

### FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

WILLOUGHBY DRIVE CITY OF NIAGRA FALLS

PREPARED FOR: LAWRENCE AVENUE GROUP LIMITED 21 DUNDAS SQUARE, 11<sup>TH</sup> FLOOR TORONTO, ON, M5B 1B7

DATE: OCTOBER 2024

PROJECT NO. 221377

PREPARED BY HUSSON 200 CACHET WOODS COURT, SUITE 204 MARKHAM, ON L6C 028 GENERAL@HUSSON.CA

# **TABLE OF CONTENTS**

| 1.0 |                | Introduction                                                      | 1           |
|-----|----------------|-------------------------------------------------------------------|-------------|
| 1.1 |                | Site Description                                                  | 1           |
| 1.2 |                | Background                                                        | 1           |
| 2.0 |                | Storm Drainage                                                    | 1           |
| 2.1 |                | Existing Drainage                                                 | 1           |
| 2.2 |                | Site Grading                                                      | 2           |
| 2.3 |                | Minor System Drainage                                             | 2           |
| 2.4 |                | Major System Drainage                                             | 3           |
| 3.0 |                | Stormwater Management Plan                                        | 3           |
| 3.1 |                | Stormwater Management Criteria                                    | 3           |
| 3.2 |                | Stormwater Management Facilities                                  | 3           |
| 3.3 |                | Quality Control                                                   | 4           |
| 3.4 |                | Quantity Control                                                  | 5           |
| 3.5 | 3.4.1<br>3.4.2 | Quantity Control Measures<br>Hydrology Modelling<br>Water Balance | 5<br>6<br>8 |
| 3.6 |                | Erosion Control                                                   | 8           |
| 4.0 |                | Wastewater                                                        | 8           |
| 4.1 |                | Receiving Systems                                                 | 8           |
| 4.2 |                | Sanitary Sewer Downstream Capacity Analysis                       | 9           |
| 4.3 |                | Internal Sanitary Drainage                                        | 10          |
| 5.0 |                | Water Distribution                                                | 10          |
| 5.1 |                | Water Servicing                                                   | 10          |
| 5.2 |                | Watermain Analysis                                                | 10          |
| 6.0 |                | Conclusions                                                       | 12          |

## **LIST OF FIGURES**

- Figure 2. Existing Drainage Plan
- Figure 3. Cattell Storm Drainage Plan
- Figure 4. Minor System Drainage Plan
- Figure 5. Major System Drainage Plan
- Figure 6. Stormwater Management Plan
- Figure 7. Sanitary Drainage Plan
- Figure 8. Water Distribution Plan

# LIST OF TABLES

| Table 1. | Oil/Grit Separator Sizing          | 5 |
|----------|------------------------------------|---|
| Table 2. | Catchment Storage-Discharge        | 6 |
| Table 3. | Unit Flow Rates                    | 6 |
| Table 4. | Peak Development Model Summary     | 6 |
| Table 5. | Post Development Catchment Summary | 7 |
| Table 6. | Post Development Storage Summary   | 7 |
| Table 7. | Peak Flow Comparison               | 8 |
| Table 8. | Sanitary Flow Comparison           | 9 |
| Table 9. | Sanitary Flow Summary              | 9 |

## LIST OF APPENDICES

- Appendix A. Storm Sewer Design Sheets
- Appendix B. Oil/Grit Separator Details
- Appendix C. Stormwater Management Calculations
- Appendix D. Hydrology Model Output
- Appendix E. Sanitary and Watermain Memo

# 1.0 INTRODUCTION

The purpose of this report is to provide site servicing and stormwater management (SWM) design information in support of the Zoning By-law Amendment (ZBA) for the site at Willoughby Drive in the City of Niagara Falls.

Specifically, this report will demonstrate the SWM measures that will be undertaken to deal with the quantity and quality requirements for the site. As well, the capacity of the existing municipal servicing systems to accommodate the site is reviewed.

### 1.1 Site Description

The site is located on the east side of Willoughby Drive, north of Weinbrenner Road in the City of Niagara Falls. The site is currently vacant and has an area of 11.0ha. The site location is shown on **Figure 1**.

The proposed development includes 3 multi-storey apartment blocks (660 units), 13 front loaded Towns (91 units), 12 back-to-back towns (146units),10 stacked towns (81 units), 1 park block and 4 new municipal roads as per Concept P1 prepared by Fotenn Planning + Design. The development includes a total of 318 townhouse units and 660 apartments.

### 1.2 Background

The Servicing and SWM design for the site has been prepared to meet the requirements of the City of Niagara Falls and Niagara Region. The following materials were referenced in the preparation of this report:

- The <u>Stormwater Management Planning and Design Manual (MECP Guidelines)</u>, prepared by the Ministry of the Environment, March 2003, were referenced in the preparation of the stormwater management plan.
- The <u>Engineering Design Guidelines Manual</u>, prepared by the City of Niagara Falls, April 2016.
- The <u>Niagara Peninsula Conservation Authority Stormwater Management Guidelines</u>, prepared by the Niagara Peninsula Conservation Authority and Aecom, March 2010.
- The <u>Niagara Region Water and Wastewater Master Servicing Plan Updates</u>, prepared by the Niagara Region, December 2023.
- The <u>Development Charges Background Study</u>, prepared by Regional Municipality of Niagara, May 2022.
- Willoughby Drive Road Reconstruction drawings and design sheets, prepared by MTE, dated June 2024.
- The <u>Preliminary Sanitary and Water Servicing Investigation</u> memorandum for Willoughby Drive Development, prepared by Husson Limited dated February 10, 2023.

# 2.0 STORM DRAINAGE

### 2.1 Existing Drainage

The following is a summary of the existing services and storm drainage features around the perimeter of the site:

- Storm sewers on Willoughby Drive ending at a 1050mm diameter sewer at the proposed Caronpost Road.
- 675mm diameter storm sewer on Cattell Drive.
- Drainage ditch along the future Caronpost Road conveying drainage from Willoughby Drive to the Little Mississippi Drain.
- Drainage ditch on Weinbrenner Road conveying drainage to the Little Mississippi Drain.

The existing site has been divided in to two catchment areas, 100 and 101. Catchment 100 represents the drainage from north of Caronpost, and Catchment 101 represents the drainage from south of Caronpost Drive. Both catchments generally drain to the existing channel on Caronpost Road. Some perimeter drainage will be directed to Cattell Drive or Weinbrenner Road, but all drainage ultimately drains to the Mississippi Drain. Refer to **Figure 2** for the existing site drainage.

An analysis of the existing storm sewer on Cattell Drive was completed to determine if there was any surplus capacity in the sewer to accept drainage from the site. The analysis was completed using the 5-year Niagara Falls design storm and catchment plan as shown on **Figure 3**. The analysis shows that there is no surplus capacity. Refer to **Appendix A** for the Cattell Road storm sewer design sheet.

### 2.2 Site Grading

All grading will be completed in a manner to satisfy the following goals:

- Enable gravity storm connection (where possible) to the outlet at the Little Mississippi Drain.
- Meet the stormwater management objectives for the site.

The development will be graded such that the surface flows from the development will be directed to municipal boulevards and captured by catchbasins and directed to the proposed storm sewers. It is proposed to construct Caronpost Road; a dedicated right-of-way which currently has a section of the channel which conveys flows from Willoughby Drive to the Little Mississippi Drain the flows towards the Niagara River. As part of the development, it is proposed to construct Caronpost Road through our development and the channel will be replaced with a municipal storm sewer. Caronpost Road will not be controlled but all of the other private developments and proposed municipal roads that are being constructed will be controlled before the storm sewer connects to the mainline sewer on Caronpost.

The site will be graded to suit the City's design criteria and accommodate any constraints imposed by the storm drainage and servicing objectives.

### 2.3 Minor System Drainage

The development will include the extension of Caronpost Road. This will require filling in the existing drainage ditch and construction of a new storm sewer system out letting to the Little Mississippi Drain.

The internal storm sewer system will be designed to collect drainage from the proposed rooftops and driveways for a 5-year design storm, as per the City's criteria. The majority storm drainage will drain to the Little Mississippi Drain.

The proposed storm sewer will collect drainage from Willoughby Drive. An inlet flow rate of 848L/s has been included from the external catchment area as per the MTE design sheets.

Rainwater leaders from the townhouse units will discharge at grade. The storm sewer systems from the private blocks will convey drainage to oil/grit separators which will provide pre-treatment for drainage entering the stormwater chambers. The storm connections from the municipal roads connecting to the Caronpost Road storm sewer will also be conveyed through oil/grit separators for quality control.

Peak flow controls will be provided on the proposed private development blocks. Further controls will be provided within the proposed municipal roads to further reduce flows to meet the pre-development target flow rates.

Refer to Figure 4 for the proposed minor system design and Section 3.0 for details on the on-site controls.

### 2.4 Major System Drainage

The development blocks will be designed to convey all flows on-site up to the 100-year event and discharge to the minor system at a controlled rate. For storms in excess of the 100-year event, or in the case of a blockage, overland flow will be directed to the adjacent municipal roads.

The municipal road has been designed with saw-toothed grading, such that for storms up to the 100-year event, runoff will pond above the catchbasins and discharge to the minor-system, where it can be controlled by the stormwater chambers.

Refer to Figure 5 for the grading and major system drainage design.

### 3.0 STORMWATER MANAGEMENT PLAN

### 3.1 Stormwater Management Criteria

The City and Niagara Peninsula Conservation Authority (NPCA) have indicated that the stormwater management criteria are as follows:

- Water quality *Enhanced* control is required based on MECP Guidelines. This requires removal of 80 percent of total suspended solids on an annual basis.
- Water quantity Peak flow controls for all storm events, if existing channel does not have capacity for the uncontrolled flows. Peak flow controls will be required to control private developments and for new municipal roads to the allowable flow to the storm sewers.
- Water Balance Niagara Region strongly encourages the use of Low Impact Development (LID) practices to retain water on-site for re-use or infiltration.
- Erosion Control Niagara Region typically requires the retention of the 25mm design storm to be released over 24 hours to mitigate downstream erosion impacts.

We note that the proposed Caronpost Road is not considered in the storm water management design for the site. It has a large upstream catchment area with limited stormwater management controls. It would be challenging to implement controls within the proposed roadway to service the large upstream catchment area.

### 3.2 Stormwater Management Facilities

For the storm drainage and stormwater management design for the site, three options were investigated.

1. Provide no peak flow controls on-site and either confirm capacity in the Little Mississippi Drain, or up-size it to convey drainage to the Niagara River.

- 2. Review the capacity of the storm sewer on Cattell Drive and discharge a portion of the flow to this outlet.
- 3. Provide peak flow controls to control the post development peak flow to predevelopment levels on site.

For the first option, it was noted that downstream improvements to the channel had recently been completed. The cross section was approximately 15m wide and provided a low flow channel and floodplain. It was determined that the longitudinal grade of the channel near the Caronpost outlet will be about 0.1 percent, compared to 0.2 percent or greater where the channel was improved downstream. As well, the downstream section was greater than 2m deep downstream whereas it is approximately 1.5m deep near the Caronpost outlet. These two factors resulted in a channel section that would be greater than 30m in width. It was therefore, determined not to pursue this option.

For the second option, a design sheet for Cattell Drive was prepared based on the proposed reduction in the catchment area, resulting from the Willoughby Drive improvements. It was determined that the existing sewers are at or over capacity based on the 5-year storm. Therefore, it is not proposed to direct any additional flow to this sewer.

Therefore, on-site controls to pre-development rates have been selected as the preferred option.

A treatment train approach will be used to meet the stormwater management objectives for the site, as follows:

- Private development blocks (apartment and townhouse) will be required to provide on-site controls to meet unit flow target release rates (refer to section 3.4). For the preliminary design, it is assumed that an underground storage chamber and orifice control will be provided on each block; however, at the detailed design stage, alternatives such as controlled flow roof drainage, surface storage or oversized pipes can be investigated.
- Private development blocks will be required to provide Normal quality control (80 percent TSS removal). The specific mechanism can be determined at the detailed design stage for each block.
- Oil/grit separators will be provided at each connection point to the mainline sewer on Caronpost Road.
- Peak Flow controls for the municipal roads will be provided by underground storage chambers located within the municipal roadways.
- The proposed stormwater chambers will have an open bottom capable of infiltration. At the detailed design stage, the feasibility of infiltration will be investigated. This will be dependent on the depth and permeability of the soils.

The proposed controls within the municipal roads are described below:

### 3.3 Quality Control

As per the Niagara Region criteria, Normal quality control (70 percent TSS removal is required for the site. For the proposed municipal roads, this will be provided by 4 oil/grit separators located upstream of the connections to Caronpost Road. Preliminary sizing is based on Stormceptor EF oil/grit separators using ETV particle size distribution. The locations are shown on **Figure 6** and preliminary sizing is provided in **Table 1**.

| Catchment Area<br>(ha) |      | Imperviousness | Unit | TSS Removal |
|------------------------|------|----------------|------|-------------|
| 103+108                | 3.0  | 65%            | EF12 | 62          |
| 104                    | 0.56 | 65%            | EF06 | 63          |
| 105                    | 0.27 | 65%            | EF04 | 63          |
| 106                    | 0.53 | 65%            | EF06 | 64          |

Table 1. Oil/Grit Separator Sizing

Therefore, the proposed oil/grit separators provide greater than 60 percent quality control.

As noted above, it is proposed to investigate infiltration to meet water balance objectives for the site. This will be reviewed at the detailed design stage when soil and groundwater information is available.

With the proposed oil/grit separators and infiltration facilities in place, the requirement for 70 percent TSS removal will be met. In the event that infiltration is not feasible on the site, an ETV verified filter unit will be required for each connection point. While this is feasible for the site, they typically have increased long-term maintenance requirements, compared to oil/grit separators.

OGS unit sizing and details are provided in Appendix B.

### 3.4 Quantity Control

### 3.4.1 Quantity Control Measures

Quantity control will be provided in the stormwater chambers in conjunction with orifice controls which allow for excess runoff to be stored and released at a controlled rate.

### Uncontrolled Drainage

There will be one catchment, Catchment 110, which will discharge to Caronpost Road uncontrolled. This has an area of 0.18ha, and consists of townhouse rooftop and rear yard areas. All other areas of the site will be overcontrolled to account for this uncontrolled drainage.

### Stormwater Chamber Storage

For the functional design of the stormwater management facilities, it was assumed that a crate storage system would be used. The crates will have a height of 1.0m and a width up to 2.4m wide, when located within the municipal right-of-ways.

Orifice controls will be provided at the outlet for each catchment to meet the target release rates. **Table 2** provides a summary of the storage-discharge for each catchment. Refer to **Appendix C** for storage-discharge calculations.

| Catchment Pipe/Chamber<br>Storage (m <sup>3</sup> ) |       | Orifice Size (mm) | Peak Flow (L/s) |
|-----------------------------------------------------|-------|-------------------|-----------------|
| 103+108                                             | 1,290 | 120               | 48              |
| 104                                                 | 120   | 204               | 86              |
| 105                                                 | 120   | 74*               | 9               |
| 106                                                 | 195   | 152               | 48              |

Table 2. Catchment Storage-Discharge

\* Use inlet control device for orifice less than 75mm diameter.

For the private development blocks, unit flow rates will be implemented for the 5- and 100-year design storms. as shown in **Table 3**.

| Table 3. | Unit Flow Rates |
|----------|-----------------|
|          |                 |

| Storm Event | Unit Flow Rate<br>(L/s/ha) |  |
|-------------|----------------------------|--|
| 5 Year      | 14                         |  |
| 100 Year    | 35                         |  |

### 3.4.2 Hydrology Modelling

The Visual OTTHYMO 6 (VO) model was used to calculate the flows for the site for the pre and post development conditions. VO is a single event hydrologic model that is based on unit hydrograph theory. The simulation for this site uses the StandHyd method for the primarily impervious catchments and NasHyd method for landscape catchments. The Route Reservoir command is used to simulate the peak flow controls for the site to estimate the storage requirements. Rainfall is based on a 4-hour Chicago Storm using the latest NPCA SWM Guideline IDF curves for the 100-year storm.

The following additional parameters were assumed for the modelling:

- CN for pervious areas of 77.
- Initial abstraction of 5mm for pervious areas and 1mm for impervious areas.
- Rain fall distribution was based on the 5- and 100-year 4-hour Chicago storm and the NPCA SWM Guideline IDF curves.

An existing conditions VO model was prepared to estimate to the peak flow from the site to the Caronpost outlet. **Table 4** provides a summary for each catchment and the target flow.

|           | ······    |                           |                             |  |  |  |  |
|-----------|-----------|---------------------------|-----------------------------|--|--|--|--|
| Catchment | Area (ha) | 5-Year Peak<br>Flow (L/s) | 100-Year Peak Flow<br>(L/s) |  |  |  |  |
| 100       | 6.88      | 92                        | 230                         |  |  |  |  |
| 101       | 3.39      | 55                        | 137                         |  |  |  |  |
| Total     | 10.27     | 144                       | 361                         |  |  |  |  |

| Table 4. | Peak | Development | Model | Summary |
|----------|------|-------------|-------|---------|
|----------|------|-------------|-------|---------|

Table 5 provides a summary of the catchment parameters for the post development scenario.

| Catchment | Area (ha) | Development Type  | Imperviousness |
|-----------|-----------|-------------------|----------------|
| 103       | 2.50      | Townhouse         | 65%            |
| 104       | 0.65      | Townhouse         | 65%            |
| 105       | 0.27      | Townhouse         | 65%            |
| 106       | 0.53      | Townhouse         | 65%            |
| 107       | 1.81      | Private Townhouse | 65%            |
| 108       | 0.50      | Park              |                |
| 109       | 0.57      | Private Townhouse | 65%            |
| 110       | 0.18      | Townhouse         | 65%            |
| 111       | 0.58      | Private Townhouse | 65%            |
| 112       | 0.34      | Private Townhouse | 65%            |
| 113       | 0.68      | Private Apartment | 75%            |
| 114       | 0.80      | Private Apartment | 75%            |
| 115       | 0.86      | Private Apartment | 75%            |
| Total     | 10.27     |                   |                |

 Table 5.
 Post Development Catchment Summary

The post development model was prepared using the parameters in **Table 5** for each catchment and the proposed stormwater controls as outlined in **Table 2**. For the private blocks, an estimate is included in the model for the required storage. This will depend on the final site layout and availability of rooftop and parking lot storage.

Table 6 provides a summary of the post development storage requirements.

| Catchment | Storage<br>Provided (m <sup>3</sup> ) | 100-year Storage<br>Required (m <sup>3</sup> ) |
|-----------|---------------------------------------|------------------------------------------------|
| 103+108   | 1290                                  | 1285                                           |
| 104       | 220                                   | 218                                            |
| 105       | 120                                   | 101                                            |
| 106       | 190                                   | 172                                            |
| 107*      |                                       | 615                                            |
| 109*      |                                       | 220                                            |
| 110*      |                                       | Uncontrolled                                   |
| 111*      |                                       | 225                                            |
| 112*      |                                       | 130                                            |
| 113*      |                                       | 274                                            |
| 114*      |                                       | 335                                            |
| 115*      |                                       | 350                                            |

 Table 6.
 Post Development Storage Summary

\* Required storage is an estimate, subject to site design.

**Table 7** provides a comparison of the 5- and 100-year peak flows from the site in the pre and post

 development scenarios.

| Table 7. Peak | Flow | Compa | rison |
|---------------|------|-------|-------|
|---------------|------|-------|-------|

| Storm Event | Pre-<br>Development<br>(L/s) | Post Development<br>(L/s) |
|-------------|------------------------------|---------------------------|
| 5 Year      | 144                          | 144                       |
| 100 Year    | 361                          | 250                       |

As shown in **Table 7**, the peak flows for the 5 and 100 year storms in the post development scenario will be equal or less than pre-development.

Figure 6 shows the proposed catchment plan. Hydrology calculations are provided in Appendix D.

The existing municipal storm infrastructure can support the proposed site without the need for external upgrades or retrofit.

### 3.5 Water Balance

As per the Niagara Region criteria, (LID) practices to retain water on-site for re-use or infiltration. This will be investigated at the detailed design stage when geotechnical and groundwater information is available.

### 3.6 Erosion Control

Niagara Region typically requires the retention of the 25mm design storm to be released over 24 hours to mitigate downstream erosion impacts. Another option frequently implemented for erosion control is to retain or infiltrate runoff from frequent storm events. This can reduce the overall volume of surface runoff to the receiving watercourse. This will be investigated at the detailed design stage when geotechnical and groundwater information is available.

### 4.0 WASTEWATER

### 4.1 Receiving Systems

The City is in the process of reconstructing Willoughby Drive (90% detailed design stage was just completed by MTE Consultants) and as part of that work new sanitary sewer is being installed on Willoughby Drive through the entire frontage of the proposed development. There is a proposed 200mm diameter sanitary sewer from Willguard Court, flowing north to Cattell Drive and a 300mm diameter sanitary sewer from Willguard Court, flowing south to Weinbrenner Road. A 300mm diameter service stub is being provided for the proposed development at the beginning (west side) of the Caronpost right-of-way; which is currently a drainage ditch, but will need to be constructed as a municipal road as part of the proposed subdivision.

In addition, there is an existing 375mm diameter sanitary sewer on Cattell Drive flowing west to the new sewer on Willoughby Drive, and an existing 250mm diameter sanitary sewer on Weinbrenner Road flowing west which connects with the new sanitary sewer on Willoughby Drive and then to the existing 450mm diameter sanitary sewer on Weinbrenner Road which flows westward and eventually discharges to the Low Lift Pumping Station for South Niagara Falls.

The Niagara Region Water and Wastewater Master Servicing Plan (2023) was used to calculate the contributing peak flow from the site to the existing sewer. The Harmon equation was used to calculate the peaking factor for the apartment buildings and townhouse dwellings. The existing and proposed sanitary flows from the site are shown in **Table 8**.

### Table 8. Sanitary Flow Comparison

| Land Use                                                         | Equivalent<br>Population <sup>1</sup> | Peaking<br>Factor <sup>2</sup> | Equivalent Peak<br>Flow (L/s)² |
|------------------------------------------------------------------|---------------------------------------|--------------------------------|--------------------------------|
| Pre-Development:<br>• Undeveloped                                | _                                     | _                              | _                              |
| Post Development:                                                | -                                     | -                              | -                              |
| <ul> <li>Residential: 660 Apartment Units<sup>1</sup></li> </ul> | 1,314                                 |                                |                                |
| Residential: 318 Townhouse Units                                 | <u>665</u>                            |                                |                                |
|                                                                  | 1,979                                 | 3.58                           | 20.9                           |

<sup>++1</sup> Equivalent population as per the latest Niagara Region *DC Study- Table 6-1b – Residential D.C. by Unit Type (2022)* (2.92 persons/unit: Single and Semi-Detached Dwelling, 2.09 persons/ unit: Other Multiples, 1.99 persons/unit: Apartments 2+Bedrooms, 1.21 persons/unit: Apartments 1 Bedroom; Apartment units are considered 2+bedrooms to be conservative.

<sup>2</sup> Equivalent Flow as per the Niagara Region *Water and Wastewater Master Servicing Plan (2021)* (Average wastewater flow = 255 litres/capita/day, Harmon formula with values between 2 and 4)

The sanitary flows are summarized in **Table 9** below.

### Table 9. Sanitary Flow Summary

| Scenario         | Population | Sanitary<br>Flow (L/s) | Infiltration<br>Flow (L/s)* | Total (L/s) |
|------------------|------------|------------------------|-----------------------------|-------------|
| Post Development | 1,979      | 20.9                   | 3.2                         | 24.1        |

\*Infiltration flows are based off a site area of 11.0ha and a design flow rate of 0.286L/s/ha.

Therefore, the proposed development of the site will result in a peak sanitary flow of 24.1L/s. The existing 300mm diameter sanitary sewer on Willoughby Drive is adequate to convey these flows (full flow capacity of the existing 300mm diameter sanitary adjacent to the site is 59.6L/s of which our site accounts for 42% of the capacity).

### 4.2 Sanitary Sewer Downstream Capacity Analysis

A <u>Preliminary Sanitary and Watermain Servicing Investigation</u> memorandum (memorandum) for the proposed development was prepared by Husson Limited on February 10, 2023; which was approved by the City. As part of the servicing memo, a downstream sanitary assessment (DSA) was completed based on a contributing equivalent population of 2,497 people from the development. As noted in Option 2 in the memorandum, there was capacity in the existing sanitary sewer if the development was connected to the existing 450mm diameter sanitary sewer on Weinbrenner Road. This has also been taken in to account with the reconstruction work for Willoughby Drive that is being completed by the City (detailed design by MTE Consultants) and as part of that work the City is providing a 300mm sanitary sewer stub at the future Caronpost Road; which is sufficient for the proposed development.

The proposed development has an equivalent population of 1,979 people which is less than the 2,497 people that was accounted for in the memorandum, and so no further analysis was required. Refer to **Appendix E** for the memorandum.

### 4.3 Internal Sanitary Drainage

A private gravity sanitary sewer can be extended into the site to provide services to each townhouse and apartment buildings within the development. The detailed design of the sanitary sewers within the subdivision will be completed at the detailed design stage but it should be noted that the sanitary sewer on Willoughby Drive is over 3m deeper than the storm sewer on Caronpost Road and so crossing conflicts are not anticipated.

Refer to Figure 7 for the detailed site servicing information.

## 5.0 WATER DISTRIBUTION

### 5.1 Water Servicing

The City is in the process of reconstructing Willoughby Drive (90% detailed design stage was just completed by MTE Consultants) and as part of that work new watermain is being installed on Willoughby Drive. There is a proposed 300mm diameter watermain through the frontage of the proposed development. A 300mm diameter service stub is being provided for the proposed development at the beginning (west side) of the Caronpost right-of-way; which is currently a drainage ditch, but will need to be constructed as a municipal road as part of the proposed subdivision.

In addition, here is an existing 250mm diameter watermain on Cattell Drive and a 200mm diameter watermain on Weinbrenner Drive.

It is proposed to service the development off of the 300mm diameter watermain on Willoughby Drive; and will be looped with a second connection to the existing 250mm diameter watermain on Cattell Drive. The watermain design will follow the Niagara Region Water and Wastewater Master Servicing Plan (2023).

Refer to Figure 8 for the proposed watermain design.

In addition, a hydrant flow test was completed by L&D Waterworks on November 14, 2022 for the hydrant located in front of 8563 Willoughby Drive which is across the road from the proposed development, refer to **Appendix E** for information.

### 5.2 Watermain Analysis

The following calculations for water demand and fire flow for the proposed development are based on the Niagara Region's design criteria and the Fire Underwriters Survey (FUS).

| Persons per unit (ppu):   | Single and Semi-Detached Dwelling | 2.92         |
|---------------------------|-----------------------------------|--------------|
| Persons per unit (ppu):   | Other Multiples                   | 2.09         |
| Persons per unit (ppu):   | Apartments 2+Bedrooms             | 1.99         |
| Residential average day d | lemand:                           | 240L/cap/day |
| Peaking Factor (pf):      | Peak Hour                         | 2.5          |

| Maxii                     | mum Day                                  | 1.3                         |
|---------------------------|------------------------------------------|-----------------------------|
| Acceptable pressure range |                                          | 40 – 100 psi                |
| Fire Flow: 250L/s or      | n Regional watermains at residual pre    | ssure of 30 psi             |
| Average Daily Demand:     |                                          |                             |
| Apartment                 | = 1,314 (eq. population from <b>Tabl</b> | <b>e 8</b> ) x 240L/cap/day |
|                           | = 315,360 L/day                          |                             |
|                           | = 219L/min                               |                             |
| Townhouse                 | = 665 (eq. population from <b>Table</b>  | <b>8</b> ) x 240L/cap/day   |
|                           | = 159,600 L/day                          |                             |
| Maximum Hour Demand:      | = 110.8L/min                             |                             |
| Apartment                 | = 219L/m x 2.5(pf)                       |                             |
|                           | = 547.5L/min                             |                             |
| Townhouse                 | = 110.8L/min x 2.5(pf)                   |                             |
|                           | = 277L/min                               |                             |
| Maximum Day Demand:       |                                          |                             |
| Apartment                 | = 219L/m x 1.3(pf)                       |                             |
|                           | = 284.7L/min                             |                             |
| Townhouse Development     | = 110.8L/min x 1.3(pf)                   |                             |
|                           | = 144L/min                               |                             |

Interpolating on the hydrant flow test graph demonstrates that under peak hour and maximum day demand flow conditions, the pressure in the watermain will be approximately 607kPa (88psi); therefore, the proposed site will meet the City's minimum pressure of 275kPa (40psi).

### Fire Analysis:

The existing watermain had a residual static pressure of 90psi and theoretical minimum fire flow of 5,625GPM (21,300L/min) at 20psi. Based on the information in the hydrant flow test, and the City's minimum fire flow requirement of 250L/s (15,000L/min) on Regional watermains at residual pressure of 30psi, there are no concerns regarding adequate water supply for the proposed development; however, a fire/booster pump may be required for the internal fire protection systems for the proposed townhouse and apartment blocks. This will need to be determined by the mechanical engineer at the detailed design stage.

# 6.0 CONCLUSIONS

The proposed development meets the City's requirements as follows:

- A treatment train approach including infiltration measures and oil/grit separators will be implemented within the municipal right-of-ways to provide the required Normal quality control. The infiltration design will be confirmed at the detailed design stage.
- Normal quality control will be provided on each of the private development blocks.
- Orifice controls in conjunction with stormwater chambers will provide the storage required to limit the release rate to the capacity of the storm sewer in the easement, up to the 100year storm.
- Private development blocks will be required to implement peak flow controls based on 14L/s/ha for the 5-year storm and 35L/s/ha for the 100-year storm.
- Water balance and erosion controls measures will be investigated at the detailed design stage when soil and groundwater information is available.
- Gravity sanitary sewers through the subdivision are proposed to connect to the 300mm diameter sanitary sewer stub that is being provided by the City at Caronpost Road and Willoughby Drive.
- The receiving sanitary sewer has adequate capacity for the proposed development as determined by the City on approval of the <u>Preliminary Sanitary and Water Servicing</u> <u>Investigation</u> memorandum for Willoughby Drive Development, prepared by Husson Limited dated February 10, 2023.
- Watermain for the subdivision will be extended from the existing watermain on Cattell Road and the proposed watermain on Willoughby Drive. The watermain will be looped internally within the proposed subdivision.
- A hydrant flow has been completed to confirm that the existing watermain has sufficient pressure to provide fire and domestic flows to the proposed development.

With the proposed controls in place, the site design will meet the requirements of the City with respect to the current zoning application.



Greg Rapp, P.Eng.











# FIGURE 3 WILLOUGHBY DRIVE CATTELL STORM DRAINAGE PLAN

DATE: OCTOBER 2024 SCALE: 1:5000 PROJECT: 221377





# <u>LEGEND</u> 175.00 EXISTING ELEVATION 175.00 PROPOSED ELEVATION 175.00TW PROPOSED TOP OF WALL ELEVATION 175.00BW PROPOSED BOTTOM OF WALL ELEVATION \_\_\_\_\_ SLOPE \_\_\_\_\_ MAX 3:1 EMBANKMENT OVERLAND FLOW ROUTE O PROPOSED STORM MANHOLE PROPOSED STORM CAHBASIN PROPOSED SANITARY $\bowtie$ VALVE HYDRANT AND VALVE ÷ EXISTING STORM CAHBASIN EXISTING STORM MANHOLE $\bigcirc$ EXISTING SANITARY MANHOLE EXISTING VALVE $\bowtie$ EXISTING HYDRANT -**\**-WILLOUGHBY DRIVE, NIAGARA FALLS, ON **N**0 S ENGINEERING + MANAGEMENT $\mathbf{S}$ ₽ 905.709.5825 ΗU 200 CACHET WOODS COURT, SUITE 204 MARKHAM, ON L&C 028 HUSSON.CA FIGURE 5 WILLOUGHBY DRIVE MAJOR SYSTEM DRAINAGE PLAN

DATE: OCTOBER 2024 SCALE: 1:1000 PROJECT: 221377







|                         |                   | TEDUAN                                                                                                     |
|-------------------------|-------------------|------------------------------------------------------------------------------------------------------------|
|                         | EXISTING WA       | TERMAIN                                                                                                    |
| VB.                     | WATERMAIN         |                                                                                                            |
| ⊠<br>-0-                | VALVE AND         | BOX                                                                                                        |
|                         |                   |                                                                                                            |
| GAS ——                  | EXISTING TO       | JMMØ GAS SERVICE                                                                                           |
|                         | EXISTING GA       | S LINES                                                                                                    |
| CTV                     | EXISTING CT       | V LINES                                                                                                    |
| BELL                    | EXISTING BEI      | LL LINES                                                                                                   |
|                         | PROPERTY L        | INE                                                                                                        |
| $\textcircled{\bullet}$ | TEMPORARY         | WELL                                                                                                       |
| VC<br>⊕                 | VALVE CHAM        | IBER                                                                                                       |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         | NIAGARA F         | FALLS, ON                                                                                                  |
|                         |                   |                                                                                                            |
|                         |                   |                                                                                                            |
|                         | 0                 |                                                                                                            |
|                         |                   | ENGINEERING + MANAGEMENT                                                                                   |
|                         |                   | <ul> <li>₱ 905.709.5825</li> <li>200 CACHET WOODS COURT, SUITE 204</li> <li>MARKHAM, ON L8C 028</li> </ul> |
|                         |                   | HUSSON.CA                                                                                                  |
|                         |                   |                                                                                                            |
|                         | ۱۸                |                                                                                                            |
|                         |                   | STRIBUTION PLAN                                                                                            |
|                         | DATE: OCTOBER 202 | 4 SCALE: 1:1000 PROJECT: 221377                                                                            |



|                                    | Storm Design<br>5-Year Storm<br>Rainfall Intensity | = <u>A</u><br>(Tc+B)^c | -      |             |        |        |                  |        |        |             |       |             |           |                                     | NOSSUH                        |        |          |         |                 |
|------------------------------------|----------------------------------------------------|------------------------|--------|-------------|--------|--------|------------------|--------|--------|-------------|-------|-------------|-----------|-------------------------------------|-------------------------------|--------|----------|---------|-----------------|
| A =<br>B =<br>c =<br>Starting Tc = | 5-YEAR<br>719.5<br>6.34<br>0.7687<br>10            | min                    |        |             |        |        |                  |        |        |             |       |             |           | Project #:<br>Date:<br>Designed by: | 221377<br>October 7, 20<br>JA | 24     |          |         |                 |
|                                    |                                                    |                        | 5-YEAR | 5-YEAR      | 5-YEAR | 5-YEAR | 5-YEAR           | 5-YEAR | TOTAL  |             |       |             |           |                                     |                               |        | UPSTREAM |         | DOWNSTREAM      |
| STREET                             | FROM                                               | то                     | AREA   | RUNOFF      | "AR"   | ACCUM. | RAINFALL         | ACCUM. | FLOW   | LENGTH      | SLOPE | PIPE        | Manning's | FULL FLOW                           | FULL FLOW                     | % FULL | TIME OF  | TIME OF | TIME OF         |
|                                    | мн                                                 | MH                     |        | COEFFICIENT |        | "AR"   | INTENSITY        | FLOW   |        | <i>.</i>    |       | DIAMETER    | "n"       | CAPACITY                            | VELOCITY                      |        | CONC.    | CONC.   | CONC.           |
| Cattell Drive                      | 1                                                  | 2                      | (ha)   | "R"<br>0.45 |        |        | (mm/hr)<br>94.02 | (m3/s) | (m3/s) | (m)<br>76.9 | (%)   | (mm)<br>525 | 0.013     | (m3/s)                              | (m/s)                         |        | (min)    | (min)   | (min)<br>10.011 |
| Cattell Drive                      | 2                                                  | 3                      | 0.17   | 0.45        | 0.08   | 0.08   | 84.02            | 0.018  | 0.018  | 82.4        | 0.00  | 675         | 0.013     | 0.531                               | 1.486                         | 3%     | 10.000   | 0.925   | 10.925          |
| Cattell Drive                      | 2                                                  | 4                      | 0.17   | 0.45        | 0.00   | 0.00   | 80.54            | 0.069  | 0.068  | 37.6        | 0.40  | 750         | 0.013     | 0.001                               | 1.400                         | 10%    | 10.000   | 0.304   | 11 319          |
| Cattell Drive                      | 5                                                  | 4                      | 0.01   | 0.45        | 0.20   | 0.01   | 70.40            | 0.000  | 0.000  | 57.0        | 0.40  | 130         | 0.013     | 0.704                               | 1.334                         | 10 /0  | 10.925   | 0.334   | 11.310          |
| Catteli Drive                      | 4                                                  | 5                      | 1.90   | 0.45        | 0.88   | 1.19   | 79.16            | 0.261  | 0.261  | 59.5        | 0.30  | 825         | 0.013     | 0.786                               | 1.471                         | 33%    | 11.318   | 0.674   | 11.993          |
| Cattell Drive                      | 5                                                  | 6                      | 9.07   | 0.45        | 4.08   | 5.27   | 76.91            | 1.126  | 1.126  | 129.4       | 0.10  | 1200        | 0.013     | 1.232                               | 1.090                         | 91%    | 11.993   | 1.978   | 13.971          |
| Cattell Drive                      | 6                                                  | 7                      | 7.15   | 0.45        | 3.22   | 8.49   | 71.09            | 1.676  | 1.676  | 57.9        | 0.10  | 1200        | 0.013     | 1.232                               | 1.090                         | 136%   | 13.971   | 0.885   | 14.856          |
| Cattell Drive                      | 7                                                  | 8                      | 0.43   | 0.45        | 0.19   | 8.68   | 68.79            | 1.659  | 1.659  | 67.7        | 0.10  | 1200        | 0.013     | 1.232                               | 1.090                         | 135%   | 14.856   | 1.034   | 15.890          |
| Cattell Drive                      | 8                                                  | 9                      | 2.02   | 0.45        | 0.91   | 9.59   | 66.32            | 1.767  | 1.767  | 77.7        | 0.10  | 1200        | 0.013     | 1.232                               | 1.090                         | 143%   | 15.890   | 1.187   | 17.078          |
| Cattell Drive                      | 9                                                  | 10                     | 0.64   | 0.45        | 0.29   | 9.88   | 63.72            | 1.748  | 1.748  | 64.9        | 0.10  | 1200        | 0.013     | 1.232                               | 1.090                         | 142%   | 17.078   | 0.993   | 18.070          |
| Cattell Drive                      | 10                                                 | 11                     | 1.15   | 0.45        | 0.52   | 10.40  | 61.72            | 1.782  | 1.782  | 119.6       | 0.10  | 1200        | 0.013     | 1.232                               | 1.090                         | 145%   | 18.070   | 1.829   | 19.899          |
|                                    |                                                    |                        |        |             |        |        |                  |        |        |             |       |             |           |                                     |                               |        |          |         | -               |

Г

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R                                  | Willoughb<br>Niagara Fa<br>ainfall Intensity | oy Drive<br>alls, ON<br>= A |              |                               |              |                        |                               |                        |                        |                          |                        |                            |                            |                                 |               |        |       |                  | HUS                                             | SON                                           |                          |                       |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------|-----------------------------|--------------|-------------------------------|--------------|------------------------|-------------------------------|------------------------|------------------------|--------------------------|------------------------|----------------------------|----------------------------|---------------------------------|---------------|--------|-------|------------------|-------------------------------------------------|-----------------------------------------------|--------------------------|-----------------------|--------|
| STRET         Imp         Lot         Lot <thlot< th=""> <thlot< th="" th<=""><th>A =<br/>B =<br/>c =<br/>Starting Tc =</th><th>5-Year<br/>= 719.5<br/>= 6.34<br/>= 0.769</th><th>(Tc+B)^c<br/>0 min</th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Project:<br/>Project #:<br/>Date:<br/>Designed by:</th><th>Willoughby D<br/>221377<br/>October 7, 20<br/>JT</th><th>Drive<br/>D24</th><th></th><th></th></thlot<></thlot<>                                                                                                                                                                                                                                                                                                                      | A =<br>B =<br>c =<br>Starting Tc = | 5-Year<br>= 719.5<br>= 6.34<br>= 0.769       | (Tc+B)^c<br>0 min           | _            |                               |              |                        |                               |                        |                        |                          |                        |                            |                            |                                 |               |        |       |                  | Project:<br>Project #:<br>Date:<br>Designed by: | Willoughby D<br>221377<br>October 7, 20<br>JT | Drive<br>D24             |                       |        |
| Interf         Arm         Arm<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                              |                             |              |                               |              |                        |                               |                        |                        |                          |                        |                            |                            |                                 |               |        |       |                  |                                                 |                                               |                          |                       |        |
| Image         Image <th< th=""><th>STREET</th><th>FROM<br/>MH</th><th>то<br/>МН</th><th>5-YR<br/>AREA</th><th>5-YR<br/>RUNOFF<br/>COEFFICIENT</th><th>5-YR<br/>"AR"</th><th>5-YR<br/>ACCUM.<br/>"AR"</th><th>5-YR<br/>RAINFALL<br/>INTENSITY</th><th>5-YR<br/>ACCUM.<br/>FLOW</th><th>EXT or<br/>BLDG<br/>Area</th><th>EXT/BLDG<br/>FLOW<br/>RATE</th><th>EXT or<br/>BLDG<br/>FLOW</th><th>ACCUM.<br/>EXT/BLDG<br/>FLOW</th><th>100-YR<br/>RUNOFF<br/>COEFF.</th><th>100-YR<br/>RAINFALL<br/>INTENSITY</th><th>Total<br/>Flow</th><th>LENGTH</th><th>SLOPE</th><th>PIPE<br/>DIAMETER</th><th>FULL FLOW<br/>CAPACITY</th><th>FULL FLOW<br/>VELOCITY</th><th>TIME OF<br/>CONCENTRATION</th><th>ACC. TIME OF<br/>CONC.</th><th>% Full</th></th<> | STREET                             | FROM<br>MH                                   | то<br>МН                    | 5-YR<br>AREA | 5-YR<br>RUNOFF<br>COEFFICIENT | 5-YR<br>"AR" | 5-YR<br>ACCUM.<br>"AR" | 5-YR<br>RAINFALL<br>INTENSITY | 5-YR<br>ACCUM.<br>FLOW | EXT or<br>BLDG<br>Area | EXT/BLDG<br>FLOW<br>RATE | EXT or<br>BLDG<br>FLOW | ACCUM.<br>EXT/BLDG<br>FLOW | 100-YR<br>RUNOFF<br>COEFF. | 100-YR<br>RAINFALL<br>INTENSITY | Total<br>Flow | LENGTH | SLOPE | PIPE<br>DIAMETER | FULL FLOW<br>CAPACITY                           | FULL FLOW<br>VELOCITY                         | TIME OF<br>CONCENTRATION | ACC. TIME OF<br>CONC. | % Full |
| Mil12         Mil17         Lift         Lift <thlift< th="">         Lift         Lift         <t< td=""><th></th><td></td><td></td><td>(ha)</td><td>"R"</td><td></td><td></td><td>(mm/hr)</td><td>(m3/s)</td><td>(ha)</td><td>(l/s/ha)</td><td>(m3/s)</td><td>(m3/s)</td><td>"R"</td><td>(mm/hr)</td><td>(m3/s)</td><td>(m)</td><td>(%)</td><td>(mm)</td><td>(m3/s)</td><td>(m/s)</td><td>(min)</td><td>(min)</td><td></td></t<></thlift<>                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                              |                             | (ha)         | "R"                           |              |                        | (mm/hr)                       | (m3/s)                 | (ha)                   | (l/s/ha)                 | (m3/s)                 | (m3/s)                     | "R"                        | (mm/hr)                         | (m3/s)        | (m)    | (%)   | (mm)             | (m3/s)                                          | (m/s)                                         | (min)                    | (min)                 |        |
| Altrig         Multip         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.10         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.00         0.17         0.17         0.10         0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | MH122                                        | MH121                       | 1.81         | 0.70                          | 1.27         | 1.27                   | 83.95                         | 0.295                  |                        |                          |                        |                            | 0.850                      | 200.63                          | 0.295         | 13.3   | 0.15  | 675              | 0.325                                           | 0.910                                         | 0.244                    | 10.244                | 91%    |
| Amilia         Millia         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17         0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | MH128                                        | MH127                       | 0.12         | 0.70                          | 0.08         | 0.08                   | 83.95                         | 0.020                  |                        |                          |                        |                            | 0.850                      | 200.63                          | 0.020         | 33.7   | 0.30  | 375              | 0.096                                           | 0.869                                         | 0.646                    | 10.646                | 20%    |
| OM 110         WH102         0.21         0.21         0.13         0.14         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.13         0.14         0.15         0.15         0.15         0.13         0.14         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.15         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.15         0.16         0.16         0.16         0.16         0.15         0.16         0.16         0.16         0.15         0.16         0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | MH127                                        | MH121                       | 0.17         | 0.70                          | 0.12         | 0.20                   | 81.49                         | 0.046                  |                        |                          |                        |                            | 0.850                      | 193.89                          | 0.046         | 84.3   | 0.20  | 450              | 0.127                                           | 0.802                                         | 1.753                    | 12.399                | 36%    |
| MB1179         CGR         CGR         O/O         O/O<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | MH121                                        | MH120                       | 0.17         | 0.70                          | 0.12         | 1.59                   | 75.56                         | 0.334                  |                        |                          |                        |                            | 0.850                      | 177.91                          | 0.334         | 11.8   | 0.15  | 750              | 0.431                                           | 0.976                                         | 0.202                    | 12.601                | 77%    |
| model         Marcing         Orig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | MH120                                        | MH137                       | 0.21         | 0.70                          | 0.15         | 1.74                   | 74.94                         | 0.361                  |                        |                          |                        |                            | 0.850                      | 176.26                          | 0.361         | 126.0  | 0.15  | 750              | 0.431                                           | 0.976                                         | 2.152                    | 14.753                | 84%    |
| EXMIN         MITIQ         0.70         0.70         0.83 25         0.04         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.84 70         0.85 70         0.85 70         0.85 70         0.85 70         0.85 70         0.88 70         0.01 70         0.17 80         0.22 80         0.94 70         0.22 70         0.88 70         0.90 70         0.85 70         0.88 70         0.90 70         0.85 70         0.88 70         0.90 70         0.18 70         0.90 70         0.18 70         0.90 70         0.18 70 <th></th> <td>0651</td> <td>MH103</td> <td>0.10</td> <td>0.70</td> <td>0.07</td> <td>1.01</td> <td>68 75</td> <td>0.340</td> <td></td> <td></td> <td></td> <td></td> <td>0.650</td> <td>150.04</td> <td>0.340</td> <td>4.9</td> <td>0.10</td> <td>825</td> <td>0.454</td> <td>0.849</td> <td>0.090</td> <td>14.049</td> <td>76%</td>                                                                                                                                                                                                                                                                                                                   |                                    | 0651                                         | MH103                       | 0.10         | 0.70                          | 0.07         | 1.01                   | 68 75                         | 0.340                  |                        |                          |                        |                            | 0.650                      | 150.04                          | 0.340         | 4.9    | 0.10  | 825              | 0.454                                           | 0.849                                         | 0.090                    | 14.049                | 76%    |
| MH192         MH104         0.69         0.75         0.52         0.52         0.52         0.53         0.00         0.71         1.64         0.19         0.00         0.194         0.037         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238         0.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | EX MH                                        | MH104                       |              | 0.70                          |              | 1.01                   | 83.95                         | 0.040                  | 1 000                  | 848 170                  | 0.848                  | 0.848                      | 0.300                      | 200.63                          | 0.848         | 79.2   | 0.10  | 1200x2400        | 2 690                                           | 0.049                                         | 1 420                    | 19.560                | 32%    |
| NH103         NH103         0.17         0.70         0.12         0.64         58.91         0.104         0.686         0.836         1.437         0.026         1.2002400         2.000         0.900         1.128         1.028         95%           MH133         MH103         0.344         0.77         0.24         83.95         0.056         0.650         1.060         1.05         1.0002400         2.060         0.930         1.400         2.228         10.225         17.58           MH130         MH103         0.16         0.70         0.13         3.41         5.701         0.540         2.080         0.030         1.400         2.228         10.225         17.58           MH111         MH115         0.14         0.70         0.10         8.356         0.023          0.850         12.07.1         1.255         3.75         0.088         0.794         1.638         11.638         25%           MH131         MH112         0.161         7.70         0.51         0.256         0.74         0.107         1.74%         47%           OGS2         MH133         MH102         0.56         0.70         0.41         0.41         8.386         0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | MH132                                        | MH104                       | 0.69         | 0.70                          | 0.52         | 0.52                   | 83.95                         | 0 121                  | 1.000                  | 040.170                  | 0.040                  | 0.040                      | 0.875                      | 200.63                          | 0.040         | 16.4   | 0.00  | 600              | 0 194                                           | 0.550                                         | 0.398                    | 10.398                | 62%    |
| MH136         MH103         0.80         0.75         0.90         0.86         0.84         0.875         20.083         0.140         12.0         0.15         0.60         0.238         0.241         0.238         10.238         10.238         59%           MH100         MH102         0.18         0.70         0.13         3.41         57.01         0.365         10.65         20.053         0.666         0.20         375         0.076         0.710         0.225         10.225         122.57         17%           MH1101         MH1102         0.18         0.70         0.13         3.41         57.01         0.023         77         0.25         375         0.088         0.794         1.636         28%           MH115         OGS2         0.13         0.70         0.76         0.041          0.505         184.50         0.041         5.1         0.26         375         0.088         0.794         0.167         11.743         47%           MH131         MH102         0.58         0.70         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.39         0.31         0.44         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | MH104                                        | MH103                       | 0.00         | 0.70                          | 0.02         | 0.64                   | 58.91                         | 0.121                  |                        |                          |                        | 0.848                      | 0.850                      | 134 57                          | 0.952         | 62.9   | 0.05  | 1200x2400        | 2 690                                           | 0.930                                         | 1 126                    | 20.686                | 35%    |
| IMH30         MH103         0.34         0.70         0.24         0.24         0.540         0.640         0.850         200.83         0.096         9.6         0.20         0.75         0.701         0.225         1.025         71%           MH103         MH107         0.14         0.70         0.10         0.13         5.41         5.701         0.540         0.650         120.251         775         0.080         0.784         0.140         2.260         5.275         0.081         0.784         0.140         2.265         775         0.081         0.784         1.136         28%           0.652         MH117         MH102         0.56         0.76         0.091         7.766         0.041         0.550         1543.64         0.041         7.3         0.30         0.757         0.089         0.400         11.843         42%           MH131         MH102         0.568         0.70         0.41         0.41         83.55         0.095         1.096.5         1.096.5         1.090         1.579         0.20         450         0.127         0.802         0.410         1.539         0.733         8.355         0.071         0.41         0.41         8.455         0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | MH135                                        | MH103                       | 0.80         | 0.75                          | 0.60         | 0.60                   | 83.95                         | 0.140                  |                        |                          |                        | 01010                      | 0.875                      | 200.63                          | 0.140         | 12.0   | 0.15  | 600              | 0.238                                           | 0.841                                         | 0.238                    | 10.238                | 59%    |
| MH103         MH102         0.18         0.70         0.10         0.540         0.648         0.850         129.77         1.388         78.1         0.05         12002-2400         2.890         0.30         1.400         22.086         52%           MH115         0.052         0.13         0.70         0.09         0.19         78.01         0.023         0.79         1.885         0.014         5.1         0.25         375         0.088         0.794         1.140         1.443         47%           OGS2         MH102         0.56         0.70         0.38         0.39         83.55         0.641         6.500         183.54         0.041         7.3         0.30         0.37         0.086         0.794         0.117         11.43         47%           MH131         MH102         0.56         0.70         0.38         0.39         0.39         0.39         0.30         14.48         72%           MH113         MH102         0.68         0.70         0.33         0.33         0.33         0.33         0.33         0.33         0.33         0.33         0.33         0.33         0.33         0.33         0.33         0.33         0.33         0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | MH130                                        | MH103                       | 0.34         | 0.70                          | 0.24         | 0.24                   | 83.95                         | 0.056                  |                        |                          |                        |                            | 0.850                      | 200.63                          | 0.056         | 9.6    | 0.20  | 375              | 0.078                                           | 0.710                                         | 0.225                    | 10.225                | 71%    |
| MH117         MH115         0.14         0.70         0.10         0.10         0.10         0.835         0.023         77.9         0.28         37.5         0.088         0.794         1.636         11.636         20%           OGS2         MH102         -         0.19         77.66         0.041         -         0.850         184.50         0.041         7.3         0.30         37.5         0.088         0.794         1.638         11.638         24%           MH131         MH102         0.58         0.70         0.39         0.39         63.35         0.091         200.61         0.019         27.6         0.088         0.991         200.63         0.091         200         0.20         450         0.127         0.802         0.310         11.638         47%           MH131         MH102         0.58         0.70         0.41         4.80         54.44         0.71         0.48         0.80         200.63         0.091         12.01         1200         4.80         0.10         13.73         52.749         53.749         53.749         53.749         53.749         53.749         53.749         53.749         53.749         53.749         53.749         53.749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | MH103                                        | MH102                       | 0.18         | 0.70                          | 0.13         | 3.41                   | 57.01                         | 0.540                  |                        |                          |                        | 0.848                      | 0.850                      | 129.77                          | 1.388         | 78.1   | 0.05  | 1200x2400        | 2.690                                           | 0.930                                         | 1.400                    | 22.086                | 52%    |
| MH115         OGS2         0.13         0.70         0.90         0.19         77.60         0.041         P         0.850         184.50         0.041         5.1         0.25         37.5         0.088         0.74         0.107         11.743         47%           MH131         MH102         0.56         0.70         0.39         0.39         0.39         0.39         0.39         0.39         0.416         11.833         47%           MH136         MH102         0.56         0.70         0.41         0.41         83.95         0.091         0.850         200.63         0.091         2.0         450         0.127         0.802         0.416         10.416         72%           MH102         MH111         0.47         0.70         0.31         4.80         6.071         0.880         2.0051         10.97         0.802         0.310         16.33         2.2749         50%           MH112         MH111         0.47         0.70         0.35         77.15         0.125         0.880         120.71         6.15         600         0.238         0.841         181.3         13.713         52%           MH110         MH106         0.36         0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | MH117                                        | MH115                       | 0.14         | 0.70                          | 0.10         | 0.10                   | 83.95                         | 0.023                  |                        |                          |                        |                            | 0.850                      | 200.63                          | 0.023         | 77.9   | 0.25  | 375              | 0.088                                           | 0.794                                         | 1.636                    | 11.636                | 26%    |
| OGS2       MH102       U       U       D, 0       77.66       0.041       U       D, 0       183.54       0.041       7.3       0.30       375       0.086       0.869       0.140       11.883       42%         MH136       MH102       0.58       0.70       0.41       0.41       83.95       0.091       0.860       20.63       0.095       149       0.20       450       0.127       0.802       0.310       11.813       42%         MH136       MH102       0.58       0.70       0.41       0.49       54.84       0.71       0.860       20.063       0.095       149       0.20       450       0.127       0.802       0.310       11.813       12.74         MH112       MH111       0.477       0.70       0.33       0.33       63.95       0.077       0.818       0.860       12.013       17.57       0.15       525       0.166       0.769       13.900       11.900       46%         MH111       MH110       M109       0.23       0.70       0.25       0.725       0.125       0.165       0.125       0.15       600       0.238       0.841       1.813       1.731       62%         MH110 <t< th=""><th></th><th>MH115</th><th>OGS2</th><th>0.13</th><th>0.70</th><th>0.09</th><th>0.19</th><th>78.01</th><th>0.041</th><th></th><th></th><th></th><th></th><th>0.850</th><th>184.50</th><th>0.041</th><th>5.1</th><th>0.25</th><th>375</th><th>0.088</th><th>0.794</th><th>0.107</th><th>11.743</th><th>47%</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | MH115                                        | OGS2                        | 0.13         | 0.70                          | 0.09         | 0.19                   | 78.01                         | 0.041                  |                        |                          |                        |                            | 0.850                      | 184.50                          | 0.041         | 5.1    | 0.25  | 375              | 0.088                                           | 0.794                                         | 0.107                    | 11.743                | 47%    |
| MH131       MH102       0.56       0.70       0.39       0.39       8.395       0.091        0.850       20.03       0.091       20.0       450       0.127       0.802       0.416       172%         MH102       MH101       0.58       0.70       0.41       0.490       53.95       0.095       1       0.850       20.83       0.091       1.50       1200x2400       2.60       0.50       1200x2400       2.60       0.500       1200x2400       2.60       0.500       1200x2400       2.60       0.500       1200x2400       2.60       0.50       1200x2400       2.60       0.50       1200x2400       2.60       0.500       1200x2400       2.60       0.500       1200x2400       2.60       0.500       1200x2400       2.60       0.50       1200x2400       2.60       0.500       1200x2400       2.60       0.500       1200x2400       2.60       0.50       1200x2400       2.60       0.52       0.166       0.70       0.33       12.70       0.431       0.79       0.431       0.79       0.431       0.79       0.431       0.79       0.431       0.79       0.431       0.79       0.431       0.79       0.431       0.79       0.431       0.79       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | OGS2                                         | MH102                       |              |                               |              | 0.19                   | 77.66                         | 0.041                  |                        |                          |                        |                            | 0.500                      | 183.54                          | 0.041         | 7.3    | 0.30  | 375              | 0.096                                           | 0.869                                         | 0.140                    | 11.883                | 42%    |
| MH136       MH102       0.58       0.70       0.41       8.39       0.99       0.850       20.08       0.99       14.9       0.20       450       0.127       0.802       0.310       10.310       74%         MH102       MH111       0.411       0.58       0.70       0.41       4.80       54.84       0.731       0.781       0.850       1200.2400       250       0.66       0.769       1.900       0.130       0.740       74%         MH112       MH111       0.47       0.70       0.33       0.38       0.957       0.48       0.850       200.63       0.077       87.7       0.15       620       0.66       0.769       1.900       1.130       64%         MH110       MH109       0.23       0.70       0.16       0.74       71.20       0.148       0       0.16       0.12       0.16       0.238       0.841       0.133       13.713       65%         MH109       MH108       MH107       0.47       0.70       0.33       1.20       0.148       0.850       167.2       0.148       84.4       0.15       600       0.238       0.841       0.450       0.25       0.50       0.431       0.976       1.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | MH131                                        | MH102                       | 0.56         | 0.70                          | 0.39         | 0.39                   | 83.95                         | 0.091                  |                        |                          |                        |                            | 0.850                      | 200.63                          | 0.091         | 20.0   | 0.20  | 450              | 0.127                                           | 0.802                                         | 0.416                    | 10.416                | 72%    |
| MH102       MH101       0.58       0.70       0.41       4.80       54.84       0.73       0       124.31       1.579       92.8       0.05       1200x240       2.690       0.90       1.683       23.749       59%         MH111       MH110       0.47       0.70       0.33       0.33       0.38       0.70       1.65       52.00       0.16       0.160       0.23       0.80       13.713       52%         MH110       MH109       0.23       0.70       0.16       0.74       77.12       0.128       0.850       167.72       0.148       1.55       600       0.238       0.841       1.813       13.713       52%         MH109       MH108       0.33       0.70       0.16       0.74       77.12       0.148       0.850       166.89       0.16       84.4       0.15       750       0.431       0.976       1.400       13.408       62%         MH108       MH107       0.47       0.70       0.33       1.20       67.33       0.24       0.800       149.25       0.50       1.55       0.613       0.612       10.215       43%         Chamber       MH108       0.470       0.70       0.33       1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | MH136                                        | MH102                       | 0.58         | 0.70                          | 0.41         | 0.41                   | 83.95                         | 0.095                  |                        |                          |                        |                            | 0.850                      | 200.63                          | 0.095         | 14.9   | 0.20  | 450              | 0.127                                           | 0.802                                         | 0.310                    | 10.310                | 74%    |
| MH112       MH111       0.47       0.70       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.33       0.16       0.77       0.15       525       0.16       0.769       1.900       14.90         MH10       MH109       0.23       0.70       0.16       0.74       71.72       0.148       0.850       167.72       0.148       12.9       0.15       600       0.238       0.841       1.025       13.968       62%         MH108       MH107       0.47       0.70       0.33       0.12       0.74       71.2       0.148       0.50       155       750       0.431       0.976       1.404       15.09       32%         MH108       MH107       0.470       0.70       0.33       0.13       83.95       0.029       0.650       165.58       0.125       0.50       300       0.068       0.967       0.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | MH102                                        | MH101                       | 0.58         | 0.70                          | 0.41         | 4.80                   | 54.84                         | 0.731                  |                        |                          |                        | 0.848                      | 0.850                      | 124.31                          | 1.579         | 92.8   | 0.05  | 1200x2400        | 2.690                                           | 0.930                                         | 1.663                    | 23.749                | 59%    |
| MH111       MH110       0.36       0.70       0.25       0.58       77.15       0.125       0.15       0.125       0.15       600       0.238       0.841       1.013       13.713       52%         MH10       MH109       0.110       0.23       0.70       0.26       0.74       71.72       0.148       0.850       167.72       0.148       12.15       0.15       600       0.238       0.841       1.025       13.968       62%         MH109       MH108       MH107       0.47       0.70       0.33       1.20       67.38       0.224       0.50       165.84       0.125       750       0.431       0.976       1.204       16.612       52%         Chamber       MH108       0.55       0.70       0.33       1.20       67.38       0.224       0.850       165.34       0.224       70.5       0.15       750       0.431       0.976       1.204       16.612       52%         Chamber       MH106       0.55       0.70       0.33       1.58       64.65       0.294       0.250       149.25       0.224       0.50       149.25       0.50       10.215       43%         MH106       MH106       MH106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | MH112                                        | MH111                       | 0.47         | 0.70                          | 0.33         | 0.33                   | 83.95                         | 0.077                  |                        |                          |                        |                            | 0.850                      | 200.63                          | 0.077         | 87.7   | 0.15  | 525              | 0.166                                           | 0.769                                         | 1.900                    | 11.900                | 46%    |
| MH100       MH109       0.023       0.70       0.16       0.74       71.02       0.148       0       0.148       12.9       0.15       600       0.238       0.847       0.1265       13.968       62%         MH109       MH108       MH107       0.47       0.70       0.33       1.20       67.38       0.224       0.16       0.168.89       0.146       84.4       0.15       750       0.431       0.976       1.204       16.612       52%         Chamber       MH108       0.50       0.25       0.13       0.13       83.95       0.029       0.850       156.34       0.224       70.5       0.15       750       0.431       0.976       1.204       16.612       52%         Chamber       MH107       0.477       0.13       0.33       4.65       0.284       0.55       0.10       825       0.465       0.465       0.465       0.465       0.00       0.665       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465       0.465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | MH111                                        | MH110                       | 0.36         | 0.70                          | 0.25         | 0.58                   | 77.15                         | 0.125                  |                        |                          |                        |                            | 0.850                      | 182.16                          | 0.125         | 91.5   | 0.15  | 600              | 0.238                                           | 0.841                                         | 1.813                    | 13.713                | 52%    |
| MH109       MH108       C       0.74       71.03       0.146       0.046       0.165.84       0.15       750       0.431       0.976       1.400       15.409       34%         MH108       MH107       0.70       0.33       1.20       67.38       0.224       0.850       156.34       0.224       70.5       0.15       750       0.431       0.976       1.240       16.612       52%         Chamber       MH108       0.50       0.25       0.13       0.13       83.95       0.029       0.855       20.63       0.029       1.55       750       0.431       0.976       1.240       16.612       52%         MH107       MH106       0.55       0.70       0.39       1.58       64.65       0.284       0.850       149.25       0.284       65.5       0.10       825       0.454       0.849       0.215       10.215       43%         MH105       MH106       MH105       1.58       61.99       0.272       0.284       0.850       149.25       0.284       65.5       0.10       825       0.454       0.849       0.297       18.165       60%         MH105       MH106       0.283       MH106       0.283 <th< th=""><th></th><th>MH110</th><th>MH109</th><th>0.23</th><th>0.70</th><th>0.16</th><th>0.74</th><th>71.72</th><th>0.148</th><th></th><th></th><th></th><th></th><th>0.850</th><th>167.72</th><th>0.148</th><th>12.9</th><th>0.15</th><th>600</th><th>0.238</th><th>0.841</th><th>0.255</th><th>13.968</th><th>62%</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | MH110                                        | MH109                       | 0.23         | 0.70                          | 0.16         | 0.74                   | 71.72                         | 0.148                  |                        |                          |                        |                            | 0.850                      | 167.72                          | 0.148         | 12.9   | 0.15  | 600              | 0.238                                           | 0.841                                         | 0.255                    | 13.968                | 62%    |
| MH108         MH107         0.47         0.70         0.33         1.20         67.38         0.224         0.850         156.34         0.224         7.05         0.15         750         0.431         0.976         1.204         16.612         52%           Chamber         MH108         0.50         0.25         0.13         0.13         83.95         0.0284         0.825         20.063         0.020         1.06         0.431         0.976         1.204         16.612         52%           MH107         MH106         0.55         0.70         0.39         1.58         64.65         0.284         0.850         149.25         0.284         65.5         0.10         825         0.454         0.849         0.257         18.155         60%           MH106         MH106         0.80         0.70         0.38         0.295         0.500         142.42         0.272         1.01         825         0.454         0.849         0.257         18.155         60%           MH106         MH116         OGS3         0.70         1.78         59.80         0.295         0.500         138.82         0.295         7.2         0.10         825         0.454         0.849 <th0< th=""><th></th><th>MH109</th><th>MH108</th><th>0.47</th><th>0.70</th><th>0.00</th><th>0.74</th><th>71.03</th><th>0.146</th><th></th><th></th><th></th><th></th><th>0.500</th><th>165.89</th><th>0.146</th><th>84.4</th><th>0.15</th><th>750</th><th>0.431</th><th>0.976</th><th>1.440</th><th>15.409</th><th>34%</th></th0<>                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | MH109                                        | MH108                       | 0.47         | 0.70                          | 0.00         | 0.74                   | 71.03                         | 0.146                  |                        |                          |                        |                            | 0.500                      | 165.89                          | 0.146         | 84.4   | 0.15  | 750              | 0.431                                           | 0.976                                         | 1.440                    | 15.409                | 34%    |
| Chamber       WH 106       0.30       0.23       0.13       0.13       0.33       0.029       12.5       0.00       300       0.066       0.997       0.215       10.215       143%         MH 107       MH 106       0.55       0.70       0.39       1.58       64.65       0.29       149.55       0.20       300       305       0.065       0.089       0.215       1.215       1.68         MH 106       MH 105       MH 105       MH 105       MH 106       0.280       0.70       0.20       1.78       61.49       0.304       0.850       142.42       0.272       13.1       0.10       825       0.454       0.849       0.257       1.8155       60%         MH 105       MH 116       0.28       0.70       0.20       1.78       61.49       0.304       0.850       141.15       0.304       46.2       0.10       825       0.454       0.849       0.215       1.902       67%         MH 105       MH 116       0.280       0.70       1.78       59.54       0.295       0.295       7.2       0.10       825       0.454       0.849       0.141       19.023       65%         GSite       MH 114       0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | MH108                                        | MH107                       | 0.47         | 0.70                          | 0.33         | 1.20                   | 67.38                         | 0.224                  |                        |                          |                        |                            | 0.850                      | 156.34                          | 0.224         | 70.5   | 0.15  | 750              | 0.431                                           | 0.976                                         | 1.204                    | 16.612                | 52%    |
| Million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | MU107                                        | MH106                       | 0.50         | 0.25                          | 0.13         | 0.13                   | 64.65                         | 0.029                  |                        |                          |                        |                            | 0.025                      | 200.03                          | 0.029         | 12.5   | 0.50  | 300              | 0.068                                           | 0.967                                         | 0.215                    | 17,900                | 43%    |
| Minus       Minus <th< th=""><th> </th><th>MH106</th><th>MH105</th><th>0.55</th><th>0.70</th><th>0.59</th><th>1.50</th><th>61.00</th><th>0.204</th><th></th><th></th><th></th><th></th><th>0.000</th><th>143.23</th><th>0.204</th><th>13.1</th><th>0.10</th><th>825</th><th>0.454</th><th>0.049</th><th>0.257</th><th>18 155</th><th>60%</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | MH106                                        | MH105                       | 0.55         | 0.70                          | 0.59         | 1.50                   | 61.00                         | 0.204                  |                        |                          |                        |                            | 0.000                      | 143.23                          | 0.204         | 13.1   | 0.10  | 825              | 0.454                                           | 0.049                                         | 0.257                    | 18 155                | 60%    |
| Minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | MH105                                        | MH116                       | 0.28         | 0.70                          | 0.20         | 1.00                   | 61.99                         | 0.304                  |                        |                          |                        |                            | 0.500                      | 141 15                          | 0.304         | 46.2   | 0.10  | 825              | 0.454                                           | 0.049                                         | 0.207                    | 19.062                | 67%    |
| Mint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | MH116                                        | 0683                        | 0.20         | 5.70                          | 0.20         | 1 78                   | 59.80                         | 0.295                  |                        |                          |                        |                            | 0.500                      | 136.82                          | 0.295         | 72     | 0.10  | 825              | 0.454                                           | 0.849                                         | 0.141                    | 19,203                | 65%    |
| Site       MH14       0.88       0.75       0.66       0.66       83.95       0.154       0.875       200.63       0.154       10.0       0.60       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161       0.161<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | OGS3                                         | MH101                       | 1            | 0.70                          |              | 1.78                   | 59.54                         | 0.294                  |                        |                          |                        |                            | 0.850                      | 136.17                          | 0.294         | 8.9    | 0.10  | 825              | 0.454                                           | 0.849                                         | 0.175                    | 19.378                | 65%    |
| MH14         MH18         0.40         0.70         0.28         0.94         83.53         0.218         0.850         199.66         0.218         100         0.60         525         0.333         1.539         1.093         11.201         66%           MH18         OGS4         0.14         0.70         0.28         0.94         83.53         0.218         0.850         199.46         0.218         100.9         0.60         525         0.333         1.539         1.093         11.201         66%           MH18         OGS4         0.14         0.70         0.10         1.04         79.50         0.229         58.9         0.30         600         0.336         1.189         0.825         12.026         68%           OGS4         MH101          1.04         76.74         0.221         0.500         181.06         0.221         13.3         0.15         675         0.325         0.910         0.244         12.270         68%           MH101         MH100          7.61         52.50         1.110         0.848         0.500         118.45         1.959         32.5         0.05         1200x2400         2.690         0.930         0.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | Site                                         | MH114                       | 0.88         | 0.75                          | 0.66         | 0.66                   | 83.95                         | 0.154                  |                        |                          |                        |                            | 0,875                      | 200.63                          | 0.154         | 10.0   | 0.50  | 600              | 0.434                                           | 1,536                                         | 0.109                    | 10,109                | 35%    |
| MH18         OGS4         0.14         0.70         0.10         1.04         76.74         0.229         188.9         0.229         58.9         0.30         600         0.336         1.189         0.825         12.026         68%           OGS4         MH10         1.04         76.74         0.221         0.848         0.500         188.49         0.30         600         0.336         1.189         0.825         12.026         68%           MH101         MH100         7.61         52.50         1.10         0.848         0.500         118.45         1.959         32.5         0.05         1200x2400         2.690         0.930         0.583         24.332         73%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | MH114                                        | MH118                       | 0.40         | 0.70                          | 0.28         | 0.94                   | 83.53                         | 0.218                  |                        |                          |                        |                            | 0,850                      | 199.46                          | 0.218         | 100.9  | 0.60  | 525              | 0,333                                           | 1,539                                         | 1.093                    | 11,201                | 66%    |
| OGS4         MH101         1.04         76.74         0.221         181.06         0.221         13.3         0.15         675         0.325         0.910         0.244         12.270         68%           MH101         MH100         7.61         52.50         1.10         0.848         0.500         118.45         1.959         32.5         0.05         1200x2400         2.690         0.930         0.583         24.332         73%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | MH118                                        | OGS4                        | 0.14         | 0.70                          | 0.10         | 1.04                   | 79.50                         | 0.229                  | 1                      |                          | 1                      | 1                          | 0.850                      | 188.49                          | 0.229         | 58.9   | 0.30  | 600              | 0.336                                           | 1.189                                         | 0.825                    | 12.026                | 68%    |
| MH101 MH100 7.61 52.50 1.110 0.848 0.500 118.45 1.959 32.5 0.05 1200x2400 2.690 0.930 0.583 24.332 73%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | OGS4                                         | MH101                       |              |                               |              | 1.04                   | 76.74                         | 0.221                  |                        |                          |                        |                            | 0.500                      | 181.06                          | 0.221         | 13.3   | 0.15  | 675              | 0.325                                           | 0.910                                         | 0.244                    | 12.270                | 68%    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    | MH101                                        | MH100                       |              |                               |              | 7.61                   | 52.50                         | 1.110                  |                        |                          | 1                      | 0.848                      | 0.500                      | 118.45                          | 1.959         | 32.5   | 0.05  | 1200x2400        | 2.690                                           | 0.930                                         | 0.583                    | 24.332                | 73%    |







| City:       Niagara Falls       Project Number:       221377         Nearest Rainfall Station:       ST CATHARINES AP       Designer Name:       Greg Rapp         Climate Station Id:       6137287       Designer Company:       Husson Limited         Years of Rainfall Data:       33       Designer Famil:       greg.rapp@husson.ca         Years of Rainfall Data:       33       Designer Phone:       416-788-1414         Site Name:       103       EOR Name:       EOR Company:       EOR Company:         Drainage Area (ha):       3.0       EOR Company:       EOR Phone:       EOR Phone:         Windperviousness:       65.00       EOR Phone:       EOR Phone:       EOR Phone:         Particle Size Distribution:       CA ETV       CA ETV       Target TSS Removal (%):       60.0       Sizing Summary         Required Water Quality Runoff Volume Capture (%):       90.00       Sizing Summary       Sizing Summary         Estimated Water Quality Flow Rate (L/s):       64.37       Yes       Stormceptor       TSS Removal (%)         Oil / Fuel Spill Risk Site?       Yes       Yes       Stormceptor       TSS Removal Provided (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ity:       Niagara Fails       Project Number:       221377         Wearest Rainfall Station:       ST CATHARINES AP       Designer Name:       Greg Rapp         Limate Station Id:       6137287       Designer Company:       Husson Limited         Greg Rapp@husson.ca       Designer Email:       greg.rapp@husson.ca         Designer Area (ha):       3.0       GEOR Rapp:       EOR Company:       Husson Limited         Trainage Area (ha):       3.0       EOR Company:       EOR Company: | Province:                     | Ontario                 |       | Project Nan | ne:         | Willoughby       |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|-------|-------------|-------------|------------------|----------------------------|
| Nearest Rainfall Station:       ST CATHARINES AP       Designer Name:       Greg Rapp         Climate Station Id:       6137287       Designer Company:       Husson Limited         Years of Rainfall Data:       33       Designer Phone:       416-788-1414         Site Name:       103       EOR Company:       Using Phone:       416-788-1414         Drainage Area (ha):       3.0       EOR Company:       Using Phone:       EOR Company:         Wimperviousness:       65.00       EOR Phone:       EOR Phone:       EOR Phone:         Particle Size Distribution:       CA ETV       EOR Phone:       Net Annual Sediment (TSS) Load Reduction Sizing Summary         Required Water Quality Runoff Volume Capture (%):       90.00       Sizing Summary       Sizing Summary         Sitimated Water Quality Flow Rate (L/s):       64.37       Yes       Stormceptor       TSS Removal (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vearest Rainfall Station:       ST CATHARINES AP         Designer Name:       Greg Rapp         Limate Station Id:       6137287         'ears of Rainfall Data:       33         ite Name:       103         brainage Area (ha):       3.0         ite Name:       50.0         Runoff Coefficient 'c':       0.69         article Size Distribution:       CA ETV         Runoff Coefficient 'c':       0.69         article Size Distribution:       CA ETV         rarticle Size Distribution:       CA ETV         equired Water Quality Runoff Volume Capture (%):       90.00         stimated Water Quality Flow Rate (L/s):       64.37         Nil / Fuel Spill Risk Site?       Yes         pstream Flow Control?       No         eak Conveyance (maximum) Flow Rate (L/s):       1641         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Volume (L/yr):       1334         EFO10       59         EFO12       62         Recommended Stormceptor EFO Model:       EFO12         EFO12       62                                                                                                                                                                                                                                                                                                        | City:                         | Niagara Falls           |       | Project Nur | nber:       | 221377           |                            |
| Climate Station Id:       6137287       Designer Company:       Husson Limited         Years of Rainfall Data:       33       Designer Email:       greg.rapp@husson.ca         Site Name:       103       Designer Phone:       416-788-1414         Drainage Area (ha):       3.0       EOR Name:       EOR Company:         % Imperviousness:       65.00       EOR Email:       EOR Phone:         Particle Size Distribution:       CA ETV       CA ETV       Target TSS Removal (%):       60.0         Required Water Quality Runoff Volume Capture (%):       90.00       90.00       Sizing Summary         Estimated Water Quality Flow Rate (L/s):       64.37       Stormceptor       TSS Remove Model         Oil / Fuel Spill Risk Site?       Yes       Yes       Stormceptor       TSS Remove Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ilimate Station Id:       6137287         ears of Rainfall Data:       33         ite Name:       103         besigner Email:       greg.rapp@husson.ca         Designer Phone:       416-788-1414         EOR Name:       EOR Name:         ite Name:       0.0         fungerviousness:       65.00         Runoff Coefficient 'c':       0.69         article Size Distribution:       CA ETV         arget TSS Removal (%):       60.0         equired Water Quality Runoff Volume Capture (%):       90.00         stimated Water Quality Flow Rate (L/s):       64.37         Nil / Fuel Spill Risk Site?       Yes         pstream Flow Control?       No         eak Conveyance (maximum) Flow Rate (L/s):       1641         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Volume (L/yr):       1334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nearest Rainfall Station:     | ST CATHARINES AP        |       | Designer Na | me:         | Greg Rapp        |                            |
| Years of Rainfall Data:       33       Designer Email:       greg.rapp@husson.ca         Site Name:       103       Designer Phone:       416-788-1414         Drainage Area (ha):       3.0       EOR Name:       EOR Company:         % Imperviousness:       65.00       EOR Email:       EOR Phone:         Runoff Coefficient 'c':       0.69       EOR Phone:       Met Annual Sediment (TSS) Load Reduction Sizing Summary         Particle Size Distribution:       CA ETV       Particle Size Distribution:       CA ETV       Stormceptor         Target TSS Removal (%):       60.0       90.00       Stormceptor       Stormceptor       TSS Removal (%):         Estimated Water Quality Runoff Volume Capture (%):       90.00       Stormceptor       TSS Removal (%):       Stormceptor       TSS Removal (%):         Oil / Fuel Spill Risk Site?       Yes       Yes       Stormceptor       TSS Removal (%):       28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rears of Rainfall Data:       33         idears of Rainfall Data:       103                                                                                                                                                                                                                           | Climate Station Id:           | 6137287                 |       | Designer Co | mpany:      | Husson Limited   |                            |
| Designer Phone: 416-788-1414   Site Name: 103   Drainage Area (ha): 3.0   Drainage Area (ha): 3.0   Wimperviousness: 65.00   Runoff Coefficient 'c': 0.69     Particle Size Distribution: CA ETV   Farget TSS Removal (%): 60.0   Required Water Quality Runoff Volume Capture (%): 90.00   Stimated Water Quality Flow Rate (L/s): 64.37   Dil / Fuel Spill Risk Site? Yes     Designer Phone: 416-788-1414   EOR Name: EOR Company: EOR Email: EOR Phone: EOR Ph | Designer Phone:       416-788-1414         Designer Phone:       416-788-1414         EOR Name:       EOR Name:         EOR Company:       EOR Company:         EOR Email:       EOR Phone:         article Size Distribution:       CA ETV         arget TSS Removal (%):       60.0         required Water Quality Runoff Volume Capture (%):       90.00         stimated Water Quality Flow Rate (L/s):       64.37         Nil / Fuel Spill Risk Site?       Yes         pstream Flow Control?       No         eak Conveyance (maximum) Flow Rate (L/s):       200         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Load (kg/yr):       1334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Years of Rainfall Data:       | 33                      |       | Designer En | nail:       | greg.rapp@husson | .ca                        |
| Site Name:       103         Drainage Area (ha):       3.0         Drainage Area (ha):       3.0         & Imperviousness:       65.00         Runoff Coefficient 'c':       0.69         Particle Size Distribution:       CA ETV         Target TSS Removal (%):       60.0         Required Water Quality Runoff Volume Capture (%):       90.00         Estimated Water Quality Flow Rate (L/s):       64.37         Dil / Fuel Spill Risk Site?       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iite Name:       103         Orainage Area (ha):       3.0         6 Imperviousness:       65.00         Runoff Coefficient 'c':       0.69         article Size Distribution:       CA ETV         arget TSS Removal (%):       60.0         sequired Water Quality Runoff Volume Capture (%):       90.00         stimated Water Quality Flow Rate (L/s):       64.37         bil / Fuel Spill Risk Site?       Yes         pstream Flow Control?       No         eak Conveyance (maximum) Flow Rate (L/s):       1641         filuent TSS Concentration (mg/L):       200         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Load (kg/yr):       1641         EFO10       59         EFO12       62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                         |       | Designer Ph | one:        | 416-788-1414     |                            |
| Drainage Area (ha):       3.0         Burnerviousness:       65.00         Runoff Coefficient 'c':       0.69         Particle Size Distribution:       CA ETV         Farget TSS Removal (%):       60.0         Required Water Quality Runoff Volume Capture (%):       90.00         Estimated Water Quality Flow Rate (L/s):       64.37         Dil / Fuel Spill Risk Site?       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drainage Area (ha):       3.0         6 Imperviousness:       65.00         Runoff Coefficient 'c':       0.69         article Size Distribution:       CA ETV         arget TSS Removal (%):       60.0         sequired Water Quality Runoff Volume Capture (%):       90.00         stimated Water Quality Flow Rate (L/s):       64.37         Nil / Fuel Spill Risk Site?       Yes         Ipstream Flow Control?       No         eak Conveyance (maximum) Flow Rate (L/s):       1641         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Volume (L/yr):       1334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Site Name:                    | 103                     |       | EOR Name:   |             |                  |                            |
| % Imperviousness:       65.00         Runoff Coefficient 'c':       0.69         Particle Size Distribution:       CA ETV         Target TSS Removal (%):       60.0         Required Water Quality Runoff Volume Capture (%):       90.00         Estimated Water Quality Flow Rate (L/s):       64.37         Dil / Fuel Spill Risk Site?       Yes         EEQUIPACE       FEO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 Imperviousness:       65.00         Runoff Coefficient 'c':       0.69         article Size Distribution:       CA ETV         arget TSS Removal (%):       60.0         sequired Water Quality Runoff Volume Capture (%):       90.00         stimated Water Quality Flow Rate (L/s):       64.37         Nil / Fuel Spill Risk Site?       Yes         Ipstream Flow Control?       No         eak Conveyance (maximum) Flow Rate (L/s):       200         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Volume (L/yr):       1334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drainage Area (ha):           | 3.0                     |       | EOR Compa   | ny:         |                  |                            |
| Runoff Coefficient 'c':       0.69         Particle Size Distribution:       CA ETV         Target TSS Removal (%):       60.0         Required Water Quality Runoff Volume Capture (%):       90.00         Estimated Water Quality Flow Rate (L/s):       64.37         Dil / Fuel Spill Risk Site?       Yes         EEOR Phone:       EEOR Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bunoff Coefficient 'c': 0.69         Bunoff Coefficient 'c': 0.69         Particle Size Distribution: CA ETV         arget TSS Removal (%):       60.0         stimated Water Quality Runoff Volume Capture (%):       90.00         stimated Water Quality Flow Rate (L/s):       64.37         bil / Fuel Spill Risk Site?       Yes         Ipstream Flow Control?       No         eak Conveyance (maximum) Flow Rate (L/s):       1641         offluent TSS Concentration (mg/L):       200         stimated Average Annual Sediment Volume (L/yr):       1334         Recommended Stormceptor EFO Model: EFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | % Imperviousness:             | 65.00                   |       | EOR Email:  |             |                  |                            |
| Particle Size Distribution:       CA ETV         Farget TSS Removal (%):       60.0         Required Water Quality Runoff Volume Capture (%):       90.00         Estimated Water Quality Flow Rate (L/s):       64.37         Dil / Fuel Spill Risk Site?       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Particle Size Distribution:       CA ETV         arget TSS Removal (%):       60.0         sequired Water Quality Runoff Volume Capture (%):       90.00         stimated Water Quality Flow Rate (L/s):       64.37         Dil / Fuel Spill Risk Site?       Yes         Ipstream Flow Control?       No         eak Conveyance (maximum) Flow Rate (L/s):       200         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Volume (L/yr):       1334         Recommended Stormceptor EFO Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Runoff C                      | oefficient 'c': 0.69    | -     | EOK Phone:  |             |                  |                            |
| Target TSS Removal (%):       60.0         Required Water Quality Runoff Volume Capture (%):       90.00         Estimated Water Quality Flow Rate (L/s):       64.37         Dil / Fuel Spill Risk Site?       Yes         Estimated Water Quality Runoff Volume Capture (%):       90.00         Estimated Water Quality Flow Rate (L/s):       64.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | arget TSS Removal (%):       60.0         iequired Water Quality Runoff Volume Capture (%):       90.00         stimated Water Quality Flow Rate (L/s):       64.37         Dil / Fuel Spill Risk Site?       Yes         Ipstream Flow Control?       No         eak Conveyance (maximum) Flow Rate (L/s):       1641         tifuent TSS Concentration (mg/L):       200         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Volume (L/yr):       1334         Recommended Stormceptor EFO Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Particle Size Distribution    | CA FTV                  |       |             |             |                  |                            |
| Target TSS Removal (%):       90.00         Required Water Quality Runoff Volume Capture (%):       90.00         Estimated Water Quality Flow Rate (L/s):       64.37         Oil / Fuel Spill Risk Site?       Yes         Estimated Water Quality Flow Rate (L/s):       64.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | anget 135 Removal (%):       000         bequired Water Quality Runoff Volume Capture (%):       90.00         stimated Water Quality Flow Rate (L/s):       64.37         bil / Fuel Spill Risk Site?       Yes         Upstream Flow Control?       No         reak Conveyance (maximum) Flow Rate (L/s):       1641         offluent TSS Concentration (mg/L):       200         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Volume (L/yr):       1334         Recommended Stormceptor EFO Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Target TSS Demoval (%):       |                         |       |             |             | (TSS) Lood       | Poduction                  |
| Required Water Quality Runoff Volume Capture (%):     90.00       Estimated Water Quality Flow Rate (L/s):     64.37       Oil / Fuel Spill Risk Site?     Yes         FEO4     28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dequired Water Quality Runoff Volume Capture (%):       90.00         istimated Water Quality Flow Rate (L/s):       64.37         Dil / Fuel Spill Risk Site?       Yes         Ipstream Flow Control?       No         reak Conveyance (maximum) Flow Rate (L/s):       EFO4         Influent TSS Concentration (mg/L):       200         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Volume (L/yr):       1334         EFO12       62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                         |       |             |             | Sizing S         | ummary                     |
| Dil / Fuel Spill Risk Site?     Yes     Stormceptor     TSS Remov       FEO4     28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stormceptor       ISS Removal         Dil / Fuel Spill Risk Site?       Yes         Ipstream Flow Control?       No         reak Conveyance (maximum) Flow Rate (L/s):       EFO4         Influent TSS Concentration (mg/L):       200         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Volume (L/yr):       1334         EFO10       59         EFO12       62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Required Water Quality Runc   | off Volume Capture (%): | 90.00 |             |             | Charmanantan     |                            |
| Oil / Fuel Spill Risk Site?     Yes     Notice (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dil / Fuel Spill Risk Site?       Yes         Ipstream Flow Control?       No         reak Conveyance (maximum) Flow Rate (L/s):       EFO4         Influent TSS Concentration (mg/L):       200         stimated Average Annual Sediment Load (kg/yr):       1641         stimated Average Annual Sediment Volume (L/yr):       1334         EFO10       59         EFO12       62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | v Rate (L/S):           | 64.37 |             |             | Stormceptor      | Provided (%)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ipstream Flow Control?       No       EFO4       38         reak Conveyance (maximum) Flow Rate (L/s):       EFO6       48         influent TSS Concentration (mg/L):       200       EFO8       54         stimated Average Annual Sediment Load (kg/yr):       1641       EFO10       59         stimated Average Annual Sediment Volume (L/yr):       1334       EFO12       62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dil / Fuel Spill Risk Site?   |                         | Yes   |             |             |                  | 20                         |
| Jpstream Flow Control? No EFO4 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Peak Conveyance (maximum) Flow Rate (L/s):       EFO6       48         Influent TSS Concentration (mg/L):       200       EFO8       54         stimated Average Annual Sediment Load (kg/yr):       1641       EFO10       59         stimated Average Annual Sediment Volume (L/yr):       1334       EFO12       62         Recommended Stormceptor EFO Model:       EFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jpstream Flow Control?        |                         | No    |             |             | EF04             | 38                         |
| Peak Conveyance (maximum) Flow Rate (L/s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Influent TSS Concentration (mg/L):       200       EFO8       54         stimated Average Annual Sediment Load (kg/yr):       1641       EFO10       59         stimated Average Annual Sediment Volume (L/yr):       1334       EFO12       62         Recommended Stormceptor EFO Model: EFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Peak Conveyance (maximum)     | ) Flow Rate (L/s):      |       |             |             | EFO6             | 48                         |
| Influent TSS Concentration (mg/L): 200 EFO8 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | istimated Average Annual Sediment Load (kg/yr):       1641       EFO10       59         istimated Average Annual Sediment Volume (L/yr):       1334       EFO12       62         Recommended Stormceptor EFO Model: EFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Influent TSS Concentration (n | ng/L):                  | 200   |             |             | EFO8             | 54                         |
| Estimated Average Annual Sediment Load (kg/yr): 1641 EFO10 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Istimated Average Annual Sediment Volume (L/yr):     1334     EFO12     62       Recommended Stormceptor EFO Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Estimated Average Annual Se   | diment Load (kg/yr):    | 1641  |             |             | EFO10            | 59                         |
| Estimated Average Annual Sediment Volume (L/yr): 1334 EFO12 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Recommended Stormceptor EFO Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Estimated Average Annual Se   | diment Volume (L/yr):   | 1334  |             |             | EFO12            | 62                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                         | 1     | Nater Oua   | lity Runoff | Volume Capt      | ure (%): <mark>&gt;</mark> |





### THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

### PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

### PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

| Particle  | Percent Less | Particle Size | Dercent |
|-----------|--------------|---------------|---------|
| Size (µm) | Than         | Fraction (µm) | Percent |
| 1000      | 100          | 500-1000      | 5       |
| 500       | 95           | 250-500       | 5       |
| 250       | 90           | 150-250       | 15      |
| 150       | 75           | 100-150       | 15      |
| 100       | 60           | 75-100        | 10      |
| 75        | 50           | 50-75         | 5       |
| 50        | 45           | 20-50         | 10      |
| 20        | 35           | 8-20          | 15      |
| 8         | 20           | 5-8           | 10      |
| 5         | 10           | 2-5           | 5       |
| 2         | 5            | <2            | 5       |







| Rainfall<br>Intensity<br>(mm / hr) | Percent<br>Rainfall<br>Volume (%) | Cumulative<br>Rainfall Volume<br>(%) | Flow Rate<br>(L/s) | Flow Rate<br>(L/min) | Surface<br>Loading Rate<br>(L/min/m²) | Removal<br>Efficiency<br>(%) | Incremental<br>Removal (%) | Cumulative<br>Removal<br>(%) |
|------------------------------------|-----------------------------------|--------------------------------------|--------------------|----------------------|---------------------------------------|------------------------------|----------------------------|------------------------------|
| 0.50                               | 9.2                               | 9.2                                  | 2.88               | 173.0                | 16.0                                  | 70                           | 6.5                        | 6.5                          |
| 1.00                               | 20.5                              | 29.7                                 | 5.75               | 345.0                | 33.0                                  | 70                           | 14.4                       | 20.9                         |
| 2.00                               | 16.5                              | 46.2                                 | 11.51              | 691.0                | 66.0                                  | 67                           | 11.1                       | 32.0                         |
| 3.00                               | 11.3                              | 57.5                                 | 17.26              | 1036.0               | 99.0                                  | 63                           | 7.2                        | 39.2                         |
| 4.00                               | 9.1                               | 66.7                                 | 23.02              | 1381.0               | 132.0                                 | 60                           | 5.4                        | 44.6                         |
| 5.00                               | 5.5                               | 72.2                                 | 28.77              | 1726.0               | 164.0                                 | 57                           | 3.2                        | 47.8                         |
| 6.00                               | 4.5                               | 76.7                                 | 34.53              | 2072.0               | 197.0                                 | 55                           | 2.5                        | 50.3                         |
| 7.00                               | 4.2                               | 80.9                                 | 40.28              | 2417.0               | 230.0                                 | 53                           | 2.3                        | 52.5                         |
| 8.00                               | 3.5                               | 84.4                                 | 46.04              | 2762.0               | 263.0                                 | 52                           | 1.8                        | 54.3                         |
| 9.00                               | 2.0                               | 86.5                                 | 51.79              | 3107.0               | 296.0                                 | 51                           | 1.1                        | 55.4                         |
| 10.00                              | 1.5                               | 88.0                                 | 57.55              | 3453.0               | 329.0                                 | 50                           | 0.7                        | 56.1                         |
| 11.00                              | 1.8                               | 89.8                                 | 63.30              | 3798.0               | 362.0                                 | 49                           | 0.9                        | 57.0                         |
| 12.00                              | 1.1                               | 90.9                                 | 69.06              | 4143.0               | 395.0                                 | 48                           | 0.5                        | 57.6                         |
| 13.00                              | 1.1                               | 92.0                                 | 74.81              | 4489.0               | 427.0                                 | 47                           | 0.5                        | 58.1                         |
| 14.00                              | 1.4                               | 93.4                                 | 80.56              | 4834.0               | 460.0                                 | 46                           | 0.7                        | 58.7                         |
| 15.00                              | 0.8                               | 94.2                                 | 86.32              | 5179.0               | 493.0                                 | 45                           | 0.4                        | 59.1                         |
| 16.00                              | 0.6                               | 94.8                                 | 92.07              | 5524.0               | 526.0                                 | 44                           | 0.3                        | 59.4                         |
| 17.00                              | 0.5                               | 95.3                                 | 97.83              | 5870.0               | 559.0                                 | 43                           | 0.2                        | 59.6                         |
| 18.00                              | 0.3                               | 95.6                                 | 103.58             | 6215.0               | 592.0                                 | 42                           | 0.1                        | 59.7                         |
| 19.00                              | 0.2                               | 95.9                                 | 109.34             | 6560.0               | 625.0                                 | 42                           | 0.1                        | 59.8                         |
| 20.00                              | 0.2                               | 96.1                                 | 115.09             | 6906.0               | 658.0                                 | 42                           | 0.1                        | 59.9                         |
| 21.00                              | 0.5                               | 96.6                                 | 120.85             | 7251.0               | 691.0                                 | 42                           | 0.2                        | 60.1                         |
| 22.00                              | 0.4                               | 97.0                                 | 126.60             | 7596.0               | 723.0                                 | 41                           | 0.2                        | 60.3                         |
| 23.00                              | 0.3                               | 97.3                                 | 132.36             | 7941.0               | 756.0                                 | 41                           | 0.1                        | 60.4                         |
| 24.00                              | 0.0                               | 97.3                                 | 138.11             | 8287.0               | 789.0                                 | 41                           | 0.0                        | 60.4                         |
| 25.00                              | 0.2                               | 97.4                                 | 143.87             | 8632.0               | 822.0                                 | 41                           | 0.1                        | 60.5                         |
| 30.00                              | 1.6                               | 99.1                                 | 172.64             | 10358.0              | 987.0                                 | 40                           | 0.7                        | 61.1                         |
| 35.00                              | 0.6                               | 99.7                                 | 201.41             | 12085.0              | 1151.0                                | 38                           | 0.2                        | 61.4                         |
| 40.00                              | 0.0                               | 99.7                                 | 230.18             | 13811.0              | 1315.0                                | 35                           | 0.0                        | 61.4                         |
| 45.00                              | 0.3                               | 100.0                                | 258.96             | 15537.0              | 1480.0                                | 32                           | 0.1                        | 61.5                         |
|                                    |                                   |                                      | Es                 | timated Ne           | t Annual Sedim                        | ent (TSS) Loa                | d Reduction =              | 61 %                         |

Climate Station ID: 6137287 Years of Rainfall Data: 33



# Stormceptor<sup>®</sup>

# Stormceptor<sup>®</sup>EF Sizing Report









| Maximum Pipe Diameter / Peak Conveyance |         |          |                                   |                   |                 |                  |                  |                  |                  |  |  |  |
|-----------------------------------------|---------|----------|-----------------------------------|-------------------|-----------------|------------------|------------------|------------------|------------------|--|--|--|
| Stormceptor<br>EF / EFO                 | Model D | Diameter | Min Angle Inlet /<br>Outlet Pipes | Max Inle<br>Diame | et Pipe<br>eter | Max Out<br>Diame | let Pipe<br>eter | Peak Cor<br>Flow | nveyance<br>Rate |  |  |  |
|                                         | (m)     | (ft)     |                                   | (mm)              | (in)            | (mm)             | (in)             | (L/s)            | (cfs)            |  |  |  |
| EF4 / EFO4                              | 1.2     | 4        | 90                                | 609               | 24              | 609              | 24               | 425              | 15               |  |  |  |
| EF6 / EFO6                              | 1.8     | 6        | 90                                | 914               | 36              | 914              | 36               | 990              | 35               |  |  |  |
| EF8 / EFO8                              | 2.4     | 8        | 90                                | 1219              | 48              | 1219             | 48               | 1700             | 60               |  |  |  |
| EF10 / EFO10                            | 3.0     | 10       | 90                                | 1828              | 72              | 1828             | 72               | 2830             | 100              |  |  |  |
| EF12 / EF012                            | 3.6     | 12       | 90                                | 1828              | 72              | 1828             | 72               | 2830             | 100              |  |  |  |

### SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

### **DESIGN FLEXIBILITY**

► Stormceptor<sup>®</sup> EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

### **OIL CAPTURE AND RETENTION**

► While Stormceptor<sup>®</sup> EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor<sup>®</sup> EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.











### **INLET-TO-OUTLET DROP**

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

- $0^{\circ}$  45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.
- 45° 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

### HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

| Stormceptor<br>EF / EFO | Model<br>Diameter |      | Depth (Outlet<br>Pipe Invert to<br>Sump Floor) |      | Oil Volume |       | Recommended<br>Sediment<br>Maintenance Depth * |      | Maximum<br>Sediment Volume * |       | Maximum<br>Sediment Mass ** |        |
|-------------------------|-------------------|------|------------------------------------------------|------|------------|-------|------------------------------------------------|------|------------------------------|-------|-----------------------------|--------|
|                         | (m)               | (ft) | (m)                                            | (ft) | (L)        | (Gal) | (mm)                                           | (in) | (L)                          | (ft³) | (kg)                        | (lb)   |
| EF4 / EFO4              | 1.2               | 4    | 1.52                                           | 5.0  | 265        | 70    | 203                                            | 8    | 1190                         | 42    | 1904                        | 5250   |
| EF6 / EFO6              | 1.8               | 6    | 1.93                                           | 6.3  | 610        | 160   | 305                                            | 12   | 3470                         | 123   | 5552                        | 15375  |
| EF8 / EFO8              | 2.4               | 8    | 2.59                                           | 8.5  | 1070       | 280   | 610                                            | 24   | 8780                         | 310   | 14048                       | 38750  |
| EF10 / EFO10            | 3.0               | 10   | 3.25                                           | 10.7 | 1670       | 440   | 610                                            | 24   | 17790                        | 628   | 28464                       | 78500  |
| EF12 / EFO12            | 3.6               | 12   | 3.89                                           | 12.8 | 2475       | 655   | 610                                            | 24   | 31220                        | 1103  | 49952                       | 137875 |

### **Pollutant Capacity**

\*Increased sump depth may be added to increase sediment storage capacity \*\* Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft<sup>3</sup>)

| Feature                                           | Benefit                                 | Feature Appeals To                       |  |  |
|---------------------------------------------------|-----------------------------------------|------------------------------------------|--|--|
| Patent-pending enhanced flow treatment            | Superior, verified third-party          | Regulator, Specifying & Design Engineer  |  |  |
| Third-party verified light liquid capture         | Proven performance for fuel/oil hotspot | Regulator, Specifying & Design Engineer, |  |  |
| and retention for EFO version                     | locations                               | Site Owner                               |  |  |
| Functions as bend, junction or inlet<br>structure | Design flexibility                      | Specifying & Design Engineer             |  |  |
| Minimal drop between inlet and outlet             | Site installation ease                  | Contractor                               |  |  |
| Large diameter outlet riser for inspection        | Easy maintenance access from grade      | Maintenance Contractor & Site Owner      |  |  |

### STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

### STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef







| Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results<br>Stormceptor® EFO |                  |                   |                  |                   |                  |                   |                  |  |
|----------------------------------------------------------------------------------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|--|
| SLR<br>(L/min/m²)                                                                                  | TSS %<br>REMOVAL | SLR<br>(L/min/m²) | TSS %<br>REMOVAL | SLR<br>(L/min/m²) | TSS %<br>REMOVAL | SLR<br>(L/min/m²) | TSS %<br>REMOVAL |  |
| 1                                                                                                  | 70               | 660               | 42               | 1320              | 35               | 1980              | 24               |  |
| 30                                                                                                 | 70               | 690               | 42               | 1350              | 35               | 2010              | 24               |  |
| 60                                                                                                 | 67               | 720               | 41               | 1380              | 34               | 2040              | 23               |  |
| 90                                                                                                 | 63               | 750               | 41               | 1410              | 34               | 2070              | 23               |  |
| 120                                                                                                | 61               | 780               | 41               | 1440              | 33               | 2100              | 23               |  |
| 150                                                                                                | 58               | 810               | 41               | 1470              | 32               | 2130              | 22               |  |
| 180                                                                                                | 56               | 840               | 41               | 1500              | 32               | 2160              | 22               |  |
| 210                                                                                                | 54               | 870               | 41               | 1530              | 31               | 2190              | 22               |  |
| 240                                                                                                | 53               | 900               | 41               | 1560              | 31               | 2220              | 21               |  |
| 270                                                                                                | 52               | 930               | 40               | 1590              | 30               | 2250              | 21               |  |
| 300                                                                                                | 51               | 960               | 40               | 1620              | 29               | 2280              | 21               |  |
| 330                                                                                                | 50               | 990               | 40               | 1650              | 29               | 2310              | 21               |  |
| 360                                                                                                | 49               | 1020              | 40               | 1680              | 28               | 2340              | 20               |  |
| 390                                                                                                | 48               | 1050              | 39               | 1710              | 28               | 2370              | 20               |  |
| 420                                                                                                | 47               | 1080              | 39               | 1740              | 27               | 2400              | 20               |  |
| 450                                                                                                | 47               | 1110              | 38               | 1770              | 27               | 2430              | 20               |  |
| 480                                                                                                | 46               | 1140              | 38               | 1800              | 26               | 2460              | 19               |  |
| 510                                                                                                | 45               | 1170              | 37               | 1830              | 26               | 2490              | 19               |  |
| 540                                                                                                | 44               | 1200              | 37               | 1860              | 26               | 2520              | 19               |  |
| 570                                                                                                | 43               | 1230              | 37               | 1890              | 25               | 2550              | 19               |  |
| 600                                                                                                | 42               | 1260              | 36               | 1920              | 25               | 2580              | 18               |  |
| 630                                                                                                | 42               | 1290              | 36               | 1950              | 24               | 2600              | 26               |  |





### STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

### PART 1 – GENERAL

### 1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

### 1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators** 

### 1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

### PART 2 – PRODUCTS

### 2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

- 2.1.1 4 ft (1219 mm) Diameter OGS Units:
  - 6 ft (1829 mm) Diameter OGS Units:
  - 8 ft (2438 mm) Diameter OGS Units:
  - 10 ft (3048 mm) Diameter OGS Units:
  - 12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^{3} \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^{3} \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^{3} \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^{3} \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^{3} \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$ 

### PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall






remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

#### 3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m<sup>2</sup> to 1400 L/min/m<sup>2</sup>, and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m<sup>2</sup> and 1400 L/min/m<sup>2</sup> shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40  $L/min/m^2$  shall be assumed to be identical to the sediment removal efficiency at 40  $L/min/m^2$ . No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40  $L/min/m^2$ .

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m<sup>2</sup> shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m<sup>2</sup>, and shall be calculated using a simple proportioning formula, with 1400 L/min/m<sup>2</sup> in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m<sup>2</sup>.

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

#### 3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m<sup>2</sup>.

#### 3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to





assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m<sup>2</sup> to 2600 L/min/m<sup>2</sup>) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.







| City:       Niagara Falls       Project Number:       221377         Nearest Rainfall Station:       ST CATHARINES AP       Designer Name:       Greg Rapp         Climate Station Id:       6137287       Designer Company:       Husson Limited         Vears of Rainfall Data:       33       Designer Email:       greg.rapp@husson.ca         Site Name:       104       Designer Phone:       416-788-1414         Drainage Area (ha):       0.65       EOR Company:       EOR Company:         Runoff Coefficient 'c':       0.69       EOR Phone:       EOR Phone:         'article Size Distribution:       CA ETV       Net Annual Sedime (TSS) Load Reduction (Size Summary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nearest Rainfall Station:       ST CATHARINES AP       Designer Name:       Greg Rapp         Climate Station Id:       6137287       Designer Company:       Husson Limited         Years of Rainfall Data:       33       Designer Phone:       416-788-1414         Site Name:       104       EOR Name:       EOR Company:       EOR Company:         Drainage Area (ha):       0.65       65.00       EOR Email:       EOR Email:       EOR Phone:         Runoff Coefficient 'c':       0.69       EOR Phone:       Met Annual Sedime (TSS) Load Reduction (TSS) Load Reduct |
| Climate Station Id: 6137287   /ears of Rainfall Data: 33   Site Name: 104   Drainage Area (ha): 0.65   % Imperviousness: 65.00   Runoff Coefficient 'c': 0.69   Particle Size Distribution:   CA ETV   Target TSS Removal (%): 60.0   Designer Company:   Husson Limited   Designer Company:   Husson Limited   Designer Email:   greg.rapp@husson.ca   Designer Phone:   416-788-1414   EOR Name:   EOR Company:   EOR Email:   EOR Phone:   Net Annual Sedime (TSS) Load Reduction (TSS) Load Re                                                                                                      |
| ears of Rainfall Data:       33         ite Name:       104         brainage Area (ha):       0.65         6 Imperviousness:       65.00         Runoff Coefficient 'c':       0.69         article Size Distribution:       CA ETV         arget TSS Removal (%):       60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ite Name:       104         ite Name:       104         brainage Area (ha):       0.65         6 Imperviousness:       65.00         Runoff Coefficient 'c':       0.69         article Size Distribution:       CA ETV         arget TSS Removal (%):       60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ite Name:       104         Drainage Area (ha):       0.65         6 Imperviousness:       65.00         Runoff Coefficient 'c':       0.69         article Size Distribution:       CA ETV         arget TSS Removal (%):       60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Drainage Area (ha):       0.65         % Imperviousness:       65.00         Runoff Coefficient 'c':       0.69         ?article Size Distribution:       CA ETV         `arget TSS Removal (%):       60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| % Imperviousness:       65.00         Runoff Coefficient 'c':       0.69         Particle Size Distribution:       CA ETV         Farget TSS Removal (%):       60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Runoff Coefficient 'c': 0.69         Particle Size Distribution:       CA ETV         Target TSS Removal (%):       60.0         Carticle Size Distribution:       CA ETV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Particle Size Distribution:       CA ETV       Net Annual Sedime         Parget TSS Removal (%):       60.0       (TSS) Load Reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| article Size Distribution.     CALIV     Net Annual Sedime       arget TSS Removal (%):     60.0     (TSS) Load Reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| arget ISS Removal (%): 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Required Water Quality Runoff Volume Capture (%):     90.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| istimated Water Quality Flow Rate (L/s): 13.95 Stormceptor TSS Rem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| vil / Fuel Spill Risk Site?     Yes     NODE     Provider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ipstream Flow Control? No EFO4 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peak Conveyance (maximum) Flow Rate (L/s):     EFO6     63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| nfluent TSS Concentration (mg/L): 200 EFO8 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Estimated Average Annual Sediment Load (kg/yr): 361 EFO10 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Estimated Average Annual Sediment Volume (L/yr): 294 EFO12 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |





### THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

#### PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

#### PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

| Particle  | Percent Less | Particle Size | Dercent |
|-----------|--------------|---------------|---------|
| Size (µm) | Than         | Fraction (µm) | Percent |
| 1000      | 100          | 500-1000      | 5       |
| 500       | 95           | 250-500       | 5       |
| 250       | 90           | 150-250       | 15      |
| 150       | 75           | 100-150       | 15      |
| 100       | 60           | 75-100        | 10      |
| 75        | 50           | 50-75         | 5       |
| 50        | 45           | 20-50         | 10      |
| 20        | 35           | 8-20          | 15      |
| 8         | 20           | 5-8           | 10      |
| 5         | 10           | 2-5           | 5       |
| 2         | 5            | <2            | 5       |







| Rainfall<br>Intensity<br>(mm / hr)                                                                 | Percent<br>Rainfall<br>Volume (%) | Cumulative<br>Rainfall Volume<br>(%) | Flow Rate<br>(L/s) | Flow Rate<br>(L/min) | Surface<br>Loading Rate<br>(L/min/m²) | Removal<br>Efficiency<br>(%) | Incremental<br>Removal (%) | Cumulative<br>Removal<br>(%) |  |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|--------------------|----------------------|---------------------------------------|------------------------------|----------------------------|------------------------------|--|--|
| 0.50                                                                                               | 9.2                               | 9.2                                  | 0.62               | 37.0                 | 14.0                                  | 70                           | 6.5                        | 6.5                          |  |  |
| 1.00                                                                                               | 20.5                              | 29.7                                 | 1.25               | 75.0                 | 28.0                                  | 70                           | 14.4                       | 20.9                         |  |  |
| 2.00                                                                                               | 16.5                              | 46.2                                 | 2.49               | 150.0                | 57.0                                  | 69                           | 11.4                       | 32.3                         |  |  |
| 3.00                                                                                               | 11.3                              | 57.5                                 | 3.74               | 224.0                | 85.0                                  | 64                           | 7.3                        | 39.5                         |  |  |
| 4.00                                                                                               | 9.1                               | 66.7                                 | 4.99               | 299.0                | 114.0                                 | 62                           | 5.6                        | 45.1                         |  |  |
| 5.00                                                                                               | 5.5                               | 72.2                                 | 6.23               | 374.0                | 142.0                                 | 59                           | 3.3                        | 48.4                         |  |  |
| 6.00                                                                                               | 4.5                               | 76.7                                 | 7.48               | 449.0                | 171.0                                 | 57                           | 2.6                        | 50.9                         |  |  |
| 7.00                                                                                               | 4.2                               | 80.9                                 | 8.73               | 524.0                | 199.0                                 | 54                           | 2.3                        | 53.2                         |  |  |
| 8.00                                                                                               | 3.5                               | 84.4                                 | 9.97               | 598.0                | 228.0                                 | 53                           | 1.9                        | 55.1                         |  |  |
| 9.00                                                                                               | 2.0                               | 86.5                                 | 11.22              | 673.0                | 256.0                                 | 53                           | 1.1                        | 56.2                         |  |  |
| 10.00                                                                                              | 1.5                               | 88.0                                 | 12.47              | 748.0                | 284.0                                 | 52                           | 0.8                        | 56.9                         |  |  |
| 11.00                                                                                              | 1.8                               | 89.8                                 | 13.72              | 823.0                | 313.0                                 | 51                           | 0.9                        | 57.9                         |  |  |
| 12.00                                                                                              | 1.1                               | 90.9                                 | 14.96              | 898.0                | 341.0                                 | 50                           | 0.5                        | 58.4                         |  |  |
| 13.00                                                                                              | 1.1                               | 92.0                                 | 16.21              | 973.0                | 370.0                                 | 49                           | 0.5                        | 58.9                         |  |  |
| 14.00                                                                                              | 1.4                               | 93.4                                 | 17.46              | 1047.0               | 398.0                                 | 48                           | 0.7                        | 59.6                         |  |  |
| 15.00                                                                                              | 0.8                               | 94.2                                 | 18.70              | 1122.0               | 427.0                                 | 47                           | 0.4                        | 60.0                         |  |  |
| 16.00                                                                                              | 0.6                               | 94.8                                 | 19.95              | 1197.0               | 455.0                                 | 47                           | 0.3                        | 60.3                         |  |  |
| 17.00                                                                                              | 0.5                               | 95.3                                 | 21.20              | 1272.0               | 484.0                                 | 46                           | 0.2                        | 60.5                         |  |  |
| 18.00                                                                                              | 0.3                               | 95.6                                 | 22.44              | 1347.0               | 512.0                                 | 45                           | 0.1                        | 60.7                         |  |  |
| 19.00                                                                                              | 0.2                               | 95.9                                 | 23.69              | 1421.0               | 540.0                                 | 44                           | 0.1                        | 60.8                         |  |  |
| 20.00                                                                                              | 0.2                               | 96.1                                 | 24.94              | 1496.0               | 569.0                                 | 43                           | 0.1                        | 60.9                         |  |  |
| 21.00                                                                                              | 0.5                               | 96.6                                 | 26.18              | 1571.0               | 597.0                                 | 42                           | 0.2                        | 61.1                         |  |  |
| 22.00                                                                                              | 0.4                               | 97.0                                 | 27.43              | 1646.0               | 626.0                                 | 42                           | 0.2                        | 61.2                         |  |  |
| 23.00                                                                                              | 0.3                               | 97.3                                 | 28.68              | 1721.0               | 654.0                                 | 42                           | 0.1                        | 61.4                         |  |  |
| 24.00                                                                                              | 0.0                               | 97.3                                 | 29.92              | 1795.0               | 683.0                                 | 42                           | 0.0                        | 61.4                         |  |  |
| 25.00                                                                                              | 0.2                               | 97.4                                 | 31.17              | 1870.0               | 711.0                                 | 41                           | 0.1                        | 61.4                         |  |  |
| 30.00                                                                                              | 1.6                               | 99.1                                 | 37.40              | 2244.0               | 853.0                                 | 41                           | 0.7                        | 62.1                         |  |  |
| 35.00                                                                                              | 0.6                               | 99.7                                 | 43.64              | 2618.0               | 996.0                                 | 40                           | 0.3                        | 62.3                         |  |  |
| 40.00                                                                                              | 0.0                               | 99.7                                 | 49.87              | 2992.0               | 1138.0                                | 38                           | 0.0                        | 62.3                         |  |  |
| 45.00                                                                                              | 0.3                               | 100.0                                | 56.11              | 3366.0               | 1280.0                                | 36                           | 0.1                        | 62.5                         |  |  |
| 45.00 0.3 100.0 56.11 3366.0 1280.0 36 0.1<br>Estimated Net Annual Sediment (TSS) Load Reduction = |                                   |                                      |                    |                      |                                       |                              |                            |                              |  |  |

Climate Station ID: 6137287 Years of Rainfall Data: 33



# Stormceptor<sup>®</sup>







|                         |                |      | Maximum Pip                       | pe Diamete        | r / Peak C      | Conveyance       |                  |                  |                  |
|-------------------------|----------------|------|-----------------------------------|-------------------|-----------------|------------------|------------------|------------------|------------------|
| Stormceptor<br>EF / EFO | Model Diameter |      | Min Angle Inlet /<br>Outlet Pipes | Max Inle<br>Diame | et Pipe<br>eter | Max Out<br>Diame | let Pipe<br>eter | Peak Cor<br>Flow | nveyance<br>Rate |
|                         | (m)            | (ft) |                                   | (mm)              | (in)            | (mm)             | (in)             | (L/s)            | (cfs)            |
| EF4 / EFO4              | 1.2            | 4    | 90                                | 609               | 24              | 609              | 24               | 425              | 15               |
| EF6 / EFO6              | 1.8            | 6    | 90                                | 914               | 36              | 914              | 36               | 990              | 35               |
| EF8 / EFO8              | 2.4            | 8    | 90                                | 1219              | 48              | 1219             | 48               | 1700             | 60               |
| EF10 / EFO10            | 3.0            | 10   | 90                                | 1828              | 72              | 1828             | 72               | 2830             | 100              |
| EF12 / EF012            | 3.6            | 12   | 90                                | 1828              | 72              | 1828             | 72               | 2830             | 100              |

#### SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

#### **DESIGN FLEXIBILITY**

► Stormceptor<sup>®</sup> EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

#### **OIL CAPTURE AND RETENTION**

► While Stormceptor<sup>®</sup> EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor<sup>®</sup> EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.











#### **INLET-TO-OUTLET DROP**

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

- $0^{\circ}$  45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.
- 45° 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

#### HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

| Stormceptor<br>EF / EFO | Moo<br>Diam | del<br>eter | Depth<br>Pipe In<br>Sump | (Outlet<br>vert to<br>Floor) | Oil Vo | Oil Volume Sedimer<br>Maintenance |      | mended<br>ment<br>Ice Depth * | ended Maximum<br>ent Sediment Volume *<br>e Depth * |       |       | Maximum<br>Sediment Mass ** |  |
|-------------------------|-------------|-------------|--------------------------|------------------------------|--------|-----------------------------------|------|-------------------------------|-----------------------------------------------------|-------|-------|-----------------------------|--|
|                         | (m)         | (ft)        | (m)                      | (ft)                         | (L)    | (Gal)                             | (mm) | (in)                          | (L)                                                 | (ft³) | (kg)  | (lb)                        |  |
| EF4 / EFO4              | 1.2         | 4           | 1.52                     | 5.0                          | 265    | 70                                | 203  | 8                             | 1190                                                | 42    | 1904  | 5250                        |  |
| EF6 / EFO6              | 1.8         | 6           | 1.93                     | 6.3                          | 610    | 160                               | 305  | 12                            | 3470                                                | 123   | 5552  | 15375                       |  |
| EF8 / EFO8              | 2.4         | 8           | 2.59                     | 8.5                          | 1070   | 280                               | 610  | 24                            | 8780                                                | 310   | 14048 | 38750                       |  |
| EF10 / EFO10            | 3.0         | 10          | 3.25                     | 10.7                         | 1670   | 440                               | 610  | 24                            | 17790                                               | 628   | 28464 | 78500                       |  |
| EF12 / EFO12            | 3.6         | 12          | 3.89                     | 12.8                         | 2475   | 655                               | 610  | 24                            | 31220                                               | 1103  | 49952 | 137875                      |  |

#### **Pollutant Capacity**

\*Increased sump depth may be added to increase sediment storage capacity \*\* Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft<sup>3</sup>)

| Feature                                                                   | Benefit                                       | Feature Appeals To                       |  |  |
|---------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|--|--|
| Patent-pending enhanced flow treatment<br>and scour prevention technology | Superior, verified third-party<br>performance | Regulator, Specifying & Design Engineer  |  |  |
| Third-party verified light liquid capture                                 | Proven performance for fuel/oil hotspot       | Regulator, Specifying & Design Engineer, |  |  |
| and retention for EFO version                                             | locations                                     | Site Owner                               |  |  |
| Functions as bend, junction or inlet<br>structure                         | Design flexibility                            | Specifying & Design Engineer             |  |  |
| Minimal drop between inlet and outlet                                     | Site installation ease                        | Contractor                               |  |  |
| Large diameter outlet riser for inspection                                | Easy maintenance access from grade            | Maintenance Contractor & Site Owner      |  |  |

#### STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

#### STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef







|                   | Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results<br>Stormceptor® EFO |                   |                  |                   |                  |                   |                  |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|--|--|--|--|--|--|
| SLR<br>(L/min/m²) | TSS %<br>REMOVAL                                                                                   | SLR<br>(L/min/m²) | TSS %<br>REMOVAL | SLR<br>(L/min/m²) | TSS %<br>REMOVAL | SLR<br>(L/min/m²) | TSS %<br>REMOVAL |  |  |  |  |  |  |
| 1                 | 70                                                                                                 | 660               | 42               | 1320              | 35               | 1980              | 24               |  |  |  |  |  |  |
| 30                | 70                                                                                                 | 690               | 42               | 1350              | 35               | 2010              | 24               |  |  |  |  |  |  |
| 60                | 67                                                                                                 | 720               | 41               | 1380              | 34               | 2040              | 23               |  |  |  |  |  |  |
| 90                | 63                                                                                                 | 750               | 41               | 1410              | 34               | 2070              | 23               |  |  |  |  |  |  |
| 120               | 61                                                                                                 | 780               | 41               | 1440              | 33               | 2100              | 23               |  |  |  |  |  |  |
| 150               | 58                                                                                                 | 810               | 41               | 1470              | 32               | 2130              | 22               |  |  |  |  |  |  |
| 180               | 56                                                                                                 | 840               | 41               | 1500              | 32               | 2160              | 22               |  |  |  |  |  |  |
| 210               | 54                                                                                                 | 870               | 41               | 1530              | 31               | 2190              | 22               |  |  |  |  |  |  |
| 240               | 53                                                                                                 | 900               | 41               | 1560              | 31               | 2220              | 21               |  |  |  |  |  |  |
| 270               | 52                                                                                                 | 930               | 40               | 1590              | 30               | 2250              | 21               |  |  |  |  |  |  |
| 300               | 51                                                                                                 | 960               | 40               | 1620              | 29               | 2280              | 21               |  |  |  |  |  |  |
| 330               | 50                                                                                                 | 990               | 40               | 1650              | 29               | 2310              | 21               |  |  |  |  |  |  |
| 360               | 49                                                                                                 | 1020              | 40               | 1680              | 28               | 2340              | 20               |  |  |  |  |  |  |
| 390               | 48                                                                                                 | 1050              | 39               | 1710              | 28               | 2370              | 20               |  |  |  |  |  |  |
| 420               | 47                                                                                                 | 1080              | 39               | 1740              | 27               | 2400              | 20               |  |  |  |  |  |  |
| 450               | 47                                                                                                 | 1110              | 38               | 1770              | 27               | 2430              | 20               |  |  |  |  |  |  |
| 480               | 46                                                                                                 | 1140              | 38               | 1800              | 26               | 2460              | 19               |  |  |  |  |  |  |
| 510               | 45                                                                                                 | 1170              | 37               | 1830              | 26               | 2490              | 19               |  |  |  |  |  |  |
| 540               | 44                                                                                                 | 1200              | 37               | 1860              | 26               | 2520              | 19               |  |  |  |  |  |  |
| 570               | 43                                                                                                 | 1230              | 37               | 1890              | 25               | 2550              | 19               |  |  |  |  |  |  |
| 600               | 42                                                                                                 | 1260              | 36               | 1920              | 25               | 2580              | 18               |  |  |  |  |  |  |
| 630               | 42                                                                                                 | 1290              | 36               | 1950              | 24               | 2600              | 26               |  |  |  |  |  |  |





#### STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

#### PART 1 – GENERAL

#### 1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

#### 1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators** 

#### 1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

#### PART 2 – PRODUCTS

#### 2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

- 2.1.1 4 ft (1219 mm) Diameter OGS Units:
  - 6 ft (1829 mm) Diameter OGS Units:
  - 8 ft (2438 mm) Diameter OGS Units:
  - 10 ft (3048 mm) Diameter OGS Units:
  - 12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^{3} \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^{3} \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^{3} \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^{3} \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^{3} \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$ 

#### PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall







remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

#### 3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m<sup>2</sup> to 1400 L/min/m<sup>2</sup>, and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m<sup>2</sup> and 1400 L/min/m<sup>2</sup> shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40  $L/min/m^2$  shall be assumed to be identical to the sediment removal efficiency at 40  $L/min/m^2$ . No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40  $L/min/m^2$ .

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m<sup>2</sup> shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m<sup>2</sup>, and shall be calculated using a simple proportioning formula, with 1400 L/min/m<sup>2</sup> in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m<sup>2</sup>.

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

#### 3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m<sup>2</sup>.

#### 3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to





assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m<sup>2</sup> to 2600 L/min/m<sup>2</sup>) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.







| rovince:                                                                                                                       | Ontario                        |            | Project Name:      | Willoughby       |                                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|--------------------|------------------|---------------------------------------------------------------|--|--|
| ity:                                                                                                                           | Niagara Falls                  |            | Project Number:    | 221377           |                                                               |  |  |
| earest Rainfall Station:                                                                                                       | ST CATHARINES AP               |            | Designer Name:     | Greg Rapp        |                                                               |  |  |
| imate Station Id:                                                                                                              | 6137287                        |            | Designer Company:  | Husson Limited   |                                                               |  |  |
| ears of Rainfall Data:                                                                                                         | 33                             |            | Designer Email:    | greg.rapp@hussor | n.ca                                                          |  |  |
|                                                                                                                                |                                |            | Designer Phone:    | 416-788-1414     | 416-788-1414                                                  |  |  |
| ite Name:                                                                                                                      | 105                            |            | EOR Name:          |                  |                                                               |  |  |
| rainage Area (ha):                                                                                                             | 0.27                           |            | EOR Company:       |                  |                                                               |  |  |
| Imperviousness:                                                                                                                | 65.00                          |            | EOR Email:         |                  |                                                               |  |  |
| Runoff Co                                                                                                                      | pefficient 'c': 0.69           |            |                    |                  |                                                               |  |  |
| Particle Size Distribution:       CA ETV       Net Annual Sed         Target TSS Removal (%):       60.0       (TSS) Load Redu |                                |            |                    |                  |                                                               |  |  |
| arget TSS Removal (%):                                                                                                         | 60.0                           |            |                    | (TSS) Load       | Reduction                                                     |  |  |
| equired Water Quality Runo                                                                                                     | ff Volume Capture (%):         | 90.00      |                    | Sizing S         | TSS) Load Reduction<br>Sizing Summary<br>rmceptor TSS Removal |  |  |
| stimated Water Quality Flow                                                                                                    | Nater Quality Flow Rate (L/s): |            |                    | Stormceptor      | TSS Removal                                                   |  |  |
|                                                                                                                                |                                | Yes        |                    | Model            | Provided (%)                                                  |  |  |
| pstream Flow Control?                                                                                                          |                                | No         |                    | EFO4             | 63                                                            |  |  |
| eak Conveyance (maximum)                                                                                                       | Flow Rate (L/s):               |            |                    | EFO6             | 67                                                            |  |  |
|                                                                                                                                |                                | 200        |                    | EFO8             | 69                                                            |  |  |
| stimated Average Annual Sec                                                                                                    | diment Load (kg/yr).           | 150        |                    | EFO10            | 70                                                            |  |  |
| stimated Average Annual Se                                                                                                     | diment Volume (I /vr):         | 122        |                    | FF012            | 70                                                            |  |  |
|                                                                                                                                |                                | 122        |                    |                  | ,,,                                                           |  |  |
|                                                                                                                                |                                |            | Recommended S      | tormceptor EFO   | Model: El                                                     |  |  |
|                                                                                                                                | Estima                         | ated Net A | Annual Sediment (T | SS) Load Reduct  | ion (%): 🦷                                                    |  |  |
|                                                                                                                                |                                |            |                    |                  |                                                               |  |  |
|                                                                                                                                |                                | 1          | Water Quality Run  | off Volume Capt  | ure (%): <mark>&gt;</mark>                                    |  |  |





### THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

#### PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

#### PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

| Particle  | Percent Less | Particle Size | Dercent |
|-----------|--------------|---------------|---------|
| Size (µm) | Than         | Fraction (µm) | Percent |
| 1000      | 100          | 500-1000      | 5       |
| 500       | 95           | 250-500       | 5       |
| 250       | 90           | 150-250       | 15      |
| 150       | 75           | 100-150       | 15      |
| 100       | 60           | 75-100        | 10      |
| 75        | 50           | 50-75         | 5       |
| 50        | 45           | 20-50         | 10      |
| 20        | 35           | 8-20          | 15      |
| 8         | 20           | 5-8           | 10      |
| 5         | 10           | 2-5           | 5       |
| 2         | 5            | <2            | 5       |







| Rainfall<br>Intensity<br>(mm / hr)                                                                 | Percent<br>Rainfall<br>Volume (%) | Cumulative<br>Rainfall Volume<br>(%) | Flow Rate<br>(L/s) | Flow Rate<br>(L/min) | Surface<br>Loading Rate<br>(L/min/m²) | Removal<br>Efficiency<br>(%) | Incremental<br>Removal (%) | Cumulative<br>Removal<br>(%) |  |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|--------------------|----------------------|---------------------------------------|------------------------------|----------------------------|------------------------------|--|--|
| 0.50                                                                                               | 9.2                               | 9.2                                  | 0.26               | 16.0                 | 13.0                                  | 70                           | 6.5                        | 6.5                          |  |  |
| 1.00                                                                                               | 20.5                              | 29.7                                 | 0.52               | 31.0                 | 26.0                                  | 70                           | 14.4                       | 20.9                         |  |  |
| 2.00                                                                                               | 16.5                              | 46.2                                 | 1.04               | 62.0                 | 52.0                                  | 69                           | 11.4                       | 32.3                         |  |  |
| 3.00                                                                                               | 11.3                              | 57.5                                 | 1.55               | 93.0                 | 78.0                                  | 66                           | 7.4                        | 39.7                         |  |  |
| 4.00                                                                                               | 9.1                               | 66.7                                 | 2.07               | 124.0                | 104.0                                 | 62                           | 5.7                        | 45.4                         |  |  |
| 5.00                                                                                               | 5.5                               | 72.2                                 | 2.59               | 155.0                | 129.0                                 | 60                           | 3.3                        | 48.7                         |  |  |
| 6.00                                                                                               | 4.5                               | 76.7                                 | 3.11               | 186.0                | 155.0                                 | 58                           | 2.6                        | 51.3                         |  |  |
| 7.00                                                                                               | 4.2                               | 80.9                                 | 3.63               | 218.0                | 181.0                                 | 56                           | 2.4                        | 53.7                         |  |  |
| 8.00                                                                                               | 3.5                               | 84.4                                 | 4.14               | 249.0                | 207.0                                 | 54                           | 1.9                        | 55.6                         |  |  |
| 9.00                                                                                               | 2.0                               | 86.5                                 | 4.66               | 280.0                | 233.0                                 | 53                           | 1.1                        | 56.7                         |  |  |
| 10.00                                                                                              | 1.5                               | 88.0                                 | 5.18               | 311.0                | 259.0                                 | 53                           | 0.8                        | 57.4                         |  |  |
| 11.00                                                                                              | 1.8                               | 89.8                                 | 5.70               | 342.0                | 285.0                                 | 52                           | 1.0                        | 58.4                         |  |  |
| 12.00                                                                                              | 1.1                               | 90.9                                 | 6.21               | 373.0                | 311.0                                 | 51                           | 0.5                        | 58.9                         |  |  |
| 13.00                                                                                              | 1.1                               | 92.0                                 | 6.73               | 404.0                | 337.0                                 | 50                           | 0.5                        | 59.5                         |  |  |
| 14.00                                                                                              | 1.4                               | 93.4                                 | 7.25               | 435.0                | 363.0                                 | 49                           | 0.7                        | 60.2                         |  |  |
| 15.00                                                                                              | 0.8                               | 94.2                                 | 7.77               | 466.0                | 388.0                                 | 49                           | 0.4                        | 60.6                         |  |  |
| 16.00                                                                                              | 0.6                               | 94.8                                 | 8.29               | 497.0                | 414.0                                 | 48                           | 0.3                        | 60.8                         |  |  |
| 17.00                                                                                              | 0.5                               | 95.3                                 | 8.80               | 528.0                | 440.0                                 | 47                           | 0.2                        | 61.1                         |  |  |
| 18.00                                                                                              | 0.3                               | 95.6                                 | 9.32               | 559.0                | 466.0                                 | 46                           | 0.2                        | 61.2                         |  |  |
| 19.00                                                                                              | 0.2                               | 95.9                                 | 9.84               | 590.0                | 492.0                                 | 45                           | 0.1                        | 61.3                         |  |  |
| 20.00                                                                                              | 0.2                               | 96.1                                 | 10.36              | 621.0                | 518.0                                 | 45                           | 0.1                        | 61.4                         |  |  |
| 21.00                                                                                              | 0.5                               | 96.6                                 | 10.88              | 653.0                | 544.0                                 | 44                           | 0.2                        | 61.7                         |  |  |
| 22.00                                                                                              | 0.4                               | 97.0                                 | 11.39              | 684.0                | 570.0                                 | 43                           | 0.2                        | 61.8                         |  |  |
| 23.00                                                                                              | 0.3                               | 97.3                                 | 11.91              | 715.0                | 596.0                                 | 42                           | 0.1                        | 62.0                         |  |  |
| 24.00                                                                                              | 0.0                               | 97.3                                 | 12.43              | 746.0                | 621.0                                 | 42                           | 0.0                        | 62.0                         |  |  |
| 25.00                                                                                              | 0.2                               | 97.4                                 | 12.95              | 777.0                | 647.0                                 | 42                           | 0.1                        | 62.0                         |  |  |
| 30.00                                                                                              | 1.6                               | 99.1                                 | 15.54              | 932.0                | 777.0                                 | 41                           | 0.7                        | 62.7                         |  |  |
| 35.00                                                                                              | 0.6                               | 99.7                                 | 18.13              | 1088.0               | 906.0                                 | 41                           | 0.3                        | 63.0                         |  |  |
| 40.00                                                                                              | 0.0                               | 99.7                                 | 20.72              | 1243.0               | 1036.0                                | 40                           | 0.0                        | 63.0                         |  |  |
| 45.00                                                                                              | 0.3                               | 100.0                                | 23.31              | 1398.0               | 1165.0                                | 38                           | 0.1                        | 63.1                         |  |  |
| 45.00 0.3 100.0 23.31 1398.0 1165.0 38 0.1<br>Estimated Net Annual Sediment (TSS) Load Reduction = |                                   |                                      |                    |                      |                                       |                              |                            |                              |  |  |

Climate Station ID: 6137287 Years of Rainfall Data: 33



# Stormceptor<sup>®</sup>









|                         |                |      | Maximum Pip                       | pe Diamete        | r / Peak C      | Conveyance       |                  |                  |                  |
|-------------------------|----------------|------|-----------------------------------|-------------------|-----------------|------------------|------------------|------------------|------------------|
| Stormceptor<br>EF / EFO | Model Diameter |      | Min Angle Inlet /<br>Outlet Pipes | Max Inle<br>Diame | et Pipe<br>eter | Max Out<br>Diame | let Pipe<br>eter | Peak Cor<br>Flow | nveyance<br>Rate |
|                         | (m)            | (ft) |                                   | (mm)              | (in)            | (mm)             | (in)             | (L/s)            | (cfs)            |
| EF4 / EFO4              | 1.2            | 4    | 90                                | 609               | 24              | 609              | 24               | 425              | 15               |
| EF6 / EFO6              | 1.8            | 6    | 90                                | 914               | 36              | 914              | 36               | 990              | 35               |
| EF8 / EFO8              | 2.4            | 8    | 90                                | 1219              | 48              | 1219             | 48               | 1700             | 60               |
| EF10 / EFO10            | 3.0            | 10   | 90                                | 1828              | 72              | 1828             | 72               | 2830             | 100              |
| EF12 / EF012            | 3.6            | 12   | 90                                | 1828              | 72              | 1828             | 72               | 2830             | 100              |

#### SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

#### **DESIGN FLEXIBILITY**

► Stormceptor<sup>®</sup> EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

#### **OIL CAPTURE AND RETENTION**

► While Stormceptor<sup>®</sup> EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor<sup>®</sup> EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.











#### **INLET-TO-OUTLET DROP**

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

- $0^{\circ}$  45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.
- 45° 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

#### HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

| Stormceptor<br>EF / EFO | Moo<br>Diam | del<br>eter | Depth<br>Pipe In<br>Sump | (Outlet<br>vert to<br>Floor) | Oil Vo | Oil Volume Sedimen<br>Maintenance I |      | nended Maximum<br>nent Sediment Volume *<br>ce Depth * |       | Maximum<br>Sediment Mass ** |       |        |
|-------------------------|-------------|-------------|--------------------------|------------------------------|--------|-------------------------------------|------|--------------------------------------------------------|-------|-----------------------------|-------|--------|
|                         | (m)         | (ft)        | (m)                      | (ft)                         | (L)    | (Gal)                               | (mm) | (in)                                                   | (L)   | (ft³)                       | (kg)  | (lb)   |
| EF4 / EFO4              | 1.2         | 4           | 1.52                     | 5.0                          | 265    | 70                                  | 203  | 8                                                      | 1190  | 42                          | 1904  | 5250   |
| EF6 / EFO6              | 1.8         | 6           | 1.93                     | 6.3                          | 610    | 160                                 | 305  | 12                                                     | 3470  | 123                         | 5552  | 15375  |
| EF8 / EFO8              | 2.4         | 8           | 2.59                     | 8.5                          | 1070   | 280                                 | 610  | 24                                                     | 8780  | 310                         | 14048 | 38750  |
| EF10 / EFO10            | 3.0         | 10          | 3.25                     | 10.7                         | 1670   | 440                                 | 610  | 24                                                     | 17790 | 628                         | 28464 | 78500  |
| EF12 / EFO12            | 3.6         | 12          | 3.89                     | 12.8                         | 2475   | 655                                 | 610  | 24                                                     | 31220 | 1103                        | 49952 | 137875 |

#### **Pollutant Capacity**

\*Increased sump depth may be added to increase sediment storage capacity \*\* Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft<sup>3</sup>)

| Feature                                                                   | Benefit                                       | Feature Appeals To                       |
|---------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|
| Patent-pending enhanced flow treatment<br>and scour prevention technology | Superior, verified third-party<br>performance | Regulator, Specifying & Design Engineer  |
| Third-party verified light liquid capture                                 | Proven performance for fuel/oil hotspot       | Regulator, Specifying & Design Engineer, |
| and retention for EFO version                                             | locations                                     | Site Owner                               |
| Functions as bend, junction or inlet<br>structure                         | Design flexibility                            | Specifying & Design Engineer             |
| Minimal drop between inlet and outlet                                     | Site installation ease                        | Contractor                               |
| Large diameter outlet riser for inspection                                | Easy maintenance access from grade            | Maintenance Contractor & Site Owner      |

#### STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

#### STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef







| Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results<br>Stormceptor® EFO |                  |                   |                  |                   |                  |                   |                  |
|----------------------------------------------------------------------------------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|
| SLR<br>(L/min/m²)                                                                                  | TSS %<br>REMOVAL | SLR<br>(L/min/m²) | TSS %<br>REMOVAL | SLR<br>(L/min/m²) | TSS %<br>REMOVAL | SLR<br>(L/min/m²) | TSS %<br>REMOVAL |
| 1                                                                                                  | 70               | 660               | 42               | 1320              | 35               | 1980              | 24               |
| 30                                                                                                 | 70               | 690               | 42               | 1350              | 35               | 2010              | 24               |
| 60                                                                                                 | 67               | 720               | 41               | 1380              | 34               | 2040              | 23               |
| 90                                                                                                 | 63               | 750               | 41               | 1410              | 34               | 2070              | 23               |
| 120                                                                                                | 61               | 780               | 41               | 1440              | 33               | 2100              | 23               |
| 150                                                                                                | 58               | 810               | 41               | 1470              | 32               | 2130              | 22               |
| 180                                                                                                | 56               | 840               | 41               | 1500              | 32               | 2160              | 22               |
| 210                                                                                                | 54               | 870               | 41               | 1530              | 31               | 2190              | 22               |
| 240                                                                                                | 53               | 900               | 41               | 1560              | 31               | 2220              | 21               |
| 270                                                                                                | 52               | 930               | 40               | 1590              | 30               | 2250              | 21               |
| 300                                                                                                | 51               | 960               | 40               | 1620              | 29               | 2280              | 21               |
| 330                                                                                                | 50               | 990               | 40               | 1650              | 29               | 2310              | 21               |
| 360                                                                                                | 49               | 1020              | 40               | 1680              | 28               | 2340              | 20               |
| 390                                                                                                | 48               | 1050              | 39               | 1710              | 28               | 2370              | 20               |
| 420                                                                                                | 47               | 1080              | 39               | 1740              | 27               | 2400              | 20               |
| 450                                                                                                | 47               | 1110              | 38               | 1770              | 27               | 2430              | 20               |
| 480                                                                                                | 46               | 1140              | 38               | 1800              | 26               | 2460              | 19               |
| 510                                                                                                | 45               | 1170              | 37               | 1830              | 26               | 2490              | 19               |
| 540                                                                                                | 44               | 1200              | 37               | 1860              | 26               | 2520              | 19               |
| 570                                                                                                | 43               | 1230              | 37               | 1890              | 25               | 2550              | 19               |
| 600                                                                                                | 42               | 1260              | 36               | 1920              | 25               | 2580              | 18               |
| 630                                                                                                | 42               | 1290              | 36               | 1950              | 24               | 2600              | 26               |





#### STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

#### PART 1 – GENERAL

#### 1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

#### 1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators** 

#### 1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

#### PART 2 – PRODUCTS

#### 2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

- 2.1.1 4 ft (1219 mm) Diameter OGS Units:
  - 6 ft (1829 mm) Diameter OGS Units:
  - 8 ft (2438 mm) Diameter OGS Units:
  - 10 ft (3048 mm) Diameter OGS Units:
  - 12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^{3} \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^{3} \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^{3} \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^{3} \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^{3} \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$ 

#### PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall







remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

#### 3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m<sup>2</sup> to 1400 L/min/m<sup>2</sup>, and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m<sup>2</sup> and 1400 L/min/m<sup>2</sup> shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40  $L/min/m^2$  shall be assumed to be identical to the sediment removal efficiency at 40  $L/min/m^2$ . No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40  $L/min/m^2$ .

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m<sup>2</sup> shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m<sup>2</sup>, and shall be calculated using a simple proportioning formula, with 1400 L/min/m<sup>2</sup> in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m<sup>2</sup>.

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

#### 3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m<sup>2</sup>.

#### 3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to





assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m<sup>2</sup> to 2600 L/min/m<sup>2</sup>) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.







| Province:                       | Ontario                |            | Project Name:     | Willoughby       |                             |
|---------------------------------|------------------------|------------|-------------------|------------------|-----------------------------|
| City:                           | Niagara Falls          |            | Project Number:   | 221377           |                             |
| vearest Rainfall Station:       | ST CATHARINES AP       |            | Designer Name:    | Greg Rapp        |                             |
| limate Station Id:              | 6137287                |            | Designer Company: | Husson Limited   |                             |
| ears of Rainfall Data:          | 33                     |            | Designer Email:   | greg.rapp@husso  | n.ca                        |
|                                 |                        |            | Designer Phone:   | 416-788-1414     |                             |
| ite Name:                       | 106                    |            | EOR Name:         |                  |                             |
| Drainage Area (ha):             | 0.53                   |            | EOR Company:      |                  |                             |
| 6 Imperviousness:               | 65.00                  |            | EOR Email:        |                  |                             |
| Runoff C                        | oefficient 'c': 0.69   |            | LOR FIDILE.       |                  |                             |
| article Size Distribution:      | CA ETV                 |            |                   | Net Annua        | al Sediment                 |
| Target TSS Removal (%):         | 60.0                   |            |                   | (TSS) Load       | Reduction                   |
| <br>Required Water Quality Runo | ff Volume Capture (%): | 90.00      |                   | Sizing S         | Summary                     |
| Estimated Water Quality Flow    | / Rate (L/s):          | 11.37      |                   | Stormceptor      | TSS Removal                 |
| <br>Dil / Fuel Spill Risk Site? |                        | Yes        |                   | Model            | Provided (%)                |
| pstream Flow Control?           |                        | No         |                   | EFO4             | 58                          |
| eak Conveyance (maximum)        | Flow Rate (L/s):       |            |                   | EFO6             | 64                          |
| nfluent TSS Concentration (m    | ng/l)·                 | 200        |                   | EFO8             | 67                          |
| stimated Average Annual Se      | diment Load (kg/vr):   | 299        |                   | EFO10            | 69                          |
|                                 | diment Volume (L/vr):  | 243        |                   | EFO12            | 69                          |
|                                 |                        | 1.0        |                   |                  |                             |
|                                 |                        |            | Recommended       | Stormceptor EFC  | ) Model: El                 |
|                                 | Estima                 | ated Net A | nnual Sediment    | (TSS) Load Reduc | tion (%): 💦                 |
|                                 |                        |            |                   |                  |                             |
|                                 |                        | ١          | Nater Quality Ru  | noff Volume Cap  | ture (%): <mark>&gt;</mark> |





### THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

#### PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

#### PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

| Particle  | Percent Less | Particle Size | Dercent |
|-----------|--------------|---------------|---------|
| Size (µm) | Than         | Fraction (µm) | Percent |
| 1000      | 100          | 500-1000      | 5       |
| 500       | 95           | 250-500       | 5       |
| 250       | 90           | 150-250       | 15      |
| 150       | 75           | 100-150       | 15      |
| 100       | 60           | 75-100        | 10      |
| 75        | 50           | 50-75         | 5       |
| 50        | 45           | 20-50         | 10      |
| 20        | 35           | 8-20          | 15      |
| 8         | 20           | 5-8           | 10      |
| 5         | 10           | 2-5           | 5       |
| 2         | 5            | <2            | 5       |







| Rainfall<br>Intensity<br>(mm / hr)                   | Percent<br>Rainfall<br>Volume (%) | Cumulative<br>Rainfall Volume<br>(%) | Flow Rate<br>(L/s) | Flow Rate<br>(L/min) | Surface<br>Loading Rate<br>(L/min/m²) | Removal<br>Efficiency<br>(%) | Incremental<br>Removal (%) | Cumulative<br>Removal<br>(%) |
|------------------------------------------------------|-----------------------------------|--------------------------------------|--------------------|----------------------|---------------------------------------|------------------------------|----------------------------|------------------------------|
| 0.50                                                 | 9.2                               | 9.2                                  | 0.51               | 30.0                 | 12.0                                  | 70                           | 6.5                        | 6.5                          |
| 1.00                                                 | 20.5                              | 29.7                                 | 1.02               | 61.0                 | 23.0                                  | 70                           | 14.4                       | 20.9                         |
| 2.00                                                 | 16.5                              | 46.2                                 | 2.03               | 122.0                | 46.0                                  | 70                           | 11.6                       | 32.5                         |
| 3.00                                                 | 11.3                              | 57.5                                 | 3.05               | 183.0                | 70.0                                  | 66                           | 7.4                        | 40.0                         |
| 4.00                                                 | 9.1                               | 66.7                                 | 4.07               | 244.0                | 93.0                                  | 63                           | 5.8                        | 45.7                         |
| 5.00                                                 | 5.5                               | 72.2                                 | 5.08               | 305.0                | 116.0                                 | 62                           | 3.4                        | 49.1                         |
| 6.00                                                 | 4.5                               | 76.7                                 | 6.10               | 366.0                | 139.0                                 | 59                           | 2.7                        | 51.8                         |
| 7.00                                                 | 4.2                               | 80.9                                 | 7.12               | 427.0                | 162.0                                 | 57                           | 2.4                        | 54.2                         |
| 8.00                                                 | 3.5                               | 84.4                                 | 8.13               | 488.0                | 186.0                                 | 56                           | 2.0                        | 56.2                         |
| 9.00                                                 | 2.0                               | 86.5                                 | 9.15               | 549.0                | 209.0                                 | 54                           | 1.1                        | 57.3                         |
| 10.00                                                | 1.5                               | 88.0                                 | 10.17              | 610.0                | 232.0                                 | 53                           | 0.8                        | 58.0                         |
| 11.00                                                | 1.8                               | 89.8                                 | 11.18              | 671.0                | 255.0                                 | 53                           | 1.0                        | 59.0                         |
| 12.00                                                | 1.1                               | 90.9                                 | 12.20              | 732.0                | 278.0                                 | 52                           | 0.6                        | 59.6                         |
| 13.00                                                | 1.1                               | 92.0                                 | 13.22              | 793.0                | 302.0                                 | 51                           | 0.6                        | 60.1                         |
| 14.00                                                | 1.4                               | 93.4                                 | 14.23              | 854.0                | 325.0                                 | 50                           | 0.7                        | 60.9                         |
| 15.00                                                | 0.8                               | 94.2                                 | 15.25              | 915.0                | 348.0                                 | 50                           | 0.4                        | 61.3                         |
| 16.00                                                | 0.6                               | 94.8                                 | 16.27              | 976.0                | 371.0                                 | 49                           | 0.3                        | 61.5                         |
| 17.00                                                | 0.5                               | 95.3                                 | 17.28              | 1037.0               | 394.0                                 | 48                           | 0.2                        | 61.8                         |
| 18.00                                                | 0.3                               | 95.6                                 | 18.30              | 1098.0               | 417.0                                 | 48                           | 0.2                        | 61.9                         |
| 19.00                                                | 0.2                               | 95.9                                 | 19.32              | 1159.0               | 441.0                                 | 47                           | 0.1                        | 62.1                         |
| 20.00                                                | 0.2                               | 96.1                                 | 20.33              | 1220.0               | 464.0                                 | 46                           | 0.1                        | 62.2                         |
| 21.00                                                | 0.5                               | 96.6                                 | 21.35              | 1281.0               | 487.0                                 | 46                           | 0.2                        | 62.4                         |
| 22.00                                                | 0.4                               | 97.0                                 | 22.37              | 1342.0               | 510.0                                 | 45                           | 0.2                        | 62.6                         |
| 23.00                                                | 0.3                               | 97.3                                 | 23.38              | 1403.0               | 533.0                                 | 44                           | 0.1                        | 62.7                         |
| 24.00                                                | 0.0                               | 97.3                                 | 24.40              | 1464.0               | 557.0                                 | 44                           | 0.0                        | 62.7                         |
| 25.00                                                | 0.2                               | 97.4                                 | 25.42              | 1525.0               | 580.0                                 | 43                           | 0.1                        | 62.8                         |
| 30.00                                                | 1.6                               | 99.1                                 | 30.50              | 1830.0               | 696.0                                 | 42                           | 0.7                        | 63.4                         |
| 35.00                                                | 0.6                               | 99.7                                 | 35.58              | 2135.0               | 812.0                                 | 41                           | 0.3                        | 63.7                         |
| 40.00                                                | 0.0                               | 99.7                                 | 40.67              | 2440.0               | 928.0                                 | 40                           | 0.0                        | 63.7                         |
| 45.00                                                | 0.3                               | 100.0                                | 45.75              | 2745.0               | 1044.0                                | 39                           | 0.1                        | 63.8                         |
| Estimated Net Annual Sediment (TSS) Load Reduction = |                                   |                                      |                    |                      |                                       |                              | 64 %                       |                              |

Climate Station ID: 6137287 Years of Rainfall Data: 33



# Stormceptor<sup>®</sup>







|                         | Maximum Pipe Diameter / Peak Conveyance |      |                                   |                   |                 |                  |                  |                  |                  |  |  |
|-------------------------|-----------------------------------------|------|-----------------------------------|-------------------|-----------------|------------------|------------------|------------------|------------------|--|--|
| Stormceptor<br>EF / EFO | Model Diameter                          |      | Min Angle Inlet /<br>Outlet Pipes | Max Inle<br>Diame | et Pipe<br>eter | Max Out<br>Diame | let Pipe<br>eter | Peak Cor<br>Flow | nveyance<br>Rate |  |  |
|                         | (m)                                     | (ft) |                                   | (mm)              | (in)            | (mm)             | (in)             | (L/s)            | (cfs)            |  |  |
| EF4 / EFO4              | 1.2                                     | 4    | 90                                | 609               | 24              | 609              | 24               | 425              | 15               |  |  |
| EF6 / EFO6              | 1.8                                     | 6    | 90                                | 914               | 36              | 914              | 36               | 990              | 35               |  |  |
| EF8 / EFO8              | 2.4                                     | 8    | 90                                | 1219              | 48              | 1219             | 48               | 1700             | 60               |  |  |
| EF10 / EFO10            | 3.0                                     | 10   | 90                                | 1828              | 72              | 1828             | 72               | 2830             | 100              |  |  |
| EF12 / EF012            | 3.6                                     | 12   | 90                                | 1828              | 72              | 1828             | 72               | 2830             | 100              |  |  |

#### SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

#### **DESIGN FLEXIBILITY**

► Stormceptor<sup>®</sup> EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

#### **OIL CAPTURE AND RETENTION**

► While Stormceptor<sup>®</sup> EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor<sup>®</sup> EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.











#### **INLET-TO-OUTLET DROP**

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

- $0^{\circ}$  45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.
- 45° 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

#### HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

|                         | i onatant capacity |             |                          |                              |                                                                 |       |                                                                                     |      |                     |                |       |        |
|-------------------------|--------------------|-------------|--------------------------|------------------------------|-----------------------------------------------------------------|-------|-------------------------------------------------------------------------------------|------|---------------------|----------------|-------|--------|
| Stormceptor<br>EF / EFO | Moo<br>Diam        | del<br>eter | Depth<br>Pipe In<br>Sump | (Outlet<br>vert to<br>Floor) | Oil Volume Recommended<br>Sediment Sediment Maintenance Depth * |       | Oil Volume Recommended Maximum<br>Sediment Sediment Volume *<br>Maintenance Depth * |      | Maxim<br>Sediment I | ium<br>Mass ** |       |        |
|                         | (m)                | (ft)        | (m)                      | (ft)                         | (L)                                                             | (Gal) | (mm)                                                                                | (in) | (L)                 | (ft³)          | (kg)  | (lb)   |
| EF4 / EFO4              | 1.2                | 4           | 1.52                     | 5.0                          | 265                                                             | 70    | 203                                                                                 | 8    | 1190                | 42             | 1904  | 5250   |
| EF6 / EFO6              | 1.8                | 6           | 1.93                     | 6.3                          | 610                                                             | 160   | 305                                                                                 | 12   | 3470                | 123            | 5552  | 15375  |
| EF8 / EFO8              | 2.4                | 8           | 2.59                     | 8.5                          | 1070                                                            | 280   | 610                                                                                 | 24   | 8780                | 310            | 14048 | 38750  |
| EF10 / EFO10            | 3.0                | 10          | 3.25                     | 10.7                         | 1670                                                            | 440   | 610                                                                                 | 24   | 17790               | 628            | 28464 | 78500  |
| EF12 / EFO12            | 3.6                | 12          | 3.89                     | 12.8                         | 2475                                                            | 655   | 610                                                                                 | 24   | 31220               | 1103           | 49952 | 137875 |

#### **Pollutant Capacity**

\*Increased sump depth may be added to increase sediment storage capacity \*\* Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft<sup>3</sup>)

| Feature                                                                   | Benefit                                       | Feature Appeals To                       |
|---------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|
| Patent-pending enhanced flow treatment<br>and scour prevention technology | Superior, verified third-party<br>performance | Regulator, Specifying & Design Engineer  |
| Third-party verified light liquid capture                                 | Proven performance for fuel/oil hotspot       | Regulator, Specifying & Design Engineer, |
| and retention for EFO version                                             | locations                                     | Site Owner                               |
| Functions as bend, junction or inlet<br>structure                         | Design flexibility                            | Specifying & Design Engineer             |
| Minimal drop between inlet and outlet                                     | Site installation ease                        | Contractor                               |
| Large diameter outlet riser for inspection                                | Easy maintenance access from grade            | Maintenance Contractor & Site Owner      |

#### STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

#### STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef







| Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results<br>Stormceptor® EFO |                  |                   |                  |                   |                  |                   |                  |
|----------------------------------------------------------------------------------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|
| SLR<br>(L/min/m²)                                                                                  | TSS %<br>REMOVAL | SLR<br>(L/min/m²) | TSS %<br>REMOVAL | SLR<br>(L/min/m²) | TSS %<br>REMOVAL | SLR<br>(L/min/m²) | TSS %<br>REMOVAL |
| 1                                                                                                  | 70               | 660               | 42               | 1320              | 35               | 1980              | 24               |
| 30                                                                                                 | 70               | 690               | 42               | 1350              | 35               | 2010              | 24               |
| 60                                                                                                 | 67               | 720               | 41               | 1380              | 34               | 2040              | 23               |
| 90                                                                                                 | 63               | 750               | 41               | 1410              | 34               | 2070              | 23               |
| 120                                                                                                | 61               | 780               | 41               | 1440              | 33               | 2100              | 23               |
| 150                                                                                                | 58               | 810               | 41               | 1470              | 32               | 2130              | 22               |
| 180                                                                                                | 56               | 840               | 41               | 1500              | 32               | 2160              | 22               |
| 210                                                                                                | 54               | 870               | 41               | 1530              | 31               | 2190              | 22               |
| 240                                                                                                | 53               | 900               | 41               | 1560              | 31               | 2220              | 21               |
| 270                                                                                                | 52               | 930               | 40               | 1590              | 30               | 2250              | 21               |
| 300                                                                                                | 51               | 960               | 40               | 1620              | 29               | 2280              | 21               |
| 330                                                                                                | 50               | 990               | 40               | 1650              | 29               | 2310              | 21               |
| 360                                                                                                | 49               | 1020              | 40               | 1680              | 28               | 2340              | 20               |
| 390                                                                                                | 48               | 1050              | 39               | 1710              | 28               | 2370              | 20               |
| 420                                                                                                | 47               | 1080              | 39               | 1740              | 27               | 2400              | 20               |
| 450                                                                                                | 47               | 1110              | 38               | 1770              | 27               | 2430              | 20               |
| 480                                                                                                | 46               | 1140              | 38               | 1800              | 26               | 2460              | 19               |
| 510                                                                                                | 45               | 1170              | 37               | 1830              | 26               | 2490              | 19               |
| 540                                                                                                | 44               | 1200              | 37               | 1860              | 26               | 2520              | 19               |
| 570                                                                                                | 43               | 1230              | 37               | 1890              | 25               | 2550              | 19               |
| 600                                                                                                | 42               | 1260              | 36               | 1920              | 25               | 2580              | 18               |
| 630                                                                                                | 42               | 1290              | 36               | 1950              | 24               | 2600              | 26               |





#### STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

#### PART 1 – GENERAL

#### 1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

#### 1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators** 

#### 1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

#### PART 2 – PRODUCTS

#### 2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

- 2.1.1 4 ft (1219 mm) Diameter OGS Units:
  - 6 ft (1829 mm) Diameter OGS Units:
  - 8 ft (2438 mm) Diameter OGS Units:
  - 10 ft (3048 mm) Diameter OGS Units:
  - 12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^{3} \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^{3} \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^{3} \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^{3} \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^{3} \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$ 

#### PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall







remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

#### 3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m<sup>2</sup> to 1400 L/min/m<sup>2</sup>, and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m<sup>2</sup> and 1400 L/min/m<sup>2</sup> shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40  $L/min/m^2$  shall be assumed to be identical to the sediment removal efficiency at 40  $L/min/m^2$ . No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40  $L/min/m^2$ .

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m<sup>2</sup> shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m<sup>2</sup>, and shall be calculated using a simple proportioning formula, with 1400 L/min/m<sup>2</sup> in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m<sup>2</sup>.

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

#### 3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m<sup>2</sup>.

#### 3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to





assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m<sup>2</sup> to 2600 L/min/m<sup>2</sup>) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.





#### OSD Storage-Dicharge

| HUSSON                                                  | Project:<br>Project No.:<br>Municipality:<br>Catchment: | Willoughby Drive<br>221377<br>City of Niagara Falls<br>103 & 108 |
|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|
| Orifice Plate<br>Invert<br>Size<br>Co-efficient<br>Area | 173.37 m<br>120 m<br>0.62<br>0.0113 m                   | າ @ MH116<br>າm<br>າ <sup>2</sup>                                |

| Elevation | Area (m²) | Incremental<br>Storage (m <sup>3</sup> ) | Total Storage<br>(m <sup>3</sup> ) | Head on Orifice<br>(m) | Orifice Flow<br>(m <sup>3</sup> /s) |
|-----------|-----------|------------------------------------------|------------------------------------|------------------------|-------------------------------------|
| 173.370   |           | 0.00                                     | 0.0                                | 0.00                   | 0.000                               |
| 173.371   |           | 229.75                                   | 229.8                              | 0.00                   | 0.000                               |
| 173.940   | 1046      | 297.70                                   | 238.0                              | 0.51                   | 0.022                               |
| 174.950   | 1046      | 1056.86                                  | 1294.8                             | 1.52                   | 0.038                               |
| 174.951   |           | 0.52                                     | 1295.3                             | 1.52                   | 0.038                               |
| 175.860   |           | 0.00                                     | 1295.3                             | 2.43                   | 0.048                               |

#### **Pipe/Structure Storage Volumes**

| NO | Project:      | Willoughby Drive      |
|----|---------------|-----------------------|
| SC | Project No.:  | 221377                |
| S  | Municipality: | City of Niagara Falls |
| 로  | Catchment:    | 103 & 108             |

#### Pipe Storage

| Diameter | Lenath | Storage<br>Volume |
|----------|--------|-------------------|
| 150      | 0      | 0.00              |
| 200      | 0      | 0.00              |
| 250      | 0      | 0.00              |
| 300      | 12.47  | 0.88              |
| 375      | 0      | 0.00              |
| 450      | 0      | 0.00              |
| 525      | 87.66  | 18.98             |
| 600      | 104.34 | 29.50             |
| 675      | 0      | 0.00              |
| 750      | 154.84 | 68.41             |
| 825      | 124.81 | 66.72             |
| 900      | 0      | 0.00              |
| 975      | 0      | 0.00              |
| 1050     | 0      | 0.00              |
| 1200     | 0      | 0.00              |
| 1350     | 0      | 0.00              |
| 1500     | 0      | 0.00              |
| 1800     | 0      | 0.00              |

#### Manhole Storage

| Description | MH Inside<br>Diam. (mm) | Invert (m) | Top<br>Elev. (m) | Storage<br>Depth (m) | Storage<br>Volume (m <sup>3</sup> ) |
|-------------|-------------------------|------------|------------------|----------------------|-------------------------------------|
| MH116       | 1800                    | 173.37     | 175.86           | 2.49                 | 6.34                                |
| MH105       | 1800                    | 173.45     | 176.20           | 2.75                 | 7.00                                |
| MH106       | 1800                    | 173.52     | 176.23           | 2.71                 | 6.90                                |
| MH107       | 1800                    | 173.64     | 176.25           | 2.61                 | 6.64                                |
| MH108       | 1500                    | 173.79     | 176.30           | 2.51                 | 4.44                                |
| MH109       | 1500                    | 173.91     | 176.27           | 2.36                 | 4.17                                |
| MH110       | 1500                    | 174.08     | 176.23           | 2.15                 | 3.80                                |
| MH111       | 1500                    | 174.24     | 176.23           | 1.99                 | 3.52                                |
| MH112       | 1500                    | 174.44     | 175.84           | 1.40                 | 2.47                                |

| Total         | 45.27 m <sup>3</sup> |
|---------------|----------------------|
| Total Storage | 229.8 m <sup>3</sup> |

184.48 m<sup>3</sup>

Total

#### OSD Storage-Dicharge

| HUSSON                                                  | Project:<br>Project No.:<br>Municipality:<br>Catchment: | Willoughby Drive<br>221377<br>City of Niagara Falls<br>104 |
|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|
| Orifice Plate<br>Invert<br>Size<br>Co-efficient<br>Area | 173.43 n<br>204 n<br>0.62<br>0.0327 n                   | n @ MH137<br>nm<br>n <sup>2</sup>                          |

| Elevation | Area (m²) | Incremental<br>Storage (m <sup>3</sup> ) | Total Storage<br>(m <sup>3</sup> ) | Head on Orifice<br>(m) | Orifice Flow<br>(m <sup>3</sup> /s) |
|-----------|-----------|------------------------------------------|------------------------------------|------------------------|-------------------------------------|
| 173.430   | 221       | 0.00                                     | 0.0                                | 0.00                   | 0.000                               |
| 174.440   | 221       | 223.01                                   | 223.0                              | 0.91                   | 0.086                               |
# **Pipe/Structure Storage Volumes**

| N  | Project:      | Willoughby Drive      |
|----|---------------|-----------------------|
| SI | Project No.:  | 221377                |
| S  | Municipality: | City of Niagara Falls |
| 문  | Catchment:    | 104                   |

# Pipe Storage

| Diamatan | 1 41   | Storage |
|----------|--------|---------|
| Diameter | Length | volume  |
| 150      | 0      | 0.00    |
| 200      | 0      | 0.00    |
| 250      | 0      | 0.00    |
| 300      | 0      | 0.00    |
| 375      | 46.73  | 5.16    |
| 450      | 84.34  | 13.41   |
| 525      | 0      | 0.00    |
| 600      | 13.27  | 3.75    |
| 675      | 0      | 0.00    |
| 750      | 71.52  | 31.60   |
| 825      | 0      | 0.00    |
| 900      | 0      | 0.00    |
| 975      | 0      | 0.00    |
| 1050     | 0      | 0.00    |
| 1200     | 0      | 0.00    |
| 1350     | 0      | 0.00    |
| 1500     | 0      | 0.00    |
| 1800     | 0      | 0.00    |

# Manhole Storage

| Description | MH Inside<br>Diam. (mm) | Invert (m) | Top<br>Elev. (m) | Storage<br>Depth (m) | Storage<br>Volume (m <sup>3</sup> ) |
|-------------|-------------------------|------------|------------------|----------------------|-------------------------------------|
| MH137       | 1500                    | 173.43     | 175.83           | 2.40                 | 4.24                                |
| MH119       | 1500                    | 173.51     | 175.98           | 2.47                 | 4.36                                |
| MH120       | 1500                    | 173.65     | 176.03           | 2.38                 | 4.21                                |
| MH121       | 1500                    | 173.72     | 175.97           | 2.25                 | 3.98                                |
| MH127       | 1500                    | 174.20     | 176.03           | 1.83                 | 3.23                                |
| MH128       | 1500                    | 174.38     | 176.10           | 1.72                 | 3.04                                |

| Total         | 23.06 m <sup>3</sup> |
|---------------|----------------------|
| Total Storage | 77.0 m <sup>3</sup>  |

53.92 m<sup>3</sup>

Total

# OSD Storage-Dicharge

| _                                                       | NOSSUH | Project:<br>Project No.:<br>Municipality:<br>Catchment: | Willoughby Di<br>221377<br>City of Niagar<br>105 | rive<br>a Falls |          |
|---------------------------------------------------------|--------|---------------------------------------------------------|--------------------------------------------------|-----------------|----------|
| Orifice Plate<br>Invert<br>Size<br>Co-efficient<br>Area |        | 174.09 r<br>74 r<br>0.62<br>0.0043 r                    | n<br>nm<br>n <sup>2</sup>                        | @ MH115         | *Use ICD |

| Elevation | Area (m²) | Incremental<br>Storage (m <sup>3</sup> ) | Total Storage<br>(m <sup>3</sup> ) | Head on Orifice<br>(m) | Orifice Flow<br>(m <sup>3</sup> /s) |
|-----------|-----------|------------------------------------------|------------------------------------|------------------------|-------------------------------------|
| 174.09    | 175       | 0.00                                     | 0.0                                | 0.00                   | 0.000                               |
| 174.75    | 175       | 121.48                                   | 121.5                              | 0.62                   | 0.009                               |

٦

# **Pipe/Structure Storage Volumes**

| N   | Project:      | Willoughby Drive      |
|-----|---------------|-----------------------|
| SC  | Project No.:  | 221377                |
| ~   | Municipality: | City of Niagara Falls |
| = = | Catchment:    | 105                   |

# Pipe Storage

| Diameter | Length | Storage<br>Volume |
|----------|--------|-------------------|
| 150      | 0      | 0.00              |
| 200      | 0      | 0.00              |
| 250      | 0      | 0.00              |
| 300      | 0      | 0.00              |
| 375      | 0      | 0.00              |
| 450      | 0      | 0.00              |
| 525      | 0      | 0.00              |
| 600      | 0      | 0.00              |
| 675      | 0      | 0.00              |
| 750      | 0      | 0.00              |
| 825      | 0      | 0.00              |
| 900      | 0      | 0.00              |
| 975      | 0      | 0.00              |
| 1050     | 0      | 0.00              |
| 1200     | 0      | 0.00              |
| 1350     | 0      | 0.00              |
| 1500     | 0      | 0.00              |
| 1800     | 0      | 0.00              |

# Manhole Storage

| Description | MH Inside<br>Diam. (mm) | Invert (m) | Top<br>Elev. (m) | Storage<br>Depth (m) | Storage<br>Volume (m <sup>3</sup> ) |
|-------------|-------------------------|------------|------------------|----------------------|-------------------------------------|
| MH115       | 1500                    | 174.09     | 175.78           | 1.69                 | 2.99                                |
| MH117       | 1500                    | 174.33     | 176.13           | 1.80                 | 3.18                                |

| Total         | 6.17 m <sup>3</sup> |
|---------------|---------------------|
| Total Storage | 6.2 m <sup>3</sup>  |

0.00 m<sup>3</sup>

Total

# OSD Storage-Dicharge

| _                                                       | NOSSUH | Project:<br>Project No.:<br>Municipality:<br>Catchment: | Willoughby Drive<br>221377<br>City of Niagara Falls<br>106 |
|---------------------------------------------------------|--------|---------------------------------------------------------|------------------------------------------------------------|
| Orifice Plate<br>Invert<br>Size<br>Co-efficient<br>Area |        | 173.4 n<br>152 n<br>0.62<br>0.0181 n                    | n @ MH118<br>nm<br>n <sup>4</sup>                          |

| Elevation | Area (m²) | Incremental<br>Storage (m <sup>3</sup> ) | Total Storage<br>(m <sup>3</sup> ) | Head on Orifice<br>(m) | Orifice Flow<br>(m <sup>3</sup> /s) |
|-----------|-----------|------------------------------------------|------------------------------------|------------------------|-------------------------------------|
| 173.40    | 186       | 0.00                                     | 0.0                                | 0.00                   | 0.000                               |
| 174.41    | 186       | 193.80                                   | 193.8                              | 0.93                   | 0.048                               |

-

# **Pipe/Structure Storage Volumes**

| ISSON      | Project:<br>Project No.:<br>Municipality: | Willoughby Drive<br>221377<br>City of Niagara Falls |
|------------|-------------------------------------------|-----------------------------------------------------|
| <b>= =</b> | Catchment:                                | 106                                                 |

# Pipe Storage

| Diamatar | Longth | Storage |
|----------|--------|---------|
| Diameter | Length | volume  |
| 150      | 0      | 0.00    |
| 200      | 0      | 0.00    |
| 250      | 0      | 0.00    |
| 300      | 19.16  | 1.35    |
| 375      | 0      | 0.00    |
| 450      | 0      | 0.00    |
| 525      | 0      | 0.00    |
| 600      | 0      | 0.00    |
| 675      | 0      | 0.00    |
| 750      | 0      | 0.00    |
| 825      | 0      | 0.00    |
| 900      | 0      | 0.00    |
| 975      | 0      | 0.00    |
| 1050     | 0      | 0.00    |
| 1200     | 0      | 0.00    |
| 1350     | 0      | 0.00    |
| 1500     | 0      | 0.00    |
| 1800     | 0      | 0.00    |

| Description | MH Inside<br>Diam. (mm) | Invert (m) | Top<br>Elev. (m) | Storage<br>Depth (m) | Storage<br>Volume (m <sup>3</sup> ) |  |
|-------------|-------------------------|------------|------------------|----------------------|-------------------------------------|--|
| MH118       | 1500                    | 173.40     | 175.86           | 2.46                 | 4.35                                |  |

| Total         | 4.35 m <sup>3</sup> |
|---------------|---------------------|
| Total Storage | 5.7 m <sup>3</sup>  |

1.35 m<sup>3</sup>

Total







\_\_\_\_ 
 SSSSS
 U
 U
 A
 L

 SS
 U
 U
 A A
 L

 SS
 U
 U
 AAAAA
 L

 SS
 U
 U
 A A
 L

 SS
 U
 U
 A
 A
 L

 SSSSS
 UUUUU
 A
 A
 LLLLL
 I I V V (v 6.2.2015) SS SS V V v v I v v Т VV I 000 TTTTT M M 000 ΤM 0 0 0 0 T T MM MM 0 0 M M 0 0 M M 000 -T 000 Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved. \*\*\*\*\* DETAILED OUTPUT \*\*\*\*\* filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Input Output filename: C:\Users\workstation\AppData\Local\Civica\VH5\ccf76975-8d50-4b70-aa0c-30fee69c1cca \1de2ee67-3cec-4a14-9fca-412ca05fac51\ Summary filename: C:\Users\workstation\AppData\Local\Civica\VH5\ccf76975-8d50-4b70-aa0c-30fee69c1cca \1de2ee67-3cec-4a14-9fca-412ca05fac51\ DATE: 10-03-2024 TIME: 05:26:57 USER: COMMENTS: \_\_\_\_\_ \*\*\*\*\* \*\* SIMULATION : CHI4hr - 005yr \*\*\*\*\* | CHICAGO STORM | IDF curve parameters: A= 719.500 | Ptotal= 41.74 mm | B= 6.340 C= 0.769 used in: INTENSITY = A / (t + B)^C Duration of storm = 4.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.33RAIN |' TIME mm/hr |' hrs 22.26 | 2.00 TIME RAIN | TIME RAIN | TIME RAIN hrs mm/hr | hrs mm/hr | hrs mm/hr 3.00 1.00 0.00 2.99 | 6.94 I 3.54 2.17 84.02 | 0.17 3.41 | 1.17 5.92 I 3.17 3.30 0.33 4.01 | 1.33 28.87 2.33 5.19 3.33 3.08 4.90 | 1.50 15.67 | 2.50 4.63 3.50 2.90 0.50 

 4.90 |
 1.50
 15.67 |
 2.50

 6.42 |
 1.67
 10.90 |
 2.67

 9.66 |
 1.83
 8.44 |
 2.83

 0.67 4.19 | 3.67 2.74 0.83 3.84 | 3.83 2.60 \_\_\_\_\_ \_\_\_\_\_ L CALTR | NASHYD ( 0101) | Area (ha)= 3.39 Curve Number (CN)= 77.0 Ia (mm)= 5.00 # of Linear Res.(N)= 3.00 |ID= 1 DT= 5.0 min | U.H. Tp(hrs) = 0.65 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN |' TIME mm/hr | hrs mm/hr |' hrs TIME RAIN | TIME RAIN hrs mm/hr | hrs mm/hr 6.94 | 3.08 2.99 | 1.083 22.26 | 2.083 0.083 3.54 2.99 | 1.167 3.41 | 1.250 22.26 | 2.167 3.17 3.25 0.167 6.94 I 3 54 84.02 | 2.250 5.92 | 0.250 3.30 0.333 3.41 | 1.333 84.02 | 2.333 5.92 | 3.33 3.30

5.19 |

4.63 |

3.42

3.58

5.19 | 3.50

4.63 3.67

3.08

2.90

2.90

3.08

28.87 | 2.417

28.87 | 2.500

0.417

0.500

0 583

0.667

4.01 | 1.417

4.01 | 1.417 4.01 | 1.500 4.90 | 1.583

4.90|1.58315.67|2.5834.90|1.66715.67|2.667

| 0.833<br>0.833<br>0.917<br>9.66   1.917<br>10.90   2.833<br>4.19   3.83<br>2.74<br>3.84   3.92<br>2.60<br>1.000<br>9.66   2.000<br>8.44   3.000<br>3.84   4.00<br>2.60                                                                                                                                                                                                                                                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Unit Hyd Qpeak (cms)= 0.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| PEAK FLOW       (cms) =       0.055       (i)         TIME TO PEAK       (hrs) =       2.167         RUNOFF VOLUME       (mm) =       11.987         TOTAL RAINFALL       (mm) =       41.741         RUNOFF COEFFICIENT       =       0.287                                                                                                                                                                                                                                                                        |  |
| (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| CALIB  <br>  NASHYD ( 0100)   Area (ha)= 6.88 Curve Number (CN)= 77.0<br> ID= 1 DT= 5.0 min   Ia (mm)= 5.00 # of Linear Res.(N)= 3.00<br>U.H. Tp(hrs)= 0.86                                                                                                                                                                                                                                                                                                                                                         |  |
| NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| TRANSFORMED HYETOGRAPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| TIMERAINITIMERAINITIMERAINITIMERAINhrsmm/hrhrsmm/hrihrsmm/hrihrsmm/hr0.0832.991.08322.262.0836.943.083.540.1672.991.16722.262.2505.923.253.300.2503.411.25084.022.2505.923.253.300.3333.411.33384.022.3335.923.333.300.4174.011.41728.872.4175.193.423.080.5004.011.50028.872.5005.193.503.080.5834.901.58315.672.5834.633.582.900.6674.901.66715.672.6674.633.672.900.7506.421.75010.902.7504.193.752.740.8336.421.83310.902.8334.193.832.740.9179.661.9178.442.9173.843.922.601.0009.662.0008.443.0003.844.002.60 |  |
| Unit Hyd Qpeak (cms)= 0.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| PEAK FLOW (cms) = 0.092 (i)<br>TIME TO PEAK (hrs) = 2.500<br>RUNOFF VOLUME (mm) = 11.987<br>TOTAL RAINFALL (mm) = 41.741<br>RUNOFF COEFFICIENT = 0.287<br>(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| ID = 3 ( 0001): 10.27 0.144 2.33 11.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| FTNISH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| V V I SSSSS U U A L (v 6.2.2015)<br>V V I SS U U A A L<br>V V I SS U U AAAAA L<br>V V I SS U U A A L<br>VV I SSSSS UUUUU A A LLLLL                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 000 TTTTT TTTTT H H Y Y M M 000 TM<br>0 0 T T H H Y Y MM MM 0 0<br>0 0 T T H H Y M M 0 0<br>000 T T H H Y M M 000<br>Developed and Distributed by Smart City Water Inc<br>Copyright 2007 - 2022 Smart City Water Inc                                                                                                                                                                                                                                                                                                |  |

All rights reserved.

#### \*\*\*\*\* DETAILED OUTPUT \*\*\*\*\*

Input filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat filename: C:\Users\workstation\AppData\Local\Civica\VH5\ccf76975-8d50-4b70-aa0c-30fee69c1cca Output \19fae142-5519-47d3-bcce-c605c0282ca2\ Summary filename: C:\Users\workstation\AppData\Local\Civica\VH5\ccf76975-8d50-4b70-aa0c-30fee69c1cca \19fae142-5519-47d3-bcce-c605c0282ca2\ DATE: 10-03-2024 TIME: 05:26:56 USER · COMMENTS: \_\_\_\_\_ \*\*\*\*\*\* \*\* SIMULATION : CHI4hr - 100yr \*\* | CHICAGO STORM | IDF curve parameters: A=1264.570 | Ptotal= 68.11 mm | B= 7.720 C= 0.781 \_\_\_\_\_ used in: INTENSITY = A / (t + B)^C Duration of storm = 4.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.33 TIME RAIN |' TIME hrs mm/hr |' hrs 1.00 37.64 | 2.00 TIME RAIN | TIME RAIN | TIME RAIN hrs mm/hr | mm/hr | hrs mm/hr 0.00 4.74 1.00 11.39 | 3.00 5.65 5.44 | 1.17 133.78 | 0.17 2.17 9.65 | 3.17 5.25 0.33 6.43 | 1.33 48.90 | 2.33 8.41 | 3.33 4.90 0.50 7.93 | 1.50 26.44 | 2.50 7.47 | 3.50 4.60 10.51 | 1.67 18.20 | 2.67 16.06 | 1.83 13.96 | 2.83 0.67 6.73 | 3.67 4.34 6.14 | 3.83 0.83 4.10 \_\_\_\_\_ \_\_\_\_\_ L CALTB (ha)= 3.39 Curve Number (CN)= 77.0 (mm)= 5.00 # of Linear Res.(N)= 3.00 NASHYD 0101) Area |ID= 1 DT= 5.0 min | Ia U.H. Tp(hrs) = 0.65 \_\_\_\_\_ NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. --- TRANSFORMED HYETOGRAPH ----RAIN , mm/hr | hic 39 | 3.08 3.17 RAIN | TIME RAIN | ' TIME RAIN | TIME mm/hr | hrs mm/hr | hrs mm/hr | hrs TIME RAIN hrs nm/hr | 110 4.74 | 1.083 mm/hr 0.083 37.64 | 2.083 11.39 | 5.65 4.74 | 1.167 37.64 | 2.167 0.167 11.39 | 5.65 5.44 | 1.250 133.78 | 2.250 5.44 | 1.333 133.78 | 2.333 9.65 j 3.25 0.250 5.25 0.333 9.65 | 3.33 5.25 0.417 6.43 | 1.417 48.90 | 2.417 8.41 | 3.42 4.90 48.90 | 2.500 0.500 6.43 | 1.500 8.41 | 3.50 4 90 0.583 7.93 | 1.583 26.44 | 2.583 7.47 | 3.58 4.60 7.93 | 1.667 0.667 26.44 | 2.667 7.47 | 3.67 4.60 0.750 10.51 | 1.750 18.20 | 2.750 6.73 I 3.75 4.34 0.833 10.51 | 1.833 18.20 | 2.833 6.73 | 3.83 4.34 0.917 16.06 | 1.917 1.000 16.06 | 2.000 13.96 | 2.917 13.96 | 3.000 6.14 | 3.92 4.10 6.14 | 4.00 4.10 Unit Hyd Qpeak (cms)= 0.199 (cms) = 0.137 (i) (hrs) = 2.167 PEAK FLOW TIME TO PEAK TOTAL RAINFALL (mm) = 28.656 RUNOFF COEFFICIENT = 0.421 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| CALIB  <br>  NASHYD ( 0100)  Area<br> ID= 1 DT= 5.0 min   Ia<br>U.H.                                                                                                                                                                                                                                                               | (ha) =<br>(mm) =<br>Tp(hrs) =                                                                                                                                                                                                                                  | 6.88<br>5.00<br>0.86                                                                                                                                | Curve Nu<br># of Lin                                                                                                                                                  | umber (CN)= 77.0<br>hear Res.(N)= 3.00                                                                                                                                                                                                                                                |                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| NOTE: RAINFALL WAS                                                                                                                                                                                                                                                                                                                 | TRANSFORM                                                                                                                                                                                                                                                      | MED TO                                                                                                                                              | 5.0 MIN.                                                                                                                                                              | TIME STEP.                                                                                                                                                                                                                                                                            |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                               |
| TIME RAI<br>hrs mm/f<br>0.083 4.7<br>0.167 4.7<br>0.250 5.4<br>0.333 5.4<br>0.417 6.4<br>0.500 6.4<br>0.583 7.5<br>0.750 10.5<br>0.750 10.5<br>0.833 10.5<br>0.917 16.0<br>1.000 16.0<br>Unit Hyd Qpeak (cms)=<br>PEAK FLOW (cms)=<br>TIME TO PEAK (hrs)=<br>RUNOFF VOLUME (mm)=<br>RUNOFF COEFFICIENT =<br>(i) PEAK FLOW DOES NOT | TI<br>TN   TIME<br>IT   hrs<br>44   1.083<br>44   1.167<br>44   1.250<br>44   1.333<br>33   1.417<br>43   1.500<br>33   1.583<br>33   1.667<br>14   1.833<br>66   1.917<br>06   2.000<br>0.306<br>0.230 (2<br>2.417<br>28.657<br>68.109<br>0.421<br>INCLUDE BA | RANSFORME<br>RAIN<br>mm/hr<br>37.64<br>133.78<br>133.78<br>133.78<br>133.78<br>48.90<br>26.44<br>26.44<br>26.44<br>18.20<br>18.20<br>13.96<br>13.96 | ED HYETOG<br>  ' TIME<br>  ' hrss<br>  2.083<br>  2.167<br>  2.250<br>  2.233<br>  2.417<br>  2.500<br>  2.583<br>  2.667<br>  2.750<br>  2.833<br>  2.917<br>  3.000 | SRAPH         2       RAIN   TIME         a mm/hr   hrs         11.39   3.08         11.39   3.17         9.65   3.25         9.65   3.33         8.41   3.42         8.41   3.50         7.47   3.58         7.47   3.67         6.73   3.75         6.73   3.83         6.14   4.00 | RAIN<br>mm/hr<br>5.65<br>5.25<br>5.25<br>4.90<br>4.60<br>4.60<br>4.34<br>4.34<br>4.10<br>4.10 |
| (1) PEAK FLOW DOES NOT                                                                                                                                                                                                                                                                                                             | INCLUDE BA                                                                                                                                                                                                                                                     | ASEFLOW 1                                                                                                                                           | F ANY.                                                                                                                                                                |                                                                                                                                                                                                                                                                                       |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                                               |
| ADD HYD ( 0001) <br>  1 + 2 = 3  <br>ID1= 1 ( 0100):<br>+ ID2= 2 ( 0101):                                                                                                                                                                                                                                                          | AREA (<br>(ha)<br>6.88 0<br>3.39 0                                                                                                                                                                                                                             | QPEAK<br>(cms)<br>.230<br>.137                                                                                                                      | TPEAK<br>(hrs)<br>2.42<br>2.17                                                                                                                                        | R.V.<br>(mm)<br>28.66<br>28.66                                                                                                                                                                                                                                                        |                                                                                               |
| ID = 3 ( 0001):                                                                                                                                                                                                                                                                                                                    | 10.27 0                                                                                                                                                                                                                                                        | .361                                                                                                                                                | 2.33                                                                                                                                                                  | 28.66                                                                                                                                                                                                                                                                                 |                                                                                               |
| NOTE: PEAK FLOWS DO NO                                                                                                                                                                                                                                                                                                             | T INCLUDE                                                                                                                                                                                                                                                      | BASEFIOW                                                                                                                                            | IS IF ANY                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                     |                                                                                               |





ENGINEERING + MANAGEMENT P 905.709.5825 500 CACHET WOODS COURT, SUITE 204 MARI(HM, ON LISC 028 HUSSON.CA

# FIGURE D2 WILLOUGHBY DRIVE VO POST DEVELOPMENT

DATE: OCTOBER 2024 SCALE: N.T.S. PROJECT: 221377

\_\_\_\_ SSSSS U U A L SS U U A A L SS U U AAAAA L SS U U A A L SSSSS UUUUU A A LLLLL V V V I I (v 6.2.2015) SS V v v I v v Т VV I 000 TTTTT TTTTT H ΤM 0 0 0 0 T T T 000 Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved. \*\*\*\*\* DETAILED OUTPUT \*\*\*\*\* filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat Input Output filename: C:\Users\workstation\AppData\Local\Civica\VH5\ccf76975-8d50-4b70-aa0c-30fee69c1cca \4ded57e8-a7e4-49c8-978f-553d056c4008\ Summary filename: C:\Users\workstation\AppData\Local\Civica\VH5\ccf76975-8d50-4b70-aa0c-30fee69c1cca \4ded57e8-a7e4-49c8-978f-553d056c4008\ DATE: 10-08-2024 TIME: 06:28:21 USER: COMMENTS: \_\_\_\_\_ \*\*\*\*\*\* \*\* SIMULATION : CHI4hr - 005yr \*\*\*\*\* | CHICAGO STORM | IDF curve parameters: A= 719.500 | Ptotal= 41.74 mm | B= 6.340 C= 0.769 used in: INTENSITY = A / (t + B) ^C Duration of storm = 4.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.33 RAIN |' TIME mm/hr |' hrs 22.26 | 2.00 TIME RAIN | TIME RAIN | TIME RAIN hrs hrs mm/hr | mm/hr | hrs mm/hr 6.94 | 3.00 1.00 0.00 2.99 | 3.54 2.17 2.33 3.41 | 1.17 4.01 | 1.33 0.17 84.02 | 5.92 I 3.17 3.30 0.33 28.87 5.19 3.33 3.08 
 1.50
 15.67
 2.50

 6.42
 1.67
 10.90
 2.67

 9.66
 1.83
 8.44
 2.83
 4.63 3.50 2.90 0.50 0.67 4.19 | 3.67 2.74 0.83 3.84 | 3.83 2.60 \_\_\_\_\_ \_\_\_\_\_ | CALIB Area (ha)= 0.18 Total Imp(%)= 65.00 Dir. Conn.(%)= 50.00 STANDHYD ( 0110) |ID= 1 DT= 5.0 min | \_\_\_\_\_ IMPERVIOUS PERVIOUS (i) 0.06 Surface Area 0.12 (ha) = Dep. Storage (mm) =1.50 (%)= 1.00 2.00 Average Slope (m) = 34.0. 0.013 34.64 40.00 0.250 Length Mannings n NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. --- TRANSFORMED HYETOGRAPH ---- 
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN

 mm/hr
 hrs
 mm/hr
 ' TIME
 RAIN
 ' TIME
 RAIN

 2.99
 1.083
 22.26
 2.083
 6.94
 3.08
 3.54

 2.99
 1.167
 22.26
 2.167
 6.94
 3.17
 3.54
 TIME hrs

1

0 083 0.167

| 0.250 3.4<br>0.333 3.4<br>0.417 4.0<br>0.500 4.0<br>0.583 4.5<br>0.667 4.4<br>0.833 6.4<br>0.917 9.6<br>1.000 9.6                                                                                                                                                                                                                                               | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                              | 2.250<br>  2.333<br>  2.417<br>  2.500<br>  2.583<br>  2.667<br>  2.750<br>  2.833<br>  2.917<br>  3.000                                                              | 5.92       3.25       3.         5.92       3.33       3.         5.19       3.42       3.         5.19       3.50       3.         4.63       3.58       2.         4.63       3.67       2.         4.19       3.75       2.         3.84       3.92       2.         3.84       4.00       2. | 30<br>30<br>08<br>90<br>90<br>74<br>74<br>60<br>60                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Max.Eff.Inten.(mm/hr)=<br>over (min)<br>Storage Coeff. (min)=<br>Unit Hyd. Tpeak (min)=<br>Unit Hyd. peak (cms)=                                                                                                                                                                                                                                                | 84.02<br>5.00<br>1.45 (ii)<br>5.00<br>0.33                                                                                                                                                                                                          | 63.55<br>10.00<br>9.91 (ii)<br>10.00<br>0.11                                                                                                                          | +momat 0+                                                                                                                                                                                                                                                                                        |                                                                       |
| PEAK FLOW (cms)=<br>TIME TO PEAK (hrs)=<br>RUNOFF VOLUME (mm)=<br>TOTAL RAINFALL (mm)=<br>RUNOFF COEFFICIENT =                                                                                                                                                                                                                                                  | 0.02<br>1.33<br>40.74<br>41.74<br>0.98                                                                                                                                                                                                              | 0.01<br>1.42<br>22.97<br>41.74<br>0.55                                                                                                                                | 0.027 (iii)<br>1.33<br>31.82<br>41.74<br>0.76                                                                                                                                                                                                                                                    |                                                                       |
| ***** WARNING: STORAGE COEFF<br>(i) CN PROCEDURE SELF<br>CN* = 85.0<br>(ii) TIME STEP (DT) SF<br>THAN THE STORAGE<br>(iii) PEAK FLOW DOES NO                                                                                                                                                                                                                    | T. IS SMALLER THAN<br>CTED FOR PERVIOUS<br>Ia = Dep. Storage<br>OULD BE SMALLER O<br>COEFFICIENT.<br>DT INCLUDE BASEFLO                                                                                                                             | TIME STEP!<br>LOSSES:<br>(Above)<br>R EQUAL<br>W IF ANY.                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                       |
| CALIB  <br>  STANDHYD ( 0103)   Area<br> ID= 1 DT= 5.0 min   Tota                                                                                                                                                                                                                                                                                               | (ha) = 2.50<br>. Imp(%) = 65.00                                                                                                                                                                                                                     | Dir. Conn.(                                                                                                                                                           | %)= 55.00                                                                                                                                                                                                                                                                                        |                                                                       |
| Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n=                                                                                                                                                                                                                                                                                        | IMPERVIOUS P<br>1.62<br>1.00<br>1.00<br>129.10<br>0.013                                                                                                                                                                                             | ERVIOUS (i)<br>0.88<br>1.50<br>2.00<br>40.00<br>0.250                                                                                                                 |                                                                                                                                                                                                                                                                                                  |                                                                       |
| NOTE: RAINFALL WAS                                                                                                                                                                                                                                                                                                                                              | S TRANSFORMED TO                                                                                                                                                                                                                                    | 5.0 MIN. TI                                                                                                                                                           | ME STEP.                                                                                                                                                                                                                                                                                         |                                                                       |
| TIME         RA:           hrs         mm/H           0.083         2.5           0.167         2.5           0.250         3.4           0.333         3.4           0.417         4.6           0.583         4.5           0.667         4.5           0.750         6.4           0.833         6.4           0.917         9.6           1.000         9.6 | TRANSFORM<br>NN   TIME RAIN<br>hr   hrs mm/hr<br>99   1.083 22.26<br>99   1.167 22.26<br>11   1.250 84.02<br>11   1.333 84.02<br>11   1.500 28.87<br>30   1.583 15.67<br>30   1.667 15.67<br>12   1.750 10.90<br>56   1.917 8.44<br>56   2.000 8.44 | ED HYETOGRAP<br> ' TIME<br> ' hrs<br>  2.083<br>  2.167<br>  2.250<br>  2.333<br>  2.417<br>  2.500<br>  2.583<br>  2.667<br>  2.750<br>  2.833<br>  2.917<br>  3.000 | H<br>RAIN   TIME F<br>mm/hr   hrs mm<br>6.94   3.08 3.<br>5.92   3.25 3.<br>5.92   3.33 3.<br>5.19   3.42 3.<br>4.63   3.58 2.<br>4.63   3.58 2.<br>4.63   3.67 2.<br>4.19   3.75 2.<br>3.84   3.92 2.<br>3.84   4.00 2.                                                                         | AIN<br>54<br>54<br>30<br>30<br>08<br>90<br>90<br>74<br>74<br>60<br>60 |
| Max.Eff.Inten.(mm/hr)=<br>over (min)<br>Storage Coeff. (min)=<br>Unit Hyd. Tpeak (min)=<br>Unit Hyd. peak (cms)=                                                                                                                                                                                                                                                | 84.02<br>5.00<br>3.19 (ii)<br>5.00<br>0.27                                                                                                                                                                                                          | 53.67<br>15.00<br>12.25 (ii)<br>15.00<br>0.09                                                                                                                         |                                                                                                                                                                                                                                                                                                  |                                                                       |
| PEAK FLOW (cms)=<br>TIME TO PEAK (hrs)=<br>RUNOFF VOLUME (mm)=<br>TOTAL RAINFALL (mm)=<br>RUNOFF COEFFICIENT =                                                                                                                                                                                                                                                  | 0.31<br>1.33<br>40.74<br>41.74<br>0.98                                                                                                                                                                                                              | 0.07<br>1.50<br>21.82<br>41.74<br>0.52                                                                                                                                | *TOTALS*<br>0.351 (iii)<br>1.33<br>32.22<br>41.74<br>0.77                                                                                                                                                                                                                                        |                                                                       |
| ***** WARNING: STORAGE COEFI                                                                                                                                                                                                                                                                                                                                    | . IS SMALLER THAN                                                                                                                                                                                                                                   | TIME STEP!                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                       |
| <ul> <li>(i) CN PROCEDURE SELF</li> <li>CN* = 85.0</li> <li>(ii) TIME STEP (DT) SF</li> <li>THAN THE STORAGE</li> <li>(iii) PEAK FLOW DOES NO</li> </ul>                                                                                                                                                                                                        | CTED FOR PERVIOUS<br>Ia = Dep. Storage<br>HOULD BE SMALLER O<br>COEFFICIENT.<br>DT INCLUDE BASEFLO                                                                                                                                                  | LOSSES:<br>(Above)<br>R EQUAL<br>W IF ANY.                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                       |

\_\_\_\_\_

| CALIB<br>  STANDHYD ( 0108<br> ID= 1 DT= 5.0 min                                | <br>)  Area<br>  Total                                                                                                                                                                                                                                                                                          | (ha) =<br>Imp(%) = 2                                                                                                                              | 0.50<br>0.00 Din                                                                                                              | c. Conn.(                                                                                                                   | %)= 20.00                                                                                                                                                 |                                                                                                                         |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n           | (ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=                                                                                                                                                                                                                                                                         | IMPERVIOU<br>0.10<br>1.00<br>1.00<br>57.74<br>0.013                                                                                               | S PERVI<br>0<br>1<br>2<br>40<br>0.2                                                                                           | IOUS (i)<br>.40<br>.50<br>.00<br>.00<br>250                                                                                 |                                                                                                                                                           |                                                                                                                         |
| NOTE: RA                                                                        | INFALL WAS                                                                                                                                                                                                                                                                                                      | TRANSFORME                                                                                                                                        | D TO 5.0                                                                                                                      | ) MIN. TI                                                                                                                   | ME STEP.                                                                                                                                                  |                                                                                                                         |
| T<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0. | IME         RAII           hrs         mm/h           083         2.9           167         2.9           250         3.4           333         3.4           417         4.0           500         4.0           583         4.9           667         4.9           750         6.4           833         6.4 | TRA<br>N   TIME<br>9   1.083<br>9   1.167<br>1   1.250<br>1   1.333<br>1   1.417<br>1   1.500<br>0   1.583<br>0   1.667<br>2   1.750<br>2   1.833 | NSFORMED  <br>RAIN  '<br>22.26   2<br>22.26   2<br>84.02   2<br>28.87   2<br>28.87   2<br>15.67   2<br>10.90   2<br>10.90   2 | HYETOGRAP<br>TIME<br>hrs<br>2.083<br>2.167<br>2.250<br>2.333<br>2.417<br>2.500<br>2.583<br>2.667<br>2.750<br>2.833<br>3.417 | H<br>RAIN   TI<br>mm/hr   h<br>6.94   3.0<br>6.94   3.1<br>5.92   3.2<br>5.92   3.3<br>5.19   3.4<br>5.19   3.5<br>4.63   3.6<br>4.19   3.7<br>4.19   3.8 | ME RAIN<br>rs mm/hr<br>8 3.54<br>7 3.54<br>5 3.30<br>3 3.30<br>2 3.08<br>0 3.08<br>8 2.90<br>7 2.90<br>5 2.74<br>3 2.74 |
| 0.<br>1.                                                                        | 917 9.6<br>000 9.6                                                                                                                                                                                                                                                                                              | 6   1.917<br>6   2.000                                                                                                                            | 8.44   2                                                                                                                      | 2.917<br>3.000                                                                                                              | 3.84   3.9<br>3.84   4.0                                                                                                                                  | 2 2.60<br>0 2.60                                                                                                        |
| Max.Eff.Inten<br>ov<br>Storage Coeff<br>Unit Hyd. Tpe<br>Unit Hyd. pea          | .(mm/hr)=<br>er (min)<br>. (min)=<br>ak (min)=<br>k (cms)=                                                                                                                                                                                                                                                      | 84.02<br>5.00<br>1.97<br>5.00<br>0.31                                                                                                             | 28<br>15<br>(ii) 13<br>15<br>0                                                                                                | .90<br>.00<br>.57 (ii)<br>.00<br>.08                                                                                        |                                                                                                                                                           |                                                                                                                         |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFAL<br>RUNOFF COEFFI    | (cms) =<br>(hrs) =<br>(mm) =<br>L (mm) =<br>CIENT =                                                                                                                                                                                                                                                             | 0.02<br>1.33<br>40.74<br>41.74<br>0.98                                                                                                            | 0<br>1<br>19<br>41<br>0                                                                                                       | .02<br>.50<br>.04<br>.74<br>.46                                                                                             | *TOTALS*<br>0.034 (<br>1.33<br>23.36<br>41.74<br>0.56                                                                                                     | iii)                                                                                                                    |
| ***** WARNING: STO                                                              | RAGE COEFF<br>AREAS WITH                                                                                                                                                                                                                                                                                        | . IS SMALLE<br>IMPERVIOUS                                                                                                                         | R THAN TIN<br>RATIOS BI                                                                                                       | ME STEP!<br>ELOW 20%                                                                                                        |                                                                                                                                                           |                                                                                                                         |
| (i) CN PROC<br>CN* =<br>(ii) TIME ST<br>THAN TH<br>(iii) PEAK FL                | EDURE SELE<br>85.0<br>EP (DT) SHO<br>E STORAGE (<br>OW DOES NO                                                                                                                                                                                                                                                  | CTED FOR PE<br>Ia = Dep. S<br>DULD BE SMA<br>COEFFICIENT<br>F INCLUDE B                                                                           | RVIOUS LOS<br>torage ( <i>1</i><br>LLER OR E(<br>ASEFLOW IN                                                                   | AREA.<br>SSES:<br>Above)<br>QUAL<br>7 ANY.                                                                                  |                                                                                                                                                           |                                                                                                                         |
| ADD HYD ( 0003<br>  1 + 2 = 3                                                   |                                                                                                                                                                                                                                                                                                                 | AREA OP                                                                                                                                           |                                                                                                                               |                                                                                                                             |                                                                                                                                                           |                                                                                                                         |
| ID1= 1 (<br>+ ID2= 2 (                                                          | <br>0103):<br>0108):                                                                                                                                                                                                                                                                                            | (ha) (c<br>2.50 0.3<br>0.50 0.0                                                                                                                   | ms) (hi<br>51 1.3<br>34 1.3                                                                                                   | rs) (1<br>33 32.<br>33 23.                                                                                                  | mm)<br>22<br>36                                                                                                                                           |                                                                                                                         |
| =======<br>ID = 3 (                                                             | 0003):                                                                                                                                                                                                                                                                                                          | 3.00 0.3                                                                                                                                          | 85 1.3                                                                                                                        | 33 30.                                                                                                                      | ===<br>75                                                                                                                                                 |                                                                                                                         |
| NOTE: PEAK F                                                                    | LOWS DO NO'                                                                                                                                                                                                                                                                                                     | F INCLUDE B                                                                                                                                       | ASEFLOWS :                                                                                                                    | IF ANY.                                                                                                                     |                                                                                                                                                           |                                                                                                                         |
| RESERVOIR( 1001<br>  IN= 2> OUT= 1<br>  DT= 5.0 min                             | )   OVE]<br> <br>  OUT:<br>(cr<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                | RFLOW IS OF           FLOW STO           ns)         (ha           0000         0.           0000         0.           0220         0.            | F<br>RAGE  <br>.m.)  <br>0000  <br>0230  <br>0460                                                                             | OUTFLOW<br>(cms)<br>0.0380<br>0.0480<br>0.0000                                                                              | STORAGE<br>(ha.m.)<br>0.1290<br>0.1290<br>0.0000                                                                                                          |                                                                                                                         |
| INFLOW : ID= 2<br>OUTFLOW: ID= 1                                                | ( 0003)<br>( 1001)                                                                                                                                                                                                                                                                                              | AREA<br>(ha)<br>3.000<br>3.000                                                                                                                    | QPEAK<br>(cms)<br>0.385<br>0.026                                                                                              | TPEAK<br>(hrs)<br>1.3<br>3.2                                                                                                | R.V.<br>(mm)<br>3 30.7<br>5 22.9                                                                                                                          | 5<br>9                                                                                                                  |
|                                                                                 | PEAK FL<br>TIME SHIF<br>MAXIMUM                                                                                                                                                                                                                                                                                 | OW REDUCT<br>I OF PEAK F<br>STORAGE U                                                                                                             | ION [Qout,<br>LOW<br>SED                                                                                                      | /Qin](%)=<br>(min)=<br>(ha.m.)=                                                                                             | 6.83<br>115.00<br>0.0683                                                                                                                                  |                                                                                                                         |

\_\_\_\_\_ \_\_\_\_\_ | CALIB STANDHYD ( 0105) Area (ha)= 0.27 Total Imp(%)= 65.00 Dir. Conn.(%)= 65.00 Area |ID= 1 DT= 5.0 min | \_\_\_\_\_ IMPERVIOUS PERVIOUS (i) 0.18 0.09 (ha) = Surface Area (mm) = 1.00 Dep. Storage 1.50 Average Slope (%)= 1.00 2.00 40.00 0.250 Length (m) = 42.43 = Mannings n 0.013 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME TIME RAIN |' TIME mm/hr |' hrs RAIN | TIME RATN mm/hr | mm/hr | hrs mm/hr hrs hrs 3.54 0.083 2.99 | 1.083 2.99 | 1.083 2.99 | 1.167 22.26 | 2.083 6.94 | 3.08 0.167 22.26 | 2.167 6.94 | 3.17 0.250 3.41 | 1.250 84.02 | 2.250 5.92 | 3.25 3.30 84.02 | 2.333 28.87 | 2.417 0.333 3.41 | 1.333 5.92 | 3.33 3.30 0.417 4.01 | 1.417 5.19 i 3.42 3.08 3.50 0.500 4.90 | 1.583 4.01 | 1.500 28.87 | 2.500 5.19 j 3.08 0.583 15.67 | 2.583 4.63 | 3.58 2.90 0.667 4.90 | 1.667 15.67 | 2.667 4.63 | 3.67 3.75 2.90 
 4.90
 | 1.667
 15.67
 | 2.667

 6.42
 | 1.750
 10.90
 | 2.750

 6.42
 | 1.833
 10.90
 | 2.833

 9.66
 | 1.917
 8.44
 | 2.917
 0.750 4.19 | 2.74 0.833 4.19 | 3.83 2.74 0.917 3.84 | 3.92 2.60 8.44 | 3.000 9.66 | 2.000 1.000 3.84 | 4.00 2.60 
 over (min)
 84.02
 28.90

 Storage Coeff. (min)=
 1.64 (ii)
 13.23 (ii)

 Unit Hyd. Tpeak (min)=
 5.00
 15.00

 Unit Hyd. peak (cms)=
 0.32
 0.08
 \*TOTALS\* 0.04 
 \*TOTALS\*

 0.01
 0.044 (iii)

 1.50
 1.33

 19.04
 33.11

 41.74
 41.74

 0.46
 0.79
 PEAK FLOW TIME TO PEAK 0.04 1.33 40.74 41.74 0.98 (hrs) =TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 0.98 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 85.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ \_\_\_\_\_ | RESERVOIR( 1005)| OVERFLOW IS OFF | IN= 2---> OUT= 1 | 
 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 0.0000
 0.0000
 0.0090
 0.0120
 | DT= 5.0 min | -----0.0120 
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (mm)

 INFLOW:
 ID=
 2 (0105)
 0.270
 0.044
 1.33
 33.11

 OUTFLOW:
 ID=
 1 (1005)
 0.270
 0.004
 2.33
 31.89
 PEAKFLOWREDUCTION[Qout/Qin](%) =9.87TIME SHIFT OF PEAK FLOW(min) =60.00MAXIMUMSTORAGEUSED(ha.m.) =0.0057 \_\_\_\_\_ I CALTR | STANDHYD ( 0107) | Area (ha) = 1.81 |ID= 1 DT= 5.0 min | Total Imp(%) = 65.00 Dir. Conn.(%) = 50.00 IMPERVIOUS PERVIOUS (i) 0.63 1.18 Dep. Storage Surface Area (ha) = (mm) = Average Slope ope (%)= (m)= (%)= 1.00 2.00 1.00 109.85 2.00 40.00 0.250 Length Mannings n = 0.013 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

|                       | -           | TRA    | NSFORME | ED HYETOGRA | PH     |         |       |
|-----------------------|-------------|--------|---------|-------------|--------|---------|-------|
| TIME                  | RAIN        | TIME   | RAIN    | ' TIME      | RAIN   | TIME    | RAIN  |
| hrs                   | mm/hr       | hrs    | mm/hr   | ' hrs       | mm/hr  | hrs     | mm/hr |
| 0.083                 | 2.99        | 1.083  | 22.26   | 2.083       | 6.94   | 3.08    | 3.54  |
| 0.167                 | 2.99        | 1.167  | 22.26   | 2.167       | 6.94   | 3.17    | 3.54  |
| 0.250                 | 3.41        | 1.250  | 84.02   | 2.250       | 5.92   | 3.25    | 3.30  |
| 0.333                 | 3.41        | 1.333  | 84.02   | 2.333       | 5.92   | 3.33    | 3.30  |
| 0.417                 | 4.01        | 1.417  | 28.87   | 2.417       | 5.19   | 3.42    | 3.08  |
| 0.500                 | 4.01        | 1.500  | 28.87   | 2.500       | 5.19   | 3.50    | 3.08  |
| 0.583                 | 4.90        | 1.583  | 15.67   | 2.583       | 4.63   | 3.58    | 2.90  |
| 0.667                 | 4.90        | 1.667  | 15.67   | 2.667       | 4.63   | 3.67    | 2.90  |
| 0.750                 | 6.42        | 1.750  | 10.90   | 2.750       | 4.19   | 3.75    | 2.74  |
| 0.833                 | 6.42        | 1.833  | 10.90   | 2.833       | 4.19   | 3.83    | 2.74  |
| 0.917                 | 9.66        | 1.917  | 8.44    | 2.917       | 3.84   | 3.92    | 2.60  |
| 1.000                 | 9.66        | 2.000  | 8.44    | 3.000       | 3.84   | 4.00    | 2.60  |
| Max.Eff.Inten.(m      | m/hr)=      | 84.02  |         | 63.55       |        |         |       |
| over                  | (min)       | 5.00   |         | 15.00       |        |         |       |
| Storage Coeff.        | (min) =     | 2.90   | (ii)    | 11.36 (ii)  |        |         |       |
| Unit Hyd. Tpeak       | (min) =     | 5.00   |         | 15.00       |        |         |       |
| Unit Hyd. peak        | (cms) =     | 0.28   |         | 0.09        |        |         |       |
|                       |             |        |         |             | *TOTAI | S*      |       |
| PEAK FLOW             | (cms) =     | 0.21   |         | 0.07        | 0.24   | 3 (iii) |       |
| TIME TO PEAK          | (hrs) =     | 1.33   |         | 1.50        | 1.3    | 3       |       |
| RUNOFF VOLUME         | (mm) =      | 40.74  |         | 22.97       | 31.8   | 5       |       |
| TOTAL RAINFALL        | (mm) =      | 41.74  |         | 41.74       | 41.7   | 4       |       |
| RUNOFF COEFFICIE      | NT =        | 0.98   |         | 0.55        | 0.7    | 6       |       |
| ***** WARNING: STORAG | E COEFF. IS | SMALLE | R THAN  | TIME STEP!  |        |         |       |
| (i) CN PROCEDU        | RE SELECTEI | FOR PE | RVIOUS  | LOSSES:     |        |         |       |

- CN\* = 85.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR( 2000) <br>  IN= 2> OUT= 1 | OVERFLO                  | OW IS OFF                      | 7                                |                                |                                |
|--------------------------------------|--------------------------|--------------------------------|----------------------------------|--------------------------------|--------------------------------|
| DT= 5.0 min                          | OUTFLO<br>(cms)<br>0.000 | N STOP<br>(ha.<br>) 0.0        | RAGE  <br>.m.)  <br>0000         | OUTFLOW<br>(cms)<br>0.0630     | STORAGE<br>(ha.m.)<br>0.0620   |
| INFLOW : ID= 2 (<br>OUTFLOW: ID= 1 ( | 0107)<br>2000)           | AREA<br>(ha)<br>1.810<br>1.810 | QPEAK<br>(cms)<br>0.243<br>0.035 | TPEAK<br>(hrs)<br>1.33<br>2.25 | R.V.<br>(mm)<br>31.85<br>31.72 |

\_\_\_\_\_

\_\_\_\_\_ -----| CALIB | STANDHYD ( 0104) | Area (ha)= 0.65 |ID=1 DT= 5.0 min | Total Imp(%)= 65.00 Dir. Conn.(%)= 65.00 1 IMPERVIOUS PERVIOUS (i)

| Surface Area  | (ha) = | 0.42  | 0.23  |
|---------------|--------|-------|-------|
| Average Slope | (8) =  | 1.00  | 2.00  |
| Length        | (m) =  | 65.83 | 40.00 |
| Mannings n    | =      | 0.013 | 0.250 |

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

| TRANSFORMED HYETOGRAPH |       |  |       |       |  |       |       |      |       |  |
|------------------------|-------|--|-------|-------|--|-------|-------|------|-------|--|
| TIME                   | RAIN  |  | TIME  | RAIN  |  | TIME  | RAIN  | TIME | RAIN  |  |
| hrs                    | mm/hr |  | hrs   | mm/hr |  | hrs h | mm/hr | hrs  | mm/hr |  |
| 0.083                  | 2.99  |  | 1.083 | 22.26 |  | 2.083 | 6.94  | 3.08 | 3.54  |  |
| 0.167                  | 2.99  |  | 1.167 | 22.26 |  | 2.167 | 6.94  | 3.17 | 3.54  |  |
| 0.250                  | 3.41  |  | 1.250 | 84.02 |  | 2.250 | 5.92  | 3.25 | 3.30  |  |
| 0.333                  | 3.41  |  | 1.333 | 84.02 |  | 2.333 | 5.92  | 3.33 | 3.30  |  |
| 0.417                  | 4.01  |  | 1.417 | 28.87 |  | 2.417 | 5.19  | 3.42 | 3.08  |  |
| 0.500                  | 4.01  |  | 1.500 | 28.87 |  | 2.500 | 5.19  | 3.50 | 3.08  |  |
| 0.583                  | 4.90  |  | 1.583 | 15.67 |  | 2.583 | 4.63  | 3.58 | 2.90  |  |
| 0.667                  | 4.90  |  | 1.667 | 15.67 |  | 2.667 | 4.63  | 3.67 | 2.90  |  |
| 0.750                  | 6.42  |  | 1.750 | 10.90 |  | 2.750 | 4.19  | 3.75 | 2.74  |  |
| 0.833                  | 6.42  |  | 1.833 | 10.90 |  | 2.833 | 4.19  | 3.83 | 2.74  |  |
| 0.917                  | 9.66  |  | 1.917 | 8.44  |  | 2.917 | 3.84  | 3.92 | 2.60  |  |

| 1.000 9.66   2.000 8.44   3.000 3.84   4.00 2.                                                                                                                                                                                                                                                                                                                | 60                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Max.Eff.Inten.(mm/hr)= 84.02 28.90<br>over (min) 5.00 15.00<br>Storage Coeff. (min)= 2.13 (ii) 13.73 (ii)<br>Unit Hyd. Tpeak (min)= 5.00 15.00<br>Unit Hyd. peak (cms)= 0.31 0.08                                                                                                                                                                             |                                                     |
| *TOTALS*<br>PEAK FLOW (cms) = 0.10 0.01 0.104 (iii)<br>TIME TO PEAK (hrs) = 1.33 1.50 1.33<br>RUNOFF VOLUME (mm) = 40.74 19.04 33.13<br>TOTAL RAINFALL (mm) = 41.74 41.74 41.74<br>RUNOFF COEFFICIENT = 0.98 0.46 0.79                                                                                                                                        |                                                     |
| ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!                                                                                                                                                                                                                                                                                                      |                                                     |
| <ul> <li>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:<br/>CN* = 85.0 Ia = Dep. Storage (Above)</li> <li>(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL<br/>THAN THE STORAGE COEFFICIENT.</li> <li>(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</li> </ul>                                                                                              |                                                     |
| <br>  ADD HYD ( 0002) <br>  1 + 2 = 3   AREA QPEAK TPEAK R.V.<br>(ha) (cms) (hrs) (mm)<br>ID1= 1 ( 0104): 0.65 0.104 1.33 33.13                                                                                                                                                                                                                               |                                                     |
| + ID2= 2 ( 2000): 1.81 0.035 2.25 31.72                                                                                                                                                                                                                                                                                                                       |                                                     |
| ID = 3 ( 0002): 2.46 0.120 1.33 32.09                                                                                                                                                                                                                                                                                                                         |                                                     |
| NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.                                                                                                                                                                                                                                                                                                             |                                                     |
| RESERVOIR(1000)        OVERFLOW IS OFF           IN= 2> OUT= 1                     DT= 5.0 min         OUTFLOW STORAGE   OUTFLOW STORAGE          (cms) (ha.m.)   (cms) (ha.m.)         0.0000       0.0000   0.0860       0.0220                                                                                                                             |                                                     |
| AREA         QPEAK         TPEAK         R.V.           (ha)         (cms)         (hrs)         (mm)           INFLOW:         ID= 2         0002)         2.460         0.120         1.33         32.09           OUTFLOW:         ID= 1         (1000)         2.460         0.047         2.17         32.07                                             |                                                     |
| TIME SHIFT OF PEAK FLOW (min) = 39.37<br>TIME SHIFT OF PEAK FLOW (min) = 50.00<br>MAXIMUM STORAGE USED (ha.m.) = 0.0121                                                                                                                                                                                                                                       |                                                     |
| <br>  CALIB  <br>  STANDHYD ( 0112)  Area (ha)= 0.34<br> ID= 1 DT= 5.0 min   Total Imp(%)= 65.00 Dir. Conn.(%)= 50.00                                                                                                                                                                                                                                         |                                                     |
| IMPERVIOUS         PERVIOUS         (i)           Surface Area         (ha) =         0.22         0.12           Dep. Storage         (mm) =         1.00         1.50           Average Slope         (%) =         1.00         2.00           Length         (m) =         47.61         40.00           Mannings n         =         0.013         0.250 |                                                     |
| NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.                                                                                                                                                                                                                                                                                                         |                                                     |
| TRANSFORMED HYETOGRAPH                                                                                                                                                                                                                                                                                                                                        |                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                        | AIN<br>54<br>54<br>30<br>08<br>90<br>74<br>74<br>60 |
| Max.Eff.Inten.(mm/hr)= 84.02 63.55                                                                                                                                                                                                                                                                                                                            |                                                     |

| Unit Hyd. Tpeak<br>Unit Hyd. peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (min) =<br>(min) =<br>(cms) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.00<br>1.75 (ii)<br>5.00<br>0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.00<br>10.22 (ii)<br>15.00<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICIE                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (cms) =<br>(hrs) =<br>(mm) =<br>(mm) =<br>NT =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04<br>1.33<br>40.74<br>41.74<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01<br>1.50<br>22.97<br>41.74<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.047 (iii)<br>1.33<br>31.84<br>41.74<br>0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ***** WARNING: STORAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E COEFF. IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMALLER THAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TIME STEP!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (i) CN PROCEDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RE SELECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FOR PERVIOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOSSES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CN* = 8<br>(ii) TIME STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0 Ia =<br>(DT) SHOULD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dep. Storage<br>BE SMALLER O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Above)<br>R EQUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| THAN THE S<br>(iii) PEAK FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TORAGE COEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FICIENT.<br>CLUDE BASEFLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W IF ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ( 1007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OVEREIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A TO OPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IN= 2> OUT= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OVERFLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W IS OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DT= 5.0 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OUTFLOW<br>(cms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STORAGE<br>(ha.m.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OUTFLOW<br>  (cms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STORAGE<br>(ha.m.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEA ODEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v mdeak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ha) (cms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| INFLOW : ID= 2 (<br>OUTFLOW: ID= 1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0112)<br>1007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.340 0.<br>0.340 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 047 1.33<br>004 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31.84<br>30.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AK FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REDUCTION [O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | out/Oinl(%)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ME SHIFT OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PEAK FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AIMOM SION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AGE 03ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (114.111.) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CALIB  <br>  STANDHYD ( 0109)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ID= 1 DT= 5.0 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (%) = 65.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dir. Conn.(%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) = 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ID= 1 DT= 5.0 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | na)= 0.57<br>(%)= 65.00<br>PERVIOUS P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dir. Conn.(%<br>ERVIOUS (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )= 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Surface Area<br>Dep. Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total Imp<br>IM:<br>(ha) =<br>(mm) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | na)= 0.57<br>(%)= 65.00<br>PERVIOUS P:<br>0.37<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )= 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Area ()<br>Total Imp<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | na) = 0.57<br>(%) = 65.00<br>PERVIOUS P:<br>0.37<br>1.00<br>1.00<br>61 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )= 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Afea ()<br>Total Imp<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (%) = 0.57<br>(%) = 65.00<br>PERVIOUS P:<br>0.37<br>1.00<br>1.00<br>61.64<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )= 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Afea ()<br>Total Imp<br>(ha) =<br>(%) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (%) = 0.57<br>(%) = 65.00<br>PERVIOUS P:<br>0.37<br>1.00<br>1.00<br>61.64<br>0.013<br>NSFORMED TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )= 50.00<br>E STEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ID= 1 DT= 5.0 min  <br>ID= 1 DT= 5.0 min  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Afea ()<br>Total Imp<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (%) = 0.57<br>(%) = 65.00<br>PERVIOUS P:<br>0.37<br>1.00<br>1.00<br>61.64<br>0.013<br>NSFORMED TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )= 50.00<br>E STEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ID= 1 DT= 5.0 min  <br>ID= 1 DT= 5.0 min  <br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF                                                                                                                                                                                                                                                                                                                                                                                                            | Afea ()<br>Total Imp<br>IM<br>(ha) =<br>(%) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (%) = 0.57<br>(%) = 65.00<br>PERVIOUS P:<br>0.37<br>1.00<br>1.00<br>61.64<br>0.013<br>NSFORMED TO<br>TRANSFORM.<br>TIME BAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )= 50.00<br>E STEP.<br><br>RAIN   TIME RAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ID= 1 DT= 5.0 min  <br>ID= 1 DT= 5.0 min  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Afea ()<br>Total Imp<br>IM<br>(ha) =<br>(%) =<br>(%) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAI<br>ALL WAS TRAI<br>ALL WAS TRAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ma) =     0.57       (%) =     65.00       PERVIOUS     P:       0.37     1.00       1.00     61.64       0.013     NSFORMED TO        TRANSFORM       TIME     RAIN       hrs     mm/hr                                                                                                                                                                                                                                                                                                                                                                                         | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br> ' TIME<br> ' hrs m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )= 50.00<br>E STEP.<br>RAIN   TIME RAIN<br>m/hr   hrs mm/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ID= 1 DT= 5.0 min  <br>ID= 1 DT= 5.0 min  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Afea ()<br>Total Imp<br>(ha) =<br>(%) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAI<br>ALL WAS TRAI<br>ALL WAS TRAI<br>2.99   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | na) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       61.64         0.013       0.013         NSFORMED TO          TIME       RAIN         hrs       mm/hr         1.083       22.266         1.167       22.26                                                                                                                                                                                                                                                                                                        | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br> ' TIME<br> ' hrs m<br>  2.083 6<br>  2.167 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )= 50.00<br>E STEP.<br>RAIN   TIME RAIN<br>m/hr   hrs mm/hr<br>.94   3.08 3.54<br>.94   3.17 3.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ID= 1 DT= 5.0 min  <br>ID= 1 DT= 5.0 min  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Afea (1)<br>Total Imp<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAI<br>ALL WAS TRAI<br>RAIN  <br>2.99  <br>2.99  <br>3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | na) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       1.00         61.64       0.013         NSFORMED TO         TRANSFORM:         TIME       RAIN         hrs <mm hr<="" td="">         1.083       22.26         1.167       22.26         1.250       84.02         1.333       84.02</mm>                                                                                                                                                                                                                         | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br> ' TIME<br> ' hrs m<br>  2.083 6<br>  2.167 6<br>  2.250 5<br>  2.333 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )= 50.00<br>E STEP.<br>RAIN   TIME RAIN<br>m/hr   hrs mm/hr<br>.94   3.08 3.54<br>.94   3.17 3.54<br>.92   3.25 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ID= 1 DT= 5.0 min  <br>ID= 1 DT= 5.0 min  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Afea (()<br>Total Imp<br>IM:<br>(ha) =<br>(m) =<br>(%) =<br>(m) =<br>ALL WAS TRAN<br>ALL WAS TRAN<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | na) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       1.00         61.64       0.013         NSFORMED TO          TIME       RAIN         hrs       mm/hr         1.083       22.26         1.167       22.26         1.250       84.02         1.333       84.02         1.417       28.87                                                                                                                                                                                                                            | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br> ' TIME<br> ' hrs m<br>  2.083 6<br>  2.167 6<br>  2.250 5<br>  2.333 5<br>  2.417 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )= 50.00<br>E STEP.<br>RAIN   TIME RAIN<br>m/hr   hrs mm/hr<br>.94   3.08 3.54<br>.94   3.17 3.54<br>.92   3.25 3.30<br>.92   3.33 3.30<br>.19   3.42 3.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF<br>TIME<br>hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500                                                                                                                                                                                                                                                                                                                                                                                     | Afea ()<br>Total Imp<br>IM:<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAI<br>ALL WAS TRAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | na) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       61.64         0.013       0.013         NSFORMED TO          TIME       RAIN         hrs       mm/hr         1.083       22.26         1.167       22.26         1.250       84.02         1.333       84.02         1.417       28.87         1.500       28.87         1.583       15.67                                                                                                                                                                       | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br> ' TIME<br> ' hrs m<br>  2.083 6<br>  2.167 6<br>  2.250 5<br>  2.333 5<br>  2.417 5<br>  2.500 5<br>  2.583 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )= 50.00<br>E STEP.<br>RAIN   TIME RAIN<br>m/hr   hrs mm/hr<br>.94   3.08 3.54<br>.94   3.17 3.54<br>.92   3.25 3.30<br>.92   3.25 3.30<br>.19   3.42 3.08<br>.19   3.50 3.08<br>.63   3.58 2.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF<br>TIME<br>hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750                                                                                                                                                                                                                                                                                                                                                          | Afea (()<br>Total Imp<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>(%) =<br>(m) =<br>(%) =<br>(m) =<br>(%) | ha) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       1.00         61.64       0.013         NSFORMED TO         TRANSFORM:         TIME       RAIN         hrs       mm/hr         1.083       22.26         1.250       84.02         1.333       84.02         1.417       28.87         1.583       15.67         1.567       16.597                                                                                                                                                                               | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br> ' TIME<br> ' hrs m<br>  2.083 6<br>  2.167 6<br>  2.250 5<br>  2.333 5<br>  2.417 5<br>  2.503 4<br>  2.503 4<br>  2.567 4<br>  2.750 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )= 50.00<br>E STEP.<br>RAIN   TIME RAIN<br>m/hr   hrs mm/hr<br>.94   3.08 3.54<br>.94   3.17 3.54<br>.92   3.25 3.30<br>.92   3.33 3.30<br>.19   3.42 3.08<br>.19   3.50 3.08<br>.63   3.58 2.90<br>.63   3.67 2.90<br>.19   3.75 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF<br>TIME<br>hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750<br>0.833<br>0.911                                                                                                                                                                                                                                                                                                                                        | Afea (()<br>Total Imp<br>IM:<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAIN<br>MM/hr  <br>2.99  <br>3.41  <br>4.01  <br>4.01  <br>4.90  <br>6.42  <br>6.42  <br>6.42  <br>9.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | na) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       1.00         61.64       0.013         NSFORMED TO         TRANSFORM:         TIME       RAIN         hrs       mm/hr         1.083       22.26         1.250       84.02         1.333       84.02         1.417       28.87         1.500       28.87         1.667       15.67         1.667       15.67         1.633       10.90         1.833       10.90                                                                                                  | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br> ' TIME<br> ' hrs m<br>1 2.083 6<br>1 2.167 6<br>1 2.250 5<br>1 2.417 5<br>1 2.500 5<br>1 2.417 5<br>1 2.583 4<br>1 2.667 4<br>1 2.750 4<br>1 2.833 4<br>1 2.817 3<br>1 2.813 4<br>1 2.817 3<br>1 2.813 4<br>1 2.817 3<br>1 2.813 4<br>1 2.817 3<br>1 2.817 3<br>1 2.817 4<br>1 2.917 4<br>1 3 3 4<br>1 2.917 4<br>1 3 3 4<br>1 3 4<br>1 3 5<br>1 3 5 | )= 50.00<br>E STEP.<br><br>RAIN   TIME RAIN<br>m/hr   hrs mm/hr<br>.94   3.08 3.54<br>.94   3.17 3.54<br>.92   3.25 3.30<br>.92   3.33 3.30<br>.19   3.42 3.08<br>.19   3.42 3.08<br>.19   3.42 3.08<br>.19   3.50 3.08<br>.63   3.58 2.90<br>.63   3.57 2.74<br>.19   3.83 2.74<br>.84   3.92 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF<br>TIME<br>hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.580<br>0.583<br>0.667<br>0.750<br>0.833<br>0.917<br>1.000                                                                                                                                                                                                                                                                                                                               | Afea (U<br>Total Imp<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>(%) =<br>(m) =<br>(%) =<br>(m) =<br>(%)  | ha) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       1.00         61.64       0.013         NSFORMED TO          TIME       RAIN         hrs       mm/hr         1.083       22.26         1.167       22.26         1.250       84.02         1.583       15.67         1.583       15.67         1.667       15.67         1.833       10.90         1.917       8.44         2.000       8.44                                                                                                                      | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br>' TIME<br>' hrs m<br>2.083 6<br>(2.167 6<br>(2.250 5<br>(2.333 5<br>(2.417 5)<br>2.583 4<br>(2.667 4)<br>(2.750 4)<br>(2.750 4)<br>(2.750 4)<br>(2.833 4)<br>(2.917 3)<br>(3.000 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )= 50.00<br>E STEP.<br>RAIN   TIME RAIN<br>m/hr   hrs mm/hr<br>.94   3.08 3.54<br>.94   3.17 3.54<br>.92   3.25 3.30<br>.92   3.25 3.30<br>.19   3.42 3.08<br>.19   3.42 3.08<br>.19   3.50 3.08<br>.63   3.58 2.90<br>.63   3.67 2.90<br>.19   3.75 2.74<br>.19   3.83 2.74<br>.84   3.92 2.60<br>.84   4.00 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF<br>TIME<br>hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750<br>0.833<br>0.917<br>1.000<br>Max.Eff.Inten.(m                                                                                                                                                                                                                                                                                                           | Afea (U<br>Total Imp<br>IM<br>(ha) =<br>(m) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAI<br>ALL WAS TRAI<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | na) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       1.00         61.64       0.013         NSFORMED TO         TRANSFORM:         TIME       RAIN         hrs       mm/hr         1.083       22.26         1.333       84.02         1.417       28.87         1.583       15.67         1.750       10.90         1.833       10.90         1.917       8.44         84.02       4.02                                                                                                                              | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br> ' TIME<br> ' hrs m<br>  2.083<br>6   2.167<br>6   2.250<br>5   2.417<br>5   2.500<br>5   2.583<br>4   2.500<br>5   2.583<br>4   2.667<br>4   2.750<br>4   2.833<br>4   2.917<br>3   3.000<br>3   3.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )= 50.00<br>E STEP.<br>RAIN   TIME RAIN<br>m/hr   hrs mm/hr<br>.94   3.08 3.54<br>.92   3.25 3.30<br>.92   3.25 3.30<br>.92   3.25 3.30<br>.92   3.42 3.08<br>.19   3.50 3.08<br>.63   3.58 2.90<br>.63   3.67 2.90<br>.63   3.67 2.90<br>.63   3.75 2.74<br>.19   3.83 2.74<br>.84   3.92 2.60<br>.84   4.00 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF<br>TIME<br>hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750<br>0.833<br>0.917<br>1.000<br>Max.Eff.Inten.(m<br>over<br>Storage Coeff.                                                                                                                                                                                                                                                                                 | Afea ()<br>Total Imp<br>IM:<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAIN<br>Mm/hr  <br>2.99  <br>3.41  <br>4.01  <br>4.01  <br>4.90  <br>6.42  <br>6.642  <br>9.66  <br>9.66  <br>m/hr) =<br>(min)<br>(min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ha) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       1.00         61.64       0.013         NSFORMED TO         TRANSFORM:         TIME       RAIN         hrs       mm/hr         1.083       22.26         1.250       84.02         1.333       84.02         1.417       28.87         1.500       28.87         1.667       15.67         1.6750       10.90         1.833       10.90         1.917       8.44         84.02       5.00         2.055       (ii)                                                | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br>' TIME<br>' hrs m<br>2.083 6<br>2.167 6<br>2.250 5<br>2.2417 5<br>2.2503 4<br>2.2503 5<br>2.2503 4<br>2.2503 4<br>2.                                             | )= 50.00<br>E STEP.<br>RAIN   TIME RAIN<br>m/hr   hrs mm/hr<br>.94   3.08 3.54<br>.94   3.17 3.54<br>.92   3.25 3.30<br>.92   3.33 3.30<br>.19   3.42 3.08<br>.19   3.42 3.08<br>.19   3.50 3.08<br>.63   3.58 2.90<br>.63   3.58 2.90<br>.19   3.75 2.74<br>.19   3.83 2.74<br>.84   3.92 2.60<br>.84   4.00 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF<br>TIME<br>hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750<br>0.833<br>0.917<br>1.000<br>Max.Eff.Inten.(m<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. Tpeak                                                                                                                                                                                                                                           | Afea ()<br>Total Imp<br>IM:<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAIN<br>MM/hr  <br>2.99  <br>3.41  <br>4.01  <br>4.01  <br>4.01  <br>4.90  <br>6.42  <br>6.42  <br>9.66  <br>9.66  <br>m/hr) =<br>(min) =<br>(min) =<br>(min) =<br>(min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ha) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       1.00         1.00       1.00         61.64       0.013         NSFORMED TO         TRANSFORM:         TIME       RAIN         hrs <mm hr<="" td="">         1.083       22.26         1.167       22.26         1.250       84.02         1.333       84.02         1.667       15.67         1.667       15.67         1.90       8.33         1.917       8.44         84.02       5.00         2.05       (ii)         5.00       0.31</mm>                   | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br> ' TIME<br> ' hrs m<br>12.083 6<br>12.167 6<br>12.250 5<br>12.333 5<br>12.417 5<br>12.500 5<br>12.583 4<br>12.667 4<br>12.667 4<br>12.750 4<br>12.833 4<br>12.667 4<br>12.833 4<br>12.667 4<br>12.833 4<br>12.667 4<br>12.833 4<br>12.667 4<br>12.833 4<br>12.917 3<br>13.000 3<br>63.55<br>15.00<br>10.51 (ii)<br>15.00<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )= 50.00<br>E STEP.<br>RAIN   TIME RAIN<br>m/hr   hrs mm/hr<br>.94   3.08 3.54<br>.94   3.17 3.54<br>.92   3.25 3.30<br>.92   3.25 3.30<br>.19   3.42 3.08<br>.19   3.50 3.08<br>.63   3.58 2.90<br>.63   3.58 2.90<br>.63   3.57 2.74<br>.19   3.83 2.74<br>.84   3.92 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF<br>TIME<br>hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750<br>0.833<br>0.917<br>1.000<br>Max.Eff.Inten.(m<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. Tpeak                                                                                                                                                                                                                                           | Afea (()<br>Total Imp<br>IM:<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>(%) =<br>(m) =<br>ALL WAS TRAIN<br>ALL WAS TRAIN<br>Mm/hr  <br>2.99  <br>2.99  <br>3.41  <br>4.01  <br>4.01  <br>4.90  <br>6.42  <br>9.66  <br>9.66  <br>9.66  <br>(min) =<br>(min) =<br>(min) =<br>(cms) =<br>(cms) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ha) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       1.00         61.64       0.013         NSFORMED TO          TIME       RAIN         hrs       mm/hr         1.083       22.26         1.167       22.26         1.250       84.02         1.583       15.67         1.667       15.67         1.583       10.90         1.917       8.44         84.02       5.00         2.05       (ii)         5.00       0.31         0.07       0.97                                                                        | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br>' TIME<br>' hrs m<br>1 2.083 6<br>2.167 6<br>2.250 5<br>2.333 5<br>2.2.417 5<br>2.2.50 5<br>2.2.583 4<br>2.667 4<br>2.667 4<br>2.667 4<br>2.667 4<br>2.750 4<br>2.667 4<br>2.750 4<br>2.750 4<br>2.583 4<br>3.000 3<br>63.55<br>15.00<br>10.51 (ii)<br>15.00<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>&gt;= 50.00 E STEP.  RAIN   TIME RAIN m/hr   hrs mm/hr .94   3.08 3.54 .94   3.17 3.54 .92   3.25 3.30 .92   3.25 3.30 .19   3.42 3.08 .19   3.50 3.08 .63   3.58 2.90 .63   3.67 2.90 .19   3.75 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .19   3.83 2.74 .10 2.60 </pre> |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF<br>TIME<br>hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750<br>0.833<br>0.917<br>1.000<br>Max.Eff.Inten.(m<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>PEAK FLOW<br>TIME TO PEAK                                                                                                                                                                                                                                 | Afea ()<br>Total Imp<br>IM:<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAN<br>ALL WAS TRAN<br>ALL WAS TRAN<br>ALL WAS TRAN<br>(mm/hr  <br>(min) =<br>(min) =<br>(cms) =<br>(hrs) =<br>Total Imp<br>IM:<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.0000<br>10.000<br>10.000<br>10.0000<br>10.0000<br>10.000<br>10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ha) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       1.00         61.64       0.013         NSFORMED TO         TRANSFORM:         TIME       RAIN         hrs       mm/hr         1.083       22.26         1.333       84.02         1.417       28.87         1.550       28.87         1.583       15.67         1.750       10.90         1.833       10.90         1.917       8.44         84.02       5.00         2.055       (ii)         5.00       0.31         0.07       1.33         1.33       10.97  | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br>' TIME<br>' hrs m<br>2.083 6<br>2.167 6<br>2.250 5<br>2.2417 5<br>2.2503 5<br>2.417 5<br>2.2503 4<br>2.2503 5<br>2.417 5<br>2.2503 4<br>2.2667 4<br>2.2503 4<br>2.2667 4<br>2.2667 4<br>2.2503 5<br>1.2.667 4<br>2.2.503 4<br>2.2.503 4<br>2.2.503 5<br>1.2.667 4<br>2.2.503 4<br>2.2.503 5<br>1.2.667 4<br>2.2.503 4<br>2.2.503 4<br>2.2.503 4<br>1.2.504 1<br>3.0000 3<br>63.55<br>15.00<br>10.51 (ii)<br>15.00<br>0.02<br>1.500 0<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>&gt;= 50.00 E STEP. RAIN   TIME RAIN m/hr   hrs mm/hr .94   3.08 3.54 .92   3.25 3.30 .92   3.25 3.30 .92   3.33 3.30 .19   3.50 3.08 .63   3.58 2.90 .63   3.58 2.90 .63   3.58 2.90 .63   3.57 2.94 .19   3.75 2.74 .19   3.83 2.74 .84   3.92 2.60 .84   4.00 2.60 *TOTALS*     0.078 (iii)     1.33     1.33</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAINF<br>Mannings n<br>NOTE: RAINF<br>NOTE: RAINF<br>0.833<br>0.417<br>0.500<br>0.833<br>0.417<br>0.500<br>0.833<br>0.917<br>1.000<br>Max.Eff.Inten.(m<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. Tpeak<br>Unit Hyd. peak<br>PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL | Afea ()<br>Total Imp<br>IM:<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=<br>ALL WAS TRAIN<br>Mm/hr  <br>2.99  <br>3.41  <br>4.01  <br>4.01  <br>4.90  <br>6.42  <br>6.66  <br>9.66  <br>9.66  <br>9.66  <br>9.66  <br>9.66  <br>(min) =<br>(min) =<br>(mm) =<br>(m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ha) =       0.57         (%) =       65.00         PERVIOUS       P:         0.37       1.00         1.00       1.00         61.64       0.013         NSFORMED TO         TRANSFORM         TIME       RAIN         hrs       mm/hr         1.083       22.26         1.167       22.26         1.250       84.02         1.333       84.02         1.667       15.67         1.667       15.67         1.6750       10.90         1.917       8.44         84.02       5.00         2.055       (ii)         5.00       0.31         0.07       1.33         40.74       41.74 | Dir. Conn.(%<br>ERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN. TIM<br>ED HYETOGRAPH<br>' TIME<br>' hrs m<br>2.083 6<br>2.167 6<br>2.250 5<br>2.2417 5<br>2.2503 4<br>2.2503 4<br>2.2513 4<br>2.2514 4<br>2.2515 4<br>2.2515 4<br>2.2515 4<br>2.2515 4<br>2.2517 6<br>2.2515 4<br>2.2515 4<br>2.2517 5<br>2.2517 4<br>2.2515 4<br>2.2517 5<br>2.2517 4<br>2.2517 5<br>3.3515 4<br>2.2517 5<br>2.2517 5<br>2.                                             | <pre>&gt;= 50.00 E STEP</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

\*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

| CN* = 85.(<br>(ii) TIME STEP (D'<br>THAN THE STOI<br>(iii) PEAK FLOW DOI                                                | 0 Ia = Dep.<br>I) SHOULD BE S<br>RAGE COEFFICIE<br>ES NOT INCLUDE                                                                                                                                                                           | . Storage<br>SMALLER OF<br>ENT.<br>E BASEFLOU                                                                                                                                                                                                                                                                                                                                         | (Above)<br>R EQUAL<br>W IF ANY.                                                                                                                                       |                                                                                                                                                                                                                                                                        |                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| RESERVOIR( 1002)  <br>  IN= 2> OUT= 1  <br>  DT= 5.0 min                                                                | OVERFLOW IS<br>OUTFLOW S<br>(cms)<br>0.0000<br>0.0120                                                                                                                                                                                       | OFF<br>STORAGE<br>(ha.m.)<br>0.0000<br>0.0220                                                                                                                                                                                                                                                                                                                                         | OUTFLOW<br>  (cms)<br>  0.0190<br>  0.0000                                                                                                                            | STORAGE<br>(ha.m.)<br>0.0220<br>0.0000                                                                                                                                                                                                                                 |                                                                                                       |
| INFLOW : ID= 2 ( 010<br>OUTFLOW: ID= 1 ( 100<br>PEAK<br>TIME                                                            | AREA<br>(ha)<br>09) 0.57(<br>02) 0.57(<br>FLOW REDU<br>SHIFT OF PEAR                                                                                                                                                                        | QPEAI<br>(cms)<br>0 0.0<br>0 0.0<br>UCTION [Q0<br>5 FLOW                                                                                                                                                                                                                                                                                                                              | K TPEAK<br>) (hrs)<br>078 1.3<br>007 2.6<br>put/Qin](%)=                                                                                                              | R.V.<br>(mm)<br>33 31.85<br>57 31.04<br>= 8.71<br>= 80.00                                                                                                                                                                                                              |                                                                                                       |
| MAXII                                                                                                                   | MUM STORAGE                                                                                                                                                                                                                                 | USED                                                                                                                                                                                                                                                                                                                                                                                  | (ha.m.)=                                                                                                                                                              | = 0.0125                                                                                                                                                                                                                                                               |                                                                                                       |
| CALIB  <br>  STANDHYD ( 0115)   2<br> ID= 1 DT= 5.0 min   5                                                             | Area (ha)=<br>Total Imp(%)=                                                                                                                                                                                                                 | 0.86<br>75.00                                                                                                                                                                                                                                                                                                                                                                         | Dir. Conn.                                                                                                                                                            | (%)= 75.00                                                                                                                                                                                                                                                             |                                                                                                       |
| Surface Area ()<br>Dep. Storage (r<br>Average Slope<br>Length<br>Mannings n                                             | IMPERVI<br>ha)= 0.6<br>nm)= 1.0<br>(%)= 1.0<br>(m)= 75.7<br>= 0.01                                                                                                                                                                          | IOUS PI<br>65<br>00<br>00<br>72<br>13                                                                                                                                                                                                                                                                                                                                                 | ERVIOUS (i)<br>0.22<br>1.50<br>2.00<br>40.00<br>0.250                                                                                                                 |                                                                                                                                                                                                                                                                        |                                                                                                       |
| NOTE: RAINFAL                                                                                                           | L WAS TRANSFOR                                                                                                                                                                                                                              | RMED TO                                                                                                                                                                                                                                                                                                                                                                               | 5.0 MIN. TI                                                                                                                                                           | IME STEP.                                                                                                                                                                                                                                                              |                                                                                                       |
| TIME<br>hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750<br>0.833<br>0.917<br>1.000 | RAIN   TIM<br>mm/hr   hrs<br>2.99   1.083<br>2.99   1.083<br>3.41   1.250<br>3.41   1.250<br>3.41   1.333<br>4.01   1.417<br>4.01   1.500<br>4.90   1.583<br>4.90   1.583<br>4.90   1.667<br>6.42   1.833<br>9.666   1.917<br>9.666   2.000 | TRANSFORMI           Construction           S         mm/hr           3         22.26           0         84.02           7         28.87           3         15.67           7         15.67           7         16.90           3         15.47           0         28.87           3         15.47           10.900         3         10.900           7         8.44         3.44 | ED HYETOGRAH<br> ' TIME<br> ' hrs<br>  2.083<br>  2.167<br>  2.250<br>  2.333<br>  2.417<br>  2.500<br>  2.583<br>  2.667<br>  2.750<br>  2.833<br>  2.917<br>  3.000 | PH         RAIN   TIME         mm/hr   hrs         6.94   3.17         5.92   3.25         5.92   3.33         5.19   3.42         5.19   3.50         4.63   3.58         4.63   3.75         4.19   3.75         4.19   3.83         3.84   3.92         3.84   4.00 | RAIN<br>mm/hr<br>3.54<br>3.30<br>3.30<br>3.08<br>3.08<br>2.90<br>2.90<br>2.74<br>2.74<br>2.60<br>2.60 |
| Max.Eff.Inten.(mm/)<br>over(m:<br>Storage Coeff.(m:<br>Unit Hyd. Tpeak(m:<br>Unit Hyd. peak(cr                          | hr)=     84.0       in)     5.0       in)=     2.3       in)=     5.0       ms)=     0.3                                                                                                                                                    | 02<br>00<br>32 (ii)<br>00<br>30                                                                                                                                                                                                                                                                                                                                                       | 35.29<br>10.00<br>7.19 (ii)<br>10.00<br>0.14                                                                                                                          | *20221.0*                                                                                                                                                                                                                                                              |                                                                                                       |
| PEAK FLOW (CI<br>TIME TO PEAK (h:<br>RUNOFF VOLUME (I<br>TOTAL RAINFALL (I<br>RUNOFF COEFFICIENT                        | ms)= 0.1<br>rs)= 1.3<br>mm)= 40.7<br>mm)= 41.7<br>= 0.9                                                                                                                                                                                     | 15<br>33<br>74<br>78<br>98                                                                                                                                                                                                                                                                                                                                                            | 0.02<br>1.42<br>19.04<br>41.74<br>0.46                                                                                                                                | 0.162 (iii)<br>1.33<br>35.31<br>41.74<br>0.85                                                                                                                                                                                                                          |                                                                                                       |
| <pre>***** WARNING: STORAGE (</pre>                                                                                     | COEFF. IS SMAN<br>SELECTED FOR<br>D Ia = Dep.<br>T) SHOULD BE S<br>RAGE COEFFICII<br>ES NOT INCLUDE                                                                                                                                         | LLER THAN<br>PERVIOUS<br>Storage<br>SMALLER OF<br>ENT.<br>E BASEFLOW                                                                                                                                                                                                                                                                                                                  | TIME STEP!<br>LOSSES:<br>(Above)<br>R EQUAL<br>W IF ANY.                                                                                                              |                                                                                                                                                                                                                                                                        |                                                                                                       |
| RESERVOIR( 2001) <br>  IN= 2> OUT= 1  <br>  DT= 5.0 min                                                                 | OVERFLOW IS<br>OUTFLOW 5<br>(cms)<br>0.0000<br>0.0220                                                                                                                                                                                       | OFF<br>STORAGE<br>(ha.m.)<br>0.0000<br>0.0350                                                                                                                                                                                                                                                                                                                                         | OUTFLOW<br>  (cms)<br>  0.0300<br>  0.0000                                                                                                                            | STORAGE<br>(ha.m.)<br>0.0350<br>0.0000                                                                                                                                                                                                                                 |                                                                                                       |

| INFLOW : ID= 2 (<br>OUTFLOW: ID= 1 (                                                                              | 0115)<br>2001)                                                                                                                              | AREA<br>(ha)<br>0.860<br>0.860                                                                                          | QPEAK<br>(cms)<br>0.162<br>0.013                                                                                                                                                                                                                                                 | TPEAK<br>(hrs)<br>1.33<br>2.33                                                                                                                                                     | R.V.<br>(mm)<br>35.31<br>34.84                                                                                                                                                    |                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| P<br>T<br>M                                                                                                       | EAK FLOW<br>IME SHIFT O<br>AXIMUM STO                                                                                                       | REDUCTI<br>F PEAK FL<br>RAGE US                                                                                         | ON [Qout/Q<br>OW<br>ED                                                                                                                                                                                                                                                           | <pre>Din](%)= 7 (min)= 60 (ha.m.)= 0</pre>                                                                                                                                         | .95<br>.00<br>.0205                                                                                                                                                               |                                                                                                       |
| CALIB  <br>  STANDHYD ( 0106) <br> ID= 1 DT= 5.0 min                                                              | Area<br>Total Im                                                                                                                            | (ha)= 0<br>p(%)= 65                                                                                                     | .53<br>.00 Dir.                                                                                                                                                                                                                                                                  | Conn.(%)=                                                                                                                                                                          | 55.00                                                                                                                                                                             |                                                                                                       |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                             | I<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=                                                                                                | MPERVIOUS<br>0.34<br>1.00<br>1.00<br>59.44<br>0.013                                                                     | PERVIC<br>0.1<br>1.5<br>2.0<br>40.0<br>0.25                                                                                                                                                                                                                                      | DUS (i)<br>9<br>00<br>00<br>50                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                       |
| NOTE: RAIN                                                                                                        | FALL WAS TR                                                                                                                                 | ANSFORMED                                                                                                               | TO 5.0                                                                                                                                                                                                                                                                           | MIN. TIME                                                                                                                                                                          | STEP.                                                                                                                                                                             |                                                                                                       |
| TIM<br>hr<br>0.08<br>0.16<br>0.25<br>0.33<br>0.41<br>0.50<br>0.50<br>0.58<br>0.66<br>0.75<br>0.83<br>0.91<br>1.00 | E RAIN  <br>s mm/hr  <br>3 2.99  <br>7 2.99  <br>0 3.41  <br>3 3.41  <br>7 4.01  <br>3 4.90  <br>7 4.90  <br>0 6.42  <br>3 9.66  <br>0 9.66 | TIME<br>hrs<br>1.083<br>1.167<br>1.250<br>1.333<br>1.417<br>1.500<br>1.583<br>1.667<br>1.750<br>1.833<br>1.917<br>2.000 | SFORMED       H)         mm/hr        '         22.26                 22.26                 24.02                 284.02                 28.87                 15.67                 15.67                 10.90                 10.90                 8.44                 8.44 | <pre>ZETOGRAPH<br/>TIME RA<br/>hrs mm//<br/>083 6.9<br/>167 6.9<br/>250 5.9<br/>333 5.9<br/>417 5.1<br/>583 4.6<br/>6667 4.6<br/>750 4.1<br/>833 4.1<br/>833 4.1<br/>833 4.1</pre> | IN   TIME<br>hr   hrs<br>4   3.08<br>4   3.17<br>2   3.25<br>2   3.33<br>9   3.42<br>9   3.50<br>3   3.58<br>3   3.58<br>3   3.67<br>9   3.75<br>9   3.83<br>4   3.92<br>4   4.00 | RAIN<br>mm/hr<br>3.54<br>3.54<br>3.30<br>3.08<br>2.90<br>2.90<br>2.90<br>2.74<br>2.74<br>2.60<br>2.60 |
| Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak<br>PEAK FLOW                       | <pre>mm/hr) =  (min)  (min) =  (min) =  (cms) =  (cms) =</pre>                                                                              | 84.02<br>5.00<br>2.00 (<br>5.00<br>0.31                                                                                 | 53.6<br>15.0<br>ii) 11.0<br>15.0<br>0.0                                                                                                                                                                                                                                          | 57<br>00<br>06 (ii)<br>00<br>99<br>*'                                                                                                                                              | TOTALS*<br>0.077 (iii)                                                                                                                                                            |                                                                                                       |
| TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI                                                | (hrs) =<br>(mm) =<br>(mm) =<br>ENT =                                                                                                        | 1.33<br>40.74<br>41.74<br>0.98                                                                                          | 1.5<br>21.8<br>41.7<br>0.5                                                                                                                                                                                                                                                       | 50<br>32<br>74<br>52                                                                                                                                                               | 1.33<br>32.22<br>41.74<br>0.77                                                                                                                                                    |                                                                                                       |
| ***** WARNING: STORA<br>(i) CN PROCED<br>CN* =<br>(ii) TIME STEP<br>THAN THE<br>(iii) PEAK FLOW                   | GE COEFF. I<br>URE SELECTE<br>85.0 Ia<br>(DT) SHOUL<br>STORAGE COE<br>DOES NOT I                                                            | S SMALLER<br>D FOR PER<br>= Dep. St<br>D BE SMAL<br>FFICIENT.<br>NCLUDE BA                                              | THAN TIME<br>VIOUS LOSS<br>orage (Ak<br>LER OR EQU<br>SEFLOW IF                                                                                                                                                                                                                  | C STEP!<br>SES:<br>JOOVE)<br>JAL<br>ANY.                                                                                                                                           |                                                                                                                                                                                   |                                                                                                       |
| ADD HYD ( 0004) <br>  1 + 2 = 3                                                                                   | AR<br>(h                                                                                                                                    | EA QPE<br>a) (cm                                                                                                        | AK TPEA<br>s) (hrs                                                                                                                                                                                                                                                               | AK R.V.<br>s) (mm)                                                                                                                                                                 |                                                                                                                                                                                   |                                                                                                       |
| ID1= 1 ( 01<br>+ ID2= 2 ( 20<br>===========                                                                       | 06): 0.<br>01): 0.                                                                                                                          | 53 0.07<br>86 0.01<br>=======                                                                                           | / 1.33<br>3 2.33                                                                                                                                                                                                                                                                 | 32.22<br>34.84                                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                       |
| ID = 3 ( 00                                                                                                       | 04): 1.                                                                                                                                     | 39 0.08                                                                                                                 | 4 1.33                                                                                                                                                                                                                                                                           | 33.84                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                       |
| NOTE: PEAK FLC                                                                                                    | WS DO NOT I                                                                                                                                 | NCLUDE BA                                                                                                               | SEFLOWS IF                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                                                   |                                                                                                       |
| RESERVOIR( 1004) <br>  IN= 2> OUT= 1  <br>  DT= 5.0 min                                                           | OVERFL<br>OUTFLO<br>(cms)<br>0.000                                                                                                          | OW IS OFF<br>W STOR<br>(ha.<br>0 0.0                                                                                    | AGE   C<br>m.)  <br>000                                                                                                                                                                                                                                                          | OUTFLOW<br>(cms)<br>0.0480                                                                                                                                                         | STORAGE<br>(ha.m.)<br>0.0190                                                                                                                                                      |                                                                                                       |
| INFLOW · ID= 2 (                                                                                                  | 0004)                                                                                                                                       | AREA<br>(ha)<br>1.390                                                                                                   | QPEAK<br>(cms)<br>0.084                                                                                                                                                                                                                                                          | TPEAK<br>(hrs)<br>1-33                                                                                                                                                             | R.V.<br>(mm)<br>33.84                                                                                                                                                             |                                                                                                       |

OUTFLOW: ID= 1 ( 1004) 1.390 0.024 2.08 33.78 PEAK FLOW REDUCTION [Qout/Qin] (%) = 29.20 
 PEAK
 FLOW
 REDUCTION
 Reduction

 TIME SHIFT OF PEAK FLOW
 (min) = 45.00
 (min) = 0.0097

 COUDDOCF
 USED
 (ha.m.) = 0.0097
 MAXIMUM STORAGE USED \_\_\_\_\_ \_\_\_\_\_ | CALIB | STANDHYD ( 0114) | Area (ha)= 0.80 |ID= 1 DT= 5.0 min | Total Imp(%)= 75.00 Dir. Conn.(%)= 75.00 ------IMPERVIOUS PERVIOUS (i) 
 Participation
 PERVICUS
 PERVICUS

 pe
 (ha) =
 0.60
 0.20

 pe
 (mm) =
 1.00
 1.50

 ope
 (%) =
 1.00
 2.00

 (m) =
 73.03
 40.00

 =
 0.013
 0.250
 Surface Area Dep. Storage Average Slope Length Mannings n NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | TIME mm/hr | hrs mm/hr | hrs TIME RAIN | TIME RAIN 

 RAIN
 |
 TIME
 RAIN
 |
 TIME

 mm/hr
 |
 hrs
 mm/hr
 |
 hrs

 2.99
 |
 1.083
 22.26
 |
 2.083

 2.99
 |
 1.167
 22.26
 |
 2.167

 3.41
 |
 1.250
 84.02
 |
 2.333

 4.01
 |
 1.417
 28.87
 |
 2.417

 4.01
 |
 1.500
 28.87
 |
 2.500

 4.90
 |
 1.667
 15.67
 |
 2.667

 6.42
 |
 1.750
 10.90
 |
 2.750

 6.42
 |
 1.833
 10.90
 |
 2.833

 9.66
 |
 1.917
 8.44
 |
 2.917

 9.66
 |
 2.000
 8.44
 |
 3.000

 hrs mm/hr .08 3.54 mm/hr | hrs 6.94 | 3.08 hrs 0.083 0.167 6.94 | 3.17 3.54 3.30 0.250 5.92 | 3.25 0.333 5.92 I 3.33 3.30 5.19 0.417 3.42 3.08 0.500 5.19 | 3.50 3.08 0.583 4.63 | 3.58 2.90 2.90 0.667 4.63 | 3.67 0.750 4.19 | 3.75 2.74 4.19 | 3.83 0.833 2.74 3.84 | 3.92 3.84 | 4.00 0.917 2.60 1.000 2.60 
 84.02
 35.29

 5.00
 10.00

 2.27
 (ii)
 7.14

 5.00
 10.00

 0.30
 0.14
 Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= 7.14 (ii) Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms) = \*TOTALS\* 
 \*TOTALS\*

 PEAK FLOW (cms)=
 0.14
 0.01
 0.151 (iii)

 TIME TO PEAK (hrs)=
 1.33
 1.42
 1.33

 RUNOFF VOLUME (mm)=
 40.74
 19.04
 35.31

 TOTAL RAINFALL (mm)=
 41.74
 41.74
 41.74

 RUNOFF COEFFICIENT =
 0.98
 0.46
 0.85
 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CN\* = 85.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ | RESERVOIR( 1008)| OVERFLOW IS OFF IN= 2---> OUT= 1 | 
 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 0.0000
 0.0000
 0.0280
 0.0340

 0.0190
 0.0340
 0.0000
 0.0000
 DT= 5.0 min 
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (mm)

 INFLOW:
 ID= 2
 0114)
 0.800
 0.151
 1.33
 35.31

 OUTFLOW:
 ID= 1
 (1008)
 0.800
 0.011
 2.50
 34.75
 PEAK FLOW REDUCTION [Qout/Qin](%) = 7.23 TIME SHIFT OF PEAK FLOW (min) = 70.00 MAXIMUM STORAGE USED (ha.m.) = 0.0195 \_\_\_\_\_ \_\_\_\_\_ | CALIB Area (ha) = 0.68 Total Imp(%) = 75.00 Dir. Conn.(%) = 75.00 | STANDHYD ( 0113) | Area |ID= 1 DT= 5.0 min | \_\_\_\_\_ IMPERVIOUSPERVIOUS (i)Surface Area(ha) =0.510.17

| Dep. Storage  | (mm) = | 1.00  | 1.50  |
|---------------|--------|-------|-------|
| Average Slope | (%) =  | 1.00  | 2.00  |
| Length        | (m) =  | 67.33 | 40.00 |
| Mannings n    | =      | 0.013 | 0.250 |

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

| TIME         RAIN         I         TIME         RAIN         I         Imm         mm/hr         Imm         Imm | Nr |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Max.Eff.Inten.(mm/hr)= 84.02 35.29<br>over (min) 5.00 10.00<br>Storage Coeff. (min)= 2.16 (ii) 7.04 (ii)<br>Unit Hyd. Tpeak (min)= 5.00 10.00<br>Unit Hyd. peak (cms)= 0.31 0.14<br>*TOTALS*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| PEAK FLOW       (cms) =       0.12       0.01       0.128 (iii)         TIME TO PEAK       (hrs) =       1.33       1.42       1.33         RUNOFF VOLUME       (mm) =       40.74       19.04       35.31         TOTAL RAINFALL       (mm) =       41.74       41.74       41.74         RUNOFF COEFFICIENT       =       0.98       0.46       0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| <pre>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:<br/>CN* = 85.0 Ia = Dep. Storage (Above)<br/>(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL<br/>THAN THE STORAGE COEFFICIENT.<br/>(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| RESERVOIR( 1003)        OVERFLOW IS OFF           IN= 2> OUT= 1                     DT= 5.0 min         OUTFLOW STORAGE   OUTFLOW STORAGE          (cms) (ha.m.)   (cms) (ha.m.)         0.0000 0.0000   0.0230 0.0280         0.0190 0.0280   0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| AREA         QPEAK         TPEAK         R.V.           (ha)         (cms)         (hrs)         (mm)           INFLOW:         ID= 2         0113)         0.680         0.128         1.33         35.31           OUTFLOW:         ID= 1         (1003)         0.680         0.011         2.25         34.77           PEAK         FLOW         REDUCTION         [Oout/Oin] (%) =         8.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| TIME SHIFT OF PEAK FLOW (min) = 55.00<br>MAXIMUM STORAGE USED (ha.m.) = 0.0159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| CALIB  <br>  STANDHYD ( 0111)   Area (ha)= 0.58<br> ID= 1 DT= 5.0 min   Total Imp(%)= 65.00 Dir. Conn.(%)= 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| IMPERVIOUS         PERVIOUS (i)           Surface Area         (ha) =         0.38         0.20           Dep. Storage         (mm) =         1.00         1.50           Average Slope         (%) =         1.00         2.00           Length         (m) =         62.18         40.00           Mannings n         =         0.013         0.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| TRANSFORMED HYETOGRAPH<br>TIME RAIN   TIME RAIN   TIME RAIN   TIME RAIN<br>hrs mm/hr   hrs mm/hr   hrs mm/hr   hrs mm/h<br>0.083 2.99   1.083 22.26   2.083 6.94   3.08 3.54<br>0.167 2.99   1.167 22.26   2.167 6.94   3.17 3.54<br>0.250 3.41   1.250 84.02   2.250 5.92   3.25 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N  |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | )<br>3<br>3<br>)<br>1<br>1<br>2<br>) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Max.Eff.Inten.(mm/hr) = 84.02 63.55<br>over (min) 5.00 15.00<br>Storage Coeff. (min) = 2.06 (ii) 10.52 (ii)<br>Unit Hyd. Tpeak (min) = 5.00 15.00<br>Unit Hyd. peak (cms) = 0.31 0.09<br>PEAK FLOW (cms) = 0.07 0.02 0.079 (iii)                                                                                  |                                      |
| TIME TO PEAK (hrs)=       1.33       1.50       1.33         RUNOFF VOLUME (mm)=       40.74       22.97       31.85         TOTAL RAINFALL (mm)=       41.74       41.74       41.74         RUNOFF COEFFICIENT =       0.98       0.55       0.76                                                               |                                      |
| ***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!                                                                                                                                                                                                                                                          |                                      |
| <ul> <li>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:<br/>CN* = 85.0 Ia = Dep. Storage (Above)</li> <li>(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL<br/>THAN THE STORAGE COEFFICIENT.</li> <li>(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</li> </ul>                                                  |                                      |
|                                                                                                                                                                                                                                                                                                                   |                                      |
| RESERVOIR( 1006)   OVERFLOW IS OFF<br>  IN= 2> OUT= 1  <br>  DT= 5.0 min   OUTFLOW STORAGE   OUTFLOW STORAGE<br>(cms) (ha.m.)   (cms) (ha.m.)<br>0.0000 0.0000   0.0200 0.0230<br>0.0130 0.0230   0.0000 0.0000                                                                                                   |                                      |
| AREA         QPEAK         TPEAK         R.V.           (ha)         (cms)         (hrs)         (mm)           INFLOW:         ID= 2         0111)         0.580         0.079         1.33         31.85           OUTFLOW:         ID= 1         (1006)         0.580         0.007         2.67         31.09 |                                      |
| PEAK FLOW REDUCTION [Qout/Qin](%)= 8.96<br>TIME SHIFT OF PEAK FLOW (min)= 80.00<br>MAXIMUM STORAGE USED (ha.m.)= 0.0126                                                                                                                                                                                           |                                      |
|                                                                                                                                                                                                                                                                                                                   |                                      |
| ADD HYD ( 0001)  <br>  1 + 2 = 3   AREA QPEAK TPEAK R.V.<br>(ha) (cms) (hrs) (mm)<br>ID1= 1 ( 1000): 2.46 0.047 2.17 32.07<br>+ ID2= 2 ( 1001): 3.00 0.026 3.25 22.99                                                                                                                                             |                                      |
| ID = 3 ( 0001): 5.46 0.073 2.25 27.08                                                                                                                                                                                                                                                                             |                                      |
| NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.                                                                                                                                                                                                                                                                 |                                      |
|                                                                                                                                                                                                                                                                                                                   |                                      |
|                                                                                                                                                                                                                                                                                                                   |                                      |
| ADD HYD ( 0001) <br>  3 + 2 = 1   AREA QPEAK TPEAK R.V.                                                                                                                                                                                                                                                           |                                      |
| (ha) (cms) (hrs) (mm)<br>TD1= 3 ( 0001): 5.46 0.073 2.25 27.08                                                                                                                                                                                                                                                    |                                      |
| + ID2= 2 ( 1002): 0.57 0.007 2.67 31.04                                                                                                                                                                                                                                                                           |                                      |
| ID = 1 ( 0001): 6.03 0.080 2.25 27.46                                                                                                                                                                                                                                                                             |                                      |
| NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.                                                                                                                                                                                                                                                                 |                                      |

\_\_\_\_\_

| ADD | Н | YD  | (   | ( | 000 | 1)     |      |      |     |      |     |       |     |        |
|-----|---|-----|-----|---|-----|--------|------|------|-----|------|-----|-------|-----|--------|
| 1   | + | 2   | =   | 3 | 3   | 1      |      | AREA | QF  | PEAK |     | TPEAK |     | R.V.   |
|     |   |     |     |   |     |        |      | (ha) | ( < | cms) |     | (hrs) |     | (mm)   |
|     |   | ID  | 1=  | 1 | (   | 0001): |      | 6.03 | 0.0 | 080  |     | 2.25  |     | 27.46  |
|     | + | ID  | 2=  | 2 | (   | 1003): |      | 0.68 | 0.0 | )11  |     | 2.25  |     | 34.77  |
|     |   | ==: | === |   | === |        | ==== |      |     | ==== | === | ===== | === | ====== |
|     |   | ID  | =   | 3 | (   | 0001): |      | 6.71 | 0.0 | 90   |     | 2.25  |     | 28.20  |

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| AI       | D HYD ( 0001)                        |               |                  |                |                |          |
|----------|--------------------------------------|---------------|------------------|----------------|----------------|----------|
|          | 3 + 2 = 1                            | AREA<br>(ha)  | QPEAK<br>(cms)   | TPEAK<br>(hrs) | R.V.<br>(mm)   |          |
|          | ID1= 3 ( 0001):<br>+ ID2= 2 ( 1004): | 6.71<br>1.39  | 0.090<br>0.024   | 2.25<br>2.08   | 28.20<br>33.78 |          |
|          | ID = 1 (0001):                       | 8.10          | 0.115            | 2.25           | 29.16          |          |
|          | NOTE: PEAK FLOWS DO                  | NOT INCL      | IDE BASEFI       | OWS TE A       | NY.            |          |
|          |                                      |               |                  |                |                |          |
|          | עא מע                                |               |                  |                |                |          |
|          | 1 + 2 = 3                            | AREA          | QPEAK            | TPEAK          | R.V.           |          |
|          | ID1= 1 ( 0001):                      | (na)<br>8.10  | 0.115            | 2.25           | 29.16          |          |
|          | + 1D2= 2 ( 1005):                    | 0.27          | 0.004            | 2.33           | 31.89          |          |
|          | ID = 3 (0001):                       | 8.37          | 0.119            | 2.25           | 29,24          |          |
|          | NOTE: PEAK FLOWS DO                  | NOT INCL      | JDE BASEFI       | LOWS IF AN     | NY.<br>        |          |
|          |                                      |               |                  |                |                |          |
| AI<br>   | DD HYD ( 0001) <br>3 + 2 = 1         | AREA          | QPEAK            | TPEAK          | R.V.           |          |
|          | ID1= 3 ( 0001) ·                     | (ha)<br>8.37  | (cms)<br>0.119   | (hrs)<br>2.25  | (mm)<br>29.24  |          |
|          | + ID2= 2 ( 1006):                    | 0.58          | 0.007            | 2.67           | 31.09          |          |
|          | ID = 1 ( 0001):                      | 8.95          | 0.126            | 2.25           | 29.36          |          |
|          | NOTE: PEAK FLOWS DO                  | NOT INCL      | JDE BASEFI       | LOWS IF AN     | NY.            |          |
|          |                                      |               |                  |                |                |          |
| AI       | D HYD ( 0001)                        | 3             | 00737            |                | D 11           |          |
| <br>     | 1 + 2 = 3                            | AREA<br>(ha)  | (Cms)            | (hrs)          | R.V.<br>(mm)   |          |
|          | ID1= 1 ( 0001):<br>+ ID2= 2 ( 1007): | 8.95<br>0.34  | 0.126<br>0.004   | 2.25<br>2.58   | 29.36<br>30.66 |          |
|          | ID = 3 ( 0001):                      | 9.29          | 0.130            | 2.25           | 29.41          |          |
|          | NOTE: PEAK FLOWS DO                  | NOT INCL      | JDE BASEFI       | LOWS IF AN     | NY.            |          |
|          |                                      |               |                  |                |                |          |
| <br>  AI | DD HYD ( 0001)                       |               |                  |                |                |          |
|          | 3 + 2 = 1                            | AREA<br>(ha)  | QPEAK<br>(cms)   | TPEAK<br>(hrs) | R.V.<br>(mm)   |          |
|          | ID1= 3 ( 0001):<br>+ ID2= 2 ( 1008). | 9.29<br>0.80  | 0.130            | 2.25           | 29.41<br>34.75 |          |
|          | TD = 1 ( 0001)                       | 10 09         | 0 1 4 1          | 2 25           | 29.83          |          |
|          | NOTE: DEAK FLONG DO                  | 10.02         | U                |                | 22.03          |          |
|          | NOID. FEAR FLOWS DU                  |               |                  | Al             |                |          |
|          |                                      |               |                  |                |                |          |
| AI<br>   | 1 + 2 = 3                            | AREA          | QPEAK            | TPEAK          | R.V.           |          |
|          | ID1= 1 ( 0001):                      | (ha)<br>10.09 | (cms)<br>0.141   | (hrs)<br>2.25  | (mm)<br>29.83  |          |
|          | + ID2= 2 ( 0110):                    | 0.18          | 0.027            | 1.33           | 31.82          |          |
|          | ID = 3 (0001):                       | 10.27         | 0.144            | 2.17           | 29.87          |          |
|          | NOTE: PEAK FLOWS DO                  | NOT INCLU     | JDE BASEFI       | JOWS IF AN     | NY.            |          |
| गान्     | ITSH                                 |               |                  |                |                |          |
| ====     |                                      | ========      |                  |                |                |          |
|          | -                                    |               |                  |                |                |          |
|          |                                      |               |                  |                |                |          |
|          | V V I SSSSS                          | U U           | A L              |                | (v 6           | .2.2015) |
|          | V V I SS<br>V V I SS                 | U U<br>U II   | AA L<br>AAAAA T. |                |                |          |

V V I SS U U A A L VV I SSSSS UUUUU A A LLLLL 000 TTTTT TTTTT H Н Ү Ү М М 000 ΤM H H Y Y MM MO O H H Y M M O O H H Y M M OOO 0 0 0 0 т Т Т т 000 Т т Developed and Distributed by Smart City Water Inc Copyright 2007 - 2022 Smart City Water Inc All rights reserved. \*\*\*\*\* DETAILED OUTPUT \*\*\*\*\* filename: C:\Program Files (x86)\Visual OTTHYMO 6.2\VO2\voin.dat filename: C:\Users\workstation\AppData\Local\Civica\VH5\ccf76975-8d50-4b70-aa0c-30fee69c1cca Input Output 3e338b66-ac2e-404b-95c9-f18e0ced622bSummary filename: C:\Users\workstation\AppData\Local\Civica\VH5\ccf76975-8d50-4b70-aa0c-30fee69c1cca \3e338b66-ac2e-404b-95c9-f18e0ced622b\ DATE: 10-08-2024 TIME: 06:28:20 USER: COMMENTS: \_\_\_\_\_ \*\*\*\*\* \*\* SIMULATION : CHI4hr - 100yr \_\_\_\_\_ | CHICAGO STORM | | Ptotal= 68.11 mm | IDF curve parameters: A=1264.570 B= 7.720 C= 0.781 ----used in: INTENSITY = A / (t + B) ^C Duration of storm = 4.00 hrs Storm time step = 10.00 min Time to peak ratio = 0.33 RAIN |' TIME mm/hr |' hrs TIME RAIN | TIME RAIN | TIME RAIN mm/hr | hrs 20 | 3.00 RAIN mm/hr | hrs hrs hrs mm/hr 37.64 | 2.00 0.00 4.74 | 1.00 11.39 | 5.65 1.17 133.78 3.17 2.17 0.17 5.44 | 9.65 | 5.25 6.43 | 1.33 7.93 | 1.50 48.90 | 2.33 26.44 | 2.50 8.41 | 7.47 | 3.33 3.50 0.33 4.90 0.50 4.60 0.67 10.51 | 1.67 18.20 | 2.67 6.73 | 3.67 4.34 16.06 | 1.83 0.83 13.96 | 2.83 6.14 | 3.83 4.10 \_\_\_\_\_ \_\_\_\_\_ | CALIB Area (ha)= 0.18 Total Imp(%)= 65.00 Dir. Conn.(%)= 50.00 | STANDHYD ( 0110)| |ID= 1 DT= 5.0 min | \_\_\_\_ \_\_\_\_\_ IMPERVIOUS PERVIOUS (i) 0.06 Surface Area (ha) = 0.12 Dep. Storage (mm) = 1.00 1.50 1.00 34.64 Average Slope ( % ) = 2.00 (m) = 40.00 Length Mannings n = 0.013 0.250 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN |' TIME mm/hr |' hrs TIME RAIN | TIME RAIN | TIME RAIN mm/hr | hrs hrs mm/hr | hrs mm/hr 37.64 | 2.083 37.64 | 2.167 1.083 11.39 | 3.08 0.083 4.74 5.65 

 4.74
 1.167
 37.64
 2.167

 5.44
 1.250
 133.78
 2.250

 3.17 3.25 0.167 11 39 1 5.65 9.65 I 0.250 5.25 0.333 5.44 | 1.333 133.78 | 2.333 9.65 | 3.33 5.25 0.417 6.43 | 1.417 48.90 | 2.417 8.41 | 3.42 4.90

8.41 | 3.50

7.47 | 3.67

3.58

7.47 |

4.90

4.60

4.60

6.43 | 1.500 48.90 | 2.500

26.44 | 2.583 26.44 | 2.667

7.93 | 1.583 7.93 | 1.667

0.500

0.583

0.667

| 0.75<br>0.83<br>0.91<br>1.00                                                                              | 0 10.51  <br>3 10.51  <br>7 16.06  <br>0 16.06                                                                                                                                                                                                                                 | 1.750<br>1.833<br>1.917<br>2.000                                                                                        | 18.20<br>18.20<br>13.96<br>13.96                                                                                    | 2.750<br>  2.833<br>  2.917<br>  3.000                                                                                                                              | 6.73   3.75<br>6.73   3.83<br>6.14   3.92<br>6.14   4.00  | 4.34<br>4.34<br>4.10<br>4.10                                                                          |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                            | <pre>mm/hr) =  (min)  (min) =  (min) =  (cms) =</pre>                                                                                                                                                                                                                          | 133.78<br>5.00<br>1.20<br>5.00<br>0.33                                                                                  | 1<br>(ii)                                                                                                           | 29.26<br>10.00<br>7.57 (ii)<br>10.00<br>0.13                                                                                                                        | ***\0**1 5 *                                              |                                                                                                       |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI                           | (cms) =<br>(hrs) =<br>(mm) =<br>(mm) =<br>ENT =                                                                                                                                                                                                                                | 0.03<br>1.33<br>67.11<br>68.11<br>0.99                                                                                  |                                                                                                                     | 0.02<br>1.42<br>45.68<br>68.11<br>0.67                                                                                                                              | 0.048 (iii)<br>1.33<br>56.38<br>68.11<br>0.83             |                                                                                                       |
| ***** WARNING: STORA                                                                                      | GE COEFF. I                                                                                                                                                                                                                                                                    | S SMALLE                                                                                                                | R THAN                                                                                                              | TIME STEP!                                                                                                                                                          |                                                           |                                                                                                       |
| <ul> <li>(i) CN PROCED<br/>CN* =</li> <li>(ii) TIME STEP<br/>THAN THE</li> <li>(iii) PEAK FLOW</li> </ul> | URE SELECTE<br>85.0 Ia<br>(DT) SHOUL<br>STORAGE COE<br>DOES NOT I                                                                                                                                                                                                              | D FOR PE<br>= Dep. S<br>D BE SMA<br>FFICIENT<br>NCLUDE B                                                                | RVIOUS<br>torage<br>LLER OF<br>ASEFLOW                                                                              | LOSSES:<br>(Above)<br>R EQUAL<br>N IF ANY.                                                                                                                          |                                                           |                                                                                                       |
| CALIB  <br>  STANDHYD ( 0103) <br> ID= 1 DT= 5.0 min                                                      | Area<br>Total Im                                                                                                                                                                                                                                                               | (ha)=<br>p(%)= 6                                                                                                        | 2.50<br>5.00                                                                                                        | Dir. Conn.                                                                                                                                                          | (%)= 55.00                                                |                                                                                                       |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                     | I<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=                                                                                                                                                                                                                                   | MPERVIOU<br>1.62<br>1.00<br>1.00<br>129.10<br>0.013                                                                     | S PE                                                                                                                | ERVIOUS (i)<br>0.88<br>1.50<br>2.00<br>40.00<br>0.250                                                                                                               |                                                           |                                                                                                       |
| NOTE: RAIN                                                                                                | FALL WAS TR                                                                                                                                                                                                                                                                    | ANSFORME                                                                                                                | D TO                                                                                                                | 5.0 MIN. T                                                                                                                                                          | IME STEP.                                                 |                                                                                                       |
|                                                                                                           |                                                                                                                                                                                                                                                                                |                                                                                                                         | VGEODW                                                                                                              |                                                                                                                                                                     | <b>D</b> <i>U</i>                                         |                                                                                                       |
| TIM<br>hr<br>0.08<br>0.16<br>0.25<br>0.33<br>0.41<br>0.50<br>0.58<br>0.66<br>0.75<br>0.83<br>0.91<br>1.00 | E       RAIN           s       mm/hr           3       4.74           7       4.74           0       5.44           3       5.44           7       6.43           3       7.93           0       10.51           3       10.51           7       16.06           0       16.06 | TIME<br>hrs<br>1.083<br>1.167<br>1.250<br>1.333<br>1.417<br>1.500<br>1.583<br>1.667<br>1.750<br>1.833<br>1.917<br>2.000 | NSFORME<br>RAIN<br>mm/hr<br>37.64<br>133.78<br>48.90<br>48.90<br>26.44<br>26.44<br>18.20<br>18.20<br>13.96<br>13.96 | ED HYETOGRA<br> ' TIME<br>  hrs<br>  2.083<br>  2.167<br>  2.250<br>  2.333<br>  2.417<br>  2.500<br>  2.583<br>  2.667<br>  2.750<br>  2.833<br>  2.917<br>  3.000 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $    | RAIN<br>mm/hr<br>5.65<br>5.25<br>5.25<br>4.90<br>4.90<br>4.60<br>4.60<br>4.34<br>4.34<br>4.10<br>4.10 |
| Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                            | <pre>mm/hr) =  (min)  (min) =  (min) =  (cms) =</pre>                                                                                                                                                                                                                          | 133.78<br>5.00<br>2.65<br>5.00<br>0.29                                                                                  | 1<br>(ii)                                                                                                           | 11.09<br>10.00<br>9.42 (ii)<br>10.00<br>0.12                                                                                                                        | +200231.04                                                |                                                                                                       |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI                           | (cms) =<br>(hrs) =<br>(mm) =<br>(mm) =<br>ENT =                                                                                                                                                                                                                                | 0.50<br>1.33<br>67.11<br>68.11<br>0.99                                                                                  |                                                                                                                     | 0.18<br>1.42<br>44.02<br>68.11<br>0.65                                                                                                                              | *TOTALS*<br>0.654 (iii)<br>1.33<br>56.72<br>68.11<br>0.83 |                                                                                                       |
| ***** WARNING: STORA                                                                                      | GE COEFF. I                                                                                                                                                                                                                                                                    | S SMALLE                                                                                                                | R THAN                                                                                                              | TIME STEP!                                                                                                                                                          |                                                           |                                                                                                       |
| <ul> <li>(i) CN PROCED<br/>CN* =</li> <li>(ii) TIME STEP<br/>THAN THE</li> <li>(iii) PEAK FLOW</li> </ul> | URE SELECTE<br>85.0 Ia<br>(DT) SHOUL<br>STORAGE COE<br>DOES NOT I                                                                                                                                                                                                              | D FOR PE<br>= Dep. S<br>D BE SMA<br>FFICIENT<br>NCLUDE B                                                                | RVIOUS<br>torage<br>LLER OF<br>ASEFLOW                                                                              | LOSSES:<br>(Above)<br>R EQUAL<br>N IF ANY.                                                                                                                          |                                                           |                                                                                                       |
|                                                                                                           |                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                                                                     |                                                                                                                                                                     |                                                           |                                                                                                       |
| CALIB                                                                                                     |                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                                                                     |                                                                                                                                                                     |                                                           |                                                                                                       |

| STANDHYD ( 0108) | Area (ha) = 0.50 |ID= 1 DT= 5.0 min | Total Imp(%) = 20.00 Dir. Conn.(%) = 20.00

IMPERVIOUS PERVIOUS (i)

| (ha) = | 0.10                                    | 0.40                                                 |
|--------|-----------------------------------------|------------------------------------------------------|
| (mm) = | 1.00                                    | 1.50                                                 |
| (%) =  | 1.00                                    | 2.00                                                 |
| (m) =  | 57.74                                   | 40.00                                                |
| =      | 0.013                                   | 0.250                                                |
|        | (ha) =<br>(mm) =<br>(%) =<br>(m) =<br>= | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANSFORM                                                                                                                                                                                                                                    | ED HYETOGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | APH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  | _     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------|
| TIME                                                                                                                                                                                                                                                                                                             | RAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RAIN                                                                                                                                                                                                                                       | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIME                                                                             | RAIN  |
| hrs                                                                                                                                                                                                                                                                                                              | mm/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mm/hr                                                                                                                                                                                                                                      | ' hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mm/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hrs                                                                              | mm/hr |
| 0.083                                                                                                                                                                                                                                                                                                            | 4.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.64                                                                                                                                                                                                                                      | 2.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.08                                                                             | 5.65  |
| 0.16/                                                                                                                                                                                                                                                                                                            | 4./4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.16/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/.04                                                                                                                                                                                                                                      | 2.16/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1/                                                                             | 5.05  |
| 0.230                                                                                                                                                                                                                                                                                                            | 5 44 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 133.70                                                                                                                                                                                                                                     | 2.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.23                                                                             | 5.25  |
| 0.333                                                                                                                                                                                                                                                                                                            | 6 43 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 90                                                                                                                                                                                                                                      | 2.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.0J  <br>8.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.42                                                                             | 1 90  |
| 0.500                                                                                                                                                                                                                                                                                                            | 6 43 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48 90                                                                                                                                                                                                                                      | 1 2 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 41 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 50                                                                             | 4 90  |
| 0.583                                                                                                                                                                                                                                                                                                            | 7 93 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26 44                                                                                                                                                                                                                                      | 2.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 47 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 58                                                                             | 4 60  |
| 0.667                                                                                                                                                                                                                                                                                                            | 7.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.44                                                                                                                                                                                                                                      | 2.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.67                                                                             | 4.60  |
| 0.750                                                                                                                                                                                                                                                                                                            | 10.51 j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.20                                                                                                                                                                                                                                      | 2.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.73 j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.75                                                                             | 4.34  |
| 0.833                                                                                                                                                                                                                                                                                                            | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.20                                                                                                                                                                                                                                      | 2.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.83                                                                             | 4.34  |
| 0.917                                                                                                                                                                                                                                                                                                            | 16.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.96                                                                                                                                                                                                                                      | 2.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.92                                                                             | 4.10  |
| 1.000                                                                                                                                                                                                                                                                                                            | 16.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.96                                                                                                                                                                                                                                      | 3.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.00                                                                             | 4.10  |
| Max.Eff.Inten.(mm/h                                                                                                                                                                                                                                                                                              | 1r)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 133.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            | 76.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |       |
| over (mi                                                                                                                                                                                                                                                                                                         | n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |       |
| Storage Coeff. (mi                                                                                                                                                                                                                                                                                               | n)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ii)                                                                                                                                                                                                                                       | 9.50 (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |       |
| Unit Hyd. Tpeak (mi                                                                                                                                                                                                                                                                                              | .n)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |       |
| Unit Hyd. peak (cm                                                                                                                                                                                                                                                                                               | ıs)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + = 0 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 310+                                                                             |       |
| PEAK FLOW (cm                                                                                                                                                                                                                                                                                                    | (s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            | 0 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * 1.0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALS*<br>084 (iii                                                                 | )     |
| TIME TO PEAK (br                                                                                                                                                                                                                                                                                                 | (s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .33                                                                              | /     |
| RUNOFF VOLUME (m                                                                                                                                                                                                                                                                                                 | um) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            | 39.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .26                                                                              |       |
| TOTAL RAINFALL (m                                                                                                                                                                                                                                                                                                | m) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            | 68.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .11                                                                              |       |
| RUNOFF COEFFICIENT                                                                                                                                                                                                                                                                                               | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .66                                                                              |       |
| <ul> <li>(i) CN PROCEDURE<br/>CN* = 85.0</li> <li>(ii) CN PROCEDURE</li> </ul>                                                                                                                                                                                                                                   | SELECTEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ERVIOU<br>ER SPLI<br>D FOR PI<br>= Dep. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S RATIOS<br>TTING TH<br>ERVIOUS<br>Storage                                                                                                                                                                                                 | HE AREA.<br>LOSSES:<br>(Above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE                                                                                                                                                                                                                                                       | AGE COEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FICIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALLER OF<br>T.<br>BASEFLOV                                                                                                                                                                                                                 | R EQUAL<br>W IF ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(111) PEAK FLOW DOE<br>ADD HYD ( 0003) <br>1 + 2 = 3                                                                                                                                                                                                                      | AGE COEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FFICIEN<br>NCLUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALLER OF<br>F.<br>BASEFLOU<br>                                                                                                                                                                                                             | R EQUAL<br>W IF ANY.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R.V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003) <br>1 + 2 = 3                                                                                                                                                                                                                      | AGE COEP<br>S NOT IN<br>ARE<br>(ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EA Q<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALLER OF<br>F.<br>BASEFLOV<br><br>PEAK<br>cms)                                                                                                                                                                                             | R EQUAL<br>W IF ANY.<br>TPEAK<br>(hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R.V.<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOP<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003)  <br>1 + 2 = 3  <br>ID1= 1 ( 0103):                                                                                                                                                                                                | AGE COEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EA Q<br>EA Q<br>EA Q<br>EA Q<br>EA Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALLER OI<br>I.<br>BASEFLOU<br><br>PEAK<br>cms)<br>654                                                                                                                                                                                      | R EQUAL<br>W IF ANY.<br>TPEAK<br>(hrs)<br>1.33 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R.V.<br>(mm)<br>5.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(111) PEAK FLOW DOE<br>ADD HYD ( 0003)  <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):                                                                                                                                                                           | AGE COEH<br>S NOT IN<br>ARE<br>(ha<br>2.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EA Q<br>2 0 0.<br>EA Q<br>2 0.<br>50 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALLER OI<br>F.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084                                                                                                                                                                                   | R EQUAL<br>W IF ANY.<br>TPEAK<br>(hrs)<br>1.33 56<br>1.33 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R.V.<br>(mm)<br>5.72<br>5.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003) <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>================<br>ID = 3 ( 0003):                                                                                                                                     | ARE<br>(ha<br>2.5<br>0.5<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EA Q<br>50 0.<br>50 0.<br>50 0.<br>50 0.<br>50 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALLER OF<br>F.<br>BASEFLOW<br>PEAK<br>Cms)<br>654<br>084<br>=======<br>737                                                                                                                                                                 | TPEAK<br>(hrs)<br>1.33 56<br>1.33 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R.V.<br>(mm)<br>5.72<br>5.26<br>=====<br>4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOP<br>(111) PEAK FLOW DOE<br>ADD HYD ( 0003)  <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>======<br>ID = 3 ( 0003):<br>NOTE: PEAK FLOWS D                                                                                                                        | ARE<br>(ha<br>2.5<br>0.5<br>3.0<br>00 NOT IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SEA         Q:                                                                                                                                                                                                                                                                          | ALLER OF<br>F.<br>BASEFLOW<br>PEAK<br>Cms)<br>654<br>084<br>=======<br>737<br>BASEFLOW                                                                                                                                                     | TPEAK<br>(hrs)<br>1.33 56<br>1.33 45<br>1.33 54<br>0.33 54<br>0.33 54<br>0.35 54<br>0.35 15 ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R.V.<br>(mm)<br>5.72<br>5.26<br>=====<br>4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(111) PEAK FLOW DOE<br>ADD HYD ( 0003)  <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>ID = 3 ( 0003):<br>NOTE: PEAK FLOWS D                                                                                                                                  | ARE<br>COEH<br>S NOT IN<br>ARE<br>(ha<br>2.5<br>0.5<br>3.0<br>00 NOT IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EA         Q           a)         (           (50         0           (50         0           (50         0           (50         0           (100)         0           (100)         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALLER OF<br>F.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br><br>737<br>BASEFLOW                                                                                                                                                            | TPEAK<br>(hrs)<br>1.33 56<br>1.33 54<br>0.33 54<br>0.33 54<br>0.33 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R.V.<br>(mm)<br>5.72<br>5.26<br>=====<br>4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(111) PEAK FLOW DOE<br>ADD HYD ( 0003) <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>====================================                                                                                                                                    | ARE<br>(ha<br>2.5<br>0.5<br>3.0<br>00 NOT IN<br>OVERFLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EA         Q:           EA         Q:           a)         (           50         0           50         0           50         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0           00         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ALLER OF<br>F.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br>========<br>737<br>BASEFLOW<br>======<br>FF                                                                                                                                    | R EQUAL<br>W IF ANY.<br>TPEAK<br>(hrs)<br>1.33 56<br>1.33 54<br>NS IF ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R.V.<br>(mm)<br>5.72<br>5.26<br>=====<br>1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(111) PEAK FLOW DOE<br>(111) PEAK FLOW DOE<br>ADD HYD ( 0003)  <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>====================================                                                                                                            | ARE<br>(ha<br>2.5<br>0.5<br>3.0<br>00 NOT IN<br>OVERFLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Discord         Second           FFICIENT         NCLUDE 1           CA         Q           A)         (1           50         0.           50         0.           50         0.           50         0.           900         0.           NCLUDE 1           NCLUDE 1           DOW IS 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALLER OF<br>F.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br>BASEFLOW<br>BASEFLOW<br>FF<br>DRAGE                                                                                                                                            | TPEAK<br>(hrs)<br>1.33 50<br>1.33 54<br>WS IF ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R.V.<br>(mm)<br>5.72<br>5.26<br>=====<br>1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOP<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003)  <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>ID = 3 ( 0003):<br>NOTE: PEAK FLOWS D<br>RESERVOIR( 1001)  <br>IN= 2> OUT= 1  <br>DT= 5.0 min                                                                          | ARE<br>(ha<br>2.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EA         Q:           cal         ("                                                                                                                                                                                                                                                                                                                             | ALLER OF<br>F.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br>BASEFLOW<br>BASEFLOW<br>FF<br>FF<br>DRAGE<br>a.m.)                                                                                                                             | R EQUAL<br>W IF ANY.<br>TPEAK<br>(hrs)<br>1.33 56<br>1.33 45<br>1.33 54<br>WS IF ANY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R.V.<br>(mm)<br>5.72<br>5.26<br>=====<br>1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRAGE                                                                            |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003) <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>====================================                                                                                                                                    | ARE<br>(hase coefficients)<br>ARE<br>(hase coefficients)<br>ARE<br>(h                                                                                                                                                                                                                                                                                                                                                                         | Description         Sea         Qi           VCLUDE 1         VCLUDE 1         VCLUDE 1           Sea         Qi         VCLUDE 1           Solo 0.1         Solo 0.1         VCLUDE 1           VCLUDE 1         VCLUDE 1         VCLUDE 1           VVCLUDE 1         VCLUDE 1         VCLUDE 1           VVCLUD 1         VCLUD 1         VCLUD 1         | ALLER OF<br>F.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br>====================================                                                                                                                                           | <pre>R EQUAL W IF ANY. TPEAK (hrs) 1.33 56 1.33 45 1.33 54 WS IF ANY.   OUTFLOW   (cms)   0.0380</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R.V.<br>(mm)<br>5.72<br>5.26<br>=====<br>1.81<br>V STC<br>(ha<br>) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )RAGE<br>m.)<br>.1290                                                            |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003) <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>====================================                                                                                                                                    | ARE<br>(hase coefficients)<br>ARE<br>(hase coefficients)<br>ARE<br>(h                                                                                                                                                                                                                                                                                                                                                                         | Description         State           State         Qi           VCLUDE         V           State         Qi           Qi         Qi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALLER OF<br>F.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br>=======<br>737<br>BASEFLOW<br>FF<br>FF<br>DRAGE<br>a.m.)<br>.0000<br>.0230                                                                                                     | <pre>R EQUAL W IF ANY. TPEAK (hrs) 1.33 54 1.33 54 WS IF ANY. OUTFLOV ( Cms) 0.0380 0.0480</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R.V.<br>(mm)<br>5.72<br>5.26<br>4.81<br>V STC<br>(ha<br>) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DRAGE<br>m.)<br>0.1290<br>.1290                                                  |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003)  <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>====================================                                                                                                                                   | ARE<br>(hase coefficients)<br>(ARE COEFFICIENTS)<br>(ARE<br>(hase coefficients)<br>(hase coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Discord         String           Discord         String           NCLUDE         I           NCLUDE         I           String         (i)           String         (i)           String         (i)           NCLUDE         I           NCLUDE         I           NCLUDE         I           NCLUDE         I           NCLUDE         I           NCLUDE         I           N         STM           N         STM           N         STM           N         STM           N         N           N         STM                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALLER OF<br>T.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br>=======<br>BASEFLOW<br>FF<br>DRAGE<br>a.m.)<br>.0000<br>.0230<br>.02460                                                                                                        | TPEAK<br>(hrs)<br>1.33 54<br>1.33 54<br>1.33 54<br>1.33 54<br>WS IF ANY.<br>000TFLOW<br>00038<br>0.0380<br>0.0480<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R.V.<br>(rmm)<br>5.72<br>5.26<br>=====<br>4.81<br>V STC<br>(ha<br>)<br>0 C<br>0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DRAGE<br>m.)<br>.1290<br>.0000                                                   |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(111) PEAK FLOW DOE<br>(111) PEAK FLOW DOE<br>ADD HYD ( 0003)  <br>1 + 2 = 3  <br>ID1= 1 ( 0103) :<br>+ ID2= 2 ( 0108) :<br>= ==================================                                                                                                          | ARE<br>(hage coeff<br>S NOT IN<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage)<br>(hage | Des Sm.           SEA         Q:           ACLUDE 1           SEA         Q:                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALLER OI<br>r.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br>========<br>737<br>BASEFLOW<br>FF<br>DRAGE<br>a.m.)<br>.0230<br>.0460<br>OPEAI                                                                                                 | R EQUAL           W IF ANY.           TPEAK           (hrs)           1.33           1.33           1.33           45           MS IF ANY.           I OUTFLOW           (cms)           0.0380           0.0480           0.0480           0.0480           TPEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R.V.<br>(mm)<br>5.72<br>5.26<br>=====<br>1.81<br>V STC<br>(ha<br>0 C<br>0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DRAGE<br>m.)<br>0.1290<br>0.0000<br>R.V.                                         |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(111) PEAK FLOW DOE<br>(111) PEAK FLOW DOE<br>ADD HYD ( 0003)  <br>1 + 2 = 3  <br>ID1= 1 ( 0103) :<br>+ ID2= 2 ( 0108) :<br>====================================                                                                                                          | ARE<br>(hase coefficient of the coe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Discontract         Stress           Discontract         Discontract           Stress         Discontract           Discontract         Discontract           Distret         Distr< | ALLER OI<br>r.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br>737<br>BASEFLOW<br><br>FF<br>DRAGE<br>a.m.)<br>.0000<br>.0230<br>.0460<br>QPEAI<br>(cms)                                                                                       | R EQUAL<br>W IF ANY.<br>TPEAK<br>(hrs)<br>1.33 56<br>1.33 56<br>1.33 56<br>WS IF ANY.<br>  OUTFLOW<br>  (cms)<br>  0.0380<br>  0.0000<br>K TPEAH<br>) (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R.V.<br>(mm)<br>5.72<br>5.26<br>=====<br>1.81<br>V STC<br>(ha<br>0 C<br>0 C<br>0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PRAGE<br>1.m.)<br>.1290<br>.1290<br>.0000<br>R.V.<br>(mm)                        |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(111) PEAK FLOW DOE<br>ADD HYD ( 0003)  <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>====================================                                                                                                                                   | ARE<br>(ha<br>2.5<br>0.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DEE SM.           FFICIEN'           VCLUDE 1              CA           QA           QAREA           (ha)           3.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALLER OI<br>T.<br>BASEFLOW<br>PEAK<br>Cms)<br>654<br>084<br>BASEFLOW<br>084<br>BASEFLOW<br>0737<br>FF<br>DRAGE<br>a.m.)<br>.0000<br>.0230<br>.0460<br>QPEAI<br>(Cms)<br>0.02                                                               | R EQUAL<br>W IF ANY.<br>TPEAK<br>(hrs)<br>1.33 50<br>1.33 45<br>1.33 54<br>WS IF ANY.<br>0.038(<br>0.038(<br>0.038(<br>0.048(<br>0.0000)<br>K TPEAH<br>0 (hrs)<br>737 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R.V.<br>(mm)<br>5.72<br>5.26<br>4.81<br>4.81<br>0 C<br>(ha<br>0 C<br>0 C<br>0 C<br>0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DRAGE<br>m.)<br>.1290<br>.1290<br>.0000<br>R.V.<br>(mm)<br>54.81                 |       |
| <pre>(11) TIME STEP (DT<br/>THAN THE STOR<br/>(iii) PEAK FLOW DOE<br/>(iii) PEAK FLOW DOE<br/>ADD HYD ( 0003)  <br/>1 + 2 = 3  <br/>ID1= 1 ( 0103):<br/>+ ID2= 2 ( 0108):<br/>====================================</pre>                                                                                         | ARE<br>(haGE COEH<br>S NOT IN<br>(ha<br>2.5<br>0.5<br>3.0<br>00 NOT IN<br>00 NOT IN<br>00 VERFLO<br>(cms)<br>0.0000<br>0.0220<br>03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Disconstruct         Structure           FFICIEN'         VCLUDE 1           VCLUDE 1         VCLU                                                                       | ALLER OI<br>T.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br>BASEFLOW<br>084<br>BASEFLOW<br>0737<br>BASEFLOW<br>0.0230<br>.0460<br>QPEAI<br>(cms)<br>0.0.<br>0.0.                                                                           | R EQUAL<br>W IF ANY.<br>TPEAK<br>(hrs)<br>1.33 50<br>1.33 45<br>1.33 54<br>WS IF ANY.<br>0.038<br>0.048(<br>0.0000<br>0 (cms)<br>0.038<br>0.048(<br>0.048(<br>0.0000<br>K TPEAH<br>0 (hrs)<br>737 1.<br>038 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R.V.<br>(mm)<br>5.72<br>5.26<br>4.81<br>4.81<br>0 C<br>0 C<br>0 C<br>0 C<br>0 C<br>0 C<br>0 C<br>0 C<br>0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DRAGE<br>m.)<br>.1290<br>.1290<br>.0000<br>R.V.<br>(mm)<br>54.81<br>47.05        |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003)  <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>ID = 3 ( 0003) :<br>NOTE: PEAK FLOWS D<br>RESERVOIR ( 1001)  <br>IN= 2> OUT= 1  <br>DT= 5.0 min  <br>INFLOW : ID= 2 ( 000<br>OUTFLOW: ID= 1 ( 100)                     | ARE<br>(haGE COEH<br>S NOT IN<br>(ha<br>2.5<br>0.5<br>3.0<br>00 NOT IN<br>00 NOT IN<br>00 VERFLO<br>(cms)<br>0.0000<br>0.0220<br>0.0220<br>03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Disconstruct         Structure           FFICIENT         NCLUDE 1           Structure         NCLUDE 1           Structure         NCLUDE 1           Structure         NCLUDE 1           NCLUDE 1         NCLUDE 1           Structure         NCLUDE 1           NCLUDE 1         NCLUDE 1           NW IS 02         N           NW IS 02         N           AREA         3.000           3.000         BEDUCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALLER OI<br>T.<br>BASEFLOW<br>PEAK<br>(cms)<br>654<br>084<br>BASEFLOW<br>054<br>084<br>BASEFLOW<br>0737<br>FF<br>DRAGE<br>a.m.)<br>.0000<br>.0230<br>.0460<br>QPEAI<br>(cms)<br>0.7<br>0.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | R EQUAL<br>W IF ANY.<br>TPEAK<br>(hrs)<br>1.33 50<br>1.33 45<br>1.33 50<br>NS IF ANY.<br>0.038<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480<br>0.0480000000000                                                                                                                                                                                                                                                                        | R.V.<br>(mm)<br>5.72<br>5.26<br>1.81<br>V STC<br>(ha<br>0) C<br>0) C<br>0<br>0 C<br>0<br>0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DRAGE<br>m.)<br>.1290<br>.1290<br>.0000<br>R.V.<br>(mm)<br>54.81<br>47.05        |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003) <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>====================================                                                                                                                                    | ARE<br>(haGE COEH<br>S NOT IN<br>(ha<br>2.5<br>0.5<br>0.000 NOT IN<br>OVERFLO<br>OUTFLOW<br>(cms)<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Design         String           Design         Clubel           NCLUDE 1         Clubel           NCLUDE 1         Clubel           String         Clubel           String         Clubel           NCLUDE 1         Clubel           NO         O           NO         O           NO         Clubel           NCLUDE 1         Clubel           NO         O           NO         O           NO         NO           NO         NO           NO         NO           NO         NO                                                                                                                                                                | ALLER OI<br>F.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br>========<br>737<br>BASEFLOW<br>084<br>084<br>084<br>084<br>084<br>084<br>084<br>084                                                                                            | <pre>R EQUAL W IF ANY. TPEAK (hrs) 1.33 56 1.33 56 1.33 56 NS IF ANY. OUTFLOW (cms) 0.038( 0.048( 0.048( 0.0000( K TPEAH 0.048( 1.038 3.0000(24) ) 0.038 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.048( 0.0</pre>                                                                                                                                                                                                                                                                                                                                                                                                                     | R.V.<br>(mm)<br>5.72<br>5.26<br>=====<br>4.81<br>V STC<br>(ha<br>0 C<br>0 C<br>0 C<br>33<br>58<br>= 5.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRAGE<br>m.)<br>.1290<br>.1290<br>.0000<br>R.V.<br>(mm)<br>54.81<br>47.05        |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003) <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>DT= 3 ( 0003):<br>NOTE: PEAK FLOWS D<br>RESERVOIR ( 1001) <br>IN= 2> OUT= 1  <br>DT= 5.0 min  <br>INFLOW : ID= 2 ( 000<br>OUTFLOW: ID= 1 ( 100<br>PEAK<br>TIME<br>MAXTM | ARE<br>(haGE COEH<br>S NOT IN<br>(ha<br>2.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Design         String           Design         Clubel           NCLUDE 1         Clubel           String         Club           String                                                                                                                                           | ALLER OI<br>r.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br>=========<br>737<br>BASEFLOW<br>BASEFLOW<br>0230<br>.0230<br>.0230<br>.0460<br>QPEAI<br>(cms)<br>0.1<br>CTION [Q4<br>FLOW<br>USED                                              | <pre>R EQUAL W IF ANY. TPEAK (hrs) 1.33 56 1.33 56 1.33 56 WS IF ANY. OUTFLOW OUTFLOW</pre>                                                                                                                                                                                                                                                                                                                                                                                                                      | R.V.<br>(mm)<br>5.72<br>5.26<br>=====<br>1.81<br>V STC<br>(ha<br>0 C<br>0 C<br>0 C<br>33<br>5.8<br>= 5.14<br>=135.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRAGE<br>m.)<br>.1290<br>.1290<br>.0000<br>R.V.<br>(mm)<br>54.81<br>47.05        |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003) <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>====================================                                                                                                                                    | ARE<br>(haGE COEH<br>S NOT IN<br>(ha<br>2.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Design         String           Design         Comparison           String         Comparison                                                                            | ALLER OI<br>r.<br>BASEFLOU<br>PEAK<br>cms)<br>654<br>084<br>=========<br>737<br>BASEFLOU<br>BASEFLOU<br>084<br>084<br>084<br>084<br>084<br>084<br>084<br>084                                                                               | <pre>R EQUAL W IF ANY. TPEAK (hrs) 1.33 54 1.33 54 WS IF ANY. OUTFLOW OUTFLOW</pre>                                                                                                                                                                                                                                                                                                                                                                                                                      | R.V.<br>(mm)<br>5.72<br>5.26<br>1.81<br>1.81<br>0 STC<br>(ha<br>0 C<br>0 C<br>0 C<br>33<br>58<br>= 5.14<br>=135.00<br>= 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DRAGE<br>m.)<br>.1290<br>.1290<br>.0000<br>R.V.<br>(mm)<br>54.81<br>47.05<br>.85 |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003) <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>====================================                                                                                                                                    | ARE<br>(haGE COEH<br>S NOT IN<br>(ha 2.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Del SM.           SEA         Q:           NCLUDE 1           NCLUDE 1           SEA         Q:                                                                                                                                                                                                                                                                    | ALLER OI<br>F.<br>BASEFLOW<br>PEAK<br>cms)<br>654<br>084<br><br>BASEFLOW<br>BASEFLOW<br>084<br><br>FF<br>DRAGE<br>a.m.)<br>0000<br>.0230<br>.0460<br>QPEAI<br>(cms)<br>0.1<br>CTION [QC<br>FLOW<br>USED<br>                                | <pre>R EQUAL W IF ANY. TPEAK (hrs) 1.33 56 1.33 45 1.33 54 WS IF ANY. OUTFLOW OUTFLOW</pre>                                                                                                                                                                                                                                                                                                                                                                                                                      | R.V.<br>(mm)<br>5.72<br>5.26<br>4.81<br>4.81<br>4.81<br>5.14<br>5.26<br>(ha<br>0 C<br>0 C<br>0 C<br>5.26<br>(ha<br>0 C<br>0 C<br>0 C<br>5.26<br>(ha<br>0 C<br>0 C<br>0 C<br>5.26<br>(ha<br>0 C<br>0 C<br>0 C<br>0 C<br>0 C<br>0 C<br>0 C<br>0 C<br>0 C<br>0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRAGE<br>m.)<br>.1290<br>.1290<br>.0000<br>R.V.<br>(mm)<br>54.81<br>47.05        |       |
| (11) TIME STEP (DT<br>THAN THE STOR<br>(iii) PEAK FLOW DOE<br>ADD HYD ( 0003) <br>1 + 2 = 3  <br>ID1= 1 ( 0103):<br>+ ID2= 2 ( 0108):<br>====================================                                                                                                                                    | ARE<br>(haGE COEH<br>S NOT IN<br>(ha 2.5<br>0.5<br>0.5<br>0.000 IN<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Description         State           State         Qi           VCLUDE         V           State         Qi                                                                                                                                                                                                                        | ALLER OI<br>F.<br>BASEFLOU<br>PEAK<br>cms)<br>654<br>084<br><br>BASEFLOU<br>BASEFLOU<br>084<br><br>FF<br>DRAGE<br>a.m.)<br>0000<br>.0230<br>.0460<br>QPEAI<br>(cms)<br>0.1<br>CTION [QC<br>FLOW<br>USED<br>                                | R EQUAL<br>W IF ANY.<br>TPEAK<br>(hrs)<br>1.33 56<br>1.33 45<br>1.33 54<br>WS IF ANY.<br>OUTFLOW<br>  OUTFLOW<br>  Ccms)<br>  0.038(<br>  0.048(<br>  0. | R.V.<br>(mm)<br>5.72<br>5.26<br>4.81<br>4.81<br>4.81<br>5.14<br>5.26<br>(ha<br>0 C<br>0 C<br>0 C<br>5.26<br>(ha<br>0 C<br>0 C<br>20<br>5.26<br>(ha<br>1.81<br>5.26<br>(ha<br>0 C<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>5.26<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>(ha<br>20<br>(ha<br>20<br>(ha<br>20<br>(ha<br>(ha<br>20<br>(ha<br>(ha<br>(ha<br>(ha<br>(ha<br>(ha<br>(ha<br>(ha<br>(ha<br>(ha | PRAGE<br>m.)<br>.1290<br>.1290<br>.0000<br>R.V.<br>(mm)<br>54.81<br>47.05        |       |

| Average Sl<br>Length<br>Mannings r                                                                                                        | rea (ha) =<br>.ge (mm) =<br>.ope (%) =<br>(m) =                                                                                                                                  | IMPERVIOUS<br>0.18<br>1.00<br>1.00<br>42.43<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PERVIOUS (i)<br>0.09<br>1.50<br>2.00<br>40.00<br>0.250                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE:                                                                                                                                     | RAINFALL WAS                                                                                                                                                                     | S TRANSFORMED TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0 MIN. T                                                                                                                                                                                                                                                                                                                                                                | IME STEP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                           | TIME RA:<br>hrs mm/l<br>0.083 4.<br>0.167 4.<br>0.250 5.<br>0.333 5.4<br>0.417 6.4<br>0.500 6.4<br>0.583 7.2<br>0.667 7.5<br>0.667 7.5<br>0.750 10.5<br>0.833 10.5<br>0.917 16.1 | TRANSFOR<br>IN   TIME RAI<br>IN   hrs mm/h<br>74   1.083 37.6<br>74   1.167 37.6<br>74   1.250 133.7<br>44   1.233 133.7<br>43   1.417 48.9<br>43   1.500 48.9<br>53   1.667 26.4<br>53   1.667 26.4<br>51   1.750 18.2<br>51   1.833 18.2<br>56   1.917 13.9<br>56   2.000 13.9<br>57   1.833 18.2<br>58   1.917 13.9<br>59   1.917 13.9<br>50   2.000 13.9<br>50   1.917 13.9<br>50   2.000 13.9<br>50   1.917 13.9<br>51   1.917                                                                                                                                                                                                                                                                                    | RMED       HYETOGRA:         IN       '         TIME       hrs         54       2.083         54       2.083         54       2.167         78       2.250         78       2.250         78       2.533         90       2.417         90       2.583         14       2.667         20       2.750         20       2.750         20       2.917         96       3.000 | PH          RAIN         TIME         RAIN           mm/hr         hrs         mm/hr           11.39         3.08         5.65           11.39         3.17         5.65           9.65         3.25         5.25           9.65         3.33         5.25           8.41         3.42         4.90           8.41         3.50         4.90           7.47         3.58         4.60           7.47         3.67         4.60           6.73         3.75         4.34           6.14         3.92         4.10           6.14         4.00         4.10 |
| Max.Eff.In<br>Storage Co<br>Unit Hyd.<br>Unit Hyd.                                                                                        | ten.(mm/hr)=<br>over (min)<br>eeff. (min)=<br>Tpeak (min)=<br>peak (cms)=                                                                                                        | 133.78<br>5.00<br>1.36 (ii)<br>5.00<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.26<br>10.00<br>6.26 (ii)<br>10.00<br>0.15                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PEAK FLOW<br>TIME TO PE<br>RUNOFF VOI<br>TOTAL RAIN<br>RUNOFF COE                                                                         | (cms) =<br>AK (hrs) =<br>UME (mm) =<br>FALL (mm) =                                                                                                                               | 0.07<br>1.33<br>67.11<br>68.11<br>0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02<br>1.42<br>39.82<br>68.11<br>0.58                                                                                                                                                                                                                                                                                                                                    | *TOTALS*<br>0.079 (iii)<br>1.33<br>57.54<br>68.11<br>0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (ii) TIME<br>THAN<br>(iii) PEAK                                                                                                           | STEP (DT) SH<br>THE STORAGE<br>FLOW DOES NO<br>                                                                                                                                  | COEFFICIENT.<br>DT INCLUDE BASEFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OR EQUAL                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IN= 2> 001<br>  DT= 5.0 min                                                                                                               |                                                                                                                                                                                  | TFLOW STORAGE<br>cms) (ha.m.)<br>.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OUTFLOW<br>  (cms)<br>  0.0090                                                                                                                                                                                                                                                                                                                                            | STORAGE<br>(ha.m.)<br>0.0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                           | - 2 ( 0105)                                                                                                                                                                      | AREA QPE<br>(ha) (cm<br>0.270 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EAK TPEAK<br>ns) (hrs)<br>0.079 1.3                                                                                                                                                                                                                                                                                                                                       | R.V.<br>(mm)<br>33 57.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| INFLOW : ID=<br>OUTFLOW: ID=                                                                                                              | 1 ( 1005)                                                                                                                                                                        | 0.270 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2                                                                                                                                                                                                                                                                                                                                                                       | 25 56.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| INFLOW : ID=<br>OUTFLOW: ID=                                                                                                              | PEAK FI<br>TIME SHII<br>MAXIMUM                                                                                                                                                  | LOW REDUCTION (<br>FT OF PEAK FLOW<br>STORAGE USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ).008 2.:<br>[Qout/Qin](%):<br>(min):<br>(ha.m.):                                                                                                                                                                                                                                                                                                                         | = 9.64<br>= 55.00<br>= 0.0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| INFLOW : ID=<br>OUTFLOW: ID=<br>CALIB<br>STANDHYD ( 0<br>ID= 1 DT= 5.0                                                                    | 2 ( 0105)<br>2 1 ( 1005)<br>PEAK FI<br>TIME SHIN<br>MAXIMUM<br><br>107)   Area<br>min   Total                                                                                    | (ha) = 1.81<br>(ha) = 65.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ).008 2.:<br>[Qout/Qin](%):<br>(min):<br>(ha.m.):<br>                                                                                                                                                                                                                                                                                                                     | <pre>25 56.32 = 9.64 = 55.00 = 0.0101</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INFLOW : ID=<br>OUTFLOW: ID=<br>(CALIB<br>STANDHYD ( 0<br>ID= 1 DT= 5.0<br>Surface Ar<br>Dep. Stora<br>Average S1<br>Length<br>Mannings m | PEAK FI<br>TIME SHI<br>MAXIMUM<br>107)   Area<br>min   Tota<br><br>ea (ha)=<br>ge (mm)=<br>ope (%)=<br>(m)=                                                                      | (ha) = 1.81<br>(ha) = 1.81<br>(ha) = 65.00<br>(ha) = 1.81<br>(ha) = 65.00<br>(ha) = 65.00<br>(ha) = 1.81<br>(ha) = 0.01<br>(ha) = 0.00<br>(ha) = 0.00<br>(ha | <pre>).008 2.:<br/>[Qout/Qin](%):<br/>(min):<br/>(ha.m.):<br/>Dir. Conn.<br/>PERVIOUS (i)<br/>0.63<br/>1.50<br/>2.00<br/>40.00<br/>0.250</pre>                                                                                                                                                                                                                            | <pre>25 56.32 = 9.64 = 55.00 = 0.0101 (%) = 50.00</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750<br>0.833<br>0.917<br>1.000                                  | 5.44  <br>5.44  <br>6.43  <br>7.93  <br>7.93  <br>10.51  <br>16.06  <br>16.06                                         | 1.250<br>1.333<br>1.417<br>1.500<br>1.583<br>1.667<br>1.750<br>1.833<br>1.917<br>2.000                                  | 133.78<br>133.78<br>48.90<br>26.44<br>26.44<br>18.20<br>18.20<br>13.96<br>13.96                                      | 2.250<br>  2.333<br>  2.417<br>  2.500<br>  2.583<br>  2.667<br>  2.750<br>  2.833<br>  2.917<br>  3.000                                  | $\begin{array}{cccc} 9.65 &   \\ 9.65 &   \\ 8.41 &   \\ 8.41 &   \\ 7.47 &   \\ 7.47 &   \\ 6.73 &   \\ 6.73 &   \\ 6.14 &   \\ 6.14 &   \end{array}$ | 3.25<br>3.33<br>3.42<br>3.50<br>3.58<br>3.67<br>3.75<br>3.83<br>3.92<br>4.00                                  | 5.25<br>5.25<br>4.90<br>4.60<br>4.60<br>4.34<br>4.34<br>4.10<br>4.10                                  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Max.Eff.Inten.(mr<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                                        | n/hr) = (min)<br>(min) = (min) = (cms) =                                                                              | 133.78<br>5.00<br>2.41<br>5.00<br>0.30                                                                                  | 1<br>(ii)                                                                                                            | 29.26<br>10.00<br>8.77 (ii)<br>10.00<br>0.12                                                                                              |                                                                                                                                                        |                                                                                                               |                                                                                                       |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICIEN                                       | (cms) =<br>(hrs) =<br>(mm) =<br>(mm) =<br>JT =                                                                        | 0.33<br>1.33<br>67.11<br>68.11<br>0.99                                                                                  |                                                                                                                      | 0.16<br>1.42<br>45.68<br>68.11<br>0.67                                                                                                    | *TOT<br>0.<br>1<br>56<br>68<br>0                                                                                                                       | ALS*<br>465 (iii)<br>.33<br>.39<br>.11<br>.83                                                                 |                                                                                                       |
| ***** WARNING: STORAGE                                                                                                  | E COEFF. IS                                                                                                           | SMALLE                                                                                                                  | R THAN                                                                                                               | TIME STEP!                                                                                                                                |                                                                                                                                                        |                                                                                                               |                                                                                                       |
| (i) CN PROCEDUH<br>CN* = 85<br>(ii) TIME STEP<br>THAN THE S7<br>(iii) PEAK FLOW I                                       | RE SELECTED<br>5.0 Ia =<br>(DT) SHOULD<br>FORAGE COEF<br>DOES NOT IN(                                                 | FOR PE<br>Dep. S<br>BE SMA<br>FICIENT<br>CLUDE B                                                                        | RVIOUS<br>torage<br>LLER OF<br>ASEFLOW                                                                               | LOSSES:<br>(Above)<br>R EQUAL<br>N IF ANY.                                                                                                |                                                                                                                                                        |                                                                                                               |                                                                                                       |
| RESERVOIR( 2000) <br>  IN= 2> OUT= 1  <br>  DT= 5.0 min                                                                 | OVERFLO<br>OUTFLOW<br>(cms)<br>0.0000                                                                                 | W IS OF<br>STO<br>(ha<br>0.                                                                                             | F<br>RAGE<br>.m.)<br>0000                                                                                            | OUTFLOW<br>  (cms)<br>  0.0630                                                                                                            | STO<br>(ha<br>0                                                                                                                                        | PRAGE<br>m.)<br>.0620                                                                                         |                                                                                                       |
| INFLOW : ID= 2 ( (<br>OUTFLOW: ID= 1 ( 2<br>PEA<br>TIN<br>MAX                                                           | 2000)<br>AK FLOW<br>ME SHIFT OF<br>KIMUM STOR                                                                         | 1.810<br>1.810<br>REDUCT<br>PEAK F<br>AGE U                                                                             | ION [Qc<br>SED                                                                                                       | (min)<br>(ha.m.)                                                                                                                          | 33<br>08<br>= 13.42<br>= 45.00<br>= 0.06                                                                                                               | 56.39<br>56.26                                                                                                |                                                                                                       |
| CALIB  <br>  STANDHYD ( 0104) <br> ID= 1 DT= 5.0 min                                                                    | Area (1<br>Total Imp                                                                                                  | ha)=<br>(%)= 6                                                                                                          | 0.65<br>5.00                                                                                                         | Dir. Conn.                                                                                                                                | (%)= 6                                                                                                                                                 | 5.00                                                                                                          |                                                                                                       |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                                   | IM:<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=                                                                        | PERVIOU<br>0.42<br>1.00<br>1.00<br>65.83<br>0.013                                                                       | S PE                                                                                                                 | CRVIOUS (i)<br>0.23<br>1.50<br>2.00<br>40.00<br>0.250                                                                                     |                                                                                                                                                        |                                                                                                               |                                                                                                       |
| NOTE: RAINF?                                                                                                            | ALL WAS TRAD                                                                                                          | NSFORME                                                                                                                 | D TO                                                                                                                 | 5.0 MIN. T                                                                                                                                | IME STE                                                                                                                                                | P.                                                                                                            |                                                                                                       |
| TIME<br>hrs<br>0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750<br>0.833<br>0.917<br>1.000 | RAIN  <br>4.74  <br>4.74  <br>5.44  <br>5.44  <br>6.43  <br>6.43  <br>7.93  <br>7.93  <br>10.51  <br>10.51  <br>16.06 | TIME<br>hrs<br>1.083<br>1.167<br>1.250<br>1.333<br>1.417<br>1.500<br>1.583<br>1.667<br>1.750<br>1.833<br>1.917<br>2.000 | NSFORME<br>RAIN<br>mm/hr<br>37.64<br>133.78<br>133.78<br>48.90<br>26.44<br>26.44<br>18.20<br>18.20<br>13.96<br>13.96 | D HYETOGRA<br>' TIME<br>' hrs<br>2.083<br>2.167<br>2.250<br>2.333<br>2.417<br>2.500<br>2.583<br>2.667<br>2.750<br>2.833<br>2.917<br>3.000 | PH<br>RAIN<br>mm/hr<br>11.39  <br>9.65  <br>9.65  <br>8.41  <br>8.41  <br>7.47  <br>6.73  <br>6.73  <br>6.14  <br>6.14                                 | TIME<br>  hrs<br>3.08<br>3.17<br>3.25<br>3.33<br>3.42<br>3.50<br>3.58<br>3.67<br>3.75<br>3.83<br>3.92<br>4.00 | RAIN<br>mm/h1<br>5.65<br>5.25<br>5.25<br>4.90<br>4.90<br>4.60<br>4.60<br>4.60<br>4.34<br>4.34<br>4.10 |
| 1.000                                                                                                                   |                                                                                                                       |                                                                                                                         |                                                                                                                      | , 0.000                                                                                                                                   | ~ • ± •                                                                                                                                                |                                                                                                               |                                                                                                       |

| Unit Hyd. peak<br>PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI<br>***** WARNING: STORA<br>(i) CN PROCEL<br>CN* =<br>(ii) TIME STEF<br>THAN THE<br>(iii) PEAK FLOW | <pre>(cms) =  (cms) =  (hrs) =  (mm) =  (mm) = ENT = GE COEFF. I URE SELECTE 85.0 Ia  (DT) SHOUL STORAGE COE DOES NOT I</pre>                                         | 0.32<br>0.16<br>1.33<br>67.11<br>68.11<br>0.99<br>S SMALLER TH<br>D FOR PERVIO<br>= Dep. Stora<br>D BE SMALLER<br>FFICIENT.<br>NCLUDE BASEF                                      | 0.14<br>0.04<br>1.42<br>39.82<br>68.11<br>0.58<br>AN TIME STEP<br>US LOSSES:<br>ge (Above)<br>OR EQUAL<br>LOW IF ANY.                                                                              | *TOTALS*<br>0.188 (iii)<br>1.33<br>57.55<br>68.11<br>0.84                                                                                                                                                                                                                                     |                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| ADD HYD ( 0002) <br>  1 + 2 = 3  <br>  ID1= 1 ( 01<br>+ ID2= 2 ( 20<br>  ID = 3 ( 00<br>  NOTE: PEAK FLC                                                                                             | AR<br>(h<br>04): 0.<br>00): 1.<br>=====020<br>02): 2.<br>WS DO NOT I                                                                                                  | EA QPEAK<br>a) (cms)<br>65 0.188<br>81 0.062<br>46 0.218<br>NCLUDE BASEF                                                                                                         | TPEAK<br>(hrs)<br>1.33 5<br>2.08 5<br>1.33 5<br>LOWS IF ANY.                                                                                                                                       | R.V.<br>(mm)<br>7.55<br>6.26<br>=====<br>6.60                                                                                                                                                                                                                                                 |                                                                                                               |
| RESERVOIR( 1000) <br>  IN= 2> OUT= 1  <br>  DT= 5.0 min  <br>INFLOW : ID= 2 (<br>OUTFLOW: ID= 1 (<br>F<br>T                                                                                          | OVERFL<br>OUTFLO<br>(cms)<br>0.000<br>1000)<br>EAK FLOW<br>IME SHIFT O<br>AXIMUM STO                                                                                  | OW IS OFF<br>W STORAGE<br>(ha.m.)<br>0 0.0000<br>AREA QP<br>(ha) (c<br>2.460<br>2.460<br>REDUCTION<br>F PEAK FLOW<br>RAGE USED                                                   | OUTFLC<br>  (cms)<br>  0.086<br>EAK TPEA<br>ms) (hrs<br>0.218 1<br>0.085 2<br>[Qout/Qin](%<br>(min<br>(ha.m.                                                                                       | W STORAGE<br>(ha.m.)<br>0 0.0220<br>K R.V.<br>) (mm)<br>.33 56.60<br>.08 56.58<br>c) = 38.93<br>c) = 45.00<br>) = 0.0218                                                                                                                                                                      |                                                                                                               |
| CALIB    <br>  STANDHYD ( 0112) <br> ID= 1 DT= 5.0 min  <br>Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n<br>NOTE: RAIN                                                      | Area<br>Total Im<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=<br>FALL WAS TR                                                                                            | (ha) = 0.34<br>p(%) = 65.00<br>MPERVIOUS<br>0.22<br>1.00<br>1.00<br>47.61<br>0.013<br>ANSFORMED TO                                                                               | Dir. Conn<br>PERVIOUS (i<br>0.12<br>1.50<br>2.00<br>40.00<br>0.250<br>5.0 MIN.                                                                                                                     | (%) = 50.00<br>.)<br>TIME STEP.                                                                                                                                                                                                                                                               |                                                                                                               |
| TIM<br>hr<br>0.08<br>0.16<br>0.25<br>0.33<br>0.41<br>0.50<br>0.58<br>0.66<br>0.75<br>0.83<br>0.91<br>1.00                                                                                            | E RAIN  <br>s mm/hr  <br>3 4.74  <br>7 4.74  <br>0 5.44  <br>3 5.44  <br>7 6.43  <br>3 7.93  <br>7 7.93  <br>7 7.93  <br>10.51  <br>3 10.51  <br>7 16.06  <br>0 16.06 | TIME RA<br>hrs mm/<br>1.083 37.<br>1.167 37.<br>1.250 133.<br>1.333 133.<br>1.417 48.<br>1.500 48.<br>1.583 26.<br>1.667 26.<br>1.750 18.<br>1.833 18.<br>1.917 13.<br>2.000 13. | RMED HYETOGR<br>IN  ' TIME<br>hrs  ' hrs<br>64   2.083<br>64   2.167<br>78   2.250<br>78   2.333<br>90   2.417<br>90   2.583<br>44   2.667<br>20   2.750<br>20   2.750<br>20   2.917<br>96   3.000 | APH         RAIN   TIME         mm/hr   hrs         11.39   3.08         11.39   3.17         9.65   3.25         9.65   3.33         8.41   3.42         8.41   3.50         7.47   3.58         7.47   3.67         6.73   3.75         6.73   3.83         6.14   3.92         6.14   4.00 | RAIN<br>mm/hr<br>5.65<br>5.25<br>5.25<br>4.90<br>4.60<br>4.60<br>4.60<br>4.60<br>4.34<br>4.34<br>4.10<br>4.10 |
| Max.Eff.Inten.(<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak<br>PEAK FLOW                                                                                                          | <pre>mm/hr) =   (min)   (min) =   (min) =   (cms) =   (cms) =</pre>                                                                                                   | 133.78<br>5.00<br>1.46 (ii)<br>5.00<br>0.33<br>0.06                                                                                                                              | 129.26<br>10.00<br>7.83 (ii<br>10.00<br>0.13<br>0.03                                                                                                                                               | )<br>*TOTALS*<br>0.090 (iii)                                                                                                                                                                                                                                                                  |                                                                                                               |

| TIME TO PEAK    | (hrs) = | 1.33  | 1.42  | 1.33  |
|-----------------|---------|-------|-------|-------|
| RUNOFF VOLUME   | (mm) =  | 67.11 | 45.68 | 56.39 |
| TOTAL RAINFALL  | (mm) =  | 68.11 | 68.11 | 68.11 |
| RUNOFF COEFFICI | ENT =   | 0.99  | 0.67  | 0.83  |

\*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 85.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

\_\_\_\_\_

| RESERVOIR( 1007)                                                                                                                                  | OVERFL                                                                                                                                                                                                                                                                                                                                                                                                | OW IS OFF                                                                                                                                                          |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                               |                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| IN= 2> OUT= 1  <br>  DT= 5.0 min                                                                                                                  | OUTFLO<br>(cms)<br>0.000<br>0.008                                                                                                                                                                                                                                                                                                                                                                     | W STORAG<br>(ha.m.<br>0 0.000<br>0 0.013                                                                                                                           | E   OUTFLOW<br>)   (cms)<br>0   0.0110<br>0   0.0000                                                                                                                                                             | <pre>N STORAGE     (ha.m.) 0 0.0130 0 0.00000</pre>                                                                                                                                                                                                                                           |                                                                                                       |
| INFLOW : ID= 2 (<br>OUTFLOW: ID= 1 (                                                                                                              | 0112)<br>1007)                                                                                                                                                                                                                                                                                                                                                                                        | AREA Q<br>(ha) (<br>0.340<br>0.340                                                                                                                                 | PEAK TPEAR<br>cms) (hrs)<br>0.090 1.<br>0.008 2.                                                                                                                                                                 | R.V.<br>(mm)<br>.33 56.39<br>.50 55.19                                                                                                                                                                                                                                                        |                                                                                                       |
| E<br>T<br>N                                                                                                                                       | PEAK FLOW<br>TIME SHIFT O<br>MAXIMUM STO                                                                                                                                                                                                                                                                                                                                                              | REDUCTION<br>F PEAK FLOW<br>RAGE USED                                                                                                                              | [Qout/Qin](%)<br>(min)<br>(ha.m.)                                                                                                                                                                                | = 8.91<br>= 70.00<br>= 0.0130                                                                                                                                                                                                                                                                 |                                                                                                       |
| CALIB  <br>  STANDHYD ( 0109) <br> ID= 1 DT= 5.0 min                                                                                              | Area<br>Total Im                                                                                                                                                                                                                                                                                                                                                                                      | (ha)= 0.5<br>p(%)= 65.0                                                                                                                                            | 7<br>0 Dir. Conn.                                                                                                                                                                                                | .(%)= 50.00                                                                                                                                                                                                                                                                                   |                                                                                                       |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                                                             | I<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=                                                                                                                                                                                                                                                                                                                                                          | MPERVIOUS<br>0.37<br>1.00<br>1.00<br>61.64<br>0.013                                                                                                                | PERVIOUS (i)<br>0.20<br>1.50<br>2.00<br>40.00<br>0.250                                                                                                                                                           |                                                                                                                                                                                                                                                                                               |                                                                                                       |
| NOTE: RAIN                                                                                                                                        | IFALL WAS TR                                                                                                                                                                                                                                                                                                                                                                                          | ANSFORMED T                                                                                                                                                        | 0 5.0 MIN. 1                                                                                                                                                                                                     | TIME STEP.                                                                                                                                                                                                                                                                                    |                                                                                                       |
| TIN<br>hr<br>0.02<br>0.33<br>0.41<br>0.55<br>0.56<br>0.66<br>0.66<br>0.65<br>0.66<br>0.65<br>0.66<br>0.65<br>0.66<br>0.65<br>0.66<br>0.65<br>0.65 | ME         RAIN         I           cs         mm/hr         I           33         4.74         I           57         4.74         I           50         5.44         I           53         5.44         I           53         5.43         I           53         7.93         I           56         10.51         I           33         10.51         I           57         16.06         I | TIME R<br>hrs mm<br>1.083 37<br>1.167 37<br>1.250 133<br>1.333 133<br>1.417 48<br>1.500 48<br>1.583 26<br>1.667 26<br>1.750 18<br>1.833 18<br>1.917 13<br>2.000 13 | ORMED HYETOGRA<br>AIN  ' TIME<br>/hr  ' hrs<br>.64   2.083<br>.64   2.167<br>.78   2.333<br>.90   2.417<br>.90   2.500<br>.44   2.583<br>.44   2.667<br>.20   2.750<br>.20   2.833<br>.96   2.917<br>.96   3.000 | APH         RAIN   TIME         mm/hr   hrs         11.39   3.08         11.39   3.17         9.65   3.25         9.65   3.25         9.65   3.33         8.41   3.42         8.41   3.50         7.47   3.58         7.47   3.67         6.73   3.75         6.73   3.83         6.14   4.00 | RAIN<br>mm/hr<br>5.65<br>5.25<br>5.25<br>4.90<br>4.90<br>4.60<br>4.60<br>4.34<br>4.34<br>4.10<br>4.10 |
| Max.Eff.Inten.<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                                                                     | <pre>(mm/hr) = (min) (min) = (min) = (cms) =</pre>                                                                                                                                                                                                                                                                                                                                                    | 133.78<br>5.00<br>1.70 (ii<br>5.00<br>0.32                                                                                                                         | 129.26<br>10.00<br>) 8.07 (ii)<br>10.00<br>0.13                                                                                                                                                                  | *#0#318*                                                                                                                                                                                                                                                                                      |                                                                                                       |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICI                                                                   | (cms) =<br>(hrs) =<br>(mm) =<br>(mm) =<br>TENT =                                                                                                                                                                                                                                                                                                                                                      | 0.11<br>1.33<br>67.11<br>68.11<br>0.99                                                                                                                             | 0.05<br>1.42<br>45.68<br>68.11<br>0.67                                                                                                                                                                           | 0.149 (iii)<br>1.33<br>56.39<br>68.11<br>0.83                                                                                                                                                                                                                                                 |                                                                                                       |
| ***** WARNING: STORA                                                                                                                              | AGE COEFF. I                                                                                                                                                                                                                                                                                                                                                                                          | S SMALLER T                                                                                                                                                        | HAN TIME STEP!                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |                                                                                                       |
| (i) CN PROCEI<br>CN* =                                                                                                                            | URE SELECTE<br>85.0 Ia                                                                                                                                                                                                                                                                                                                                                                                | D FOR PERVI<br>= Dep. Stor                                                                                                                                         | OUS LOSSES:<br>age (Above)                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                               |                                                                                                       |

(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

\_\_\_\_\_

| RESERVOIR( 1002)                                                                                               | OVERFLO                                                                                | W IS OFF                                                                                                                            |                                                                                                        |                                                                                                                                                    |                                                                       |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| IN= 2> ODT= 1  <br>  DT= 5.0 min                                                                               | OUTFLOW<br>(cms)<br>0.0000<br>0.0120                                                   | STORAGE<br>(ha.m.)<br>0.0000<br>0.0220                                                                                              | OUTFLOW<br>  (cms)<br>  0.0190<br>  0.0000                                                             | STORAGE<br>(ha.m.)<br>0.0220<br>0.0000                                                                                                             |                                                                       |
| INFLOW : ID= 2 (<br>OUTFLOW: ID= 1 (                                                                           | 0109)<br>1002)                                                                         | AREA         QPEAI           (ha)         (cms)           0.570         0.1           0.570         0.1                             | K TPEAK<br>(hrs)<br>149 1.33<br>016 2.25                                                               | R.V.<br>(mm)<br>3 56.39<br>5 55.58                                                                                                                 |                                                                       |
| 98<br>TI<br>M#                                                                                                 | AK FLOW<br>ME SHIFT OF<br>XIMUM STOR.                                                  | REDUCTION [Q<br>PEAK FLOW<br>AGE USED                                                                                               | <pre>put/Qin](%) =     (min) =     (ha.m.) =</pre>                                                     | 10.79<br>55.00<br>0.0220                                                                                                                           |                                                                       |
|                                                                                                                |                                                                                        |                                                                                                                                     |                                                                                                        |                                                                                                                                                    |                                                                       |
| CALIB  <br>  STANDHYD ( 0115) <br> ID= 1 DT= 5.0 min                                                           | Area (<br>Total Imp                                                                    | ha)= 0.86<br>(%)= 75.00                                                                                                             | Dir. Conn.(                                                                                            | <pre>≥) = 75.00</pre>                                                                                                                              |                                                                       |
| Surface Area<br>Dep. Storage<br>Average Slope<br>Length<br>Mannings n                                          | IM<br>(ha) =<br>(mm) =<br>(%) =<br>(m) =<br>=                                          | PERVIOUS PI<br>0.65<br>1.00<br>1.00<br>75.72<br>0.013                                                                               | ERVIOUS (i)<br>0.22<br>1.50<br>2.00<br>40.00<br>0.250                                                  |                                                                                                                                                    |                                                                       |
| NOTE: RAINE                                                                                                    | ALL WAS TRA                                                                            | NSFORMED TO                                                                                                                         | 5.0 MIN. TIN                                                                                           | ME STEP.                                                                                                                                           |                                                                       |
| TIME                                                                                                           | RAIN                                                                                   | TRANSFORM<br>TIME RAIN                                                                                                              | ED HYETOGRAPH                                                                                          | H<br>RAIN   TIME                                                                                                                                   | RAIN                                                                  |
| 0.083<br>0.167<br>0.250<br>0.333<br>0.417<br>0.500<br>0.583<br>0.667<br>0.750                                  | mm/hr  <br>4.74  <br>5.44  <br>5.44  <br>6.43  <br>6.43  <br>7.93  <br>7.93  <br>10.51 | nrs mm/nr<br>1.083 37.64<br>1.250 133.78<br>1.333 133.78<br>1.417 48.90<br>1.500 48.90<br>1.583 26.44<br>1.667 26.44<br>1.750 18.20 | 2.083 12<br>  2.167 12<br>  2.250 9<br>  2.333 9<br>  2.417 8<br>  2.500 8<br>  2.583 12<br>  2.667 12 | mm/nr   nrs<br>1.39   3.08<br>1.39   3.17<br>9.65   3.25<br>9.65   3.33<br>3.41   3.42<br>3.41   3.50<br>7.47   3.58<br>7.47   3.67<br>7.73   3.75 | mm/nr<br>5.65<br>5.25<br>5.25<br>4.90<br>4.90<br>4.60<br>4.60<br>4.34 |
| 0.833<br>0.917<br>1.000                                                                                        | 10.51  <br>16.06  <br>16.06                                                            | 1.83318.201.91713.962.00013.96                                                                                                      | 2.833 (<br>  2.917 (<br>  3.000 (                                                                      | 6.73   3.83<br>6.14   3.92<br>6.14   4.00                                                                                                          | 4.34<br>4.10<br>4.10                                                  |
| Max.Eff.Inten.(m<br>over<br>Storage Coeff.<br>Unit Hyd. Tpeak<br>Unit Hyd. peak                                | <pre>m/hr) = (min) (min) = (min) = (cms) =</pre>                                       | 133.78<br>5.00<br>1.92 (ii)<br>5.00<br>0.31                                                                                         | 76.26<br>10.00<br>5.97 (ii)<br>10.00<br>0.15                                                           | +=0=31.0+                                                                                                                                          |                                                                       |
| PEAK FLOW<br>TIME TO PEAK<br>RUNOFF VOLUME<br>TOTAL RAINFALL<br>RUNOFF COEFFICIE                               | (cms) =<br>(hrs) =<br>(mm) =<br>(mm) =<br>NT =                                         | 0.24<br>1.33<br>67.11<br>68.11<br>0.99                                                                                              | 0.04<br>1.42<br>39.82<br>68.11<br>0.58                                                                 | 0.270 (iii)<br>1.33<br>60.28<br>68.11<br>0.89                                                                                                      |                                                                       |
| ***** WARNING: STORAG                                                                                          | E COEFF. IS                                                                            | SMALLER THAN                                                                                                                        | TIME STEP!                                                                                             |                                                                                                                                                    |                                                                       |
| <ul> <li>(i) CN PROCEDU<br/>CN* = 8</li> <li>(ii) TIME STEP<br/>THAN THE 5</li> <li>(iii) PEAK FLOW</li> </ul> | RE SELECTED<br>5.0 Ia =<br>(DT) SHOULD<br>TORAGE COEF<br>DOES NOT IN                   | FOR PERVIOUS<br>Dep. Storage<br>BE SMALLER OI<br>FICIENT.<br>CLUDE BASEFLOU                                                         | LOSSES:<br>(Above)<br>R EQUAL<br>W IF ANY.                                                             |                                                                                                                                                    |                                                                       |
|                                                                                                                |                                                                                        |                                                                                                                                     |                                                                                                        |                                                                                                                                                    |                                                                       |
| RESERVOIR ( 2001)  <br>  IN= 2> OUT= 1  <br>  DT= 5.0 min                                                      | OVERFLO<br>OUTFLOW<br>(cms)<br>0.0000<br>0.0220                                        | W IS OFF<br>STORAGE<br>(ha.m.)<br>0.0000<br>0.0350                                                                                  | OUTFLOW<br>  (cms)<br>  0.0300<br>  0.0000                                                             | STORAGE<br>(ha.m.)<br>0.0350<br>0.0000                                                                                                             |                                                                       |
| INFLOW : ID= 2 (<br>OUTFLOW: ID= 1 (                                                                           | 0115)<br>2001)                                                                         | AREA QPEA<br>(ha) (cms<br>0.860 0.2<br>0.860 0.1                                                                                    | K TPEAK<br>(hrs)<br>270 1.33<br>026 2.1                                                                | R.V.<br>(mm)<br>3 60.28<br>7 59.82                                                                                                                 |                                                                       |
| PE                                                                                                             | AK FLOW                                                                                | REDUCTION [Q                                                                                                                        | out/Qin](%)=                                                                                           | 9.62                                                                                                                                               |                                                                       |

| TIME SHIF | T OF PEAK | FLOW | (min) =   | 50.00  |
|-----------|-----------|------|-----------|--------|
| MAXIMUM   | STORAGE   | USED | (ha.m.) = | 0.0350 |

\_\_\_\_\_

| CALIB  <br>  STANDHYD ( 0106) <br> ID= 1 DT= 5.0 min | Area<br>Total       | (ha)= 0.<br>Imp(%)= 65.    | 53<br>00 Dir. Conn.(%)=      | 55.00 |
|------------------------------------------------------|---------------------|----------------------------|------------------------------|-------|
| Surface Area<br>Dep. Storage                         | (ha) =<br>(mm) =    | IMPERVIOUS<br>0.34<br>1.00 | PERVIOUS (i)<br>0.19<br>1.50 |       |
| Average Slope<br>Length<br>Mannings n                | (%) =<br>(m) =<br>= | 1.00<br>59.44<br>0.013     | 2.00<br>40.00<br>0.250       |       |

\_\_\_\_\_

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

|                  |         | TRA    | NSFORMED HYETOGR | APH          |       |
|------------------|---------|--------|------------------|--------------|-------|
| TIME             | RAIN    | TIME   | RAIN  ' TIME     | RAIN   TIME  | RAIN  |
| hrs              | mm/hr   | hrs    | mm/hr  ' hrs     | mm/hr   hrs  | mm/hr |
| 0.083            | 4.74    | 1.083  | 37.64   2.083    | 11.39   3.08 | 5.65  |
| 0.167            | 4.74    | 1.167  | 37.64   2.167    | 11.39   3.17 | 5.65  |
| 0.250            | 5.44    | 1.250  | 133.78   2.250   | 9.65   3.25  | 5.25  |
| 0.333            | 5.44    | 1.333  | 133.78   2.333   | 9.65   3.33  | 5.25  |
| 0.417            | 6.43    | 1.417  | 48.90   2.417    | 8.41   3.42  | 4.90  |
| 0.500            | 6.43    | 1.500  | 48.90   2.500    | 8.41   3.50  | 4.90  |
| 0.583            | 7.93    | 1.583  | 26.44   2.583    | 7.47   3.58  | 4.60  |
| 0.667            | 7.93    | 1.667  | 26.44   2.667    | 7.47   3.67  | 4.60  |
| 0.750            | 10.51   | 1.750  | 18.20   2.750    | 6.73   3.75  | 4.34  |
| 0.833            | 10.51   | 1.833  | 18.20   2.833    | 6.73   3.83  | 4.34  |
| 0.917            | 16.06   | 1.917  | 13.96   2.917    | 6.14   3.92  | 4.10  |
| 1.000            | 16.06   | 2.000  | 13.96   3.000    | 6.14   4.00  | 4.10  |
|                  |         |        |                  |              |       |
| Max.Eff.Inten.(m | m/hr)=  | 133.78 | 111.09           |              |       |
| over             | (min)   | 5.00   | 10.00            |              |       |
| Storage Coeff.   | (min)=  | 1.66   | (ii) 8.43 (ii    | )            |       |
| Unit Hyd. Tpeak  | (min) = | 5.00   | 10.00            |              |       |
| Unit Hyd. peak   | (cms) = | 0.32   | 0.12             |              |       |
|                  |         |        |                  | *TOTALS*     |       |
| PEAK FLOW        | (cms) = | 0.11   | 0.04             | 0.142 (iii)  |       |
| TIME TO PEAK     | (hrs)=  | 1.33   | 1.42             | 1.33         |       |
| RUNOFF VOLUME    | (mm) =  | 67.11  | 44.02            | 56.71        |       |
| TOTAL RAINFALL   | (mm) =  | 68.11  | 68.11            | 68.11        |       |
| RUNOFF COEFFICIE | INT =   | 0.99   | 0.65             | 0.83         |       |

\*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 85.0 Ia = Dep. Storage (Above)
   (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

\_\_\_\_\_

| <br> |    |     |    |   |     |       |       |      |       |       |       |
|------|----|-----|----|---|-----|-------|-------|------|-------|-------|-------|
| ADD  | ΗY | ĽD  | (  | ( | 000 | 4)    |       |      |       |       |       |
| 1    | +  | 2   | =  | ( | 3   | 1     |       | AREA | QPEAK | TPEAK | R.V.  |
| <br> |    |     |    |   |     |       |       | (ha) | (cms) | (hrs) | (mm)  |
|      |    | ID1 | L= | 1 | (   | 0106) | :     | 0.53 | 0.142 | 1.33  | 56.71 |
|      | +  | ID2 | 2= | 2 | (   | 2001) | :     | 0.86 | 0.026 | 2.17  | 59.82 |
|      |    | === |    |   | === |       | ===== |      |       |       |       |
|      |    | ID  | =  | 3 | (   | 0004) | :     | 1.39 | 0.154 | 1.33  | 58.63 |

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ----------

| RESERVOIR( 1004 | )   OVERFLO   | DW IS OFF   |        |            |         |
|-----------------|---------------|-------------|--------|------------|---------|
| IN= 2> OUT= 1   |               |             |        |            |         |
| DT= 5.0 min     | OUTFLOW       | V STORAGE   | 6      | OUTFLOW    | STORAGE |
|                 | (cms)         | (ha.m.)     |        | (cms)      | (ha.m.) |
|                 | 0.0000        | 0.0000      | )      | 0.0480     | 0.0190  |
|                 |               | AREA OF     | PEAK   | TPEAK      | RV      |
|                 |               | (1) (1      |        | (1         | 10.0.   |
|                 |               | (na) (c     | cms)   | (nrs)      | (mm)    |
| INFLOW : ID= 2  | ( 0004)       | 1.390       | 0.154  | 1.33       | 58.63   |
| OUTFLOW: ID= 1  | ( 1004)       | 1.390       | 0.043  | 2.00       | 58.57   |
|                 |               |             |        |            |         |
|                 | PEAK FLOW     | REDUCTION   | [Qout/ | Qin](%)= 2 | 28.12   |
|                 | TIME SHIFT OF | F PEAK FLOW |        | (min) = 4  | 40.00   |
|                 | MAXIMUM STOP  | RAGE USED   |        | (ha.m.) =  | 0.0172  |

\_\_\_\_\_ \_\_\_\_\_ | CALIB STANDHYD ( 0114) | Area Area (ha)= 0.80 Total Imp(%)= 75.00 Dir. Conn.(%)= 75.00 |ID= 1 DT= 5.0 min | -----IMPERVIOUS PERVIOUS (i) 0.60 0.20 (ha) = Surface Area (mm) = 1.00 Dep. Storage 1.50 Average Slope (%)= 1.00 2.00 73.03 40.00 0.250 Length (m) = = Mannings n 0.013 NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP. ---- TRANSFORMED HYETOGRAPH ----RAIN | TIME RAIN | TIME TIME RAIN |' TIME mm/hr |' hrs RATN mm/hr | mm/hr | hrs mm/hr hrs hrs 0.083 5.65 0.167 3.17 5.65 0.250 5.44 | 1.250 133.78 | 2.250 9.65 | 3.25 5.25 5.44 | 1.333 133.78 | 2.333 6.43 | 1.417 48.90 | 2.417 0.333 9.65 | 3.33 5.25 0.417 8.41 | 3.42 4.90 3.50 0.500 6.43 | 1.500 48.90 | 2.500 8.41 | 4.90 0.583 7.93 | 1.583 26.44 | 2.583 7.47 | 3.58 4.60 
 0.667
 7.93
 1.667
 26.44
 2.667

 0.750
 10.51
 1.750
 18.20
 2.750

 0.833
 10.51
 1.833
 18.20
 2.833

 0.917
 16.06
 1.917
 13.96
 2.917

 1.000
 16.06
 2.000
 13.96
 3.000
 7.47 | 3.67 3.75 4.60 6.73 | 4.34 6.73 I 3.83 4.34 6.14 3.92 4.10 6.14 | 4.00 4.10 
 133.78
 76.26

 5.00
 10.00

 1.88
 (ii)
 5.93

 5.00
 10.00

 0.32
 0.15
 Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = 5.93 (ii) Unit Hyd. peak (cms) = \*TOTALS\* 0.22 1.33 67.11 68.11 0 00 0.03 1.42 39.82 68.11 0.58 PEAK FLOW (cms) = 0.251 (iii) TIME TO PEAK (hrs) =TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= 1.33 60.28 68.11 RUNOFF COEFFICIENT = 0.89 \*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN\* = 85.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. \_\_\_\_\_ ------| RESERVOIR( 1008)| OVERFLOW IS OFF | IN= 2---> OUT= 1 | 
 DUTFLOW
 STORAGE
 |
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 |
 (cms)
 (ha.m.)

 0.0000
 0.0000
 |
 0.0280
 0.0340

 0.0190
 0.0340
 |
 0.0000
 0.0000
 DT= 5.0 min OUTFLOW \_\_\_\_\_ (cms) 
 AREA
 QPEAK
 TPEAK

 (ha)
 (cms)
 (hrs)

 0.800
 0.251
 1.33

 0.800
 0.019
 2.42
 R.V. (mm) 60.2 INFLOW : ID= 2 ( 0114) OUTFLOW: ID= 1 ( 1008) 60.28 59.72 \_\_\_\_\_ \_\_\_\_\_ L CALTB 1 Area (ha)= 0.68 Total Imp(%)= 75.00 Dir. Conn.(%)= 75.00 | STANDHYD ( 0113) | |ID= 1 DT= 5.0 min | IMPERVIOUS PERVIOUS (i) (ha) = 0.51 0.17 1.00 1.50 Surface Area Dep. Storage (mm) =Average Slope (%)= 1.00 2.00 40.00 0.250 Length (m) = 67.33 0.013 Mannings n = NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

|                   |         | TRA    | ANSFORME | D HYETOGRA | PH     |          |       |
|-------------------|---------|--------|----------|------------|--------|----------|-------|
| TIME              | RAIN    | TIME   | RAIN     | ' TIME     | RAIN   | TIME     | RAIN  |
| hrs               | mm/hr   | hrs    | mm/hr    | ' hrs      | mm/hr  | hrs      | mm/hr |
| 0.083             | 4.74    | 1.083  | 37.64    | 2.083      | 11.39  | 3.08     | 5.65  |
| 0.167             | 4.74    | 1.167  | 37.64    | 2.167      | 11.39  | 3.17     | 5.65  |
| 0.250             | 5.44    | 1.250  | 133.78   | 2.250      | 9.65   | 3.25     | 5.25  |
| 0.333             | 5.44    | 1.333  | 133.78   | 2.333      | 9.65   | 3.33     | 5.25  |
| 0.417             | 6.43    | 1.417  | 48.90    | 2.417      | 8.41   | 3.42     | 4.90  |
| 0.500             | 6.43    | 1.500  | 48.90    | 2.500      | 8.41   | 3.50     | 4.90  |
| 0.583             | 7.93    | 1.583  | 26.44    | 2.583      | 7.47   | 3.58     | 4.60  |
| 0.667             | 7.93    | 1.667  | 26.44    | 2.667      | 7.47   | 3.67     | 4.60  |
| 0.750             | 10.51   | 1.750  | 18.20    | 2.750      | 6.73   | 3.75     | 4.34  |
| 0.833             | 10.51   | 1.833  | 18.20    | 2.833      | 6.73   | 3.83     | 4.34  |
| 0.917             | 16.06   | 1.917  | 13.96    | 2.917      | 6.14   | 3.92     | 4.10  |
| 1.000             | 16.06   | 2.000  | 13.96    | 3.000      | 6.14   | 4.00     | 4.10  |
| Max.Eff.Inten.(mr | n/hr)=  | 133.78 |          | 76.26      |        |          |       |
| over              | (min)   | 5.00   |          | 10.00      |        |          |       |
| Storage Coeff.    | (min) = | 1.79   | (ii)     | 5.84 (ii)  |        |          |       |
| Unit Hyd. Tpeak   | (min) = | 5.00   | . ,      | 10.00      |        |          |       |
| Unit Hyd. peak    | (cms) = | 0.32   |          | 0.15       |        |          |       |
|                   |         |        |          |            | *TOTAI | S*       |       |
| PEAK FLOW         | (cms) = | 0.19   |          | 0.03       | 0.21   | .4 (iii) |       |
| TIME TO PEAK      | (hrs) = | 1.33   |          | 1.42       | 1.3    | 33       |       |
| DINOFE VOLUME     | (mm) -  | 67 11  |          | 30 02      | 60 3   | 0        |       |

RUNOFI 
 39.82
 60.28

 68.11
 68.11

 0.58
 0.89
 NONOFF VOLUME(mm) =67.11TOTAL RAINFALL(mm) =68.11RUNOFF COEFFICIENT=0.99

\*\*\*\*\* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

Max

------

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- $CN^* = 85.0$  Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

\_\_\_\_\_

| RESERVOIR( 1003)   | OVERFLOW IS O | FF       |             |          |
|--------------------|---------------|----------|-------------|----------|
| IN= 2> OUT= 1      |               |          |             |          |
| DT= 5.0 min        | OUTFLOW ST    | ORAGE    | OUTFLOW     | STORAGE  |
|                    | (cms) (h      | a.m.)    | (cms)       | (ha.m.)  |
|                    | 0.0000 0      | .0000    | 0.0230      | 0.0280   |
|                    | 0.0190 0      | .0280    | 0.0000      | 0.0000   |
|                    |               |          |             |          |
|                    | AREA          | QPEAK    | TPEAK       | R.V.     |
|                    | (ha)          | (cms)    | (hrs)       | (mm)     |
| INFLOW : ID= 2 ( 0 | 0.680         | 0.214    | 1.33        | 60.28    |
| OUTFLOW: ID= 1 ( 1 | 003) 0.680    | 0.019    | 2.25        | 59.74    |
|                    |               | TON CONT | (o;=1(8)= 0 | <u> </u> |

PEAKFLOWREDUCTION[Qout/Qin](%) =8.68TIME SHIFT OF PEAK FLOW(min) =55.00MAXIMUMSTORAGEUSED(ha.m.) =0.0274

\_\_\_\_\_

\_\_\_\_\_ | CALIB | STANDHYD ( 0111)| |ID= 1 DT= 5.0 min | Area (ha)= 0.58 Total Imp(%)= 65.00 Dir. Conn.(%)= 50.00 Area \_\_\_\_\_

|               |        | IMPERVIOUS | PERVIOUS (1) |
|---------------|--------|------------|--------------|
| Surface Area  | (ha) = | 0.38       | 0.20         |
| Dep. Storage  | (mm) = | 1.00       | 1.50         |
| Average Slope | (%)=   | 1.00       | 2.00         |
| Length        | (m) =  | 62.18      | 40.00        |
| Mannings n    | =      | 0.013      | 0.250        |
|               |        |            |              |

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

#### ---- TRANSFORMED HYETOGRAPH ----RAIN |' TIME mm/hr |' hrs RAIN | TIME mm/hr | hrs TIME RAIN | TIME RAIN hrs mm/hr | hrs mm/hr 0.083 4.74 | 1.083 37.64 | 2.083 11.39 | 3.08 5.65 3.17 3.25 3.33 0.167 11.39 | 5.65 0.250 9.65 i 5.25 0.333 9.65 | 5.25 0.417 8.41 3.42 4.90 0.500 6.43 | 1.500 48.90 | 2.500 8.41 | 3.50 4.90 0.583 7.93 1.583 26.44 2.583 0.667 7.93 1.667 26.44 2.667 0.750 10.51 1.750 18.20 2.750 26.44 | 2.583 7.47 | 3.58 4.60 7.47 | 3.67 6.73 | 3.75 4.60 4.34
| 0.917 16.0<br>1.000 16.0                                                                                                                                                                                                                             | 1   1.83<br>6   1.91<br>6   2.00                                                                                                                         | 33     18.20       17     13.96       10     13.96                                                                                                                                     | 0   2.833<br>5   2.91<br>5   3.000                                                                                                                                                | 3 6.7<br>7 6.1<br>0 6.1                                                                                                                                     | 3   3.83<br>4   3.92<br>4   4.00              | 4.34<br>4.10<br>4.10 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------|
| <pre>Max.Eff.Inten.(mm/hr)=</pre>                                                                                                                                                                                                                    | 133.<br>5.<br>1.<br>5.<br>0.                                                                                                                             | .78<br>.00<br>.71 (ii)<br>.00<br>.32                                                                                                                                                   | 129.26<br>10.00<br>8.08<br>10.00<br>0.13                                                                                                                                          | (ii)<br>*                                                                                                                                                   |                                               |                      |
| PEAK FLOW (cms) =<br>TIME TO PEAK (hrs) =<br>RUNOFF VOLUME (mm) =<br>TOTAL RAINFALL (mm) =<br>RUNOFF COEFFICIENT =                                                                                                                                   | 0.<br>1.<br>67.<br>68.<br>0.                                                                                                                             | 11<br>33<br>11<br>11<br>.99                                                                                                                                                            | 0.05<br>1.42<br>45.68<br>68.11<br>0.67                                                                                                                                            |                                                                                                                                                             | 0.152 (iii)<br>1.33<br>56.39<br>68.11<br>0.83 |                      |
| ***** WARNING: STORAGE COEFF                                                                                                                                                                                                                         | . IS SMA                                                                                                                                                 | ALLER THAN                                                                                                                                                                             | N TIME S'                                                                                                                                                                         | TEP!                                                                                                                                                        |                                               |                      |
| <ul> <li>(i) CN PROCEDURE SELE<br/>CN* = 85.0</li> <li>(ii) TIME STEP (DT) SH<br/>THAN THE STORAGE</li> <li>(iii) PEAK FLOW DOES NO</li> </ul>                                                                                                       | CTED FOF<br>Ia = Dep<br>OULD BE<br>COEFFICI<br>T INCLUE                                                                                                  | R PERVIOUS<br>Storage<br>SMALLER (<br>EENT.<br>DE BASEFLO                                                                                                                              | S LOSSES<br>e (Above<br>DR EQUAL<br>DW IF AN                                                                                                                                      | :<br>e)<br>Y.                                                                                                                                               |                                               |                      |
|                                                                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                        |                                                                                                                                                                                   |                                                                                                                                                             |                                               |                      |
| RESERVOIR( 1006)  OVE<br>  IN= 2> OUT= 1                                                                                                                                                                                                             | RFLOW IS                                                                                                                                                 | S OFF                                                                                                                                                                                  |                                                                                                                                                                                   |                                                                                                                                                             |                                               |                      |
| DT= 5.0 min   OUT<br>(c<br>0.<br>0.                                                                                                                                                                                                                  | FLOW<br>ms)<br>0000<br>0130                                                                                                                              | STORAGE<br>(ha.m.)<br>0.0000<br>0.0230                                                                                                                                                 | OUT)<br>  (cr<br>  0.0                                                                                                                                                            | FLOW<br>ms)<br>0200<br>0000                                                                                                                                 | STORAGE<br>(ha.m.)<br>0.0230<br>0.0000        |                      |
|                                                                                                                                                                                                                                                      | AREA<br>(ha)                                                                                                                                             | A QPEA<br>(cms                                                                                                                                                                         | AK T1<br>5) (1                                                                                                                                                                    | PEAK<br>hrs)                                                                                                                                                | R.V.<br>(mm)                                  |                      |
| INFLOW : ID= 2 ( 0111)<br>OUTFLOW: ID= 1 ( 1006)                                                                                                                                                                                                     | 0.58                                                                                                                                                     | 30 0.<br>30 0.                                                                                                                                                                         | .152<br>.013                                                                                                                                                                      | 1.33<br>2.58                                                                                                                                                | 56.39<br>55.63                                |                      |
| PEAK FL                                                                                                                                                                                                                                              | OW RED                                                                                                                                                   | DUCTION [(                                                                                                                                                                             | Qout/Qin                                                                                                                                                                          | ] (%) = 8                                                                                                                                                   | .38                                           |                      |
| TIME SHIF<br>MAXIMUM                                                                                                                                                                                                                                 | T OF PEA<br>STORAGE                                                                                                                                      | AK FLOW<br>USED                                                                                                                                                                        | (r<br>(ha                                                                                                                                                                         | min)= 75<br>.m.)= 0                                                                                                                                         | 0.00<br>0.0225                                |                      |
|                                                                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                        |                                                                                                                                                                                   |                                                                                                                                                             |                                               |                      |
|                                                                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                        |                                                                                                                                                                                   |                                                                                                                                                             |                                               |                      |
|                                                                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                        |                                                                                                                                                                                   |                                                                                                                                                             |                                               |                      |
| ADD HYD ( 0001) <br>  1 + 2 = 3                                                                                                                                                                                                                      | AREA<br>(ha)                                                                                                                                             | QPEAK<br>(cms)                                                                                                                                                                         | TPEAK<br>(hrs)                                                                                                                                                                    | R.V.<br>(mm)                                                                                                                                                |                                               |                      |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>ID1= 1 ( 1000):<br>+ ID2= 2 ( 1001):                                                                                                                                                                           | AREA<br>(ha)<br>2.46<br>3.00                                                                                                                             | QPEAK<br>(cms)<br>0.085<br>0.038                                                                                                                                                       | TPEAK<br>(hrs)<br>2.08<br>3.58                                                                                                                                                    | R.V.<br>(mm)<br>56.58<br>47.05                                                                                                                              |                                               |                      |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>ID1= 1 ( 1000):<br>+ ID2= 2 ( 1001):<br>ID = 3 ( 0001):                                                                                                                                                        | AREA<br>(ha)<br>2.46<br>3.00<br>=======<br>5.46                                                                                                          | QPEAK<br>(cms)<br>0.085<br>0.038<br>0.121                                                                                                                                              | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17                                                                                                                                            | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34                                                                                                                     |                                               |                      |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>                                                                                                                                                                                                               | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE                                                                                                         | QPEAK<br>(cms)<br>0.085<br>0.038<br>0.121<br>DE BASEFL(                                                                                                                                | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>2.17                                                                                                                                    | R.V.<br>(mm)<br>56.58<br>47.05<br>=====<br>51.34<br>NY.                                                                                                     |                                               |                      |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>ID1= 1 ( 1000):<br>+ ID2= 2 ( 1001):<br>ID = 3 ( 0001):<br>NOTE: PEAK FLOWS DO NO                                                                                                                              | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE                                                                                                         | QPEAK<br>(cms)<br>0.085<br>0.038<br>0.121<br>DE BASEFL(                                                                                                                                | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AN                                                                                                                               | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.                                                                                                              |                                               |                      |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>ID1= 1 ( 1000):<br>+ ID2= 2 ( 1001):<br>ID = 3 ( 0001):<br>NOTE: PEAK FLOWS DO NO                                                                                                                              | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE                                                                                                         | QPEAK<br>(cms)<br>0.085<br>0.038<br>0.121<br>DE BASEFLC                                                                                                                                | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AN                                                                                                                               | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.                                                                                                              |                                               |                      |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>ID1= 1 ( 1000):<br>+ ID2= 2 ( 1001):<br>ID = 3 ( 0001):<br>NOTE: PEAK FLOWS DO NO                                                                                                                              | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE<br>AREA<br>(ha)                                                                                         | QPEAK<br>(cms)<br>0.085<br>0.038<br>0.121<br>DE BASEFL(<br>QPEAK<br>(cms)                                                                                                              | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AI<br>TPEAK<br>(hrs)                                                                                                             | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.<br>R.V.<br>(mm)                                                                                              |                                               |                      |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>ID1= 1 ( 1000):<br>+ ID2= 2 ( 1001):<br>ID = 3 ( 0001):<br>NOTE: PEAK FLOWS DO NO<br>                                                                                                                          | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE<br>AREA<br>(ha)<br>5.46<br>0.57                                                                         | QPEAK<br>(cms)<br>0.085<br>0.121<br>DE BASEFLO<br>QPEAK<br>(cms)<br>0.121<br>0.121<br>0.016                                                                                            | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AN<br>TPEAK<br>(hrs)<br>2.17<br>2.25                                                                                             | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.<br>R.V.<br>(mm)<br>51.34<br>55.58                                                                            |                                               |                      |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>ID1= 1 ( 1000):<br>+ ID2= 2 ( 1001):<br>ID = 3 ( 0001):<br>NOTE: PEAK FLOWS DO NO<br>  ADD HYD ( 0001)  <br>  3 + 2 = 1  <br>ID1= 3 ( 0001):<br>+ ID2= 2 ( 1002):<br>ID = 1 ( 0001):                           | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE<br>AREA<br>(ha)<br>5.46<br>0.57<br>6.03                                                                 | QPEAK<br>(cms)<br>0.085<br>0.121<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.121<br>0.016<br>0.137                                                                                            | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AI<br>TPEAK<br>(hrs)<br>2.17<br>2.25<br>2.25                                                                                     | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.<br>R.V.<br>(mm)<br>51.34<br>55.58<br>51.74                                                                   |                                               |                      |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>ID1= 1 ( 1000):<br>+ ID2= 2 ( 1001):<br>ID = 3 ( 0001):<br>NOTE: PEAK FLOWS DO NO<br>                                                                                                                          | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE<br>                                                                                                     | QPEAK<br>(cms)<br>0.085<br>0.121<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.121<br>0.121<br>0.121<br>0.137<br>DE BASEFLC                                                                     | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AN<br>TPEAK<br>(hrs)<br>2.17<br>2.25<br>2.25<br>DWS IF AN                                                                        | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.<br>R.V.<br>(mm)<br>51.34<br>55.58<br>51.74<br>NY.                                                            |                                               |                      |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>ID1= 1 ( 1000):<br>+ ID2= 2 ( 1001):<br>ID = 3 ( 0001):<br>NOTE: PEAK FLOWS DO NO<br>  ADD HYD ( 0001)  <br>  3 + 2 = 1  <br>ID1= 3 ( 0001):<br>+ ID2= 2 ( 1002):<br>ID = 1 ( 0001):<br>NOTE: PEAK FLOWS DO NO | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE<br>AREA<br>(ha)<br>5.46<br>0.57<br>6.03<br>T INCLUE                                                     | QPEAK<br>(cms)<br>0.085<br>0.121<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.121<br>0.016<br>0.137<br>DE BASEFLC                                                                              | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AI<br>TPEAK<br>(hrs)<br>2.17<br>2.25<br>2.25<br>DWS IF AI                                                                        | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.<br>R.V.<br>(mm)<br>51.34<br>55.58<br>51.74                                                                   |                                               |                      |
| <pre></pre>                                                                                                                                                                                                                                          | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE<br>AREA<br>(ha)<br>5.46<br>0.57<br>6.03<br>T INCLUE<br>AREA                                             | QPEAK<br>(cms)<br>0.085<br>0.121<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.121<br>0.016<br>0.137<br>DE BASEFLC<br>0.137                                                                     | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>2.17<br>2.27<br>2.25<br>2.25<br>2.25<br>2.25<br>2.25<br>2.25                                                                            | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.<br>R.V.<br>(mm)<br>51.34<br>55.58<br>51.74<br>NY.                                                            |                                               |                      |
| <pre></pre>                                                                                                                                                                                                                                          | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE<br>AREA<br>(ha)<br>5.46<br>0.57<br>                                                                     | QPEAK<br>(cms)<br>0.085<br>0.038<br>0.121<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.137<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.137                                                            | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AI<br>TPEAK<br>(hrs)<br>2.25<br>DWS IF AI<br>2.25<br>TPEAK<br>(hrs)<br>2.25                                                      | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.<br>R.V.<br>(mm)<br>51.34<br>55.58<br>51.74<br>NY.<br>R.V.<br>(mm)<br>51.74                                   |                                               |                      |
| <pre></pre>                                                                                                                                                                                                                                          | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE<br>AREA<br>(ha)<br>5.46<br>0.57<br>6.03<br>T INCLUE<br>AREA<br>(ha)<br>6.03<br>0.68                     | QPEAK<br>(cms)<br>0.085<br>0.121<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.121<br>0.121<br>0.121<br>0.137<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.137<br>0.137<br>0.137<br>0.137               | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AN<br>TPEAK<br>(hrs)<br>2.17<br>2.25<br>2.25<br>DWS IF AN<br>TPEAK<br>(hrs)<br>2.25<br>2.25                                      | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.<br>R.V.<br>(mm)<br>51.34<br>55.58<br>51.74<br>NY.<br>R.V.<br>(mm)<br>51.74<br>59.74                          |                                               |                      |
| <pre></pre>                                                                                                                                                                                                                                          | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE<br>AREA<br>(ha)<br>5.46<br>0.57<br>6.03<br>T INCLUE<br>AREA<br>(ha)<br>6.03<br>0.68<br>6.71             | QPEAK<br>(cms)<br>0.085<br>0.038<br>0.121<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.1121<br>0.016<br>0.1137<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.137<br>0.137<br>0.137<br>0.137<br>0.135    | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AI<br>TPEAK<br>(hrs)<br>2.25<br>2.25<br>DWS IF AI<br>TPEAK<br>(hrs)<br>2.25<br>2.25<br>2.25<br>2.25                              | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.<br>R.V.<br>(mm)<br>51.34<br>55.58<br>51.74<br>NY.<br>R.V.<br>(mm)<br>51.74<br>59.74<br>52.55                 |                                               |                      |
| <pre></pre>                                                                                                                                                                                                                                          | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE<br>AREA<br>(ha)<br>5.46<br>0.57<br>6.03<br>T INCLUE<br>AREA<br>(ha)<br>6.03<br>0.68<br>6.71<br>T INCLUE | QPEAK<br>(cms)<br>0.085<br>0.121<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.121<br>0.016<br>0.137<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.137<br>0.137<br>0.137<br>0.137<br>0.155<br>DE BASEFLC | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AI<br>TPEAK<br>(hrs)<br>2.17<br>2.25<br>2.25<br>DWS IF AI<br>TPEAK<br>(hrs)<br>2.25<br>2.25<br>DWS IF AI                         | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>WY.<br>R.V.<br>(mm)<br>51.34<br>55.58<br>51.74<br>NY.<br>R.V.<br>(mm)<br>51.74<br>59.74<br>59.74                 |                                               |                      |
| <pre></pre>                                                                                                                                                                                                                                          | AREA<br>(ha)<br>2.46<br>3.00<br>5.46<br>T INCLUE<br>AREA<br>(ha)<br>5.46<br>0.57<br>6.03<br>T INCLUE<br>AREA<br>(ha)<br>6.03<br>0.68<br>6.71<br>T INCLUE | QPEAK<br>(cms)<br>0.085<br>0.038<br>0.121<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.121<br>0.016<br>0.137<br>DE BASEFLC<br>QPEAK<br>(cms)<br>0.137<br>0.137<br>0.137<br>0.155<br>DE BASEFLC | TPEAK<br>(hrs)<br>2.08<br>3.58<br>2.17<br>DWS IF AI<br>TPEAK<br>(hrs)<br>2.25<br>2.25<br>DWS IF AI<br>TPEAK<br>(hrs)<br>2.25<br>2.25<br>2.25<br>2.25<br>2.25<br>2.25<br>DWS IF AI | R.V.<br>(mm)<br>56.58<br>47.05<br>51.34<br>NY.<br>R.V.<br>(mm)<br>51.34<br>55.58<br>55.58<br>71.74<br>NY.<br>R.V.<br>(mm)<br>51.74<br>52.55<br>52.55<br>NY. |                                               |                      |

| ID1= 3 ( 0001):<br>+ ID2= 2 ( 1004):                                       | 6.71<br>1.39                  | 0.155<br>0.043                   | 2.25<br>2.00                   | 52.55<br>58.57                 |  |
|----------------------------------------------------------------------------|-------------------------------|----------------------------------|--------------------------------|--------------------------------|--|
| ID = 1 ( 0001):                                                            | 8.10                          | 0.198                            | 2.25                           | 53.59                          |  |
| NOTE: PEAK FLOWS DO                                                        | NOT INCLU                     | JDE BASEFI                       | OWS IF AN                      | WY.                            |  |
|                                                                            |                               |                                  |                                |                                |  |
| ADD HYD ( 0001) <br>  1 + 2 = 3  <br>ID1= 1 ( 0001):<br>+ ID2= 2 ( 1005):  | AREA<br>(ha)<br>8.10<br>0.27  | QPEAK<br>(cms)<br>0.198<br>0.008 | TPEAK<br>(hrs)<br>2.25<br>2.25 | R.V.<br>(mm)<br>53.59<br>56.32 |  |
| ID = 3 ( 0001):                                                            | 8.37                          | 0.206                            | 2.25                           | 53.67                          |  |
| NOTE: PEAK FLOWS DO                                                        | NOT INCLU                     | JDE BASEFI                       | OWS IF AN                      | WY.                            |  |
| ADD HYD ( 0001)  <br>  3 + 2 = 1  <br>ID1= 3 ( 0001):<br>+ ID2= 2 ( 1006): | AREA<br>(ha)<br>8.37<br>0.58  | QPEAK<br>(cms)<br>0.206<br>0.013 | TPEAK<br>(hrs)<br>2.25<br>2.58 | R.V.<br>(mm)<br>53.67<br>55.63 |  |
| ID = 1 ( 0001):                                                            | 8.95                          | 0.218                            | 2.25                           | 53.80                          |  |
| NOTE: PEAK FLOWS DO                                                        | NOT INCLU                     | JDE BASEFI                       | OWS IF AN                      | WY.                            |  |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>ID1= 1 ( 0001):<br>+ ID2= 2 ( 1007): | AREA<br>(ha)<br>8.95<br>0.34  | QPEAK<br>(cms)<br>0.218<br>0.008 | TPEAK<br>(hrs)<br>2.25<br>2.50 | R.V.<br>(mm)<br>53.80<br>55.19 |  |
| ID = 3 (0001):                                                             | 9.29                          | 0.226                            | 2.25                           | 53.85                          |  |
| NOTE: PEAK FLOWS DO                                                        | NOT INCLU                     | JDE BASEFI                       | OWS IF AN                      | 1Y.                            |  |
| ADD HYD ( 0001)  <br>  3 + 2 = 1  <br>ID1= 3 ( 0001):<br>+ ID2= 2 ( 1008): | AREA<br>(ha)<br>9.29<br>0.80  | QPEAK<br>(cms)<br>0.226<br>0.019 | TPEAK<br>(hrs)<br>2.25<br>2.42 | R.V.<br>(mm)<br>53.85<br>59.72 |  |
| ID = 1 ( 0001):                                                            | 10.09                         | 0.245                            | 2.25                           | 54.32                          |  |
| NOTE: PEAK FLOWS DO                                                        | NOT INCLU                     | JDE BASEFI                       | OWS IF AN                      | WY.                            |  |
| ADD HYD ( 0001)  <br>  1 + 2 = 3  <br>ID1= 1 ( 0001):<br>+ ID2= 2 ( 0110): | AREA<br>(ha)<br>10.09<br>0.18 | QPEAK<br>(cms)<br>0.245<br>0.048 | TPEAK<br>(hrs)<br>2.25<br>1.33 | R.V.<br>(mm)<br>54.32<br>56.38 |  |
| ID = 3 ( 0001):                                                            | 10.27                         | 0.250                            | 2.25                           | 54.35                          |  |
| NOTE: PEAK FLOWS DO                                                        | NOT INCLU                     | JDE BASEFI                       | OWS IF AN                      | WY.                            |  |





## **MEMO**

| Februar  | y 10, 2023                                                                                                                                                               |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File No. | 221377                                                                                                                                                                   |
| To:      | Mark Bristoll                                                                                                                                                            |
| From:    | Charles Groen                                                                                                                                                            |
| Re:      | Willoughby Drive Development<br>Preliminary Sanitary and Water Servicing Investigation<br>Updated to Address City Comments<br>Village of Chippawa, City of Niagara Falls |

As requested, we have undertaken a preliminary sanitary and watermain servicing investigation for the proposed development located on the east side of Willoughby Drive in Niagara Falls, Ontario.

### **1.0 SITE DESCRIPTION**

The 11.01ha development is located on the east side of Willoughby Drive between Cattell Drive and Weinbrenner Road which is currently undeveloped.

A preliminary concept plan, Development Concept 2, prepared by GSP Group has been provided for the site, refer to **Appendix A**. The concept plan includes the development of two 4-storey townhouse blocks, four 8 to 10-storey apartment blocks, one park block and two new municipal roads. The full buildout of the development includes 924 units.

### 2.0 SANITARY SERVICING

The following background information from the City of Niagara and Niagara Region was used to complete the assessment:

• Pre-construction meeting minutes.

ENGINEERING + MANAGEMENT P 905.709.5825 200 CACHET WOODS COURT, SUITE 204 MARKHAM, ON L6C 028 HUSSON.CA

- Plan and Profiles for: Banting Street, Bridgewater Street, Cattell Drive, Lyon's Creek Road, Main Street, Nassau Avenue, Sodom Street, Sophia Avenue, Southerland Court, Weinbrenner Road, and Welland Street.
- The latest City of Niagara Falls Sewer Design Criteria.
- Niagara Region 2016 Water and Wastewater Master Servicing Study.
- Niagara Region flow data from 2022 for the Low Lift Sewage Pumping Station

Based on the pre-consultation meeting minutes for the proposed development, a Functional Servicing Report would be required to review the impacts of the contribution from the proposed development on the existing sanitary sewer. Through correspondence with Josiah Jordan from the City, it was determined that a downstream sanitary sewer assessment would be required to confirm capacity for the proposed development. It was understood from the email on July 27, 2022 that the City did not have drainage modeling for the south side of Niagara Falls and that the drainage modeling would need to be completed through plan and profiles and design sheets based on City record information. Alternatively, GM BluePlan has a contract with the City to complete the downstream assessment at the cost of the developer (refer to the City standard fees for additional details).

Based on the depth of the existing sanitary sewers on Cattell Drive, Willoughby Drive and Weinbrenner Road and the estimated first floor elevations for the proposed buildings, we do not anticipate any concerns with providing gravity sewer connections for the proposed development.

### 2.1 Pre-development Downstream Sanitary Sewer Assessment

The area on the south side of Niagara Falls consists of a catchment area of approximately 520ha with a network of local City sanitary sewers that gravity drain to the Southside Low Lift Pumping Station; which is the Region pumping station for south Niagara Falls. The pumping station is located on the north side of the Welland River on the south side of Chippawa Parkway. Based on the Region Master Servicing Study there is capacity in the Southside Low Lift Pumping Station for forecasted growth up to 2041. The City requires an assessment to confirm capacity in the local sanitary sewers downstream of our development.

The pre-development downstream sanitary sewer drainage plan is provided in **Figure 1**. Based on our review of the existing sewers in south Niagara Falls, there are 5 separate gravity connections to the Region sewers connecting to the Southside Low Lift Pumping Station. The



Willoughby Drive development can either connect to the north-central (green boundary) or south-west (orange boundary) drainage areas which are included in the downstream sanitary sewer assessment/sanitary sewer design sheets. There are drainage areas in the centre of south Niagara Falls (blue boundary) and on the west side of Niagara Falls (red boundary) that have direct connections to a Region sewer and a drainage area on the north side of the Welland River (magenta boundary) that we have been advised by the City connects directly to the Southside Low Lift Pumping Station. These areas have not been included in the downstream sanitary sewer assessment.

The sanitary sewer analysis has been completed following the City's Sewer Design Criteria. The pre-development sanitary sewer design sheet is attached in **Appendix B**. Note that the Willoughby Drive development has been included in the north-central catchment area with a population density based on the current zoning. It was determined that there are sections of the existing sanitary sewer that are already over capacity.

In the north-central drainage area the existing sanitary sewer is over capacity (between 118 to 164% full) from the last downstream sewer on Willoughby Drive, on Gunning Drive from Willoughby Drive to the Chippawa Lions Park, in the easement through the park, and Sophia Avenue between the park and Bridgewater Street. This section of sewer is almost 1200m in length and is 375mm diameter sewer running at a slope of approximately 0.15%.

The south-west drainage area is only over capacity in the last length of the sanitary sewer on Lyon's Creek Road (approximately 150m in length) which is flowing at 240% full; a 375mm diameter sewer at a slope of 0.33%. The City provided comments which requested adding ~82ha with peaked flow of ~140L/s for other future developments in this drainage area; which accounts for the large increase to the flow since the first submission.

### 2.2 Post-development Downstream Sanitary Sewer Assessment

Two separate options were considered for the post-development scenarios:

- Option 1 Proposed development to connect to the existing sanitary sewers adjacent to the development. The majority of the site would drain to the North-Central drainage area and a small area would drain to the South-West drainage area.
- Option 2 The entire proposed development would connect to the South-West drainage area which has more capacity.



### 2.2.1 Post-Development Option 1

The post-development downstream sanitary sewer drainage plan – Option 1 (**Figure 2**) and corresponding sanitary sewer design sheet are attached in **Appendix C**. See **Table 1** below for a comparison of the sections of the existing sanitary sewer that were already over capacity prior to development in the pre- and post-development conditions. No additional sewers were over capacity as a result of the proposed development.

| Street         | МН     | МН    | Pre-Development | Post-Development  | Increase |  |  |
|----------------|--------|-------|-----------------|-------------------|----------|--|--|
|                | (From) | (TO)  | (% Full)        | Option 1 (% Full) | (% Full) |  |  |
| Willoughby Dr. | MH13A  | MH12A | 118%            | 146%              | 28%      |  |  |
| Gunning Drive  | MH12A  | MH11A | 122%            | 150%              | 28%      |  |  |
| Gunning Drive  | MH11A  | MH10A | 122%            | 150%              | 28%      |  |  |
| Gunning Drive  | MH10A  | MH9A  | 126%            | 154%              | 28%      |  |  |
| Gunning Drive  | MH9A   | MH8A  | 134%            | 162%              | 28%      |  |  |
| Gunning Drive  | MH8A   | MH7A  | 135%            | 163%              | 28%      |  |  |
| Gunning Drive  | MH7A   | MH6A  | 138%            | 166%              | 28%      |  |  |
| Gunning Drive  | MH6A   | MH5A  | 139%            | 167%              | 28%      |  |  |
| Easement       | MH5A   | MH4A  | 159%            | 185%              | 26%      |  |  |
| Sophia Ave.    | MH4A   | МНЗА  | 164%            | 191%              | 27%      |  |  |
| Sophia Ave.    | МНЗА   | MH50A | 164%            | 191%              | 27%      |  |  |
| Sophia Ave.    | MH50A  | MH49A | 164%            | 191%              | 27%      |  |  |
| Lyon's Creek   | MH23A  | MH22A | 240%            | 242%              | 2%       |  |  |

### Table 1. Comparison of Sanitary Sewers Over Capacity – Option 1

In the north-central drainage area the existing sanitary sewer is over capacity (between 146 to 191% full) from the last downstream sewer on Willoughby Drive, on Gunning Drive from Willoughby Drive to the park, in the easement through the park, and Sophia Avenue between the



park and Bridgewater Street. The increased density for the proposed development would result in an increase of 28% the capacity of the pipe; which is already over capacity.

The south-west drainage area has capacity except in the last length of the sanitary sewer on Lyon's Creek Road which is at 242% full. The increased density for the proposed development would result in an increase of 2% of the capacity of the pipe.

### 2.2.2 Post-development Option 2

The post-development downstream sanitary sewer drainage plan – Option 2 (**Figure 3**) and corresponding sanitary sewer design sheet is attached in **Appendix D**. See **Table 2** below for a comparison of the sections of the existing sanitary sewer that were already over capacity prior to development. No additional sewers were over capacity as a result of the proposed development.

| Street         | мн     | мн    | Pre-Development | Post-Development  | Increase |
|----------------|--------|-------|-----------------|-------------------|----------|
|                | (From) | (TO)  | (% Full)        | Option 2 (% Full) | (% Full) |
| Willoughby Dr. | MH13A  | MH12A | 118%            | 101%              | -17%     |
| Gunning Drive  | MH12A  | MH11A | 122%            | 105%              | -17%     |
| Gunning Drive  | MH11A  | MH10A | 122%            | 105%              | -17%     |
| Gunning Drive  | MH10A  | MH9A  | 126%            | 109%              | -17%     |
| Gunning Drive  | MH9A   | MH8A  | 134%            | 117%              | -17%     |
| Gunning Drive  | MH8A   | MH7A  | 135%            | 118%              | -17%     |
| Gunning Drive  | MH7A   | MH6A  | 138%            | 121%              | -17%     |
| Gunning Drive  | MH6A   | MH5A  | 139%            | 123%              | -16%     |
| Easement       | MH5A   | MH4A  | 159%            | 143%              | -16%     |
| Sophia Ave.    | MH4A   | МНЗА  | 164%            | 147%              | -17%     |
| Sophia Ave.    | МНЗА   | MH50A | 164%            | 147%              | -17%     |

### Table 2. Comparison of Sanitary Sewers Over Capacity – Option 2



| Sophia Ave.  | MH50A | MH49A | 164% | 147% | -17% |
|--------------|-------|-------|------|------|------|
| Lyon's Creek | MH23A | MH22A | 240% | 270% | 30%  |

In the north-central drainage area the existing sanitary sewer is over capacity (between 101% to 147%) from the last downstream sewer on Willoughby Drive, on Gunning Drive from Willoughby Drive to the park, in the easement through the park, and Sophia Avenue between the park and Bridgewater Street. The exceedance of the pipe capacity is reduced as the majority of the proposed development had been included in the north-central drainage area in the predevelopment condition based on the zoning of the undeveloped property and this area is now transferred over to the south-west drainage area which has more capacity.

The south-west drainage area has capacity for the proposed development except in the last length of the sanitary sewer on Lyon's Creek Road which is at 270% full. Adding the proposed development to the south-west drainage area would result in an increase of 30% the capacity of the one downstream pipe; which is already over capacity. There is capacity in the rest of the sewers for the proposed development.

If should be noted that in order for the proposed development to connect to the south-west drainage boundary about 265m of sanitary sewer on Willoughby Drive would need to be reconstructed to flow south instead of north; alternatively, a municipal sewer could be routed through the site in an easement as well as upsizing approximately 220m of sewer on Weinbrenner Road on the east side of Willoughby Drive to 300mm diameter. The easement option is show on **Figure 3** for reference. The details for the sanitary sewer upgrades can be confirmed during the detailed design stage.

#### 2.3 Considerations for Overcapacity Sanitary Sewers

Based on our review of the downstream assessments for both the north-central and south-west drainage areas there are existing sewers over capacity prior to development. In order to support the proposed development, there are a number of ways to confirm or improve capacity in the existing sewers, as noted below.

 a) Based on a review of the 2016 Niagara Region Master Servicing Study for the Southside Low Lift Pumping Station, the total equivalent population in 2016 was 11,684 for the 520ha on the south side of Niagara Falls with an existing design peak wet



weather flow of 233.3L/s (refer to Part F Niagara Falls Wastewater System, page 22 for reference). Based on the north-central and south-west drainage areas that have been assessed in the sanitary sewer design for the pre-development condition, the equivalent population was calculated to be 17,902 for the area of 245ha (about 50% of the contributing area to the pumping station and already 153% of the total population) with an existing average peak wet weather flow of 295.8L/s (already 127% more than the calculated flow to the pumping station). The analysis appears to be extremely conservative. It is understood that the Region Master Servicing Study is in the process of being updated which will not be available until next year at the earliest.

### In addition, Niagara Region provided flow monitoring data for the Low Lift Sewage Pumping Station for 2022, refer to Appendix F.

b) It should be confirmed if the City has completed any flow monitoring on the existing sanitary sewer system to confirm the peak wet weather flows. If the monitoring data is available, it can be reviewed to confirm if the assessment is reasonable or whether the calculated flows are conservative. Alternatively, we have contacted the Region to confirm if any flow monitoring has been completed on the Region sewers upstream of the Southside Low Lift Pumping Station.

The City has confirmed that they do not have any flow monitoring. The Region provided flow monitoring data for the Low Lift Sewage Pumping Station for 2022, refer to Appendix F. The data shows the average monthly dry weather flows for the Low Lift catchment area were 20.41L/s to 57.60L/s with the maximum daily average flow of 259.33L/s. See attached Figure 5 in Appendix F showing the Low Lift Catchment Drainage Boundary for reference. No reduction was considered in the analysis in this memorandum; which should be very conservative.

c) Complete flow monitoring in key locations on the south side of Niagara Falls to confirm the existing peak wet weather flow in the City sewers.

Based on the email comments from Brian Kostuk on January 30, 2023 flow monitoring is not required by the City.



d) Complete a hydraulic gradeline analysis on the existing sanitary sewers to confirm what the impact is on the existing system due to the system being over capacity. If it can be determined that the hydraulic gradeline is sufficiently below existing basements, the sewer may be acceptable in its surcharged condition.

# Refer to Section 2.4 for the hydraulic gradeline analysis based on Option 2; where the development flows are directed to the south-west drainage boundary.

e) Consider upgrades to the existing sanitary sewers. For the north-central drainage area the existing 1200m of 375mm diameter surcharged sanitary sewer would need to be replaced with a minimum of 525mm diameter sanitary sewer at an average slope of 0.15% (if proceeding with the Post-development Option 1). For the south-west drainage area, the final downstream 375mm diameter sanitary sewer would need to be replaced with a 450mm diameter sanitary sewer at 0.33%; although it might be better to replace with a 600mm diameter sanitary sewer to match the size of the existing pipe immediately upstream (if proceeding with the Post-development Option 2).

Based on the email comments from Brian Kostuk on January 30, 2023 upgrades to the final downstream sewers on Lyons Creek Road will not be required by the City as part of the proposed development.

### 2.4 Hydraulic Grade Line Analysis

Based on our discussions with the City, the surcharging of the downstream system may be acceptable if it does not adversely impact connected properties or the environment. Given the depths of the existing surcharged sewers, it is likely that the required level of protection is provided. A hydraulic grade line (HGL) analysis has been prepared using Autodesk Storm and Sanitary Analysis (SSA). SSA is a dynamic model which is better suited for assessing surcharged sewer systems compared to a static spreadsheet analysis.

The downstream sewer system was assessed to determine if the surcharging sewers would adversely impact connected properties or the environment. City Criteria was reviewed, and no specific level of protection is specified. To be conservative and to provide an added factor of safety, the minimum depth criteria for sanitary sewers will be used for the freeboard requirement. Based on City Criteria, this is 2.80m for residential areas and 2.15m for industrial areas.



The results of the analysis are summarized below on **Table 3**. Refer to **Appendix G** for the SSA modeling information.

| МН    | Downstream<br>Invert (m) | MH Top<br>Elevation (m) | Maximum<br>HGL (m) | Freeboard<br>Provided (m) |
|-------|--------------------------|-------------------------|--------------------|---------------------------|
| MH18A | 170.02                   | 175.31                  | 172.25             | 3.06                      |
| MH23A | 167.53                   | 174.57                  | 170.86             | 3.71                      |
| MH24A | 167.80                   | 175.30                  | 171.04             | 4.26                      |
| MH25A | 167.92                   | 175.61                  | 171.18             | 4.43                      |
| MH26A | 168.17                   | 175.37                  | 171.35             | 4.02                      |
| MH27A | 168.29                   | 175.16                  | 171.45             | 3.71                      |
| MH28A | 168.49                   | 175.72                  | 171.54             | 4.18                      |
| MH29A | 168.59                   | 175.27                  | 171.63             | 3.64                      |
| MH30A | 168.79                   | 175.21                  | 171.71             | 3.50                      |
| MH31A | 168.92                   | 175.59                  | 171.78             | 3.81                      |
| MH32A | 169.07                   | 175.40                  | 171.86             | 3.54                      |
| MH33A | 169.20                   | 175.41                  | 171.94             | 3.47                      |
| MH34A | 169.32                   | 175.36                  | 171.97             | 3.39                      |
| MH35A | 169.51                   | 175.16                  | 172.04             | 3.12                      |
| MH36A | 169.70                   | 175.51                  | 172.11             | 3.40                      |
| MH37A | 169.86                   | 175.18                  | 172.18             | 3.00                      |

### Table 3. Results of the Hydraulic Gradeline Analysis

As shown above, sufficient freeboard is provided and there is no risk of basement flooding. Therefore, the required level of protection is provided and no upgrades or improvements are



required. The existing downstream sewer system can accommodate the proposed development.

The hydraulic gradeline analysis was only completed for the Post-Development Option 2 scenario where the proposed development is directed to the south-west drainage area. Hydraulic gradeline analysis was not completed for the north-central drainage area which is also surcharged in the existing condition but we do not anticipate connecting to it with the proposed development.

### **3.0 WATERMAIN SERVICING**

There is existing City watermain surrounding the proposed development. There is a 250mm diameter watermain on Cattell Drive, a 200mm diameter and 400mm diameter watermain on Willoughby Drive, and a 200mm diameter watermain on Weinbrenner Drive.

The existing watermain can be extended to and looped, if necessary, in order to service the proposed development. The details for the watermain extension can be confirmed during the detailed design stage.

A hydrant flow test was completed by L&D Waterworks on November 14, 2022 for the hydrant located in front of 8563 Willoughby Drive which is across the road from the proposed development, refer to **Appendix E** for information. The existing watermain had a residual static pressure of 90psi and theoretical minimum fire flow of 5,625GPM (21,300L/min). Based on the information in the hydrant flow test, there are no concerns regarding adequate water supply for the proposed development; however, a fire/booster pump may be required for the internal fire protection systems for the proposed townhouse and apartment blocks. This will need to be determined by the mechanical engineer at the detailed design stage.

### **4.0 CONCLUSION**

Based on a review of the existing sanitary and watermain infrastructure available to service the proposed development, we provide the following:

• The existing sanitary sewers downstream of the proposed development are already over capacity. There are options to consider in order for the development to proceed



which will need to be confirmed with the City (eg. flow monitoring or hydraulic gradeline analysis to confirm if any upgrades are required). It is our recommendation to connect the proposed development to the south-west drainage area as there is more capacity available in the existing sewers and there is only one sewer at the downstream end that is over capacity. If upgrades to the existing sewer on Lyon's Creek Road is required, this may be partially, or completely funded through the City, as the sewer is already over capacity.

- As required by the City, a hydraulic gradeline analysis was completed for Post-Development Option 2 for the south-west drainage area and it was determined that sufficient freeboard is provided and there is no risk of basement flooding. Based on this analysis there is capacity in the existing sanitary sewers in the south-west drainage area to service the entire proposed development.
- Based on the hydrant flow test there appears to be sufficient pressure and fire flow in the municipal system to service the proposed development. This will need to be confirmed during the detailed design stage.

We trust this satisfies your requirements at this time. If you have any questions or require further information, please feel free to contact our office.





# **DEVELOPMENT CONCEPT 2**

Willoughby Drive, Niagara Falls

NOTE: This concept should be considered as a preliminary demonstration model that illustrates an 'order of magnitude' development scenario for the site. The number of units, floor area and parking supply are approximate and subject to more detailed design as well as municipal planning approvals. Property boundary is approximate and subject to survey.

Meters

Scale 1:2,000 | December 3, 2020 | Project No.: 20282 | Drawn By: SL







| Table 1                                                                                                                  | ARFA                                                                                                                                                            |                                                                                                                                                                                   | POP                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                          | (ha)                                                                                                                                                            | (P/ha)                                                                                                                                                                            | (#)                                                                                                                                                      |
| R2                                                                                                                       | 4.73                                                                                                                                                            | 45.5                                                                                                                                                                              | 215.2                                                                                                                                                    |
| R4                                                                                                                       | 2.30                                                                                                                                                            | 96.4                                                                                                                                                                              | 221.7                                                                                                                                                    |
| TOTAL                                                                                                                    | 7.03                                                                                                                                                            | 62.1                                                                                                                                                                              | 436.9                                                                                                                                                    |
| Table 2                                                                                                                  | AREA                                                                                                                                                            | DENSITY                                                                                                                                                                           | POP                                                                                                                                                      |
|                                                                                                                          | (ha)                                                                                                                                                            | (P/ha)                                                                                                                                                                            | (#)                                                                                                                                                      |
| R1C                                                                                                                      | 0.64                                                                                                                                                            | 45.5                                                                                                                                                                              | 29.1                                                                                                                                                     |
| GC                                                                                                                       | 0.65                                                                                                                                                            | 180.4                                                                                                                                                                             | 117.3                                                                                                                                                    |
| TOTAL                                                                                                                    | 1.29                                                                                                                                                            | 113.5                                                                                                                                                                             | 146.4                                                                                                                                                    |
| Table 3                                                                                                                  | AREA                                                                                                                                                            | DENSITY                                                                                                                                                                           | POP                                                                                                                                                      |
|                                                                                                                          | (ha)                                                                                                                                                            | (P/ha)                                                                                                                                                                            | (#)                                                                                                                                                      |
| R1C                                                                                                                      | 0.66                                                                                                                                                            | 45.5                                                                                                                                                                              | 30.0                                                                                                                                                     |
| GC                                                                                                                       | 0.39                                                                                                                                                            | 180.4                                                                                                                                                                             | 70.4                                                                                                                                                     |
| TOTAL                                                                                                                    | 1.05                                                                                                                                                            | 95.6                                                                                                                                                                              | 100.4                                                                                                                                                    |
| Table 4                                                                                                                  | AREA                                                                                                                                                            | DENSITY                                                                                                                                                                           | POP                                                                                                                                                      |
|                                                                                                                          | (ha)                                                                                                                                                            | (P/ha)                                                                                                                                                                            | (#)                                                                                                                                                      |
| R1-2                                                                                                                     | 57.05                                                                                                                                                           | 45.5                                                                                                                                                                              | 2595.8                                                                                                                                                   |
| GC                                                                                                                       | 0.15                                                                                                                                                            | 180.4                                                                                                                                                                             | 27.1                                                                                                                                                     |
| TOTAL                                                                                                                    | 57.20                                                                                                                                                           | 45.9                                                                                                                                                                              | 2622.9                                                                                                                                                   |
| Table 5                                                                                                                  | AREA                                                                                                                                                            | DENSITY                                                                                                                                                                           | POP                                                                                                                                                      |
|                                                                                                                          | (ha)                                                                                                                                                            | (P/ha)                                                                                                                                                                            | (#)                                                                                                                                                      |
| R1C                                                                                                                      | 0.37                                                                                                                                                            | 45.5                                                                                                                                                                              | 16.8                                                                                                                                                     |
| 1                                                                                                                        | 0.27                                                                                                                                                            | 96.4                                                                                                                                                                              | 26.0                                                                                                                                                     |
| TOTAL                                                                                                                    | 0.64                                                                                                                                                            | 66.9                                                                                                                                                                              | 42.8                                                                                                                                                     |
| Table 6                                                                                                                  |                                                                                                                                                                 | DENCITY                                                                                                                                                                           | DUD                                                                                                                                                      |
|                                                                                                                          | AREA                                                                                                                                                            | (P/ha)                                                                                                                                                                            | FUP<br>(#)                                                                                                                                               |
| R1C                                                                                                                      | 293                                                                                                                                                             | 45.5                                                                                                                                                                              | 1.3.3.3                                                                                                                                                  |
| R4                                                                                                                       | 2.90<br>1.48                                                                                                                                                    | -5.5<br>96.4                                                                                                                                                                      | 142.7                                                                                                                                                    |
| TOTAL                                                                                                                    | 4.41                                                                                                                                                            | 62.6                                                                                                                                                                              | 276.0                                                                                                                                                    |
| <b></b>                                                                                                                  |                                                                                                                                                                 | DENOITY                                                                                                                                                                           | 2.22                                                                                                                                                     |
| lable /                                                                                                                  | AREA                                                                                                                                                            | DENSITY                                                                                                                                                                           | P0P                                                                                                                                                      |
| R1_R2                                                                                                                    | 31.06                                                                                                                                                           | (F/IIU)<br>45.5                                                                                                                                                                   | 1413.2                                                                                                                                                   |
| R3-R4                                                                                                                    | 1.17                                                                                                                                                            | 40.0<br>96.4                                                                                                                                                                      | 112.8                                                                                                                                                    |
| I                                                                                                                        | 1.74                                                                                                                                                            | 96.4                                                                                                                                                                              | 167.7                                                                                                                                                    |
| GC                                                                                                                       | 7.79                                                                                                                                                            | 180.4                                                                                                                                                                             | 1405.3                                                                                                                                                   |
| TOTAL                                                                                                                    | 41.76                                                                                                                                                           | 74.2                                                                                                                                                                              | 3099.0                                                                                                                                                   |
|                                                                                                                          |                                                                                                                                                                 |                                                                                                                                                                                   |                                                                                                                                                          |
| Table 8                                                                                                                  | AREA                                                                                                                                                            | DENSITY                                                                                                                                                                           | POP                                                                                                                                                      |
|                                                                                                                          | (ha)                                                                                                                                                            | (P/ha)                                                                                                                                                                            | (#)                                                                                                                                                      |
| R1-R2                                                                                                                    | 19.02                                                                                                                                                           | 45.5                                                                                                                                                                              | 865.4                                                                                                                                                    |
|                                                                                                                          | 0.42                                                                                                                                                            | 96.4                                                                                                                                                                              | 40.5                                                                                                                                                     |
| TUTAL                                                                                                                    | 19.44                                                                                                                                                           | 40.0                                                                                                                                                                              | 905.9                                                                                                                                                    |
| Table 9                                                                                                                  | AREA                                                                                                                                                            | DENSITY                                                                                                                                                                           | POP                                                                                                                                                      |
|                                                                                                                          | (ha)                                                                                                                                                            | (P/ha)                                                                                                                                                                            | (#)                                                                                                                                                      |
| R1-R2                                                                                                                    | 15.06                                                                                                                                                           | 45.5                                                                                                                                                                              | 685.2                                                                                                                                                    |
| R5D                                                                                                                      | 1.29                                                                                                                                                            | 163.1                                                                                                                                                                             | 210.4                                                                                                                                                    |
| 1                                                                                                                        | 0.35                                                                                                                                                            | 96.4                                                                                                                                                                              | 33.7                                                                                                                                                     |
| TOTAL                                                                                                                    | 16.70                                                                                                                                                           | 55.7                                                                                                                                                                              | 929.3                                                                                                                                                    |
| Table 10                                                                                                                 | ARFA                                                                                                                                                            | DENSITY                                                                                                                                                                           | POP                                                                                                                                                      |
|                                                                                                                          |                                                                                                                                                                 |                                                                                                                                                                                   | (#)                                                                                                                                                      |
| R1E                                                                                                                      | (ha)                                                                                                                                                            | (P/na)                                                                                                                                                                            |                                                                                                                                                          |
| R4                                                                                                                       | (ha)<br>0.67                                                                                                                                                    | (P/hd)<br>45.5                                                                                                                                                                    | 30.5                                                                                                                                                     |
|                                                                                                                          | (ha)<br>0.67<br>7.92                                                                                                                                            | 45.5<br>96.4                                                                                                                                                                      | 30.5<br>763.5                                                                                                                                            |
| R5B                                                                                                                      | (ha)<br>0.67<br>7.92<br>1.25                                                                                                                                    | (P/nd)<br>45.5<br>96.4<br>163.1                                                                                                                                                   | 30.5<br>763.5<br>203.9                                                                                                                                   |
| R5B<br>TOTAL                                                                                                             | (ha)<br>0.67<br>7.92<br>1.25<br>9.84                                                                                                                            | (P7nd)<br>45.5<br>96.4<br>163.1<br>101.4                                                                                                                                          | 30.5<br>763.5<br>203.9<br>997.9                                                                                                                          |
| R5B<br>TOTAL                                                                                                             | (ha)<br>0.67<br>7.92<br>1.25<br>9.84                                                                                                                            | (P/nd)<br>45.5<br>96.4<br>163.1<br>101.4                                                                                                                                          | 30.5<br>763.5<br>203.9<br>997.9                                                                                                                          |
| R5B<br>TOTAL<br>Table 11                                                                                                 | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)                                                                                                            | (P/hd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/hd)                                                                                                                     | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)                                                                                                            |
| R5B<br>TOTAL<br>Table 11<br>R1-R2                                                                                        | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45                                                                                                    | (P/hd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/ha)<br>45.5                                                                                                             | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5                                                                                                    |
| R5B<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4                                                                               | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05                                                                                           | (P/hd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/ha)<br>45.5<br>96.4                                                                                                     | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6                                                                                          |
| R5B<br>TOTAL<br>Toble 11<br>R1-R2<br>R3-R4<br>GC                                                                         | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39                                                                                   | (P/nd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4                                                                                            | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8                                                                                 |
| R5B<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL                                                                | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26                                                                          | (P/nd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                                                    | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9                                                                       |
| R5B<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 12                                                    | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>ARFA                                                                  | (P/nd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY                                                                         | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP                                                                |
| R5B<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 12                                                    | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)                                                          | (P/hd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/hd)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/hd)                                                               | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)                                                         |
| R5B<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 12<br>R1-R2                                           | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37                                                  | (P/hd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5                                                       | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8                                                 |
| R5B<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>TotAL<br>R1-R2<br>R4                                        | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.37<br>0.77                                  | (P/hd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4                                               | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2                                         |
| R5B<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 12<br>R1-R2<br>R4<br>TOTAL                            | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.77<br>1.14                                  | (P/hd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/hd)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/hd)<br>45.5<br>96.4<br>79.8                                       | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0                                 |
| R5B<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Toble 12<br>R1-R2<br>R4<br>TOTAL<br>Toble 13                | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.77<br>1.14                                  | (P/hd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>79.8                                       | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0                                 |
| R5B<br>TOTAL<br>Toble 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Toble 12<br>R1-R2<br>R4<br>TOTAL<br>Toble 13                | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.77<br>1.14<br>AREA<br>(ha)                  | (P/nd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>79.8<br>DENSITY<br>(P/ha)                  | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0<br>POP<br>(#)                   |
| R5B<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 12<br>R1-R2<br>R4<br>TOTAL<br>Table 13<br>R1-R2       | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.77<br>1.14<br>AREA<br>(ha)<br>0.37          | (P/hd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/hd)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/hd)<br>45.5<br>96.4<br>79.8<br>DENSITY<br>(P/hd)<br>45.5          | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0<br>POP<br>(#)<br>46.0           |
| R5B<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 12<br>R1-R2<br>R4<br>TOTAL<br>Table 13<br>R1-R2<br>R5 | (ha)<br>0.67<br>7.92<br>1.25<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.77<br>1.14<br>AREA<br>(ha)<br>1.01<br>14.37 | (P/hd)<br>45.5<br>96.4<br>163.1<br>101.4<br>DENSITY<br>(P/hd)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/hd)<br>45.5<br>96.4<br>79.8<br>DENSITY<br>(P/hd)<br>45.5<br>163.1 | 30.5<br>763.5<br>203.9<br>997.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0<br>POP<br>(#)<br>46.0<br>2343.7 |



| Minimum Dia. =                | 200 mm      |
|-------------------------------|-------------|
| Mannings "n"=                 | 0.013       |
| Minimum Velocity =            | 0.6 m/s     |
| Minimum Grade =               | 0.5 %       |
| Avg. Proposed Domestic Flow = | 380 l/c/d   |
| Avg. Existing Domestic Flow = | 380 l/c/d   |
|                               |             |
| Infiltration =                | 0.28 l/s/ha |
|                               |             |

## Chippawa Region, City of Niagara Falls Sanitary Sewer Design Sheet Post-Development Option 1

| Project No:  | 221377    |
|--------------|-----------|
| Date:        | 10-Feb-23 |
| Designed by: | CHG       |

Peaking Factors calculated as per City Criteria

Harmon equation: PF=1 + (14/(4+(P/1000)½))

2.0 min; 4.0 max

|                  |       |       | RESIDENTIAL |       |         |      |      | EXTE  | RNAL      |              | F     | LOW CALCUL | ATIONS |       |        | PIPE DATA |       |       |       |       |           |  |
|------------------|-------|-------|-------------|-------|---------|------|------|-------|-----------|--------------|-------|------------|--------|-------|--------|-----------|-------|-------|-------|-------|-----------|--|
| STREET           | FROM  | то    | AREA        | ACC.  |         |      |      | EXT.  | ACC. EXT. | INFILTRATION | TOTAL | PEAKING    | RES.   | EXT.  | TOTAL  |           |       | Q     | v     | v     | % FI II I |  |
| SINCE            | T NOM | 10    | (ha)        | AREA  | DENSITY | POP  | ACC. | FLOW  | FLOW      | ALLOWANCE    | ACC.  | FACTOR     | FLOW   | FLOW  | FLOW   | DIA.      | SLOPE | FULL  | FULL  | ACT   | 701 OLL   |  |
|                  |       |       |             | (ha)  | (P/ha)  |      | POP. | (l/s) | (I/s)     | (l/s)        | POP.  |            | (I/s)  | (I/s) | (l/s)  | (mm)      | (%)   | (L/s) | (m/s) | (m/s) |           |  |
| Willoughby Drive | MH18A | MH17A | 1.09        | 1.09  | 163.1   | 178  | 178  |       |           | 0.31         | 178   | 4.00       | 3.13   |       | 3.44   | 375       | 0.20  | 78.4  | 0.71  | 0.35  | 4%        |  |
| Willoughby Drive | MH17A | MH16A | 1.31        | 2.40  | 96.4    | 127  | 305  |       |           | 0.67         | 305   | 4.00       | 5.37   |       | 6.04   | 375       | 0.20  | 78.4  | 0.71  | 0.41  | 8%        |  |
| Canonpost Road   | MH38A | MH16A | 9.68        | 9.68  | 207.6   | 2010 | 2010 |       |           | 2.71         | 2010  | 3.58       | 31.68  |       | 34.39  | 375       | 0.15  | 67.9  | 0.61  | 0.61  | 51%       |  |
| Willoughby Drive | MH21A | MH20A | 1.30        | 1.30  | 45.5    | 60   | 60   |       |           | 0.36         | 60    | 4.00       | 1.06   |       | 1.42   | 200       | 0.50  | 23.2  | 0.74  | 0.40  | 6%        |  |
| Willoughby Drive | MH19A | MH20A | 2.27        | 2.27  | 96.4    | 219  | 219  |       |           | 0.64         | 219   | 4.00       | 3.85   |       | 4.49   | 200       | 0.50  | 23.2  | 0.74  | 0.56  | 19%       |  |
| Willoughby Drive | MH20A | MH16A |             | 3.57  |         |      | 279  |       |           | 1.00         | 279   | 4.00       | 4.91   |       | 5.91   | 200       | 0.50  | 23.2  | 0.74  | 0.61  | 25%       |  |
| Canonpost Road   | MH16A | MH15A | 1.32        | 16.97 | 96.4    | 128  | 2722 |       |           | 4.75         | 2722  | 3.48       | 41.64  |       | 46.39  | 375       | 0.20  | 78.4  | 0.71  | 0.74  | 59%       |  |
| Willoughby Drive | MH15A | MH14A | 1.29        | 18.26 | 163.2   | 211  | 2933 |       |           | 5.11         | 2933  | 3.45       | 44.51  |       | 49.63  | 375       | 0.20  | 78.4  | 0.71  | 0.75  | 63%       |  |
| Willoughby Drive | MH14A | MH13A | 1.05        | 19.31 | 95.6    | 101  | 3034 |       |           | 5.41         | 3034  | 3.44       | 45.88  |       | 51.29  | 375       | 0.20  | 78.4  | 0.71  | 0.75  | 65%       |  |
| Cattrill Drive   | MH39A | MH13A | 54.56       | 54.56 | 45.9    | 2505 | 2505 |       |           | 15.28        | 2505  | 3.51       | 38.65  |       | 53.92  | 375       | 0.15  | 67.9  | 0.61  | 0.68  | 79%       |  |
| Willoughby Drive | MH13A | MH12A | 0.66        | 74.53 | 45.5    | 31   | 5570 | 0.00  | 0.00      | 20.87        | 5570  | 3.20       | 78.42  | 0.00  | 99.29  | 375       | 0.15  | 67.9  | 0.61  | 0.70  | 146%      |  |
| Willoughby Drive | MH40A | MH12A | 2.25        | 2.25  | 45.5    | 103  | 103  |       |           | 0.63         | 103   | 4.00       | 1.81   |       | 2.44   | 200       | 0.60  | 25.4  | 0.81  | 0.50  | 10%       |  |
| Gunning Drive    | MH12A | MH11A | 0.55        | 77.33 | 45.5    | 26   | 5699 | 0.00  | 0.00      | 21.65        | 5699  | 3.19       | 80.00  | 0.00  | 101.66 | 375       | 0.15  | 67.9  | 0.61  | 0.70  | 150%      |  |
| Gunning Drive    | MH11A | MH10A | 0.19        | 77.52 | 45.5    | 9    | 5708 | 0.00  | 0.00      | 21.71        | 5708  | 3.19       | 80.11  | 0.00  | 101.82 | 375       | 0.15  | 67.9  | 0.61  | 0.70  | 150%      |  |
| Bell Crescent    | MH41A | MH10A | 2.57        | 2.57  | 45.5    | 117  | 117  |       |           | 0.72         | 117   | 4.00       | 2.06   |       | 2.78   | 200       | 0.50  | 23.2  | 0.74  | 0.49  | 12%       |  |
| Gunning Drive    | MH10A | MH9A  | 0.64        | 80.73 | 66.9    | 43   | 5868 | 0.00  | 0.00      | 22.60        | 5868  | 3.18       | 82.07  | 0.00  | 104.67 | 375       | 0.15  | 67.9  | 0.61  | 0.70  | 154%      |  |



|                   |       |       | RESIDENTIAL |        |         |      |       | EXTE  | ERNAL     |              | I     | LOW CALCU | LATIONS |       |        |      |       |       |       |       |          |
|-------------------|-------|-------|-------------|--------|---------|------|-------|-------|-----------|--------------|-------|-----------|---------|-------|--------|------|-------|-------|-------|-------|----------|
| STREET            | FROM  | то    | AREA        | ACC.   |         |      |       | EXT.  | ACC. EXT. | INFILTRATION | TOTAL | PEAKING   | RES.    | EXT.  | TOTAL  |      |       | Q     | v     | v     | % FULL   |
|                   |       | -     | (ha)        | AREA   | DENSITY | POP  | ACC.  | FLOW  | FLOW      | ALLOWANCE    | ACC.  | FACTOR    | FLOW    | FLOW  | FLOW   | DIA. | SLOPE | FULL  | FULL  | ACT   |          |
|                   |       |       |             | (ha)   | (P/ha)  |      | POP.  | (l/s) | (l/s)     | (I/s)        | POP.  |           | (I/s)   | (I/s) | (I/s)  | (mm) | (%)   | (L/s) | (m/s) | (m/s) | <u> </u> |
| Mears Crescent    | MH42A | MH9A  | 4.41        | 4.41   | 62.6    | 277  | 277   |       |           | 1.23         | 277   | 4.00      | 4.87    |       | 6.11   | 250  | 0.50  | 42.0  | 0.86  | 0.60  | 15%      |
| Gunning Drive     | MH9A  | MH8A  | 0.45        | 85.59  | 45.5    | 21   | 6166  | 0.00  | 0.00      | 23.97        | 6166  | 3.16      | 85.68   | 0.00  | 109.65 | 375  | 0.15  | 67.9  | 0.61  | 0.70  | 162%     |
| Gunning Drive     | MH8A  | MH7A  | 0.85        | 86.44  | 45.5    | 39   | 6205  | 0.00  | 0.00      | 24.20        | 6205  | 3.16      | 86.15   | 0.00  | 110.35 | 375  | 0.15  | 67.9  | 0.61  | 0.70  | 163%     |
| Gunning Drive     | MH7A  | MH6A  | 2.67        | 89.11  | 45.5    | 122  | 6327  | 0.00  | 0.00      | 24.95        | 6327  | 3.15      | 87.62   | 0.00  | 112.57 | 375  | 0.15  | 67.9  | 0.61  | 0.70  | 166%     |
| Gunning Drive     | MH6A  | MH5A  | 0.84        | 89.95  | 45.5    | 39   | 6366  | 0.00  | 0.00      | 25.19        | 6366  | 3.15      | 88.09   | 0.00  | 113.28 | 375  | 0.15  | 67.9  | 0.61  | 0.70  | 167%     |
| Parliament Avenue | MH43A | MH5A  | 19.44       | 19.44  | 46.6    | 906  | 906   |       |           | 5.44         | 906   | 3.83      | 15.25   |       | 20.69  | 300  | 0.30  | 52.9  | 0.75  | 0.70  | 39%      |
| Easement          | MH5A  | MH4A  |             | 109.39 | 0.0     | 0    | 7272  | 0.00  | 0.00      | 30.63        | 7272  | 3.09      | 98.85   | 0.00  | 129.48 | 375  | 0.16  | 70.1  | 0.63  | 0.72  | 185%     |
| Sophie Avenue     | MH4A  | МНЗА  |             | 109.39 |         | 0    | 7272  | 0.00  | 0.00      | 30.63        | 7272  | 3.09      | 98.85   | 0.00  | 129.48 | 375  | 0.15  | 67.9  | 0.61  | 0.70  | 191%     |
| Sophie Avenue     | МНЗА  | MH50A |             | 109.39 |         | 0    | 7272  | 0.00  | 0.00      | 30.63        | 7272  | 3.09      | 98.85   | 0.00  | 129.48 | 375  | 0.15  | 67.9  | 0.61  | 0.70  | 191%     |
| Sophie Avenue     | MH50A | MH49A | 0.00        | 109.39 | 0.0     | 0    | 7272  | 0.00  | 0.00      | 30.63        | 7272  | 3.09      | 98.85   | 0.00  | 129.48 | 375  | 0.15  | 67.9  | 0.61  | 0.70  | 191%     |
| Sophie Avenue     | MH51A | MH49A | 41.76       | 41.76  | 74.2    | 3099 | 3099  |       |           | 11.69        | 3099  | 3.43      | 46.76   |       | 58.45  | 450  | 0.15  | 110.4 | 0.69  | 0.70  | 53%      |
| Sophie Avenue     | MH49A | MH48A | 0.37        | 151.52 | 45.5    | 17   | 10388 |       |           | 42.43        | 10388 | 2.94      | 134.24  |       | 176.67 | 525  | 0.35  | 254.3 | 1.17  | 1.27  | 69%      |
| Sophie Avenue     | MH48A | MH47A | 0.54        | 152.06 | 45.5    | 25   | 10413 |       |           | 42.58        | 10413 | 2.94      | 134.52  |       | 177.09 | 525  | 0.30  | 235.4 | 1.09  | 1.19  | 75%      |
| Sophie Avenue     | MH47A | MH2A  | 0.09        | 152.15 | 45.5    | 5    | 10418 |       |           | 42.60        | 10418 | 2.94      | 134.57  |       | 177.17 | 525  | 0.30  | 235.4 | 1.09  | 1.19  | 75%      |
| Weinbrenner Road  | MH18A | MH37A | 9.84        | 9.84   | 124.0   | 1221 | 1221  | 15.20 | 15.20     | 2.76         | 1221  | 3.74      | 20.10   | 15.20 | 38.05  | 450  | 0.13  | 102.7 | 0.65  | 0.60  | 37%      |
| Weinbrenner Road  | MH37A | MH36A | 1.08        | 10.92  | 45.5    | 50   | 1271  |       | 15.20     | 3.06         | 1271  | 3.73      | 20.85   | 15.20 | 39.11  | 450  | 0.13  | 102.7 | 0.65  | 0.60  | 38%      |

|                   |       |       |       |       | RESIDEN | TIAL |      | EXTE  | RNAL      |              | F     | LOW CALCU | LATIONS |        |        |      |       | PIPE DATA |       |       |          |
|-------------------|-------|-------|-------|-------|---------|------|------|-------|-----------|--------------|-------|-----------|---------|--------|--------|------|-------|-----------|-------|-------|----------|
| STREET            | FROM  | то    | AREA  | ACC.  |         |      |      | EXT.  | ACC. EXT. | INFILTRATION | TOTAL | PEAKING   | RES.    | EXT.   | TOTAL  |      |       | Q         | v     | v     | % FIII I |
| STREET            | T KOM | 10    | (ha)  | AREA  | DENSITY | POP  | ACC. | FLOW  | FLOW      | ALLOWANCE    | ACC.  | FACTOR    | FLOW    | FLOW   | FLOW   | DIA. | SLOPE | FULL      | FULL  | ACT   | /01 OLL  |
|                   |       |       |       | (ha)  | (P/ha)  |      | POP. | (I/s) | (I/s)     | (I/s)        | POP.  |           | (I/s)   | (I/s)  | (I/s)  | (mm) | (%)   | (L/s)     | (m/s) | (m/s) |          |
| Weinbrenner Road  | MH36A | MH35A | 1.05  | 11.97 | 45.5    | 48   | 1319 |       | 15.20     | 3.35         | 1319  | 3.72      | 21.58   | 15.20  | 40.13  | 450  | 0.13  | 102.7     | 0.65  | 0.60  | 39%      |
| Weinbrenner Road  | MH35A | MH34A | 1.04  | 13.01 | 45.5    | 48   | 1367 |       | 15.20     | 3.64         | 1367  | 3.71      | 22.30   | 15.20  | 41.14  | 450  | 0.13  | 102.7     | 0.65  | 0.61  | 40%      |
| Roosevelt Street  | MH45A | MH34A | 9.54  | 9.54  | 45.5    | 435  | 435  |       |           | 2.67         | 435   | 4.00      | 7.65    |        | 10.32  | 450  | 0.13  | 102.7     | 0.65  | 0.41  | 10%      |
| Weinbrenner Road  | MH34A | MH33A | 0.98  | 23.53 | 45.5    | 45   | 1847 |       | 15.20     | 6.59         | 1847  | 3.61      | 29.34   | 15.20  | 51.13  | 525  | 0.10  | 135.9     | 0.63  | 0.58  | 38%      |
| Weinbrenner Road  | MH33A | MH32A | 15.38 | 38.91 | 155.4   | 2391 | 4238 |       | 15.20     | 10.89        | 4238  | 3.31      | 61.71   | 15.20  | 87.81  | 525  | 0.10  | 135.9     | 0.63  | 0.67  | 65%      |
| Weinbrenner Road  | MH32A | MH31A | 0.83  | 39.74 | 45.5    | 38   | 4276 |       | 15.20     | 11.13        | 4276  | 3.31      | 62.20   | 15.20  | 88.52  | 525  | 0.10  | 135.9     | 0.63  | 0.67  | 65%      |
| Weinbrenner Road  | MH31A | MH30A | 0.44  | 40.18 | 45.5    | 21   | 4297 |       | 15.20     | 11.25        | 4297  | 3.31      | 62.47   | 15.20  | 88.92  | 525  | 0.10  | 135.9     | 0.63  | 0.67  | 65%      |
| Weinbrenner Road  | MH30A | MH29A | 0.20  | 40.38 | 45.5    | 10   | 4307 |       | 15.20     | 11.31        | 4307  | 3.30      | 62.59   | 15.20  | 89.10  | 525  | 0.10  | 135.9     | 0.63  | 0.67  | 66%      |
| Weinbrenner Road  | MH29A | MH28A | 1.14  | 41.52 | 79.8    | 91   | 4398 |       | 15.20     | 11.63        | 4398  | 3.30      | 63.76   | 15.20  | 90.58  | 525  | 0.10  | 135.9     | 0.63  | 0.67  | 67%      |
| Weinbrenner Road  | MH28A | MH27A |       | 41.52 | 45.5    |      | 4398 | 90.50 | 105.70    | 11.63        | 4398  | 3.30      | 63.76   | 105.70 | 181.08 | 600  | 0.20  | 274.5     | 0.97  | 1.04  | 66%      |
| Weinbrenner Road  | MH27A | MH26A | 37.26 | 78.78 | 90.2    | 3361 | 7759 |       | 105.70    | 22.06        | 7759  | 3.06      | 104.53  | 105.70 | 232.29 | 600  | 0.21  | 281.2     | 0.99  | 1.11  | 83%      |
| Nassau Avenue     | MH26A | MH25A | 0.71  | 79.49 | 45.5    | 33   | 7792 |       | 105.70    | 22.26        | 7792  | 3.06      | 104.92  | 105.70 | 232.87 | 600  | 0.21  | 281.2     | 0.99  | 1.11  | 83%      |
| Southerland Court | MH55A | MH54A | 0.82  | 0.82  | 45.5    | 38   | 38   |       |           | 0.23         | 38    | 4.00      | 0.67    |        | 0.90   | 250  | 1.00  | 59.4      | 1.21  | 0.42  | 2%       |
| Southerland Court | MH54A | MH53A | 0.55  | 1.37  | 45.5    | 26   | 64   |       |           | 0.38         | 64    | 4.00      | 1.13    |        | 1.51   | 250  | 0.40  | 37.6      | 0.77  | 0.36  | 4%       |
| Southerland Court | MH53A | MH52A | 0.22  | 1.59  | 45.5    | 11   | 75   |       |           | 0.45         | 75    | 4.00      | 1.32    |        | 1.76   | 250  | 0.40  | 37.6      | 0.77  | 0.38  | 5%       |
| Southerland Court | MH52A | MH25A | 0.29  | 1.88  | 45.5    | 14   | 89   |       |           | 0.53         | 89    | 4.00      | 1.57    |        | 2.09   | 250  | 0.40  | 37.6      | 0.77  | 0.41  | 6%       |
| Nassau Avenue     | MH25A | MH24A | 0.43  | 81.80 | 45.5    | 20   | 7901 |       | 105.70    | 22.90        | 7901  | 3.06      | 106.18  | 105.70 | 234.78 | 600  | 0.21  | 281.2     | 0.99  | 1.11  | 83%      |
| Nassau Avenue     | MH24A | MH23A | 0.37  | 82.17 | 45.5    | 17   | 7918 |       | 105.70    | 23.01        | 7918  | 3.05      | 106.38  | 105.70 | 235.08 | 600  | 0.21  | 281.2     | 0.99  | 1.11  | 84%      |
| Lyon's Creek Road | MH23A | MH22A | 11.00 | 93.17 | 45.5    | 501  | 8419 | 0.00  | 105.70    | 26.09        | 8419  | 3.03      | 112.14  | 105.70 | 243.93 | 375  | 0.33  | 100.7     | 0.91  | 1.04  | 242%     |





| N |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA                                                                                                                                                                                                                                                                                          | DENSITY                                                                                                                                                                                                                                                                                                                                                                                 | POP                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ha)                                                                                                                                                                                                                                                                                          | (P/ha)                                                                                                                                                                                                                                                                                                                                                                                  | (#)                                                                                                                                                                                                                                                                                                                |
| R1-R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                                                                                                                          | 45.5                                                                                                                                                                                                                                                                                                                                                                                    | 35.0                                                                                                                                                                                                                                                                                                               |
| BLOCK 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.52                                                                                                                                                                                                                                                                                          | 163.2                                                                                                                                                                                                                                                                                                                                                                                   | 175.5                                                                                                                                                                                                                                                                                                              |
| IUTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.29                                                                                                                                                                                                                                                                                          | 103.2                                                                                                                                                                                                                                                                                                                                                                                   | 210.5                                                                                                                                                                                                                                                                                                              |
| Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                          | DENSITY                                                                                                                                                                                                                                                                                                                                                                                 | POP                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                          | (P/ha)                                                                                                                                                                                                                                                                                                                                                                                  | (#)                                                                                                                                                                                                                                                                                                                |
| BLOCK 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.21                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                         | 446.0                                                                                                                                                                                                                                                                                                              |
| BLOCK 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.09                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                         | 421.0                                                                                                                                                                                                                                                                                                              |
| BLOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.87                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                         | 292.0                                                                                                                                                                                                                                                                                                              |
| BLOCK 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.52                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                         | 851.0                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.69                                                                                                                                                                                                                                                                                          | 207.6                                                                                                                                                                                                                                                                                                                                                                                   | 2010.0                                                                                                                                                                                                                                                                                                             |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.00                                                                                                                                                                                                                                                                                          | 207.0                                                                                                                                                                                                                                                                                                                                                                                   | 2010.0                                                                                                                                                                                                                                                                                                             |
| Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                          | DENSITY                                                                                                                                                                                                                                                                                                                                                                                 | POP                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                          | (P/ha)                                                                                                                                                                                                                                                                                                                                                                                  | (#)                                                                                                                                                                                                                                                                                                                |
| R1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.66                                                                                                                                                                                                                                                                                          | 45.5                                                                                                                                                                                                                                                                                                                                                                                    | 30.0                                                                                                                                                                                                                                                                                                               |
| GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.39                                                                                                                                                                                                                                                                                          | 180.4                                                                                                                                                                                                                                                                                                                                                                                   | 70.4                                                                                                                                                                                                                                                                                                               |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.05                                                                                                                                                                                                                                                                                          | 95.6                                                                                                                                                                                                                                                                                                                                                                                    | 100.4                                                                                                                                                                                                                                                                                                              |
| Table 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                          | DENSITY                                                                                                                                                                                                                                                                                                                                                                                 | POP                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                          | (P/ha)                                                                                                                                                                                                                                                                                                                                                                                  | (#)                                                                                                                                                                                                                                                                                                                |
| R1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54.41                                                                                                                                                                                                                                                                                         | 45.5                                                                                                                                                                                                                                                                                                                                                                                    | 2475.7                                                                                                                                                                                                                                                                                                             |
| GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                                                                                                                          | 180.4                                                                                                                                                                                                                                                                                                                                                                                   | 27.1                                                                                                                                                                                                                                                                                                               |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54.56                                                                                                                                                                                                                                                                                         | 45.9                                                                                                                                                                                                                                                                                                                                                                                    | 2502.8                                                                                                                                                                                                                                                                                                             |
| Table F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         | 000                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA                                                                                                                                                                                                                                                                                          | (P/ba)                                                                                                                                                                                                                                                                                                                                                                                  | 202<br>(#)                                                                                                                                                                                                                                                                                                         |
| R1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.37                                                                                                                                                                                                                                                                                          | 45.5                                                                                                                                                                                                                                                                                                                                                                                    | 16.8                                                                                                                                                                                                                                                                                                               |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27                                                                                                                                                                                                                                                                                          | 96.4                                                                                                                                                                                                                                                                                                                                                                                    | 26.0                                                                                                                                                                                                                                                                                                               |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.64                                                                                                                                                                                                                                                                                          | 66.9                                                                                                                                                                                                                                                                                                                                                                                    | 42.8                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |
| Table 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                          | DENSITY                                                                                                                                                                                                                                                                                                                                                                                 | POP                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                          | (P/ha)                                                                                                                                                                                                                                                                                                                                                                                  | (#)                                                                                                                                                                                                                                                                                                                |
| R1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.93                                                                                                                                                                                                                                                                                          | 45.5                                                                                                                                                                                                                                                                                                                                                                                    | 133.3                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.48<br>4.41                                                                                                                                                                                                                                                                                  | 96.4                                                                                                                                                                                                                                                                                                                                                                                    | 276.0                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |
| Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                          | DENSITY                                                                                                                                                                                                                                                                                                                                                                                 | POP                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                          | (P/ha)                                                                                                                                                                                                                                                                                                                                                                                  | (#)                                                                                                                                                                                                                                                                                                                |
| R1-R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.06                                                                                                                                                                                                                                                                                         | 45.5                                                                                                                                                                                                                                                                                                                                                                                    | 1413.2                                                                                                                                                                                                                                                                                                             |
| R3-R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.17<br>1 74                                                                                                                                                                                                                                                                                  | 96.4<br>96.4                                                                                                                                                                                                                                                                                                                                                                            | 112.8<br>167.7                                                                                                                                                                                                                                                                                                     |
| ,<br>GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.79                                                                                                                                                                                                                                                                                          | 180.4                                                                                                                                                                                                                                                                                                                                                                                   | 1405.3                                                                                                                                                                                                                                                                                                             |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.76                                                                                                                                                                                                                                                                                         | 74.2                                                                                                                                                                                                                                                                                                                                                                                    | 3099.0                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |
| Table 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                          | DENSITY                                                                                                                                                                                                                                                                                                                                                                                 | POP                                                                                                                                                                                                                                                                                                                |
| Table 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA<br>(ha)                                                                                                                                                                                                                                                                                  | DENSITY<br>(P/ha)                                                                                                                                                                                                                                                                                                                                                                       | POP<br>(#)                                                                                                                                                                                                                                                                                                         |
| Table 8<br>R1-R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AREA<br>(ha)<br>19.02<br>0.42                                                                                                                                                                                                                                                                 | DENSITY<br>(P/ha)<br>45.5<br>96.4                                                                                                                                                                                                                                                                                                                                                       | POP<br>(#)<br>865.4<br>40.5                                                                                                                                                                                                                                                                                        |
| Table 8<br>R1-R2<br>I<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AREA<br>(ha)<br>19.02<br>0.42<br>19.44                                                                                                                                                                                                                                                        | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6                                                                                                                                                                                                                                                                                                                                               | POP<br>(#)<br>865.4<br>40.5<br>905.9                                                                                                                                                                                                                                                                               |
| Table 8<br>R1-R2<br>I<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AREA<br>(ha)<br>19.02<br>0.42<br>19.44                                                                                                                                                                                                                                                        | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6                                                                                                                                                                                                                                                                                                                                               | POP<br>(#)<br>865.4<br>40.5<br>905.9                                                                                                                                                                                                                                                                               |
| Toble 8<br>R1-R2<br>I<br>TOTAL<br>Toble 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA                                                                                                                                                                                                                                                | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY                                                                                                                                                                                                                                                                                                                                    | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP                                                                                                                                                                                                                                                                        |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)                                                                                                                                                                                                                                        | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)                                                                                                                                                                                                                                                                                                                          | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)                                                                                                                                                                                                                                                                 |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06                                                                                                                                                                                                                               | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5                                                                                                                                                                                                                                                                                                                  | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2                                                                                                                                                                                                                                                        |
| Table 8<br>R1–R2<br>I<br>TOTAL<br>Table 9<br>R1–R2<br>R5D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35                                                                                                                                                                                                               | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4                                                                                                                                                                                                                                                                                                 | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>337                                                                                                                                                                                                                                        |
| Toble 8<br>R1-R2<br>I<br>TOTAL<br>Toble 9<br>R1-R2<br>R5D<br>I<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70                                                                                                                                                                                                      | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7                                                                                                                                                                                                                                                                                         | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3                                                                                                                                                                                                                              |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70                                                                                                                                                                                                      | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7                                                                                                                                                                                                                                                                                         | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3                                                                                                                                                                                                                              |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>ToTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70                                                                                                                                                                                                      | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7                                                                                                                                                                                                                                                                                         | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3                                                                                                                                                                                                                              |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>TOTAL<br>Table 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)                                                                                                                                                                                      | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)                                                                                                                                                                                                                                                                    | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)                                                                                                                                                                                                                |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67                                                                                                                                                                              | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5                                                                                                                                                                                                                                                            | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5                                                                                                                                                                                                        |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92                                                                                                                                                                      | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4                                                                                                                                                                                                                                                    | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8                                                                                                                                                                                               |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>PI 02/// 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25                                                                                                                                                              | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1                                                                                                                                                                                                                                           | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9                                                                                                                                                                                      |
| Table 8<br>R1–R2<br>I<br>TOTAL<br>Table 9<br>R1–R2<br>R5D<br>I<br>TOTAL<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92                                                                                                                                                      | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5                                                                                                                                                                                                                                  | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0                                                                                                                                                                             |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84                                                                                                                                              | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0                                                                                                                                                                                                                         | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2                                                                                                                                                                   |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84                                                                                                                                              | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0                                                                                                                                                                                                                         | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2                                                                                                                                                                   |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6<br>TOTAL<br>Table 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84                                                                                                                                              | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY                                                                                                                                                                                                              | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2                                                                                                                                                                   |
| Table 8<br>R1-R2<br>I TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6<br>TOTAL<br>Table 11<br>R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)                                                                                                                              | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)                                                                                                                                                                                                    | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>20.2                                                                                                                                             |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05                                                                                                             | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4                                                                                                                                                                                    | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>20.5<br>3089.6                                                                                                                                   |
| Table 8<br>R1-R2<br>I TOTAL<br>ToDAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39                                                                                                     | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4                                                                                                                                                                           | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>1220.2                                                                                                                                           |
| Table 8<br>R1-R2<br>I TOTAL<br>ToTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26                                                                                            | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                                                                                                                                   | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>1220.2<br>9<br>311.0<br>1220.2                                                                                                                   |
| Table 8<br>R1-R2<br>I<br>TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26                                                                                            | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0                                                                                                                                                         | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9                                                                                                                |
| Table 8<br>R1-R2<br>I TOTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26                                                                                            | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0                                                                                                                                                         | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>929.3<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>700<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9                                                                                                              |
| Table 8<br>R1-R2<br>I TOTAL<br>ToTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)                                                                            | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)                                                                                                                                              | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)                                                                                                  |
| Table 8<br>R1-R2<br>I TOTAL<br>ToTAL<br>Table 9<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 10<br>R1E<br>R4<br>R5D<br>BLOCK 6<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 12<br>R1-R2<br>R1-R2<br>R1-R2<br>R2-R4<br>R3-R4<br>R4<br>R5-R4<br>R3-R4<br>R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5-R4<br>R5- | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)                                                                            | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)                                                                                                                                              | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9                                                             |
| Table 8         R1-R2         I         TOTAL         Table 9         R1-R2         R5D         I         TOTAL         Table 10         R1E         R4         R5D         BLOCK 6         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 12         R1-R2         R4         TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39                                                   | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                                                                             | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0                                                       |
| Table 8         R1-R2         I         TOTAL         Table 9         R1-R2         R5D         I         TOTAL         Table 10         R1E         R4         R5D         BLOCK 6         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 12         R1-R2         R4         TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39                                                   | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                                                                             | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9                                                             |
| Table 8         R1-R2         I         TOTAL         Table 9         R1-R2         R5D         I         TOTAL         Table 10         R1E         R4         R5D         BLOCK 6         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 12         R1-R2         R4         TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26                                          | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                                                                             | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>7<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>250.8<br>3360.9<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0                      |
| Table 8         R1-R2         I         TOTAL         Table 9         R1-R2         R5D         I         TOTAL         Table 10         R1E         R4         R5D         BLOCK 6         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 12         R1-R2         R4         TOTAL         Table 12         Table 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26                                          | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                       | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0                       |
| Table 8         R1-R2         I         TOTAL         Table 9         R1-R2         R5D         I         TOTAL         Table 10         R1-R2         R5D         I         TotAL         Table 10         R1E         R4         R5D         BLOCK 6         TOTAL         R1-R2         R3-R4         GC         TOTAL         Table 12         R1-R2         R4         TOTAL         Table 12         R1-R2         R4         TOTAL         Table 13         R1-R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>XAREA<br>(ha)<br>0.37<br>0.77<br>1.14   | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2 | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0                       |
| Table 8         R1-R2         I         ToTAL         Table 9         R1-R2         R5D         I         ToTAL         Table 10         R1-R2         R5D         I         ToTAL         Table 10         R1E         R4         R5D         BLOCK 6         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 12         R1-R2         R4         TOTAL         Table 12         R1-R2         R4         TOTAL         Table 13         R1-R2         R5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.67<br>7.92<br>1.25<br>0.92<br>9.84<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39 | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>163.1<br>337.5<br>124.0<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                       | POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>30.5<br>674.8<br>203.9<br>311.0<br>1220.2<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0<br>POP<br>(#)<br>20.5 |



| Minimum Dia. =                | 200 mm      |
|-------------------------------|-------------|
| Mannings "n"=                 | 0.013       |
| Minimum Velocity =            | 0.6 m/s     |
| Minimum Grade =               | 0.5 %       |
| Avg. Proposed Domestic Flow = | 380 l/c/d   |
| Avg. Existing Domestic Flow = | 380 l/c/d   |
|                               |             |
| Infiltration =                | 0.28 l/s/ha |
|                               |             |

## Chippawa Region, City of Niagara Falls Sanitary Sewer Design Sheet Post-Development Option 1

| Project No:  | 221377    |
|--------------|-----------|
| Date:        | 10-Feb-23 |
| Designed by: | CHG       |

Peaking Factors calculated as per City Criteria

Harmon equation: PF=1 + (14/(4+(P/1000)½))

2.0 min; 4.0 max

|                  |       |       |       |       | RESIDENT | TAL  |      | EXTERNAL FLOW CALCULATIONS |           |              |       |         |       |       |        |      | PIPE DATA |       |       |       |           |
|------------------|-------|-------|-------|-------|----------|------|------|----------------------------|-----------|--------------|-------|---------|-------|-------|--------|------|-----------|-------|-------|-------|-----------|
| STREET           | FROM  | то    | AREA  | ACC.  |          |      |      | EXT.                       | ACC. EXT. | INFILTRATION | TOTAL | PEAKING | RES.  | EXT.  | TOTAL  |      |           | Q     | v     | v     | % FI II I |
| SINCE            | T NOM | 10    | (ha)  | AREA  | DENSITY  | POP  | ACC. | FLOW                       | FLOW      | ALLOWANCE    | ACC.  | FACTOR  | FLOW  | FLOW  | FLOW   | DIA. | SLOPE     | FULL  | FULL  | ACT   | 701 OLL   |
|                  |       |       |       | (ha)  | (P/ha)   |      | POP. | (l/s)                      | (I/s)     | (l/s)        | POP.  |         | (I/s) | (I/s) | (l/s)  | (mm) | (%)       | (L/s) | (m/s) | (m/s) |           |
| Willoughby Drive | MH18A | MH17A | 1.09  | 1.09  | 163.1    | 178  | 178  |                            |           | 0.31         | 178   | 4.00    | 3.13  |       | 3.44   | 375  | 0.20      | 78.4  | 0.71  | 0.35  | 4%        |
| Willoughby Drive | MH17A | MH16A | 1.31  | 2.40  | 96.4     | 127  | 305  |                            |           | 0.67         | 305   | 4.00    | 5.37  |       | 6.04   | 375  | 0.20      | 78.4  | 0.71  | 0.41  | 8%        |
| Canonpost Road   | MH38A | MH16A | 9.68  | 9.68  | 207.6    | 2010 | 2010 |                            |           | 2.71         | 2010  | 3.58    | 31.68 |       | 34.39  | 375  | 0.15      | 67.9  | 0.61  | 0.61  | 51%       |
| Willoughby Drive | MH21A | MH20A | 1.30  | 1.30  | 45.5     | 60   | 60   |                            |           | 0.36         | 60    | 4.00    | 1.06  |       | 1.42   | 200  | 0.50      | 23.2  | 0.74  | 0.40  | 6%        |
| Willoughby Drive | MH19A | MH20A | 2.27  | 2.27  | 96.4     | 219  | 219  |                            |           | 0.64         | 219   | 4.00    | 3.85  |       | 4.49   | 200  | 0.50      | 23.2  | 0.74  | 0.56  | 19%       |
| Willoughby Drive | MH20A | MH16A |       | 3.57  |          |      | 279  |                            |           | 1.00         | 279   | 4.00    | 4.91  |       | 5.91   | 200  | 0.50      | 23.2  | 0.74  | 0.61  | 25%       |
| Canonpost Road   | MH16A | MH15A | 1.32  | 16.97 | 96.4     | 128  | 2722 |                            |           | 4.75         | 2722  | 3.48    | 41.64 |       | 46.39  | 375  | 0.20      | 78.4  | 0.71  | 0.74  | 59%       |
| Willoughby Drive | MH15A | MH14A | 1.29  | 18.26 | 163.2    | 211  | 2933 |                            |           | 5.11         | 2933  | 3.45    | 44.51 |       | 49.63  | 375  | 0.20      | 78.4  | 0.71  | 0.75  | 63%       |
| Willoughby Drive | MH14A | MH13A | 1.05  | 19.31 | 95.6     | 101  | 3034 |                            |           | 5.41         | 3034  | 3.44    | 45.88 |       | 51.29  | 375  | 0.20      | 78.4  | 0.71  | 0.75  | 65%       |
| Cattrill Drive   | MH39A | MH13A | 54.56 | 54.56 | 45.9     | 2505 | 2505 |                            |           | 15.28        | 2505  | 3.51    | 38.65 |       | 53.92  | 375  | 0.15      | 67.9  | 0.61  | 0.68  | 79%       |
| Willoughby Drive | MH13A | MH12A | 0.66  | 74.53 | 45.5     | 31   | 5570 | 0.00                       | 0.00      | 20.87        | 5570  | 3.20    | 78.42 | 0.00  | 99.29  | 375  | 0.15      | 67.9  | 0.61  | 0.70  | 146%      |
| Willoughby Drive | MH40A | MH12A | 2.25  | 2.25  | 45.5     | 103  | 103  |                            |           | 0.63         | 103   | 4.00    | 1.81  |       | 2.44   | 200  | 0.60      | 25.4  | 0.81  | 0.50  | 10%       |
| Gunning Drive    | MH12A | MH11A | 0.55  | 77.33 | 45.5     | 26   | 5699 | 0.00                       | 0.00      | 21.65        | 5699  | 3.19    | 80.00 | 0.00  | 101.66 | 375  | 0.15      | 67.9  | 0.61  | 0.70  | 150%      |
| Gunning Drive    | MH11A | MH10A | 0.19  | 77.52 | 45.5     | 9    | 5708 | 0.00                       | 0.00      | 21.71        | 5708  | 3.19    | 80.11 | 0.00  | 101.82 | 375  | 0.15      | 67.9  | 0.61  | 0.70  | 150%      |
| Bell Crescent    | MH41A | MH10A | 2.57  | 2.57  | 45.5     | 117  | 117  |                            |           | 0.72         | 117   | 4.00    | 2.06  |       | 2.78   | 200  | 0.50      | 23.2  | 0.74  | 0.49  | 12%       |
| Gunning Drive    | MH10A | MH9A  | 0.64  | 80.73 | 66.9     | 43   | 5868 | 0.00                       | 0.00      | 22.60        | 5868  | 3.18    | 82.07 | 0.00  | 104.67 | 375  | 0.15      | 67.9  | 0.61  | 0.70  | 154%      |



|                   |       |       |       |        | RESIDEN | TIAL |       | EXTE  | ERNAL     |              | I     | LOW CALCU | LATIONS |       |        |      |       | PIPE DATA |       |       |          |
|-------------------|-------|-------|-------|--------|---------|------|-------|-------|-----------|--------------|-------|-----------|---------|-------|--------|------|-------|-----------|-------|-------|----------|
| STREET            | FROM  | то    | AREA  | ACC.   |         |      |       | EXT.  | ACC. EXT. | INFILTRATION | TOTAL | PEAKING   | RES.    | EXT.  | TOTAL  |      |       | Q         | v     | v     | % FULL   |
|                   |       | -     | (ha)  | AREA   | DENSITY | POP  | ACC.  | FLOW  | FLOW      | ALLOWANCE    | ACC.  | FACTOR    | FLOW    | FLOW  | FLOW   | DIA. | SLOPE | FULL      | FULL  | ACT   |          |
|                   |       |       |       | (ha)   | (P/ha)  |      | POP.  | (l/s) | (l/s)     | (I/s)        | POP.  |           | (I/s)   | (I/s) | (I/s)  | (mm) | (%)   | (L/s)     | (m/s) | (m/s) | <u> </u> |
| Mears Crescent    | MH42A | MH9A  | 4.41  | 4.41   | 62.6    | 277  | 277   |       |           | 1.23         | 277   | 4.00      | 4.87    |       | 6.11   | 250  | 0.50  | 42.0      | 0.86  | 0.60  | 15%      |
| Gunning Drive     | MH9A  | MH8A  | 0.45  | 85.59  | 45.5    | 21   | 6166  | 0.00  | 0.00      | 23.97        | 6166  | 3.16      | 85.68   | 0.00  | 109.65 | 375  | 0.15  | 67.9      | 0.61  | 0.70  | 162%     |
| Gunning Drive     | MH8A  | MH7A  | 0.85  | 86.44  | 45.5    | 39   | 6205  | 0.00  | 0.00      | 24.20        | 6205  | 3.16      | 86.15   | 0.00  | 110.35 | 375  | 0.15  | 67.9      | 0.61  | 0.70  | 163%     |
| Gunning Drive     | MH7A  | MH6A  | 2.67  | 89.11  | 45.5    | 122  | 6327  | 0.00  | 0.00      | 24.95        | 6327  | 3.15      | 87.62   | 0.00  | 112.57 | 375  | 0.15  | 67.9      | 0.61  | 0.70  | 166%     |
| Gunning Drive     | MH6A  | MH5A  | 0.84  | 89.95  | 45.5    | 39   | 6366  | 0.00  | 0.00      | 25.19        | 6366  | 3.15      | 88.09   | 0.00  | 113.28 | 375  | 0.15  | 67.9      | 0.61  | 0.70  | 167%     |
| Parliament Avenue | MH43A | MH5A  | 19.44 | 19.44  | 46.6    | 906  | 906   |       |           | 5.44         | 906   | 3.83      | 15.25   |       | 20.69  | 300  | 0.30  | 52.9      | 0.75  | 0.70  | 39%      |
| Easement          | MH5A  | MH4A  |       | 109.39 | 0.0     | 0    | 7272  | 0.00  | 0.00      | 30.63        | 7272  | 3.09      | 98.85   | 0.00  | 129.48 | 375  | 0.16  | 70.1      | 0.63  | 0.72  | 185%     |
| Sophie Avenue     | MH4A  | МНЗА  |       | 109.39 |         | 0    | 7272  | 0.00  | 0.00      | 30.63        | 7272  | 3.09      | 98.85   | 0.00  | 129.48 | 375  | 0.15  | 67.9      | 0.61  | 0.70  | 191%     |
| Sophie Avenue     | МНЗА  | MH50A |       | 109.39 |         | 0    | 7272  | 0.00  | 0.00      | 30.63        | 7272  | 3.09      | 98.85   | 0.00  | 129.48 | 375  | 0.15  | 67.9      | 0.61  | 0.70  | 191%     |
| Sophie Avenue     | MH50A | MH49A | 0.00  | 109.39 | 0.0     | 0    | 7272  | 0.00  | 0.00      | 30.63        | 7272  | 3.09      | 98.85   | 0.00  | 129.48 | 375  | 0.15  | 67.9      | 0.61  | 0.70  | 191%     |
| Sophie Avenue     | MH51A | MH49A | 41.76 | 41.76  | 74.2    | 3099 | 3099  |       |           | 11.69        | 3099  | 3.43      | 46.76   |       | 58.45  | 450  | 0.15  | 110.4     | 0.69  | 0.70  | 53%      |
| Sophie Avenue     | MH49A | MH48A | 0.37  | 151.52 | 45.5    | 17   | 10388 |       |           | 42.43        | 10388 | 2.94      | 134.24  |       | 176.67 | 525  | 0.35  | 254.3     | 1.17  | 1.27  | 69%      |
| Sophie Avenue     | MH48A | MH47A | 0.54  | 152.06 | 45.5    | 25   | 10413 |       |           | 42.58        | 10413 | 2.94      | 134.52  |       | 177.09 | 525  | 0.30  | 235.4     | 1.09  | 1.19  | 75%      |
| Sophie Avenue     | MH47A | MH2A  | 0.09  | 152.15 | 45.5    | 5    | 10418 |       |           | 42.60        | 10418 | 2.94      | 134.57  |       | 177.17 | 525  | 0.30  | 235.4     | 1.09  | 1.19  | 75%      |
| Weinbrenner Road  | MH18A | MH37A | 9.84  | 9.84   | 124.0   | 1221 | 1221  | 15.20 | 15.20     | 2.76         | 1221  | 3.74      | 20.10   | 15.20 | 38.05  | 450  | 0.13  | 102.7     | 0.65  | 0.60  | 37%      |
| Weinbrenner Road  | MH37A | MH36A | 1.08  | 10.92  | 45.5    | 50   | 1271  |       | 15.20     | 3.06         | 1271  | 3.73      | 20.85   | 15.20 | 39.11  | 450  | 0.13  | 102.7     | 0.65  | 0.60  | 38%      |

|                   |       |       |       |       | RESIDEN | TIAL |      | EXTE  | RNAL      |              | F     | LOW CALCU | LATIONS |        |        |      |       | PIPE DATA |       |       |          |
|-------------------|-------|-------|-------|-------|---------|------|------|-------|-----------|--------------|-------|-----------|---------|--------|--------|------|-------|-----------|-------|-------|----------|
| STREET            | FROM  | то    | AREA  | ACC.  |         |      |      | EXT.  | ACC. EXT. | INFILTRATION | TOTAL | PEAKING   | RES.    | EXT.   | TOTAL  |      |       | Q         | v     | v     | % FIII I |
| STREET            | T KOM | 10    | (ha)  | AREA  | DENSITY | POP  | ACC. | FLOW  | FLOW      | ALLOWANCE    | ACC.  | FACTOR    | FLOW    | FLOW   | FLOW   | DIA. | SLOPE | FULL      | FULL  | ACT   | /01 OLL  |
|                   |       |       |       | (ha)  | (P/ha)  |      | POP. | (I/s) | (I/s)     | (I/s)        | POP.  |           | (I/s)   | (I/s)  | (I/s)  | (mm) | (%)   | (L/s)     | (m/s) | (m/s) |          |
| Weinbrenner Road  | MH36A | MH35A | 1.05  | 11.97 | 45.5    | 48   | 1319 |       | 15.20     | 3.35         | 1319  | 3.72      | 21.58   | 15.20  | 40.13  | 450  | 0.13  | 102.7     | 0.65  | 0.60  | 39%      |
| Weinbrenner Road  | MH35A | MH34A | 1.04  | 13.01 | 45.5    | 48   | 1367 |       | 15.20     | 3.64         | 1367  | 3.71      | 22.30   | 15.20  | 41.14  | 450  | 0.13  | 102.7     | 0.65  | 0.61  | 40%      |
| Roosevelt Street  | MH45A | MH34A | 9.54  | 9.54  | 45.5    | 435  | 435  |       |           | 2.67         | 435   | 4.00      | 7.65    |        | 10.32  | 450  | 0.13  | 102.7     | 0.65  | 0.41  | 10%      |
| Weinbrenner Road  | MH34A | MH33A | 0.98  | 23.53 | 45.5    | 45   | 1847 |       | 15.20     | 6.59         | 1847  | 3.61      | 29.34   | 15.20  | 51.13  | 525  | 0.10  | 135.9     | 0.63  | 0.58  | 38%      |
| Weinbrenner Road  | MH33A | MH32A | 15.38 | 38.91 | 155.4   | 2391 | 4238 |       | 15.20     | 10.89        | 4238  | 3.31      | 61.71   | 15.20  | 87.81  | 525  | 0.10  | 135.9     | 0.63  | 0.67  | 65%      |
| Weinbrenner Road  | MH32A | MH31A | 0.83  | 39.74 | 45.5    | 38   | 4276 |       | 15.20     | 11.13        | 4276  | 3.31      | 62.20   | 15.20  | 88.52  | 525  | 0.10  | 135.9     | 0.63  | 0.67  | 65%      |
| Weinbrenner Road  | MH31A | MH30A | 0.44  | 40.18 | 45.5    | 21   | 4297 |       | 15.20     | 11.25        | 4297  | 3.31      | 62.47   | 15.20  | 88.92  | 525  | 0.10  | 135.9     | 0.63  | 0.67  | 65%      |
| Weinbrenner Road  | MH30A | MH29A | 0.20  | 40.38 | 45.5    | 10   | 4307 |       | 15.20     | 11.31        | 4307  | 3.30      | 62.59   | 15.20  | 89.10  | 525  | 0.10  | 135.9     | 0.63  | 0.67  | 66%      |
| Weinbrenner Road  | MH29A | MH28A | 1.14  | 41.52 | 79.8    | 91   | 4398 |       | 15.20     | 11.63        | 4398  | 3.30      | 63.76   | 15.20  | 90.58  | 525  | 0.10  | 135.9     | 0.63  | 0.67  | 67%      |
| Weinbrenner Road  | MH28A | MH27A |       | 41.52 | 45.5    |      | 4398 | 90.50 | 105.70    | 11.63        | 4398  | 3.30      | 63.76   | 105.70 | 181.08 | 600  | 0.20  | 274.5     | 0.97  | 1.04  | 66%      |
| Weinbrenner Road  | MH27A | MH26A | 37.26 | 78.78 | 90.2    | 3361 | 7759 |       | 105.70    | 22.06        | 7759  | 3.06      | 104.53  | 105.70 | 232.29 | 600  | 0.21  | 281.2     | 0.99  | 1.11  | 83%      |
| Nassau Avenue     | MH26A | MH25A | 0.71  | 79.49 | 45.5    | 33   | 7792 |       | 105.70    | 22.26        | 7792  | 3.06      | 104.92  | 105.70 | 232.87 | 600  | 0.21  | 281.2     | 0.99  | 1.11  | 83%      |
| Southerland Court | MH55A | MH54A | 0.82  | 0.82  | 45.5    | 38   | 38   |       |           | 0.23         | 38    | 4.00      | 0.67    |        | 0.90   | 250  | 1.00  | 59.4      | 1.21  | 0.42  | 2%       |
| Southerland Court | MH54A | MH53A | 0.55  | 1.37  | 45.5    | 26   | 64   |       |           | 0.38         | 64    | 4.00      | 1.13    |        | 1.51   | 250  | 0.40  | 37.6      | 0.77  | 0.36  | 4%       |
| Southerland Court | MH53A | MH52A | 0.22  | 1.59  | 45.5    | 11   | 75   |       |           | 0.45         | 75    | 4.00      | 1.32    |        | 1.76   | 250  | 0.40  | 37.6      | 0.77  | 0.38  | 5%       |
| Southerland Court | MH52A | MH25A | 0.29  | 1.88  | 45.5    | 14   | 89   |       |           | 0.53         | 89    | 4.00      | 1.57    |        | 2.09   | 250  | 0.40  | 37.6      | 0.77  | 0.41  | 6%       |
| Nassau Avenue     | MH25A | MH24A | 0.43  | 81.80 | 45.5    | 20   | 7901 |       | 105.70    | 22.90        | 7901  | 3.06      | 106.18  | 105.70 | 234.78 | 600  | 0.21  | 281.2     | 0.99  | 1.11  | 83%      |
| Nassau Avenue     | MH24A | MH23A | 0.37  | 82.17 | 45.5    | 17   | 7918 |       | 105.70    | 23.01        | 7918  | 3.05      | 106.38  | 105.70 | 235.08 | 600  | 0.21  | 281.2     | 0.99  | 1.11  | 84%      |
| Lyon's Creek Road | MH23A | MH22A | 11.00 | 93.17 | 45.5    | 501  | 8419 | 0.00  | 105.70    | 26.09        | 8419  | 3.03      | 112.14  | 105.70 | 243.93 | 375  | 0.33  | 100.7     | 0.91  | 1.04  | 242%     |





| Table 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                                     | DENSITY                                                                                                                                                                                                                                                                                                                                                                       | POP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                                     | (P/ha)                                                                                                                                                                                                                                                                                                                                                                        | (#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R1-R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.77                                                                                                                                                                                                                                                                                                     | 45.5                                                                                                                                                                                                                                                                                                                                                                          | 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.29                                                                                                                                                                                                                                                                                                     | 163.2                                                                                                                                                                                                                                                                                                                                                                         | 210.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                                     | DENSITY                                                                                                                                                                                                                                                                                                                                                                       | POP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                                     | (P/ha)                                                                                                                                                                                                                                                                                                                                                                        | (#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BLOCK 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.21                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                               | 446.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BLOCK 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.09                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                               | 421.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BLOCK 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.52                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                               | 176.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BLOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.87                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                               | 292.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BLOCK 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.52                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                               | 851.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PARKS/ROADS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.90                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.11                                                                                                                                                                                                                                                                                                    | 216.2                                                                                                                                                                                                                                                                                                                                                                         | 2186.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                                     | DENSITY                                                                                                                                                                                                                                                                                                                                                                       | POP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                                     | (P/ha)                                                                                                                                                                                                                                                                                                                                                                        | (#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.01                                                                                                                                                                                                                                                                                                     | 96.4                                                                                                                                                                                                                                                                                                                                                                          | 675.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| R5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.25                                                                                                                                                                                                                                                                                                     | 163.1                                                                                                                                                                                                                                                                                                                                                                         | 203.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BLOCK 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.92                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                               | 311.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.18                                                                                                                                                                                                                                                                                                     | 129.7                                                                                                                                                                                                                                                                                                                                                                         | 1190.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                                     | DENSITY                                                                                                                                                                                                                                                                                                                                                                       | POP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                                     | (P/ha)                                                                                                                                                                                                                                                                                                                                                                        | (#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.66                                                                                                                                                                                                                                                                                                     | 45.5                                                                                                                                                                                                                                                                                                                                                                          | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.39                                                                                                                                                                                                                                                                                                     | 180.4                                                                                                                                                                                                                                                                                                                                                                         | 70.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.05                                                                                                                                                                                                                                                                                                     | 95.6                                                                                                                                                                                                                                                                                                                                                                          | 100.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                                     | DENSITY                                                                                                                                                                                                                                                                                                                                                                       | POP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                                     | (P/ha)                                                                                                                                                                                                                                                                                                                                                                        | (#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54.41                                                                                                                                                                                                                                                                                                    | 45.5                                                                                                                                                                                                                                                                                                                                                                          | 2475.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                                                                                                                                     | 180.4                                                                                                                                                                                                                                                                                                                                                                         | 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54.56                                                                                                                                                                                                                                                                                                    | 45.9                                                                                                                                                                                                                                                                                                                                                                          | 2502.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                                     | DENSITY                                                                                                                                                                                                                                                                                                                                                                       | POP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                                     | (P/ha)                                                                                                                                                                                                                                                                                                                                                                        | (#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.37                                                                                                                                                                                                                                                                                                     | 45.5                                                                                                                                                                                                                                                                                                                                                                          | 16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.27                                                                                                                                                                                                                                                                                                     | 96.4                                                                                                                                                                                                                                                                                                                                                                          | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IUTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04                                                                                                                                                                                                                                                                                                     | 00.9                                                                                                                                                                                                                                                                                                                                                                          | 42.ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          | D                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| lable 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                               | POP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ha)                                                                                                                                                                                                                                                                                                     | (P/ha)                                                                                                                                                                                                                                                                                                                                                                        | (#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.93                                                                                                                                                                                                                                                                                                     | 45.5                                                                                                                                                                                                                                                                                                                                                                          | 133.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.40<br>4 41                                                                                                                                                                                                                                                                                             | 90.4<br>62.6                                                                                                                                                                                                                                                                                                                                                                  | 276.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 1 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. 11                                                                                                                                                                                                                                                                                                    | -2.0                                                                                                                                                                                                                                                                                                                                                                          | 2,0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA                                                                                                                                                                                                                                                                                                     | DENSITY                                                                                                                                                                                                                                                                                                                                                                       | POP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA<br>(ha)                                                                                                                                                                                                                                                                                             | DENSITY<br>(P/ha)                                                                                                                                                                                                                                                                                                                                                             | POP<br>(#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 8<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AREA<br>(ha)<br>31.06                                                                                                                                                                                                                                                                                    | DENSITY<br>(P/ha)<br>45.5                                                                                                                                                                                                                                                                                                                                                     | POP<br>(#)<br>1413.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 8<br>R1-R2<br>R3-R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREA<br>(ha)<br>31.06<br>1.17                                                                                                                                                                                                                                                                            | DENSITY<br>(P/ha)<br>45.5<br>96.4                                                                                                                                                                                                                                                                                                                                             | POP<br>(#)<br>1413.2<br>112.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Table 8<br>R1-R2<br>R3-R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREA<br>(ha)<br>31.06<br>1.17<br>1.74                                                                                                                                                                                                                                                                    | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4                                                                                                                                                                                                                                                                                                                                     | POP<br>(#)<br>1413.2<br>112.8<br>167.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79                                                                                                                                                                                                                                                            | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4                                                                                                                                                                                                                                                                                                                            | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76                                                                                                                                                                                                                                                   | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2                                                                                                                                                                                                                                                                                                                    | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76                                                                                                                                                                                                                                                   | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2                                                                                                                                                                                                                                                                                                                    | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76                                                                                                                                                                                                                                                   | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2                                                                                                                                                                                                                                                                                                                    | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76                                                                                                                                                                                                                                                   | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY                                                                                                                                                                                                                                                                                                         | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>R3-R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)                                                                                                                                                                                                                                   | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)                                                                                                                                                                                                                                                                                               | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42                                                                                                                                                                                                         | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4                                                                                                                                                                                                                                                                               | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42                                                                                                                                                                                                         | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6                                                                                                                                                                                                                                                                       | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44                                                                                                                                                                                                         | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6                                                                                                                                                                                                                                                                       | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44                                                                                                                                                                                                | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6                                                                                                                                                                                                                                                                       | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>TotAL<br>Table 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA                                                                                                                                                                                        | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY                                                                                                                                                                                                                                                            | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Table 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)                                                                                                                                                                                | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)                                                                                                                                                                                                                                                  | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>POP<br>(#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Table 10<br>R1-R2<br>P5D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06                                                                                                                                                                                | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5                                                                                                                                                                                                                                          | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>905.9<br>POP<br>(#)<br>685.2<br>210.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Table 10<br>R1-R2<br>R5D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35                                                                                                                                                                | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4                                                                                                                                                                                                                         | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Table 10<br>R1-R2<br>R5D<br>I<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>5.06<br>1.29<br>0.35<br>16.70                                                                                                                     | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7                                                                                                                                                                                                                 | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>(#)<br>865.4<br>40.5<br>905.9<br>905.9<br>905.9<br>(#)<br>685.2<br>210.4<br>33.7<br>220.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Table 10<br>R1-R2<br>R5D<br>I<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70                                                                                                                                                       | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7                                                                                                                                                                                                                 | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Table 10<br>R1-R2<br>R5D<br>I<br>TOTAL<br>TotAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70                                                                                                                                                       | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7                                                                                                                                                                                                                 | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Table 10<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)                                                                                                                              | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)                                                                                                                                                                                            | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Table 10<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 11<br>R1-R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45                                                                                                                               | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5                                                                                                                                                                                    | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Table 8         R1-R2         R3-R4         I         GC         TOTAL         Table 9         R1-R2         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         R1-R2         R5D         I         TOTAL         R3-R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05                                                                                                                      | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4                                                                                                                                                                            | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>(#)<br>865.4<br>40.5<br>905.9<br>905.9<br>(#)<br>685.2<br>210.4<br>3.3.7<br>929.3<br>929.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Table 10<br>R1-R2<br>R5D<br>I<br>TOTAL<br>ToTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.35<br>16.70                                                                                                                      | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4                                                                                                                                                                   | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>905.9<br>905.9<br>905.9<br>905.9<br>(#)<br>685.2<br>210.4<br>3.3.7<br>929.3<br>929.3<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>ToTAL<br>Table 10<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26                                                                                                     | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>155.7                                                                                                                                                                  | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>(#)<br>865.4<br>40.5<br>905.9<br>905.9<br>905.9<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>929.3<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 8<br>R1-R2<br>R3-R4<br>I<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>ToTAL<br>Table 10<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26                                                                                                     | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                                                                                                                           | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 8<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Toble 10<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>I<br>Table 11<br>R1-R2<br>R3-R4<br>I<br>Table 11<br>R1-R2<br>R3-R4<br>I<br>Total<br>Table 11<br>R1-R2<br>R3-R4<br>I<br>Table 11<br>R1-R2<br>R3-R4<br>I<br>Table 11<br>R1-R2<br>R3-R4<br>I<br>Table 11<br>R1-R2<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4   | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26                                                                                                     | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY                                                                                                                                                | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 8<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Table 10<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R3-R4<br>R | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)                                                           | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)                                                                                                                                      | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 8         R1-R2         R3-R4         I         GC         TOTAL         Table 9         R1-R2         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 12         R1-R2         R1-R2         GC         TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37                                                   | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)                                                                                                                                      | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 8         R1-R2         R3-R4         I         GC         TOTAL         Table 9         R1-R2         I         TOTAL         Table 10         R1-R2         I         TotAL         Table 10         R1-R2         R1-R2         R5D         I         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 12         R1-R2         R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.77                                           | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4                                                                                                                              | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>250.8<br>3360.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Toble 8         R1-R2         R3-R4         I         GC         TOTAL         Toble 9         R1-R2         I         TOTAL         Toble 10         R1-R2         I         TOTAL         Toble 10         R1-R2         R5D         I         TOTAL         R1-R2         R5D         I         TOTAL         TotAL         TotAL         TotAL         TotAL         R1-R2         R3-R4         GC         TotAL         Toble 12         R1-R2         R4         TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26                                                   | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                                                                     | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>(#)<br>865.4<br>40.5<br>905.9<br>(#)<br>865.4<br>40.5<br>905.9<br>(#)<br>865.2<br>210.4<br>33.7<br>929.3<br>(#)<br>20.5<br>3089.6<br>250.8<br>3089.6<br>250.8<br>3089.6<br>250.8<br>3089.6<br>250.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Table 8<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 9<br>R1-R2<br>I<br>TOTAL<br>Table 10<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 11<br>R1-R2<br>R5D<br>I<br>TOTAL<br>Table 11<br>R1-R2<br>R3-R4<br>GC<br>TOTAL<br>Table 12<br>R1-R2<br>R4<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>MREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.77<br>1.14                            | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                                                                     | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>(#)<br>865.4<br>40.5<br>905.9<br>905.9<br>(#)<br>685.2<br>210.4<br>3.7<br>929.3<br>(#)<br>685.2<br>210.4<br>3.7<br>929.3<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 8         R1-R2         R3-R4         I         GC         TOTAL         Table 9         R1-R2         I         TOTAL         Table 10         R1-R2         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 12         R1-R2         R4         TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>Co.42<br>19.44<br>MREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.37<br>0.77<br>1.14  | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                                            | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>905.9<br>905.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 8         R1-R2         R3-R4         I         GC         TOTAL         Table 9         R1-R2         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 12         R1-R2         R4         TOTAL         Table 12         R4         TOTAL         Table 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>MREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.77<br>1.14                            | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                                                            | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table 8         R1-R2         R3-R4         I         GC         TOTAL         Table 9         R1-R2         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 12         R1-R2         R4         TOTAL         Table 12         R1-R2         R4         TOTAL         Table 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.37<br>0.37<br>0.37<br>0.37<br>1.14                                     | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                              | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>16.8<br>74.2<br>91.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table 8         R1-R2         R3-R4         I         GC         TOTAL         Table 9         R1-R2         I         TOTAL         Toble 10         R1-R2         R5D         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 11         R1-R2         R4         TOTAL         Table 12         R1-R2         R4         TOTAL         Table 13         R1-R2         R5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.37<br>0.77<br>1.14           | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2                                               | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>20.5<br>3089.6<br>250.8<br>3360.9<br>20.5<br>3089.6<br>250.8<br>3360.9<br>20.5<br>3089.6<br>250.8<br>3360.9<br>20.5<br>3089.6<br>250.8<br>3360.9<br>90.0<br>20.5<br>3089.6<br>250.8<br>3360.9<br>20.5<br>3089.6<br>250.8<br>3360.9<br>20.5<br>3089.6<br>250.8<br>3360.9<br>90.0<br>20.5<br>3089.6<br>250.8<br>3360.9<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>300.0<br>20.5<br>20.5<br>300.0<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5 |
| Table 8         R1-R2         R3-R4         I         GC         TOTAL         Table 9         R1-R2         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         Table 10         R1-R2         R5D         I         TOTAL         Table 11         R1-R2         R3-R4         GC         TOTAL         Table 11         R1-R2         R4         TOTAL         Table 12         R1-R2         R4         TOTAL         Table 13         R1-R2         R5         TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AREA<br>(ha)<br>31.06<br>1.17<br>1.74<br>7.79<br>41.76<br>AREA<br>(ha)<br>19.02<br>0.42<br>19.44<br>AREA<br>(ha)<br>15.06<br>1.29<br>0.35<br>16.70<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26<br>AREA<br>(ha)<br>0.45<br>32.05<br>1.39<br>37.26 | DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>74.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>46.6<br>DENSITY<br>(P/ha)<br>45.5<br>163.1<br>96.4<br>55.7<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2<br>DENSITY<br>(P/ha)<br>45.5<br>96.4<br>180.4<br>90.2 | POP<br>(#)<br>1413.2<br>112.8<br>167.7<br>1405.3<br>3099.0<br>POP<br>(#)<br>865.4<br>40.5<br>905.9<br>POP<br>(#)<br>685.2<br>210.4<br>33.7<br>929.3<br>POP<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>C<br>(#)<br>20.5<br>3089.6<br>250.8<br>3360.9<br>C<br>(#)<br>16.8<br>74.2<br>91.0<br>POP<br>(#)<br>46.0<br>2343.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



| Minimum Dia. =                | 200 mm      |
|-------------------------------|-------------|
| Mannings "n"=                 | 0.013       |
| Minimum Velocity =            | 0.6 m/s     |
| Minimum Grade =               | 0.5 %       |
| Avg. Proposed Domestic Flow = | 380 l/c/d   |
| Avg. Existing Domestic Flow = | 380 l/c/d   |
|                               |             |
| Infiltration =                | 0.28 l/s/ha |

### City of Niagara Falls Sanitary Sewer Design Sheet Post-Development Option 2

| Project No:  | 221377    |
|--------------|-----------|
| Date:        | 10-Feb-23 |
| Designed by: | CHG       |

Peaking Factors calculated as per City Criteria Harmon equation: PF=1 + (14/(4+(P/1000)½))

(000)<sup>1</sup>/<sub>2</sub>)) 2.0 min; 4.0 max

|                  |         |       |       | -     | RESIDEN | TIAL | -    | EXTE  | RNAL      |              | FL    | OW CALCUL | TIONS | -     | -     | PIPE DATA |       |       |       |       |        |
|------------------|---------|-------|-------|-------|---------|------|------|-------|-----------|--------------|-------|-----------|-------|-------|-------|-----------|-------|-------|-------|-------|--------|
| STREET           | FROM    | то    | AREA  | ACC.  |         |      |      | EXT.  | ACC. EXT. | INFILTRATION | TOTAL | PEAKING   | RES.  | EXT.  | TOTAL |           |       | Q     | v     | v     | % FULL |
|                  |         |       | (ha)  | AREA  | DENSITY | POP  | ACC. | FLOW  | FLOW      | ALLOWANCE    | ACC.  | FACTOR    | FLOW  | FLOW  | FLOW  | DIA.      | SLOPE | FULL  | FULL  | ACT   |        |
|                  |         |       |       | (ha)  | (P/ha)  |      | POP. | (I/s) | (I/s)     | (l/s)        | POP.  |           | (I/s) | (I/s) | (I/s) | (mm)      | (%)   | (L/s) | (m/s) | (m/s) |        |
| Willoughby Drive | MH18A-N | MH17A | 1.09  | 1.09  | 163.1   | 178  | 178  |       |           | 0.31         | 178   | 4.00      | 3.13  |       | 3.44  | 375       | 0.20  | 78.4  | 0.71  | 0.35  | 4%     |
| Willoughby Drive | MH17A   | MH16A | 1.31  | 2.40  | 96.4    | 127  | 305  |       |           | 0.67         | 305   | 4.00      | 5.37  |       | 6.04  | 375       | 0.20  | 78.4  | 0.71  | 0.41  | 8%     |
| Canonpost Road   | MH38A   | MH16A |       |       |         |      |      |       |           |              |       | 1.00      |       |       |       | 375       | 0.15  | 67.9  | 0.61  |       |        |
| Willoughby Drive | MH21A   | MH20A | 1.30  | 1.30  | 45.5    | 60   | 60   |       |           | 0.36         | 60    | 4.00      | 1.06  |       | 1.42  | 200       | 0.50  | 23.2  | 0.74  | 0.40  | 6%     |
| Willoughby Drive | MH19A   | MH20A | 2.27  | 2.27  | 96.4    | 219  | 219  |       |           | 0.64         | 219   | 4.00      | 3.85  |       | 4.49  | 200       | 0.50  | 23.2  | 0.74  | 0.56  | 19%    |
| Willoughby Drive | MH20A   | MH16A |       | 3.57  |         |      | 279  |       |           | 1.00         | 279   | 4.00      | 4.91  |       | 5.91  | 200       | 0.50  | 23.2  | 0.74  | 0.61  | 25%    |
| Canonpost Road   | MH16A   | MH15A | 1.32  | 7.29  | 96.4    | 128  | 712  |       |           | 2.04         | 712   | 3.89      | 12.18 |       | 14.22 | 375       | 0.20  | 78.4  | 0.71  | 0.53  | 18%    |
| Willoughby Drive | MH15A   | MH14A | 0.63  | 7.92  | 45.5    | 29   | 741  |       |           | 2.22         | 741   | 3.88      | 12.65 |       | 14.86 | 375       | 0.20  | 78.4  | 0.71  | 0.54  | 19%    |
| Willoughby Drive | MH14A   | MH13A | 1.05  | 8.97  | 95.6    | 101  | 842  |       |           | 2.51         | 842   | 3.85      | 14.25 |       | 16.76 | 375       | 0.20  | 78.4  | 0.71  | 0.56  | 21%    |
| Catrill Drive    | MH39A   | MH13A | 54.56 | 54.56 | 45.9    | 2505 | 2505 |       |           | 15.28        | 2505  | 3.51      | 38.65 |       | 53.92 | 375       | 0.15  | 67.9  | 0.61  | 0.68  | 79%    |
| Willoughby Drive | MH13A   | MH12A | 0.66  | 64.19 | 45.5    | 31   | 3378 | 0.00  | 0.00      | 17.97        | 3378  | 3.40      | 50.49 | 0.00  | 68.46 | 375       | 0.15  | 67.9  | 0.61  | 0.70  | 101%   |
| Willoughby Drive | MH40A   | MH12A | 2.25  | 2.25  | 45.5    | 103  | 103  |       |           | 0.63         | 103   | 4.00      | 1.81  |       | 2.44  | 200       | 0.60  | 25.4  | 0.81  | 0.50  | 10%    |
| Gunning Drive    | MH12A   | MH11A | 0.55  | 66.99 | 45.5    | 26   | 3507 | 0.00  | 0.00      | 18.76        | 3507  | 3.38      | 52.19 | 0.00  | 70.95 | 375       | 0.15  | 67.9  | 0.61  | 0.70  | 105%   |
| Gunning Drive    | MH11A   | MH10A | 0.19  | 67.18 | 45.5    | 9    | 3516 | 0.00  | 0.00      | 18.81        | 3516  | 3.38      | 52.31 | 0.00  | 71.12 | 375       | 0.15  | 67.9  | 0.61  | 0.70  | 105%   |
| Bell Crescent    | MH41A   | MH10A | 2.57  | 2.57  | 45.5    | 117  | 117  |       |           | 0.72         | 117   | 4.00      | 2.06  |       | 2.78  | 200       | 0.50  | 23.2  | 0.74  | 0.49  | 12%    |
| Gunning Drive    | MH10A   | MH9A  | 0.64  | 70.39 | 66.9    | 43   | 3676 | 0.00  | 0.00      | 19.71        | 3676  | 3.37      | 54.42 | 0.00  | 74.13 | 375       | 0.15  | 67.9  | 0.61  | 0.70  | 109%   |



|                   |       |       |       |              | RESIDEN           | TIAL |      | EXTE  | RNAL      |              | Fl    | OW CALCUL | ATIONS |       |        | PIPE DATA |       |       |      |      |        |
|-------------------|-------|-------|-------|--------------|-------------------|------|------|-------|-----------|--------------|-------|-----------|--------|-------|--------|-----------|-------|-------|------|------|--------|
| STREET            | FROM  | то    | AREA  | ACC.         |                   |      |      | EXT.  | ACC. EXT. | INFILTRATION | TOTAL | PEAKING   | RES.   | EXT.  | TOTAL  |           |       | Q     | v    | v    | % FULL |
|                   |       |       | (ha)  | AREA         | DENSITY<br>(D(ba) | POP  | ACC. | FLOW  | FLOW      |              | ACC.  | FACTOR    | FLOW   | FLOW  | FLOW   | DIA.      | SLOPE | FULL  | FULL | ACT  |        |
| Mears Crescent    | MH42A | MH9A  | 4.41  | (na)<br>4.41 | (P/IIa)<br>62.6   | 277  | 277  | (1/5) | (05)      | 1.23         | 277   | 4.00      | 4.87   | (1/5) | 6.11   | 250       | 0.50  | 42.0  | 0.86 | 0.60 | 15%    |
| Gunning Drive     | MH9A  | MH8A  | 0.45  | 75.25        | 45.5              | 21   | 3974 | 0.00  | 0.00      | 21.07        | 3974  | 3.34      | 58.31  | 0.00  | 79.38  | 375       | 0.15  | 67.9  | 0.61 | 0.70 | 117%   |
| Gunning Drive     | MH8A  | MH7A  | 0.85  | 76.10        | 45.5              | 39   | 4013 | 0.00  | 0.00      | 21.31        | 4013  | 3.33      | 58.81  | 0.00  | 80.12  | 375       | 0.15  | 67.9  | 0.61 | 0.70 | 118%   |
| Gunning Drive     | MH7A  | MH6A  | 2.67  | 78.77        | 45.5              | 122  | 4135 | 0.00  | 0.00      | 22.06        | 4135  | 3.32      | 60.39  | 0.00  | 82.44  | 375       | 0.15  | 67.9  | 0.61 | 0.70 | 121%   |
| Gunning Drive     | MH6A  | MH5A  | 0.84  | 79.61        | 45.5              | 39   | 4174 | 0.00  | 0.00      | 22.29        | 4174  | 3.32      | 60.89  | 0.00  | 83.18  | 375       | 0.15  | 67.9  | 0.61 | 0.70 | 123%   |
| Parliament Avenue | MH43A | MH5A  | 19.44 | 19.44        | 46.6              | 906  | 906  |       |           | 5.44         | 906   | 3.83      | 15.25  |       | 20.69  | 300       | 0.30  | 52.9  | 0.75 | 0.70 | 39%    |
| Easement          | MH5A  | MH4A  |       | 99.05        | 0.0               | 0    | 5080 | 0.00  | 0.00      | 27.73        | 5080  | 3.24      | 72.36  | 0.00  | 100.09 | 375       | 0.16  | 70.1  | 0.63 | 0.72 | 143%   |
| Sophie Avenue     | MH4A  | МНЗА  |       | 99.05        |                   | 0    | 5080 | 0.00  | 0.00      | 27.73        | 5080  | 3.24      | 72.36  | 0.00  | 100.09 | 375       | 0.15  | 67.9  | 0.61 | 0.70 | 147%   |
| Sophie Avenue     | МНЗА  | MH50A |       | 99.05        |                   | 0    | 5080 | 0.00  | 0.00      | 27.73        | 5080  | 3.24      | 72.36  | 0.00  | 100.09 | 375       | 0.15  | 67.9  | 0.61 | 0.70 | 147%   |
| Sophie Avenue     | MH50A | MH49A | 0.00  | 99.05        | 0.0               | 0    | 5080 | 0.00  | 0.00      | 27.73        | 5080  | 3.24      | 72.36  | 0.00  | 100.09 | 375       | 0.15  | 67.9  | 0.61 | 0.70 | 147%   |
| Sophie Avenue     | MH51A | MH49A | 41.76 | 41.76        | 74.2              | 3099 | 3099 |       |           | 11.69        | 3099  | 3.43      | 46.76  |       | 58.45  | 450       | 0.15  | 110.4 | 0.69 | 0.70 | 53%    |
| Sophie Avenue     | MH49A | MH48A | 0.37  | 141.18       | 45.5              | 17   | 8196 |       |           | 39.53        | 8196  | 3.04      | 109.58 |       | 149.11 | 525       | 0.35  | 254.3 | 1.17 | 1.22 | 59%    |
| Sophie Avenue     | MH48A | MH47A | 0.54  | 141.72       | 45.5              | 25   | 8221 |       |           | 39.68        | 8221  | 3.04      | 109.87 |       | 149.55 | 525       | 0.30  | 235.4 | 1.09 | 1.15 | 64%    |
| Sophie Avenue     | MH47A | MH2A  | 0.09  | 141.81       | 45.5              | 5    | 8226 |       |           | 39.71        | 8226  | 3.04      | 109.93 |       | 149.63 | 525       | 0.30  | 235.4 | 1.09 | 1.15 | 64%    |
| Easement          | MH57A | MH56A | 10.11 | 10.11        | 216.2             | 2186 | 2186 |       |           | 2.83         | 2186  | 3.56      | 34.18  |       | 37.01  | 300       | 0.50  | 68.3  | 0.97 | 0.98 | 54%    |
| Weinbrenner Road  | MH56A | MH18A | 9.18  | 19.29        | 129.7             | 1191 | 3377 |       |           | 5.40         | 3377  | 3.40      | 50.47  |       | 55.87  | 300       | 0.50  | 68.3  | 0.97 | 1.08 | 82%    |
| Weinbrenner Road  | MH18A | MH37A | 0.89  | 20.18        | 45.5              | 41   | 3418 | 15.20 | 15.20     | 5.65         | 3418  | 3.39      | 51.02  | 15.20 | 71.87  | 450       | 0.13  | 102.7 | 0.65 | 0.70 | 70%    |
| Weinbrenner Road  | MH37A | MH36A | 1.08  | 21.26        | 45.5              | 50   | 3468 |       | 15.20     | 5.95         | 3468  | 3.39      | 51.68  | 15.20 | 72.83  | 450       | 0.13  | 102.7 | 0.65 | 0.70 | 71%    |

|                   |       |       |       | RESIDENTIAL |         |      |       | EXTERNAL |           |              | FL    | OW CALCUL | ATIONS |        |        | PIPE DATA |       |       |       |       |          |
|-------------------|-------|-------|-------|-------------|---------|------|-------|----------|-----------|--------------|-------|-----------|--------|--------|--------|-----------|-------|-------|-------|-------|----------|
| STREET            | FROM  | то    | AREA  | ACC.        |         |      |       | EXT.     | ACC. EXT. | INFILTRATION | TOTAL | PEAKING   | RES.   | EXT.   | TOTAL  |           |       | Q     | v     | v     | % FUU I  |
| 0.1121            |       |       | (ha)  | AREA        | DENSITY | POP  | ACC.  | FLOW     | FLOW      | ALLOWANCE    | ACC.  | FACTOR    | FLOW   | FLOW   | FLOW   | DIA.      | SLOPE | FULL  | FULL  | ACT   | <i>,</i> |
|                   |       |       |       | (ha)        | (P/ha)  |      | POP.  | (I/s)    | (I/s)     | (l/s)        | POP.  |           | (I/s)  | (I/s)  | (I/s)  | (mm)      | (%)   | (L/s) | (m/s) | (m/s) |          |
| Weinbrenner Road  | MH36A | MH35A | 1.05  | 22.31       | 45.5    | 48   | 3516  |          | 15.20     | 6.25         | 3516  | 3.38      | 52.31  | 15.20  | 73.76  | 450       | 0.13  | 102.7 | 0.65  | 0.70  | 72%      |
| Weinbrenner Road  | MH35A | MH34A | 1.04  | 23.35       | 45.5    | 48   | 3564  |          | 15.20     | 6.54         | 3564  | 3.38      | 52.95  | 15.20  | 74.68  | 450       | 0.13  | 102.7 | 0.65  | 0.70  | 73%      |
| Roosevelt Street  | MH45A | MH34A | 9.54  | 9.54        | 45.5    | 435  | 435   |          |           | 2.67         | 435   | 4.00      | 7.65   |        | 10.32  | 450       | 0.13  | 102.7 | 0.65  | 0.41  | 10%      |
| Weinbrenner Road  | MH34A | MH33A | 0.98  | 33.87       | 45.5    | 45   | 4044  |          | 15.20     | 9.48         | 4044  | 3.33      | 59.21  | 15.20  | 83.89  | 525       | 0.10  | 135.9 | 0.63  | 0.66  | 62%      |
| Weinbrenner Road  | MH33A | MH32A | 15.38 | 49.25       | 155.4   | 2391 | 6435  |          | 15.20     | 13.79        | 6435  | 3.14      | 88.92  | 15.20  | 117.91 | 525       | 0.10  | 135.9 | 0.63  | 0.71  | 87%      |
| Weinbrenner Road  | MH32A | MH31A | 0.83  | 50.08       | 45.5    | 38   | 6473  |          | 15.20     | 14.02        | 6473  | 3.14      | 89.37  | 15.20  | 118.60 | 525       | 0.10  | 135.9 | 0.63  | 0.71  | 87%      |
| Weinbrenner Road  | MH31A | MH30A | 0.44  | 50.52       | 45.5    | 21   | 6494  |          | 15.20     | 14.15        | 6494  | 3.14      | 89.62  | 15.20  | 118.97 | 525       | 0.10  | 135.9 | 0.63  | 0.71  | 88%      |
| Weinbrenner Road  | MH30A | MH29A | 0.20  | 50.72       | 45.5    | 10   | 6504  |          | 15.20     | 14.20        | 6504  | 3.14      | 89.74  | 15.20  | 119.15 | 525       | 0.10  | 135.9 | 0.63  | 0.71  | 88%      |
| Weinbrenner Road  | MH29A | MH28A | 1.14  | 51.86       | 79.8    | 91   | 6595  |          | 15.20     | 14.52        | 6595  | 3.13      | 90.83  | 15.20  | 120.55 | 525       | 0.10  | 135.9 | 0.63  | 0.71  | 89%      |
| Weinbrenner Road  | MH28A | MH27A |       | 51.86       | 45.5    |      | 6595  | 90.50    | 105.70    | 14.52        | 6595  | 3.13      | 90.83  | 105.70 | 211.05 | 600       | 0.20  | 274.5 | 0.97  | 1.07  | 77%      |
| Weinbrenner Road  | MH27A | MH26A | 37.26 | 89.12       | 90.2    | 3361 | 9956  |          | 105.70    | 24.95        | 9956  | 2.96      | 129.46 | 105.70 | 260.12 | 600       | 0.21  | 281.2 | 0.99  | 1.13  | 92%      |
| Nassau Avenue     | MH26A | MH25A | 0.71  | 89.83       | 45.5    | 33   | 9989  |          | 105.70    | 25.15        | 9989  | 2.96      | 129.83 | 105.70 | 260.68 | 600       | 0.21  | 281.2 | 0.99  | 1.13  | 93%      |
| Southerland Court | MH55A | MH54A | 0.82  | 0.82        | 45.5    | 38   | 38    |          |           | 0.23         | 38    | 4.00      | 0.67   |        | 0.90   | 250       | 1.00  | 59.4  | 1.21  | 0.42  | 2%       |
| Southerland Court | MH54A | MH53A | 0.55  | 1.37        | 45.5    | 26   | 64    |          |           | 0.38         | 64    | 4.00      | 1.13   |        | 1.51   | 250       | 0.40  | 37.6  | 0.77  | 0.36  | 4%       |
| Southerland Court | MH53A | MH52A | 0.22  | 1.59        | 45.5    | 11   | 75    |          |           | 0.45         | 75    | 4.00      | 1.32   |        | 1.76   | 250       | 0.40  | 37.6  | 0.77  | 0.38  | 5%       |
| Southerland Court | MH52A | MH25A | 0.29  | 1.88        | 45.5    | 14   | 89    |          |           | 0.53         | 89    | 4.00      | 1.57   |        | 2.09   | 250       | 0.40  | 37.6  | 0.77  | 0.41  | 6%       |
| Nassau Avenue     | MH25A | MH24A | 0.43  | 92.14       | 45.5    | 20   | 10098 |          | 105.70    | 25.80        | 10098 | 2.95      | 131.04 | 105.70 | 262.54 | 600       | 0.21  | 281.2 | 0.99  | 1.13  | 93%      |
| Nassau Avenue     | MH24A | MH23A | 0.37  | 92.51       | 45.5    | 17   | 10115 |          | 105.70    | 25.90        | 10115 | 2.95      | 131.23 | 105.70 | 262.83 | 600       | 0.21  | 281.2 | 0.99  | 1.13  | 93%      |
| Lyon's Parkway    | MH23A | MH22A | 11.00 | 103.51      | 45.5    | 501  | 10616 | 0.00     | 105.70    | 28.98        | 10616 | 2.93      | 136.75 | 105.70 | 271.43 | 375       | 0.33  | 100.7 | 0.91  | 1.04  | 270%     |



## Hydrant Flow Test Report

| SITE NAME<br>SITE ADDRE<br>TEST HYDR<br>BASE HYDR | :<br>ESS / MUNICIPA<br>ANT LOCATION | NLITY:<br>I :<br>N:     | Willoughby I<br>Front of # 8<br>(Hyd<br>By # 872<br>(Hyd | Drive Niag<br>3563 Willou<br>Irant ID # 0<br>9 Willough<br>Irant ID # 0 | ara Falls, On<br>Ighby Drive<br>2029)<br>Iby Drive<br>2032) |    | TEST DATE:<br>Nov 14,2022<br>TEST TIME: |  |  |  |  |  |  |
|---------------------------------------------------|-------------------------------------|-------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|----|-----------------------------------------|--|--|--|--|--|--|
| TEST BY:                                          | Luzia Wood                          | ł                       |                                                          |                                                                         |                                                             |    | 9.30AIVI                                |  |  |  |  |  |  |
| TEST DATA                                         |                                     |                         |                                                          |                                                                         |                                                             |    |                                         |  |  |  |  |  |  |
| FLOW HYDRANT Pipe (in                             |                                     |                         | 8inch                                                    |                                                                         |                                                             |    |                                         |  |  |  |  |  |  |
|                                                   |                                     |                         | PITOT 1                                                  |                                                                         | PITOT 2                                                     |    |                                         |  |  |  |  |  |  |
|                                                   | SIZE OPENIN                         | G (inches):             | 2.5                                                      |                                                                         | 2.5                                                         |    |                                         |  |  |  |  |  |  |
|                                                   | COEFFICIENT                         | (note 1):               | 0.90                                                     |                                                                         | 0.90                                                        |    |                                         |  |  |  |  |  |  |
|                                                   | PITOT READI                         | NG (psi):               | 65                                                       |                                                                         | 42 / 42                                                     |    |                                         |  |  |  |  |  |  |
|                                                   | FLOW (usgpm                         | ı):                     | 1353                                                     |                                                                         | 2175                                                        |    |                                         |  |  |  |  |  |  |
|                                                   | THEORETIC                           | al flow @               | ) 20 PSI                                                 | 5625                                                                    |                                                             |    |                                         |  |  |  |  |  |  |
| BASE HY                                           | DRANT                               | Pipe Diam.<br>(in / mm) | 8inch                                                    |                                                                         |                                                             |    |                                         |  |  |  |  |  |  |
| STATIC READING (psi):                             |                                     | 90                      | RESIDUAL 1 (psi):                                        | 85                                                                      | RESIDUAL 2 (psi):                                           | 80 | _                                       |  |  |  |  |  |  |
| REMARKS:                                          |                                     |                         |                                                          |                                                                         |                                                             |    |                                         |  |  |  |  |  |  |

**NOTE 1**: Conversion factor of .90 used for flow calculation based on rounded and flush internal nozzle configuration. No appreciable difference in pipe invert between flow and base hydrants.



L & D Waterworks Inc.

491 Port Maitland Rd Dunnville, ON N1A 2W6 Ph: 289.684.6747









|              | Year: 2022   |                |              |                        |                  |               |         |              |                    |                |
|--------------|--------------|----------------|--------------|------------------------|------------------|---------------|---------|--------------|--------------------|----------------|
|              |              | DWF Statistics | 6            | Monthl                 | y Average/Totals | i             | Instant | Storm Factor | 4                  | 4              |
|              | Daily        | Peak           | Peak Factor  | Max Daily Average Flow | % DWF to Max     | Monthly Total | Peak    |              | Daily Average High | Peak Flow High |
| Jan          | Missing Data | Missing Data   | Missing Data | Missing Data           | Missing Data     | Missing Data  | 0.00    | Jan          |                    |                |
| Feb          | 38.55        | 53.08          | 1.377        | 259.33                 | 673%             | Missing Data  | 528.70  | Feb          | yes                | yes            |
| Mar          | 44.65        | 57.60          | 1.290        | 157.26                 | 352%             | 176499.87     | 277.30  | Mar          |                    |                |
| Apr          | 32.07        | 44.45          | 1.386        | 86.70                  | 270%             | 118642.75     | 233.80  | Apr          |                    |                |
| Мау          | 25.41        | 33.00          | 1.299        | 93.89                  | 370%             | 94885.62      | 169.80  | Мау          |                    |                |
| Jun          | 23.69        | 31.86          | 1.345        | 64.46                  | 272%             | Missing Data  | 119.80  | Jun          |                    |                |
| Jul          | 22.59        | 28.99          | 1.283        | 116.97                 | 518%             | 75495.54      | 612.50  | Jul          | yes                | yes            |
| Aug          | 22.58        | 31.38          | 1.390        | 90.57                  | 401%             | 87339.72      | 410.30  | Aug          | yes                |                |
| Sep          | 21.43        | 31.94          | 1.491        | 55.47                  | 259%             | Missing Data  | 132.00  | Sep          |                    |                |
| Oct          | 20.41        | 29.01          | 1.422        | 157.50                 | 772%             | Missing Data  | 267.20  | Oct          | yes                | yes            |
| Nov          | Missing Data | Missing Data   | Missing Data | Missing Data           | Missing Data     | Missing Data  | 0.00    | Nov          |                    |                |
| Dec          | Missing Data | Missing Data   | Missing Data | Missing Data           | Missing Data     | Missing Data  | 0.00    | Dec          |                    |                |
|              |              |                |              |                        |                  |               | _       |              |                    |                |
| Year to Date | 27.92993162  | 37.92407407    | 1.364721506  | 259.3296992            | 929%             | 552863.502    |         |              |                    |                |

Instant. Peak is the highest instantaneous flow showing a big impact of the wet weather flows to the catchment/station.

2022 DWF Statisics


### Willoughby Drive Sanitary Sewer Analysis

Option 2 - Post Development Dry Weather

| 470                 | 1                                      | 1 1                               | 1                                        |                                                                             | 1 1                                   | 1 1                            |                | 1 1                       | le :                     |                                       | 1 1                                                                                                                                                      | ; ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                      | 1                                              | : 8 :              | 1 1                                     | 1 1            |              |
|---------------------|----------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|--------------------------------|----------------|---------------------------|--------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------|--------------------|-----------------------------------------|----------------|--------------|
| 1/0-                | 1                                      |                                   | £ ¦                                      | 440                                                                         | £                                     | ₿<br>                          |                | A NA                      | 11.8                     | tt i                                  | ŧ                                                                                                                                                        | 20<br>4 4<br>4 0<br>4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £,                     | #                                              | 5Å<br>92<br>92     | 4                                       |                |              |
| 177.5               | 184<br>ft                              | 44                                | 84<br>86<br>6                            |                                                                             |                                       | 8 H 8                          | ч              |                           | 68,<br>68,<br>0A         | 122                                   | 404<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                        | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - | 7Å<br>ft<br>29<br>[268 | 유년                                             | MH2<br>61<br>67.   | ₽<br>©<br>₽                             |                |              |
| 177                 | HH 1201                                | <del>2</del>                      | 8-6                                      | 4 G2 3                                                                      | 9<br>1 - 0 - 0<br>2 - 1 - 0           |                                | 4.0            | 2 4 6<br>1 4 6            | ин:<br>Ин:<br>ин:<br>ин: |                                       | H & G                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 199<br>199<br>199      | с. щ                                           | E C S              | . 30                                    |                |              |
| 176.5               | 4 2 A                                  | ā.                                | 5<br>5<br>5                              | <u>а</u> ,е                                                                 |                                       |                                | 177<br>177     |                           |                          | 4-1                                   | A S P                                                                                                                                                    | ode<br>de<br>de<br>de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8-2° - 6               | 175<br>175                                     | a a a              | 175<br>23A                              | 53<br>23       |              |
| 110.0               | e a a                                  | e.                                | rert                                     | N A H<br>D A A<br>A A<br>A A<br>A A<br>A A<br>A A<br>A A<br>A A<br>A A<br>A |                                       | DVe<br>DVe                     | a Nu           | D a de                    | A A A                    |                                       | d a d<br>d a d d a d<br>d a d d d d | Z A H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ert<br>ode             | in<br>Noe                                      | In No              | a A                                     | . 57<br>L67    |              |
| 176-                | ······································ | No                                | ti t |                                                                             |                                       | a µ4 µ∃                        |                | <b>я</b> е.н.             | Ö                        |                                       | 룅봅븝                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nod<br>Rinv<br>No      | еня                                            |                    | 8-4-;B                                  | 4 P            |              |
| 175.5               |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                                |                    | e                                       | 4 1<br>        |              |
| 475                 |                                        |                                   |                                          |                                                                             | · · · · · · · · · · · · · · · · · · · |                                |                |                           |                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    | PA PA                                   | R H            |              |
| 1/5-                |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| 174.5               |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         | <b>N</b>       |              |
| 174                 |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| 174                 |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| 173.5               |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| 173                 |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| €                   |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| <u>6</u> 172.5      |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         | · · · · ·      |              |
| 172                 |                                        | ink ID Pine 41                    | -                                        |                                                                             |                                       |                                |                |                           | 10.11.1                  |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| ۳ m                 | Le                                     | ngth 107.85 ft                    | Link ID Pipe 42                          | Link ID Pipe 43                                                             |                                       |                                |                |                           | -                        | _                                     |                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                                |                    |                                         |                |              |
| 171.5               |                                        | Dia 0.45 m                        | Dia 0.45 m                               | Length 107.66 ft                                                            | Link ID Pipe 44                       | Link ID Pipe 45                | Link ID Ding ( | 16                        |                          | 2                                     |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| 171                 | Un                                     | pe 0.0012 m/m<br>Invert 170.02 ft | Slope 0.0012 m/r                         | n Dia 0.45 m                                                                | Dia 0.45 m                            | Length 94.33 ft                | Length 106.4   | 8 ft Link ID Pipe 47      | Link ID Pine 48          | Same State of the second              |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
|                     | Dn                                     | Invert 169.89 ft                  | Up Invert 169.86                         | ft Up Invert 169.70 ft                                                      | Slope 0.0013 m/m                      | Dia 0.53 m<br>Slope 0.0010 m/m | Dia 0.53 m     | Length 104.34 ft          | Length 91.66 ft          | Link ID Pipe 49                       | Link ID Pipe 50                                                                                                                                          | ink ID Pine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51                     |                                                |                    |                                         |                |              |
| 170.5               |                                        |                                   |                                          | Dn Invert 169.55 ft                                                         | Up Invert 169.51 ft                   | Up Invert 169.32 ft            | Slope 0.0010 i | m/m Slope 0.0012 m/m      | Dia 0.53 m               | Dia 0.53 m                            | Length 121.38 ft                                                                                                                                         | Length 61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in ID Pipe             | 52<br>Link ID Pipe 53                          |                    |                                         |                |              |
| 170                 | ·····                                  |                                   |                                          |                                                                             |                                       | Dn Invert 169.23 ft            | Dn Invert 169. | 09 ft Up Invert 169.07 ft | Slope 0.0012 m/m         | Slope 0.0017 m/r                      | n Dia 0.53 m                                                                                                                                             | Dia 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rength 41.1            | Length 93.59 f                                 | t Link ID Pipe 54  | Link ID Pine 55                         |                | υ<br>        |
|                     |                                        |                                   |                                          |                                                                             |                                       |                                |                | Dn Invert 168.94 ft       | Dn Invert 168.81 fl      | Up Invert 168.79                      | ft Slope 0.0007 m/m<br>Up Invert 168.59 ft                                                                                                               | Sope 0.0028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q107+0.0022            | Dia 0.60 m                                     | Length 67.35 ft    | Length 94.02 ft                         |                | 1 Pi         |
| 169.5               |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       | Dn Invert 168.51 ft                                                                                                                                      | Dn nvert 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 mg Rrt 168          | 15 ope 0.0026 m/<br>29 ff<br>Lip Invert 168.17 | 18 lope 0.0013 m/  | Dia 0.60 m                              | Link D Pipe :  | 56           |
| 169                 |                                        |                                   |                                          |                                                                             |                                       |                                | 1              |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h Invert 168.          | Dn Invert 167.93                               | ttip Invert 167.92 | Slope 0.0020 m/m<br>In Invert 167 80 ft | Dia 0.38 m     |              |
|                     |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           | - 10 - 10 - 10           |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                | Dn Invert 167.83   | Bn Invert 167.61 ft                     | Slope 0.0014   | m/m A        |
| 168.5 -             |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         | Up Invert 167. | 53 #         |
| 168                 | 22222                                  |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| 167.5               |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                | Q            |
| 107.0               |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| 167                 |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| 166.5               |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           |                          |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| 100.0 [             | 1+00                                   | 1+50 2+00                         | ) 2+50 3+                                | 00 3+50 4+00                                                                | 4+50 5+00                             | 5+50 6+00                      | 6+50 7+0       | 0 7+50 8+00               | 8+50 9+00                | 9+50 10+00                            | 10+50 11+00                                                                                                                                              | 1+50 12+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 12+                 | 50 13+00                                       | 13+50 14+00        | 14+50 15+0                              | 0 15+50 16+00  | ) 16+50 17+0 |
|                     |                                        |                                   |                                          |                                                                             |                                       |                                |                |                           | Station (ft)             |                                       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                                |                    |                                         |                |              |
| Node ID:            | MH18A                                  | MH:                               | 37A                                      | MH36A MI                                                                    | Н35А М                                | Н34А МН                        | 133A           | MH32A M                   | H31A MH                  | 130A N                                | 1H29A I                                                                                                                                                  | 4H28A N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4H27A MH               | 26A M                                          | MH25A MH           | 24A MH                                  | 23A            | Out-1Pipe 56 |
| Rim (ft):           | 175.31                                 | 175                               | 5.18                                     | 175.51 13                                                                   | 75.16 1                               | 75.36 17                       | 5.41           | 175.40 1                  | 5.59 17                  | 5.21                                  | 175.27                                                                                                                                                   | 175.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 175.16 175             | 5.37                                           | 175.61 175         | 5.30 174                                | l.57           |              |
| Invert (ft):        | 170.02                                 | 169                               | 9.86                                     | 169.70 16                                                                   | 69.51 1                               | 69.32 16                       | 9.20           | 169.07 10                 | 8.92 16                  | 8.79                                  | 168.59                                                                                                                                                   | 168.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 168.29 168             | 3.17                                           | 167.92 167         | 7.80 167                                | 7.53           | 167.31       |
| Min Pipe Cover (m): | 4.84                                   | 4.5                               | 84                                       | 5.33 5                                                                      | 5.16 !                                | 5.52 5.                        | .65            | 5.78                      | 5.13 5                   | 5.88                                  | 6.13                                                                                                                                                     | 6.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.24 6.                | 57                                             | 7.08 6.            | 87 6.                                   | 36             |              |
| Max HGL (ft):       | 172.25                                 | 172                               | 2.18                                     | 172.11 13                                                                   | 72.04 1                               | 71.97 17                       | 1.94           | 171.86 1                  | 1.78 17                  | 1.71                                  | 171.63                                                                                                                                                   | 171.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 171.45 171             | .35                                            | 171.18 171         | 1.04 170                                | ).86           | 167.66       |
| Link ID:            |                                        | Pipe 41                           | Pipe 42                                  | Pipe 43                                                                     | Pipe 44                               | Pipe 45                        | Pipe 46        | Pipe 47                   | Pipe 48                  | Pipe 49                               | Pipe 50                                                                                                                                                  | Pipe 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pipe 52                | Pipe 53                                        | Pipe 54            | Pipe 55                                 | Pipe 56        |              |
| Length (ft):        |                                        | 107.85                            | 108.34                                   | 107.66                                                                      | 107.99                                | 94.33                          | 106.48         | 104.34                    | 91.66                    | 101.72                                | 121.38                                                                                                                                                   | 61.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.12                  | 93.59                                          | 67.35              | 94.02                                   | 157.47         |              |
| Dia (m):            |                                        | 0.0012                            | 0.45                                     | 0.45                                                                        | 0.0010                                | 0.0010                         | 0.53           | 0.0012                    | 0.0010                   | 0.0017                                | 0.007                                                                                                                                                    | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.60                   | 0.60                                           | 0.60               | 0.60                                    | 0.0014         |              |
| Stope (m/m):        | 64 B                                   | 170.02                            | 169.96                                   | 169.70                                                                      | 169.51                                | 169.32                         | 169.20         | 169.07                    | 168.92                   | 169.79                                | 169.59                                                                                                                                                   | 169./9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 169.29                 | 169.17                                         | 167.92             | 167.90                                  | 167.52         |              |
| Dn Invert (II):     | 8                                      | 169.89                            | 169.73                                   | 169.55                                                                      | 169.37                                | 169.23                         | 169.09         | 168.94                    | 168.81                   | 168.62                                | 168.51                                                                                                                                                   | 168.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 168.20                 | 167.93                                         | 167.83             | 167.61                                  | 167.31         |              |
| Max Q (cms):        |                                        | 0.07                              | 0.07                                     | 0.07                                                                        | 0.07                                  | 0.08                           | 0.12           | 0.12                      | 0.12                     | 0.12                                  | 0.12                                                                                                                                                     | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25                   | 0.25                                           | 0.26               | 0.26                                    | 0.26           |              |
| Max Vel (ft/s):     |                                        | 0.76                              | 0.76                                     | 0.78                                                                        | 0.74                                  | 0.59                           | 0.76           | 0.77                      | 0.82                     | 0.76                                  | 0.62                                                                                                                                                     | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.10                   | 1.04                                           | 1.01               | 0.90                                    | 2.40           |              |
| Max Depth (m):      |                                        | 0.45                              | 0.45                                     | 0.45                                                                        | 0.45                                  | 0.52                           | 0.52           | 0.52                      | 0.52                     | 0.52                                  | 0.52                                                                                                                                                     | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.60                   | 0.60                                           | 0.60               | 0.60                                    | 0.36           |              |

Autodesk Storm and Sanitary Analysis



Autodesk® Storm and Sanitary Analysis 2016 - Version 13.5.195 (Build 0) \_\_\_\_\_ \*\*\*\*\* Project Description \*\*\*\* File Name ..... 23-02-06 SSA-post.SPF \*\*\*\*\* Analysis Options \*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Flow Units ..... cms Link Routing Method ..... Hydrodynamic Storage Node Exfiltration.. None Starting Date ..... MAY-31-2019 00:00:00 Ending Date ..... JUN-02-2019 00:00:00 Report Time Step ..... 00:05:00 \*\*\*\*\* Element Count \*\*\*\*\*\*\*\*\* Number of subbasins ..... 0 Number of nodes ..... 17 Number of links ..... 16 \*\*\*\*\* Node Summarv \*\*\*\*\*\*\*\*\* Element Invert Maximum Ponded Type Elevation Elev. Area m m m<sup>2</sup> External Node ID Inflow \_\_\_\_\_ JUNCTION170.02175.310.000YesJUNCTION167.53174.570.000YesJUNCTION167.80175.300.000Yes MH18A MH23A MH24A 167.92175.610.000168.17175.370.000 JUNCTION MH25A Yes JUNCTION MH26A JUNCTION Yes 168.29 175.16 0.000 MH27A Yes 168.49 175.72 0.000 MH28A Yes 0.000 168.59 175.27 MH29A Yes 168.79 175.21 168.92 175.59 0.000 MH30A Yes MH31A Yes MH32A 169.07 175.40 0.000 Yes 169.20 175.41 169.32 175.36 0.000 MH33A Yes MH34A Yes 169.51175.160.000169.70175.510.000169.86175.180.000167.31167.690.000 MH35A Yes MH36A Yes MH37A JUNCTION Yes MH37A JUNCTION Out-1Pipe 56 OUTFALL \*\*\*\*\*\*\*\* Link Summary \*\*\*\*\*\*\*\* Length Slope Manning's m % Roughness Link From Node To Node Element ID Туре \_\_\_\_\_ 
 Pipe 41
 MH18A
 MH37A
 CONDUIT
 107.9
 0.2000
 0.0120

 Pipe 42
 MH37A
 MH36A
 CONDUIT
 108.3
 0.2000
 0.0120

 Pipe 43
 MH36A
 CONDUIT
 107.7
 0.2000
 0.0120

 Pipe 44
 MH35A
 CONDUIT
 107.7
 0.2000
 0.0120

 Pipe 44
 MH35A
 MH34A
 CONDUIT
 108.0
 0.2000
 0.0120

 Pipe 45
 MH34A
 MH33A
 CONDUIT
 94.3
 0.2000
 0.0120

 Pipe 46
 MH33A
 MH32A
 CONDUIT
 106.5
 0.2000
 0.0120

#### Autodesk Storm and Sanitary Analysis

### Autodesk Storm and Sanitary Analysis

\*\*\*\*\*

| ************************************** | Volume<br>hectare-m | Volume<br>Mliters |
|----------------------------------------|---------------------|-------------------|
| External Inflow                        | 0.501               | 5.008             |
| External Outflow                       | 2.838               | 28.376            |
| Initial Stored Volume                  | 0.000               | 0.000             |
| Final Stored Volume                    | 0.020               | 0.201             |

|                          | -                  |          |       |         |           |           |
|--------------------------|--------------------|----------|-------|---------|-----------|-----------|
| Cross Section<br>******* | n Summary<br>***** |          |       |         |           |           |
| Link<br>Design           | Shape              | Depth/   | Width | No. of  | Cross     | Full Flow |
| ID                       |                    | Diameter |       | Barrels | Sectional | Hydraulic |
| Flow                     |                    |          |       |         | Area      | Radius    |
| Capacity                 |                    |          |       |         | m 2       |           |
| cms                      |                    | III      | 111   |         | 111       | III       |
|                          |                    |          |       |         |           |           |
|                          |                    |          |       |         |           |           |
| Pipe 41<br>0.14          | CIRCULAR           | 0.45     | 0.45  | 1       | 0.16      | 0.11      |
| Pipe 42                  | CIRCULAR           | 0.45     | 0.45  | 1       | 0.16      | 0.11      |
| Pipe 43                  | CIRCULAR           | 0.45     | 0.45  | 1       | 0.16      | 0.11      |
| 0.14<br>Pipe 44          | CIRCULAR           | 0.45     | 0.45  | 1       | 0.16      | 0.11      |
| 0.14<br>Pipe 45          | CIRCULAR           | 0.53     | 0.53  | 1       | 0.22      | 0.13      |
| 0.21<br>Dime 46          |                    | 0 50     | 0 53  | -       | 0.22      | 0.12      |
| 0.21                     | CIRCULAR           | 0.55     | 0.55  | Ţ       | 0.22      | 0.13      |
| Pipe 47<br>0.21          | CIRCULAR           | 0.53     | 0.53  | 1       | 0.22      | 0.13      |
| Pipe 48                  | CIRCULAR           | 0.53     | 0.53  | 1       | 0.22      | 0.13      |
| Pipe 49                  | CIRCULAR           | 0.53     | 0.53  | 1       | 0.22      | 0.13      |
| 0.21<br>Pipe 50          | CIRCULAR           | 0.53     | 0.53  | 1       | 0.22      | 0.13      |
| 0.21<br>Dime 51          | OTDOUT ND          | 0.00     | 0.60  | 1       | 0.20      | 0.15      |
| 0.35                     | CIRCULAR           | 0.60     | 0.60  | Ţ       | 0.28      | 0.15      |
| Pipe 52<br>0.31          | CIRCULAR           | 0.60     | 0.60  | 1       | 0.28      | 0.15      |
| Pipe 53                  | CIRCULAR           | 0.60     | 0.60  | 1       | 0.28      | 0.15      |
| 0.34<br>Pipe 54          | CIRCULAR           | 0.60     | 0.60  | 1       | 0.28      | 0.15      |
| 0.30<br>Pipe 55          | CIRCULAR           | 0.60     | 0.60  | 1       | 0.28      | 0.15      |
| 0.30<br>Dino 56          | CIDCULAD           | 0.20     | 0.38  | -       | 0 11      | 0.00      |
| 0.08                     | CIRCULAR           | 0.00     | 0.30  | Ţ       | 0.11      | 0.09      |

| Pipe 47 | MH32A | MH31A        | CONDUIT | 104.3 | 0.2000 | 0.0120 |
|---------|-------|--------------|---------|-------|--------|--------|
| Pipe 48 | MH31A | MH30A        | CONDUIT | 91.7  | 0.2000 | 0.0120 |
| Pipe 49 | MH30A | MH29A        | CONDUIT | 101.7 | 0.2000 | 0.0120 |
| Pipe 50 | MH29A | MH28A        | CONDUIT | 121.4 | 0.2000 | 0.0120 |
| Pipe 51 | MH28A | MH27A        | CONDUIT | 61.5  | 0.2764 | 0.0120 |
| Pipe 52 | MH27A | MH26A        | CONDUIT | 41.1  | 0.2189 | 0.0120 |
| Pipe 53 | MH26A | MH25A        | CONDUIT | 93.6  | 0.2564 | 0.0120 |
| Pipe 54 | MH25A | MH24A        | CONDUIT | 67.4  | 0.2000 | 0.0120 |
| Pipe 55 | MH24A | MH23A        | CONDUIT | 94.0  | 0.2021 | 0.0120 |
| Pipe 56 | MH23A | Out-1Pipe 56 | CONDUIT | 157.5 | 0.2000 | 0.0120 |
|         |       |              |         |       |        |        |

Continuity Error (%) ..... -0.003

## \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* Node Depth Summary \*\*\*\*\*\*\*\*

| Node<br>ID   | Average<br>Depth<br>Attained | Maximum<br>Depth<br>Attained | Maximum<br>HGL<br>Attained | Time<br>Occu | of Max<br>irrence | Total<br>Flooded<br>Volume | Total<br>Time<br>Flooded | Retention<br>Time |
|--------------|------------------------------|------------------------------|----------------------------|--------------|-------------------|----------------------------|--------------------------|-------------------|
|              | m                            | m                            | m                          | days         | hh:mm             | ha-mm                      | minutes                  | hh:mm:ss          |
| MH18A        | 0.40                         | 2.23                         | 172.25                     | 1            | 18:59             | 0                          | 0                        | 0:00:00           |
| MH23A        | 1.28                         | 3.33                         | 170.86                     | 1            | 19:00             | 0                          | 0                        | 0:00:00           |
| MH24A        | 1.09                         | 3.24                         | 171.04                     | 1            | 19:00             | 0                          | 0                        | 0:00:00           |
| MH25A        | 1.04                         | 3.26                         | 171.18                     | 1            | 19:00             | 0                          | 0                        | 0:00:00           |
| MH26A        | 0.88                         | 3.18                         | 171.35                     | 1            | 18:59             | 0                          | 0                        | 0:00:00           |
| MH27A        | 0.84                         | 3.16                         | 171.45                     | 1            | 18:59             | 0                          | 0                        | 0:00:00           |
| MH28A        | 0.71                         | 3.05                         | 171.54                     | 1            | 18:59             | 0                          | 0                        | 0:00:00           |
| MH29A        | 0.71                         | 3.04                         | 171.63                     | 1            | 19:00             | 0                          | 0                        | 0:00:00           |
| MH30A        | 0.61                         | 2.92                         | 171.71                     | 1            | 19:00             | 0                          | 0                        | 0:00:00           |
| MH31A        | 0.61                         | 2.86                         | 171.78                     | 1            | 19:00             | 0                          | 0                        | 0:00:00           |
| MH32A        | 0.58                         | 2.79                         | 171.86                     | 1            | 19:00             | 0                          | 0                        | 0:00:00           |
| MH33A        | 0.57                         | 2.74                         | 171.94                     | 1            | 19:00             | 0                          | 0                        | 0:00:00           |
| MH34A        | 0.52                         | 2.65                         | 171.97                     | 1            | 18:59             | 0                          | 0                        | 0:00:00           |
| MH35A        | 0.47                         | 2.53                         | 172.04                     | 1            | 19:00             | 0                          | 0                        | 0:00:00           |
| MH36A        | 0.44                         | 2.41                         | 172.11                     | 1            | 18:59             | 0                          | 0                        | 0:00:00           |
| MH37A        | 0.42                         | 2.32                         | 172.18                     | 1            | 18:59             | 0                          | 0                        | 0:00:00           |
| Out-1Pipe 56 | 0.28                         | 0.35                         | 167.66                     | 1            | 19:00             | 0                          | 0                        | 0:00:00           |

\* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

Node Flow Summary \*\*\*\*\*\*\*\*

| Node        |    | Element  | Maximum | Peak   | Т    | ime of | Maximum  | Time of Peak |
|-------------|----|----------|---------|--------|------|--------|----------|--------------|
| ID          |    | Type     | Lateral | Inflow | Peak | Inflow | Flooding | Flooding     |
|             |    |          | Inflow  |        | Occu | rrence | Overflow | Occurrence   |
|             |    |          | cms     | CMS    | days | hh:mm  | CMS      | days hh:mm   |
| MH18A       |    | JUNCTION | 0.072   | 0.072  | 0    | 18:00  | 0.00     |              |
| MH23A       |    | JUNCTION | 0.009   | 0.263  | 1    | 19:00  | 0.00     |              |
| MH24A       |    | JUNCTION | 0.000   | 0.255  | 1    | 19:00  | 0.00     |              |
| MH25A       |    | JUNCTION | 0.002   | 0.255  | 1    | 18:59  | 0.00     |              |
| MH26A       |    | JUNCTION | 0.001   | 0.254  | 1    | 18:59  | 0.00     |              |
| MH27A       |    | JUNCTION | 0.049   | 0.255  | 1    | 18:59  | 0.00     |              |
| MH28A       |    | JUNCTION | 0.090   | 0.206  | 1    | 18:59  | 0.00     |              |
| MH29A       |    | JUNCTION | 0.001   | 0.120  | 1    | 20:00  | 0.00     |              |
| MH30A       |    | JUNCTION | 0.000   | 0.117  | 1    | 19:00  | 0.00     |              |
| MH31A       |    | JUNCTION | 0.000   | 0.116  | 1    | 18:59  | 0.00     |              |
| MH32A       |    | JUNCTION | 0.001   | 0.116  | 1    | 18:59  | 0.00     |              |
| MH33A       |    | JUNCTION | 0.034   | 0.116  | 1    | 18:59  | 0.00     |              |
| MH34A       |    | JUNCTION | 0.009   | 0.082  | 1    | 18:59  | 0.00     |              |
| MH35A       |    | JUNCTION | 0.001   | 0.075  | 0    | 17:21  | 0.00     |              |
| MH36A       |    | JUNCTION | 0.001   | 0.073  | 0    | 17:24  | 0.00     |              |
| MH37A       |    | JUNCTION | 0.001   | 0.073  | 1    | 18:59  | 0.00     |              |
| Out-1Pipe 5 | 56 | OUTFALL  | 0.000   | 0.263  | 1    | 19:00  | 0.00     |              |

\*\*\*\*\* Outfall Loading Summary

| Outfall | Node | ID | Flow | Average | Peak |
|---------|------|----|------|---------|------|

### Autodesk Storm and Sanitary Analysis

|              | Frequency<br>(%) | Flow<br>cms | Inflow<br>cms |
|--------------|------------------|-------------|---------------|
| Out-1Pipe 56 | 99.99            | 0.152       | 0.263         |
| System       | 99.99            | 0.152       | 0.263         |

| Link I<br>Ratio of | іD<br>Е П  | Element<br>Cotal Reported | Tir    | me of | Maximum  | Length | Peak Flow | Design   | Ratio of |
|--------------------|------------|---------------------------|--------|-------|----------|--------|-----------|----------|----------|
| Manimum            |            | Type                      | Peak   | Flow  | Velocity | Factor | during    | Flow     | Maximum  |
| Maximum            | 1          |                           | Occur  | rence | Attained |        | Analysis  | Capacity | /Design  |
| Flow Su            | ircharged  | 1                         | , ,    | ,     | 1        |        |           |          |          |
| Depth              | minute     | es                        | days I | nn:mm | m/sec    |        | cms       | cms      | FIOW     |
|                    |            |                           |        |       |          |        |           |          |          |
| Pipe 4             | 11 700     | CONDUIT                   | 1 1    | 18:59 | 0.76     | 1.00   | 0.072     | 0.138    | 0.52     |
| I.UU<br>Bipo 4     | 138        | CONDUTT                   | 0      | 17.24 | 0.76     | 1 00   | 0 072     | 0 130    | 0 52     |
| 1.00               | 78.5       | SURCHARGED                | 0.     | 1/.24 | 0.70     | 1.00   | 0.072     | 0.130    | 0.52     |
| Pipe 4             | 13         | CONDUIT                   | 0      | 17:21 | 0.78     | 1.00   | 0.074     | 0.138    | 0.53     |
| 1.00               | 866        | 5 SURCHARGED              |        |       |          |        |           |          |          |
| Pipe 4             | 14         | CONDUIT                   | 1 :    | 19:00 | 0.74     | 1.00   | 0.073     | 0.138    | 0.53     |
| 1.00               | 937        | SURCHARGED                |        |       |          |        |           |          |          |
| Pipe 4             | 15         | CONDUIT                   | 1 1    | 19:00 | 0.59     | 1.00   | 0.082     | 0.208    | 0.40     |
| 1.00<br>Dipo 4     | 970        | CONDUT                    | 1 -    | 10.50 | 0.76     | 1 00   | 0 115     | 0 200    | 0 55     |
| 1 00               | 1024       | L SUBCHARGED              | 1      | 10:39 | 0.70     | 1.00   | 0.115     | 0.200    | 0.55     |
| Pipe 4             | 17         | CONDUTT                   | 1      | 19:00 | 0.77     | 1.00   | 0.116     | 0.208    | 0.55     |
| 1.00               | 1086       | 5 SURCHARGED              |        |       |          |        |           |          |          |
| Pipe 4             | 18         | CONDUIT                   | 1 1    | 19:00 | 0.82     | 1.00   | 0.116     | 0.208    | 0.56     |
| 1.00               | 1149       | SURCHARGED                |        |       |          |        |           |          |          |
| Pipe 4             | 19         | CONDUIT                   | 1 2    | 20:00 | 0.76     | 1.00   | 0.119     | 0.208    | 0.57     |
| 1.00               | 1190       | ) SURCHARGED              |        |       |          |        |           |          |          |
| Pipe 5             | 1075       | CONDUIT                   | 1 3    | 20:00 | 0.62     | 1.00   | 0.123     | 0.208    | 0.59     |
| I.UU<br>Pine 5     | 1 12/5     | CONDUTT                   | 1 .    | 18.59 | 0 91     | 1 00   | 0 206     | 0 350    | 0 59     |
| 1.00               | 1269       | SURCHARGED                | ± .    | 10.00 | 0.91     | 1.00   | 0.200     | 0.550    | 0.00     |
| Pipe 5             | 52         | CONDUIT                   | 1 1    | 18:59 | 1.10     | 1.00   | 0.254     | 0.311    | 0.82     |
| 1.00               | 1422       | SURCHARGED                |        |       |          |        |           |          |          |
| Pipe 5             | 53         | CONDUIT                   | 1 1    | 19:00 | 1.04     | 1.00   | 0.253     | 0.337    | 0.75     |
| 1.00               | 1582       | 2 SURCHARGED              |        |       |          |        |           |          |          |
| Pipe 5             | 54         | CONDUIT                   | 1 :    | 19:00 | 1.01     | 1.00   | 0.255     | 0.298    | 0.86     |
| 1.00               | 2029       | SURCHARGED                | 1      | 10.00 | 0 00     | 1 0 0  | 0 055     | 0 000    | 0.05     |
| 1 00               | ))<br>2015 | CONDULT                   | 1.     | 19:00 | 0.90     | 1.00   | 0.255     | 0.299    | 0.85     |
| Pipe 5             | 2311<br>16 | CONDUTT                   | 1 .    | 19:00 | 2.40     | 1.00   | 0.263     | 0.085    | 3.09     |
| 0.97               | (          | ) > CAPACITY              |        |       |          |        |           |          |          |

| * * * * * | *****  | * * * * | * * * * * * * * * * * * * * * * * * * * |
|-----------|--------|---------|-----------------------------------------|
| Highe     | est Fl | ow      | Instability Indexes                     |
| ****      | *****  | * * *   | * * * * * * * * * * * * * * * * * * *   |
| Link      | Pipe   | 52      | (4)                                     |
| Link      | Pipe   | 54      | (4)                                     |
| Link      | Pipe   | 53      | (4)                                     |
| Link      | Pipe   | 51      | (4)                                     |
|           |        |         |                                         |

Link Pipe 50 (3)

WARNING 108 : Surcharge elevation defined for Junction MH18A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH23A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH24A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH25A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH26A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH27A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH28A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH29A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH30A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH31A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH32A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH33A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH34A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH35A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH36A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 108 : Surcharge elevation defined for Junction MH37A is below junction maximum elevation. Assumed surcharge elevation equal to maximum elevation. WARNING 005 : Minimum slope used for Conduit Pipe 41. WARNING 005 : Minimum slope used for Conduit Pipe 42. WARNING 005 : Minimum slope used for Conduit Pipe 43. WARNING 005 : Minimum slope used for Conduit Pipe 44. WARNING 005 : Minimum slope used for Conduit Pipe 45. WARNING 005 : Minimum slope used for Conduit Pipe 46. WARNING 005 : Minimum slope used for Conduit Pipe 47. WARNING 005 : Minimum slope used for Conduit Pipe 48. WARNING 005 : Minimum slope used for Conduit Pipe 49. WARNING 005 : Minimum slope used for Conduit Pipe 50. WARNING 005 : Minimum slope used for Conduit Pipe 54. WARNING 005 : Minimum slope used for Conduit Pipe 56. Analysis began on: Wed Feb 8 14:07:37 2023 Analysis ended on: Wed Feb 8 14:07:38 2023

Autodesk Storm and Sanitary Analysis

Total elapsed time: 00:00:01

# Hydrant Flow Test Report

| SITE NAME<br>SITE ADDRE<br>TEST HYDR<br>BASE HYDR | :<br>ESS / MUNICIPA<br>ANT LOCATION | NLITY:<br>I :<br>N:     | Willoughby I<br>Front of # 8<br>(Hyd<br>By # 872<br>(Hyd | Drive Niag<br>3563 Willou<br>Irant ID # 0<br>9 Willough<br>Irant ID # 0 | ara Falls, On<br>Ighby Drive<br>2029)<br>Iby Drive<br>2032) |   | TEST DATE:<br>Nov 14,2022<br>TEST TIME: |
|---------------------------------------------------|-------------------------------------|-------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|---|-----------------------------------------|
| TEST BY: Luzia Wood                               |                                     |                         |                                                          |                                                                         |                                                             |   | 9.30AIVI                                |
|                                                   |                                     |                         | <u>TI</u>                                                |                                                                         | <u> </u>                                                    |   |                                         |
| FLOW HY                                           | ′DRANT                              | Pipe Diam.<br>(in / mm) | 8inch                                                    |                                                                         |                                                             |   |                                         |
|                                                   |                                     |                         | PITOT 1                                                  |                                                                         | PITOT 2                                                     |   |                                         |
|                                                   | SIZE OPENIN                         | G (inches):             | 2.5                                                      |                                                                         | 2.5                                                         |   |                                         |
|                                                   | COEFFICIENT                         | (note 1):               | 0.90                                                     |                                                                         | 0.90                                                        |   |                                         |
|                                                   | PITOT READI                         | NG (psi):               | 65                                                       |                                                                         | 42 / 42                                                     |   |                                         |
|                                                   | FLOW (usgpm                         | ı):                     | 1353                                                     |                                                                         | 2175                                                        |   |                                         |
|                                                   | THEORETIC                           | al flow @               | ) 20 PSI                                                 | 5625                                                                    |                                                             |   |                                         |
| BASE HY                                           | DRANT                               | Pipe Diam.<br>(in / mm) | 8inch                                                    |                                                                         |                                                             |   |                                         |
| STATIC READING (psi): 90                          |                                     | RESIDUAL 1 (psi):       | 85                                                       | RESIDUAL 2 (psi):                                                       | 80                                                          | _ |                                         |
| REMARKS:                                          |                                     |                         |                                                          |                                                                         |                                                             |   |                                         |

**NOTE 1**: Conversion factor of .90 used for flow calculation based on rounded and flush internal nozzle configuration. No appreciable difference in pipe invert between flow and base hydrants.



L & D Waterworks Inc.

491 Port Maitland Rd Dunnville, ON N1A 2W6 Ph: 289.684.6747



## **Fire Flow Calculation**

Project: Willoughby Drive Development Project No.: 221377 Municipality: City of Niagara Falls

GUIDE FOR CALCULATING CAPACITY AT 20psi FOR FIRE FLOW (as per the NFPA 291: Recommended Practice for Fire Flow Testing and Marking of Hydrants. (2010). (Section 4.10.1.2.))

The Formula for Calculating Rated Capacity at 20psi

## $Q_{R} = Q_{F} \times (H_{R} / H_{F})^{0.54}$

Where:

Based on hydrant flow test by Aquazition, November 14, 2022

Q<sub>R</sub> = Rated Capacity at 20psi (in GPM)

 $Q_F$  = Total test flow (in GPM)

H<sub>R</sub> = Static Pressure minus 20 psi

H<sub>F</sub> = Static Pressure minus Residual Pressure

| Flow Test Parameters: | 1 Port |      |
|-----------------------|--------|------|
| Static Pressure       |        | 90.0 |
| Residual Pressure     |        | 85.0 |
| Test Flow Rate        |        | 1353 |
|                       |        |      |

| Q <sub>R</sub> = | 5626 GPM     |
|------------------|--------------|
|                  | 21,297 L/min |

## Fire Flow Calculation at 30psi

Project: Willoughby Drive Development Project No.: 221377 Municipality: City of Niagara Falls

GUIDE FOR CALCULATING CAPACITY AT 20psi FOR FIRE FLOW (as per the NFPA 291: Recommended Practice for Fire Flow Testing and Marking of Hydrants. (2010). (Section 4.10.1.2.))

The Formula for Calculating Rated Capacity at 20psi

## $Q_{R} = Q_{F} \times (H_{R} / H_{F})^{0.54}$

Where:

Based on hydrant flow test by Aquazition, November 14, 2022

Q<sub>R</sub> = Rated Capacity at 20psi (in GPM)

 $Q_F$  = Total test flow (in GPM)

 $H_R$  = Static Pressure minus 20 psi

H<sub>F</sub> = Static Pressure minus Residual Pressure

| Flow Test Parameters: | 1 Port |      |
|-----------------------|--------|------|
| Static Pressure       |        | 90.0 |
| Residual Pressure     |        | 85.0 |
| Test Flow Rate        |        | 1353 |
|                       |        |      |

| Q <sub>R</sub> = | 5177   | GPM   |
|------------------|--------|-------|
|                  | 19,596 | L/min |