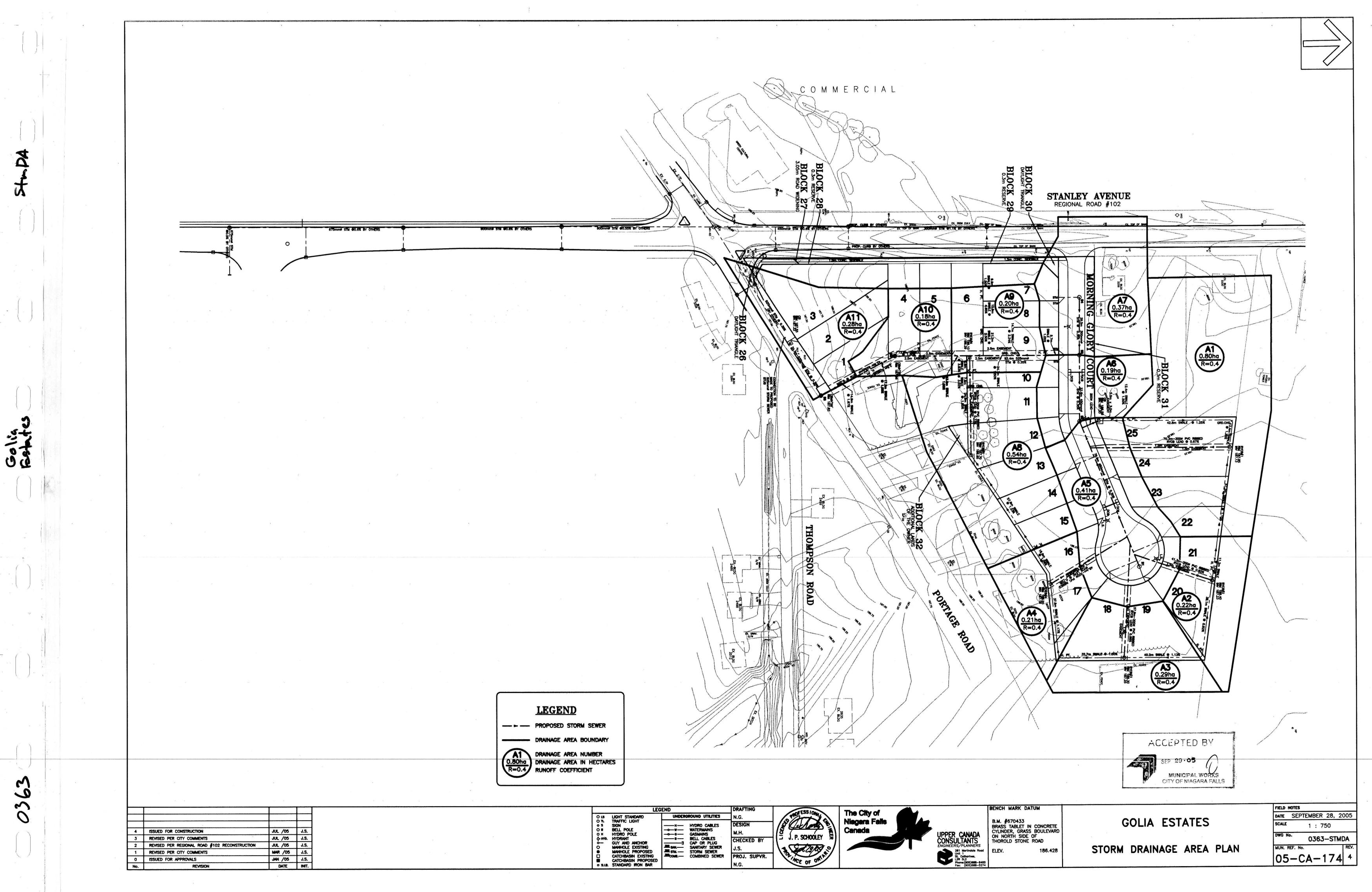
Required Fire Flow in Litres per Minute	F= 10,375 (L/m) 172.92 (L/s) 2,741 (USgmp)
Type of Construction	
Ordinary Construction (brick or other masonry walls, combustible floor and interior).	C= 1.00
Total Floor Area in square metres	A= <u>185</u> (m2)
Total Number of Floors	3
2. Combustibility of Contents (may not reduce fire flow demand below 2,000 L/min)	
Limited Combustible	= -15%
3. Sprinkler Systems	
Is there a complete automatic sprinkler protection system per NFPA (Yes/No).	No 0%
Water supply standard for both system and fire department hose lines (Yes/No).	No 0%
Is system fully monitored (Yes/No).	No 0%
Total Sprinker Reduction to Overall Fire Flow Demand	0%
4. Spacial Separation of Neighbouring Structures (within 45 metres)	
Location of Building:	
2220 Stanley Avenue, Niagara Falls (Units 1-14)	
Distance to Nearest Building to the North	34.0 m 5%
Distance to Nearest Building to the South	33.0 m 5%
Distance to Nearest Building to the East	1.5 m 25%
Distance to Nearest Building to the West	10.7 m 15%
Total Spacial Separation to Adjacent Structures	50%
Additions	
Is roof wood shingles or shakes (Yes/No).	Yes

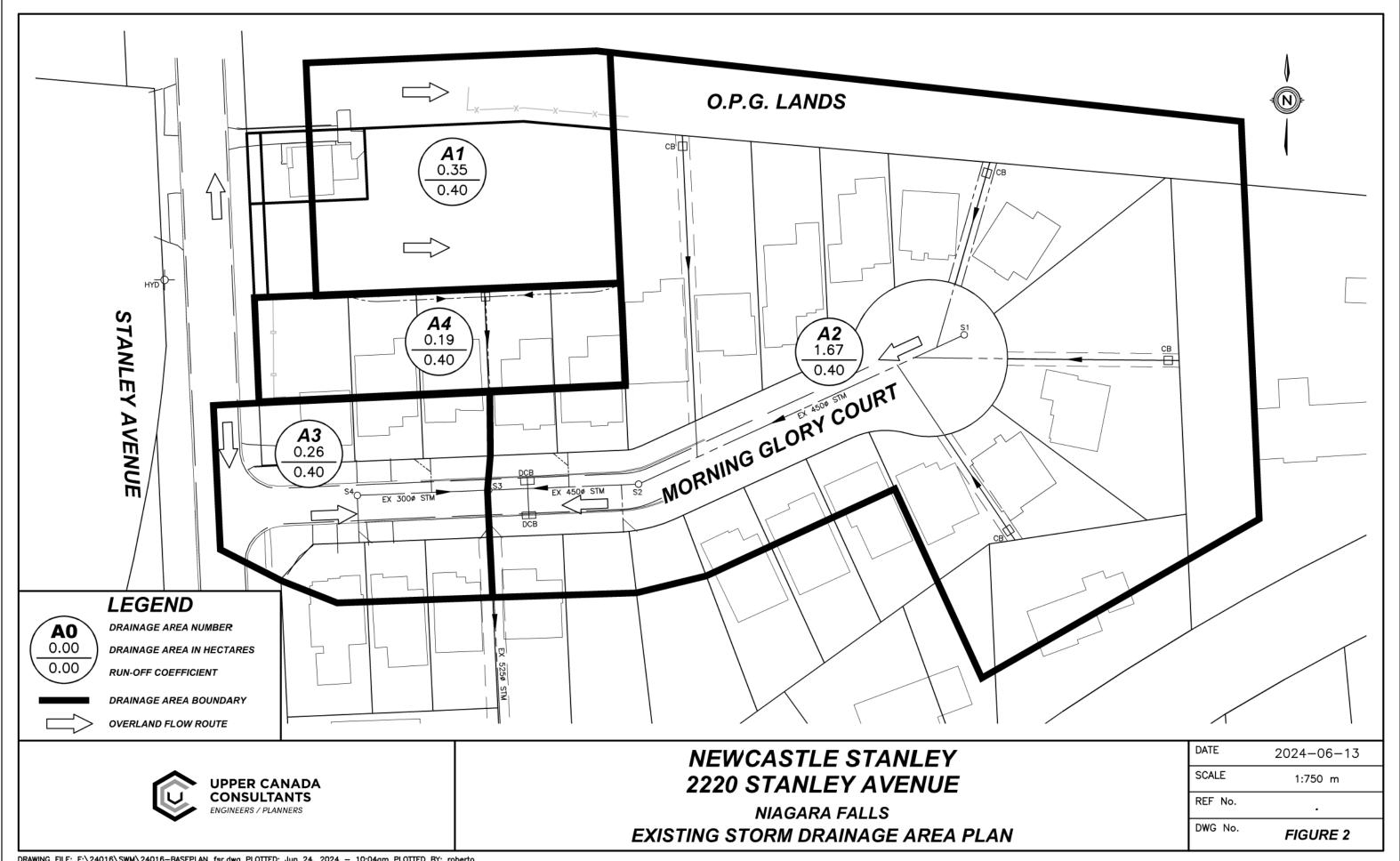


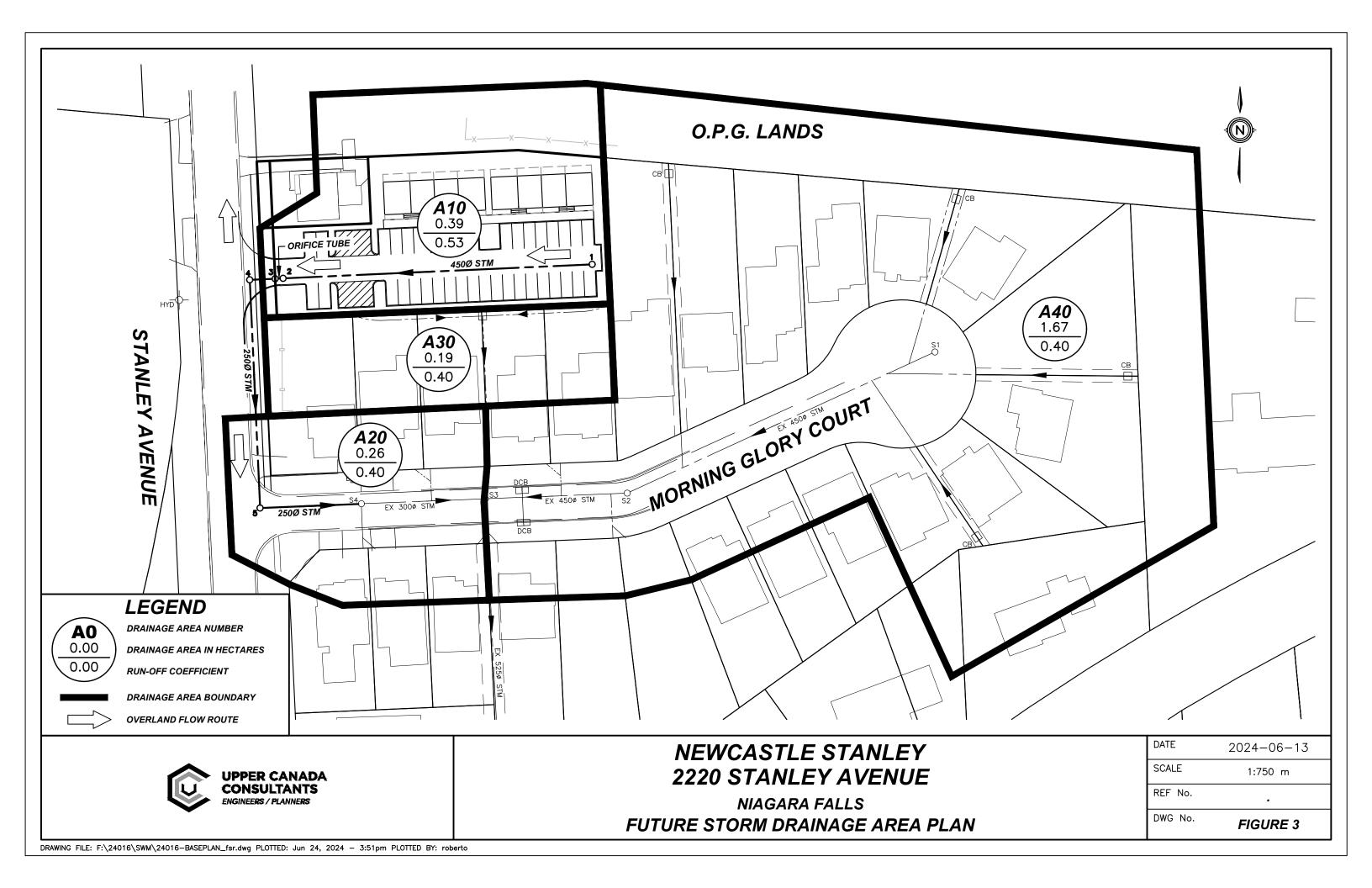
APPENDIX B

Golia Estates - Sanitary Drainage Area Plan (05-CB-123) Figure 1 – Proposed Sanitary Drainage Area Plan Sanitary Sewer Design Sheet

LEC	END	DRAFTING	SESS ION		
O LS LIGHT STANDARD O TL TRAFFIC LIGHT O S SIGN O B BELL POLE O H HYDRO POLE O-HTD. HYDRANT O-GUY AND ANCHOR O MANHOLE EXISTING MANHOLE PROPOSED CATCHBASIN EXISTING CATCHBASIN PROPOSED SLIB. STANDARD IRON BAR	UNDERGROUND UTILITIES 	N.G. DESIGN M.H. CHECKED BY J.S. PROJ. SUPVR. N.G.	J. P. SCHOOLEY	The City of Niagara Fails Canada	




UPPER CANADA CONSUL	TANTS																
3-30 HANNOVER DRIVE																	
ST.CATHARINES, ONTAR	Ю														DATE:	JUNE 202	4
L2W 1A3																	
DESIGN FLOWS									SEWER	DESIGN							
RESIDENTIAL:	255	255 LITRES/PERSON/DAY (AVERAGE DAILY FLOW) PIPE ROUGHNESS: 0.013 FOR MANNING'S EQUATION															
INFILTRATION RATE:	0.286	0.286 L/s/ha (M.O.E FLOW ALLOWANCE IS BETWEEN 0.10 & 0.28 L/s/ha) PIPE SIZES: 1.016 IMPERIAL EQUIVALENT FACTOR															
POPULATION DENSITY:	1.81	PERSONS	S /TOWNHO	OUSE UNIT	1				PERCEN	T FULL:		TOTAL PI	EAK FLO	W / CAPA	ACITY		
	2.59	PERSONS	S / SINGLE	UNIT													
MUNICIPALITY:	CITY OF	NIAGARA	A FALLS									14					
PROJECT :	NEWCAS	TEL STAI	NLEY	SAN	NITARY S	SEWER DE	SIGN SHE	ЕТ	Pea	king Factor=	= M = 1 +	$\frac{14}{4 + D^{0.5}}$	Where P =	= design p	opulation in	n thousands	
PROJECT NO:	24016											$4 + P^{0.3}$					
LOCATIO	N		AR	REA	F	OPULATIO	ON	ACC	UMULAT	TED PEAK	FLOW			DESIG	N FLOW		
					Number		Total			Infiltration	n Total	Pipe	Pipe	Pipe	Full Flow	Full Flow	Percent
Location and Description	From	То	Increment	Accum.	of	Population	Population	Peaking	Flow	Flow	Peak Flow	Diameter	Length	Slope	Velocity	Capacity	Full
	M.H	M.H.	(hectares)	(hectares)	Units	Increment	Served	Factor	(L/s)	L/s	(L/s)	(mm)	(m)	(%)	(m/s)	(L/s)	
ORIGINAL DESIGN																	
A1	D1	D2	1.27	1.27		42	42	4.00	0.50	0.36	0.86	200	83.5	1.00	1.06	34.22	2.5%
A2	D2	EX MH 2	1.13	2.40		30	72	4.00	0.85	0.69	1.54	200	101.7	0.40	0.67	21.64	7.1%
	EX MH 2	EX MH 3		2.40			72	4.00	0.85	0.69	1.54	375	92.4	0.15	0.62	70.84	2.2%
POST DEVELOPMENT CO	NDITION	S															
S1	А	В	0.28	0.28	28	51	51	4.00	0.60	0.08	0.68	200	93.0	0.40	0.67	21.64	3.1%
S2	В	EX MH 2	0.10	0.38		0	51	4.00	0.60	0.11	0.71	375	59.5	0.15	0.62	70.84	1.0%
S3	D1	D2	1.27	1.27	14	36	36	4.00	0.43	0.36	0.79	200	83.5	1.00	1.06	34.22	2.3%
S4	D2	EX MH 2	0.81	2.08	10	26	62	4.00	0.73	0.59	1.33	200	101.7	0.40	0.67	21.64	6.1%
	EX MH 2	EX MH 3		2.46			113	4.00	1.33	0.70	2.04	375	92.4	0.15	0.62	70.84	2.9%
L																	


APPENDIX C

Golia Estates - Storm Drainage Area Plan (05-CA-174) Weighted Percent Impervious Calculations Figure 2 – Existing Storm Drainage Area Plan Figure 3 – Proposed Storm Drainage Area Plan Sanitary Sewer Design Sheet Modified Rational Method (MNR) Required Storage Volume

DRAWING FILE: F:\24016\SWM\24016-BASEPLAN_fsr.dwg PLOTTED: Jun 24, 2024 - 10:04am PLOTTED BY: roberto

Weighted Perce	ent Impervious C	alculations						
Project Name: Newcastle Stanley								
UCC Project Number: 24016								
Date:	June 12, 2024							
Pro	oposed Conditions							
Area Type Area (m ²) % Impervious Impervious Ar								
Proposed Buildings	370	100%	370.0					
Existing Buildings	186	100%	186.3					
Asphalt Road/Parking & concrete areas	1,220	100%	1,220.0					
Landscape/Greenspace	2,043	0.1%	2.0					
	Total Catchment Imp	ervious Area (m²)	1,778					
	3,819							
	Weighted Percer	nt Impervious (%)	46.6%					
	Weighted Rur	off Coefficent [c]	0.53					

UPPER CANADA CO	ONSULTANTS	5																
3-30 HANNOVER DE	RIVE						STORM	SEWER	DESIGN									
ST. CATHARINES, C	ON L2W 1A3																	
MUNICIPALITY:	NIAGARA F	ALLS			A =	719.50	mm/hr	5 YEAR I	DESIGN IDF									
PROJECT:	NEWCASTL	E STANLEY	ľ				minutes									GHNESS =		
UCC PROJECT NO.:					C =	0.769										FACTOR =		
DESC	CRIPTION					ST	ORMWATE									EWER DES		
LOCATION	FROM MH	TO MH	AREA (ha)	ACCUMLTD AREA (ha)	RUNOFF COEFFICNT	A*R	ACCUMLTD A*R	T of C (min.)	PIPE TIME (min.)	T of C (sum)	INTENSITY (mm/hr)	FLOW (L/s)	LENGTH (m)	DIAMETER (mm)	SLOPE (%)	CAPACITY (L/s)	VELOCITY (m/s)	PERCENT FULL
EXISTING CONDITI	IONS																	
A1	SITE		0.35	0.35	0.40	0.140	0.140	10.00			84.0	32.6						
A2	S 2	S 3	1.67	2.02	0.40	0.668	0.808	12.47	0.52	12.99	75.3	169.1	33.6	450	0.35	176.03	1.1	96.1%
A3	S4	S 3	0.26	0.26	0.40	0.104	0.104	10.00	0.60	10.60	84.0	24.3	29.5	300	0.35	59.71	0.8	40.6%
A4	RYCB	S 3	0.19	0.19	0.40	0.076	0.076	10.00	0.54	10.54	84.0	17.7	43.0	200	1.60	43.30	1.3	40.9%
	S3	S5		2.47		0.000	0.988	12.99	1.31	14.30	73.8	202.5	93.4	525	0.35	265.53	1.2	76.2%
FUTURE CONDITIO	DNS																	
A10	MH1	MH2	0.39	0.39	0.53	0.207	0.207	10.00	1.52	11.52	84.0	48.2	74.0	450	0.20	133.07	0.8	36.2%
	MH2	MH3					PEAK	CONTRO	OLLED FLO	W BY OR	IFICE TUBE	23.5						
	MH3	MH4						11.52	0.13	11.65	78.4	23.5	6.0	250	0.40	39.25	0.8	59.9%
	MH4	MH5						11.65	1.16	12.81	78.0	23.5	53.9	250	0.40	39.25	0.8	59.9%
	MH5	S4						12.81	0.50	13.31	74.3	23.5	23.2	250	0.40	39.25	0.8	59.9%
A20	S4	S 3	0.260	0.26	0.40	0.104	0.104	13.31	0.60	13.91	72.8	44.5	29.5	300	0.35	59.71	0.8	74.6%
A30	RYCB	S 3	0.19	0.19	0.40	0.076	0.076	10.00	0.54	10.54	84.0	17.7	43.0	200	1.60	43.30	1.3	40.9%
	S2	S 3	1.67	1.67	0.40	0.668	0.668	12.47	0.52	12.99	75.3	139.8	33.6	450	0.35	176.03	1.1	79.4%
-	\$3	S5										202.1	93.4	525	0.35	265.53	1.2	76.1%

Modifie	ed Rational I	Method (MRM) Red	quired Storag	je Volume
Project:	NEWCASTLE S	TANLEY			
Project No:	24016				
Date: Design By:	June 12, 2024 Roberto Duarte,	B Eng			
Design By.		0	an Quantity Co	ontrol Storage Volu	me Calculation
Storm Event:	City of Niagara	-	•	-	
	a =	719.50	mm/hr	~	
	b =	6.34	minutes		
	c =	0.77			
Critical Storm D	Duration:	30.00	minutes	Tail Multiplier (x1-1.5	5 1.5
Tc From Desig	n:		minutes	i x	,
Storm Tail Time	ə:	15.00	minutes		
Accumulated A	rea x R (Ha):	0.207	< Area x Ru	noff Coefficient (Se	wer Design Sheet)
Peak Rainfall Ir	•		mm/hr		
Peak Inflow at Maximum Rele		39.26		Flow Capacity (De	aign Shoot)
Time When Ou		23.50		Flow Capacity (De	sign Sheet)
Time	Intensity	Inflow	Outflow	Interval Volume	Total Required
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	Volume (m3)
0.0	0.00	0.00	23.50	-1.4	0.0
1.0 2.0	6.84 13.67	3.93 7.85	23.50 23.50	-1.2 -0.9	0.0 0.0
2.0 3.0	20.51	7.85 11.78	23.50 23.50	-0.9 -0.7	0.0
4.0	27.35	15.70	23.50	-0.5	0.0
5.0	34.19	19.63	23.50	-0.2	0.0
6.0 7.0	41.02 47.86	23.55 27.48	23.50 23.50	0.0 0.2	0.0 0.2
8.0	54.70	31.41	23.50	0.5	0.7
9.0	61.54	35.33	23.50	0.7	1.4 2.4
10.0 11.0	68.37 68.37	39.26 39.26	23.50 23.50	0.9 0.9	3.3
12.0	68.37	39.26	23.50	0.9	4.3
13.0	68.37	39.26	23.50	0.9	5.2
14.0 15.0	68.37 68.37	39.26 39.26	23.50 23.50	0.9 0.9	6.2 7.1
16.0	63.81	36.64	23.50	0.8	7.9
17.0	59.26	34.02	23.50	0.6	8.5
18.0 19.0	54.70 50.14	31.41 28.79	23.50 23.50	0.5 0.3	9.0 9.3
20.0	45.58	26.17	23.50	0.2	9.5
21.0 22.0	41.02 36.47	23.55 20.94	23.50 23.50	0.0 -0.2	9.5 9.3
22.0	31.91	18.32	23.50	-0.2 -0.3	9.3 9.0
24.0	27.35	15.70	23.50	-0.5	8.5
25.0 26.0	22.79 18.23	13.09 10.47	23.50 23.50	-0.6 -0.8	7.9 7.1
20.0	13.67	7.85	23.50	-0.8	6.2
28.0	9.12	5.23	23.50	-1.1	5.1
29.0 30.0	4.56 0.00	2.62 0.00	23.50 23.50	-1.3 -1.4	3.8 2.4
			ation Storage R		
Duration	Max Storage	Duration	Max Storage	Duration	Max Storage
25 Min	8.1 m3	50 Min	5.7 m3	80 Min	0.0 m3
30 Min 40 Min	9.5 m3 8.3 m3	60 Min 70 Min	2.8 m3 0.1 m3	90 Min 100 Min	0.0 m3 0.0 m3
	0.0 110		0.1 110		
50.0	~	30-minute			10
45.0	A /	(m3), 9			9
ू ^{40.0}					8
j 35.0 —		-			7
6 30.0		` \			6
<u>ב</u> 25.0	Maximum Outf	- / wc	\		5
0.02 yet		=			4
		++-	+ $+$ $+$		3
දි 15.0 🕂	· · ·	\rightarrow		+ + + - + + + + + + + + + + + + + + +	2
Store State Store Store State Store Store State Store Store Store State Store Store Sto	-i i 🔥				
b 15.0		$\rightarrow \rightarrow$		\rightarrow	1
10.0		$ \land \land$			1
5.0	те 20.0	40.0	60.0	80.0 10	• • • • • •
5.0			60.0 Duration (min		• • • • • •
5.0					• • • • • •