REPORT

TABLE OF CONTENTS

1 INTRODUCTION 1
2 FACILITY DESCRIPTION. 1
2.1 Proposed Extraction Scenario 1
2.2 Modelled Phases. 3
3 NOISE SOURCE SUMMARY 3
3.1 Continuous Sources 4
3.2 Impulsive Sources. 5
3.3 Construction Sources
3.4 Identifiable Source Characteristics 5
4 POINTS OF RECEPTION 5
4.1 Surrounding Noise Sensitive Land Uses 6
4.2 Modelled Points of Reception 6
5 ASSESSMENT CRITERIA 7
5.1 Exclusion Limits for Continuous Sources 7
5.2 Exclusion Limits for Impulsive Sources 7
5.3 Construction Limits 8
6 NOISE CONTROL RECOMMENDATIONS 9
7 IMPACT ASSSSESSMENT 10
8 ALTERNATE EXTRACTION SCENARIO 11
9 CONCLUSIONS 11
10 REFERENCES 12

LIST OF TABLES

Table 1: \quad Noise Source Summary - Proposed Extraction Scenario
Table 2a: Point of Reception Noise Impact (Sample Calculation for Proposed Phase 1A Sinking Cut)
Table 2b: Point of Reception Noise Impact (Sample Calculation for Proposed Phase 4 Southeast)
Table 3a: Acoustic Assessment Summary, Proposed Phase 1A Sinking Cut
Table 3b: Acoustic Assessment Summary, Proposed Phase 1A South Sinking Cut
Table 3c: Acoustic Assessment Summary, Proposed Phase 2A Sinking Cut
Table 3d: Acoustic Assessment Summary, Proposed Phase 3A
Table 3e: Acoustic Assessment Summary, Proposed Phase 3B Northeast
Table 3f: Acoustic Assessment Summary, Proposed Phase 4 Southeast
Table 3g: Acoustic Assessment Summary, Proposed Phase 5 East
Table 3h: Acoustic Assessment Summary, Proposed Scenario Impulsive Source

LIST OF FIGURES

Figure 1: \quad Site Overview and Sensitive Receptor Locations - Proposed Extraction Scenario
Figure 2a: Proposed Phase 1A Sinking Cut Operation Overview
Figure 2b: Proposed Phase 1A South Sinking Cut Operation Overview
Figure 2c: Proposed Phase 2A Sinking Cut Operation Overview
Figure 2d: Proposed Phase 3A Operation Overview
Figure 2e: Proposed Phase 3B Northeast Operation Overview
Figure 2f: Proposed Phase 4 Southeast Operation Overview
Figure 2g: Proposed Phase 5 East Operation Overview
Figure 2h: Significant Source Locations (Detailed Example) - Proposed Phase 1A Sinking Cut
Figure 2i: Significant Source Locations (Detailed Example) - Proposed Phase 4 Southeast
Figure 3a: Sound Level Contours - Proposed Phase 1A Sinking Cut, Daytime
Figure 3b: Sound Level Contours - Proposed Phase 1A Sinking Cut, Evening/Nighttime
Figure 3c: Sound Level Contours - Proposed Phase 1A South Sinking Cut, Daytime
Figure 3d: Sound Level Contours - Proposed Phase 1A South Sinking Cut, Evening/Nighttime
Figure 3e: Sound Level Contours - Proposed Phase 2A Sinking Cut, Daytime
Figure 3f: Sound Level Contours - Proposed Phase 2A Sinking Cut, Evening/Nighttime
Figure 3g: Sound Level Contours - Proposed Phase 3A, Daytime
Figure 3h: Sound Level Contours - Proposed Phase 3A, Evening/Nighttime
Figure 3i: Sound Level Contours - Proposed Phase 3B Northeast, Daytime
Figure 3j: Sound Level Contours - Proposed Phase 3B Northeast, Evening/Nighttime
Figure 3k: Sound Level Contours - Proposed Phase 4 Southeast, Daytime
Figure 31: Sound Level Contours - Proposed Phase 4 Southeast, Evening/Nighttime
Figure 3m: Sound Level Contours - Proposed Phase 5 East, Daytime
Figure 3n: Sound Level Contours - Proposed Phase 5 East, Evening/Nighttime

RWDI\#1603157

October 28, 2021

LIST OF APPENDICES

Appendix A: Zoning Information

Appendix B: Rolling Meadows Secondary Plan Aggregate Resource Protection Policies
Appendix C: Key Parameters Included in Cadna/A Noise Modelling Sample Cadna/A Modelling Output
Appendix D: Alternate Extraction Scenario
Appendix E: Curriculum Vitae

RWDI\#1603157
October 28, 2021

REPORT SIGNATURES

Slavi Grozev, P.Eng.

1 INTRODUCTION

Walker Aggregates Inc. (WAI) has retained RWDI AIR Inc. (RWDI) to complete an Acoustic Assessment Report (AAR) for the Upper's Quarry (the Quarry) in Niagara Falls, Ontario.

This assessment is completed in respect of an application under the Aggregate Resources Act. Based on the Ministry of Natural Resources Policy \#A.R. 2.01.09 (MNR, 2006), a detailed noise assessment is required since there are noise-sensitive lands within 150 m of the Quarry. The Aggregate Resources Act recommends referencing the Ontario Ministry of the Environment and Climate Change (MOECC) guidelines for stationary sources of sound. This AAR is completed using the applicable Ontario Ministry of the Environment, Conservation and Parks (MECP), previously known as the Ministry of the Environment and Climate Change (MOECC), guidance documents (MOECC, 2012 and 1995). Documents in this report still reference the MOECC.

Quarry operations will not include large sources of vibration. Therefore, an assessment of vibration impact is not required. Blasting is outside of the scope of this assessment and is addressed separately in the blast impact analysis by Explotech. The results of the acoustic assessment indicate that sound levels produced at the proposed quarry will comply with the applicable guidelines with the implementation of noise control recommendations summarized in Section 6.

2 FACILITY DESCRIPTION

The proposed Upper's Quarry is located on Part of Lots 119, 120, 136 and 137, and Part of the Road Allowance between Lots 120 and 136 (geographic township of Stamford) in the City of Niagara Falls, Regional Municipality of Niagara. Sensitive land uses adjacent to Upper's is shown on zoning maps in Appendix A.

2.1 Proposed Extraction Scenario

The layout of the site and phases for the Proposed Extraction Scenario can be found in Figure 1. Two municipal road allowances separate the proposed quarry site into three extraction areas:
i. North Extraction Area: extraction area north of Upper's Lane;
ii. Mid Extraction Area: extraction area south of Upper's Lane and north of the unopened road allowance between Township Lots 120 \& 136 in the former Township of Stamford, now in the City of Niagara Falls ("unopened road allowance"); and
iii. South Extraction Area: extraction area south of the unopened road allowance.

The proposed extraction scenario avoids extraction within the road allowances. Operations at the proposed quarry will consist of overburden stripping; berm construction; drilling, blasting, extraction, transportation, processing, washing, stockpiling, and shipping of aggregate; and rehabilitation. The annual production limit will be 1,800,000 tonnes of aggregate per year, however during several phases of operation, the maximum annual tonnage will be lower due to operational constraints.

Clearing of overburden and berm construction will take place prior to drilling and blasting in each phase. At the start of extraction operations, four sinking cuts will be required to allow extraction to begin. Two sinking cuts are required in Phase 1A (one in the Mid Extraction Area, one in the South Extraction Area), one sinking cut is required in 2 A .

During the sinking cuts and early phases of operation, the primary crusher is integrated into a single processing plant located near the working face. In later phases, the primary crusher will split from the single integrated plant and start to follow the working face. The processing plant, which contains the secondary and tertiary crushers, will remain close to the quarry entrance. The processing plant will be located at varying elevations, beginning at the top of rock during the sinking cut portion of operations, and moving to the first bench and then the final quarry floor as space becomes available.

Shot rock will be loaded by front-end loaders into the primary crusher adjacent of the working face. Conveyors will then transport the products from the primary crusher to the processing plant, where it will be further processed, washed and stockpiled, prior to loading into highway shipping trucks by front-end loaders.

Phases $1 \mathrm{~A}, 2 \mathrm{~A}$, and 3 will be extracted in two benches down to the Quarry floor, which is at elevations of 141 to 149 metres above sea level (masl). The quarry floor has a gradual downward slope from the northeast corner (149 masl) to the southwest corner (141 masl). The first bench is between 175 to 178 masl and the second bench is between 160 to 162 masl. Phases 1B and 2B will be extracted to an elevation of 155 masl. They will then be backfilled with clay material up to approximately 176 to 177 masl for the watercourse realignment.

In addition to aggregate extraction and processing, the site will also include an asphalt plant (AP), to be located in mid-extraction area Phase 1A, capable of producing 4,900 tonnes per day of hot-mix asphalt (HMA). Operations include the receipt and drying of washed aggregate, receipt and storage of asphalt cement, mixing and storage of HMA, and loading highway trucks for shipment to the job site. The asphalt plant will become operational once Phases 1 A and 1 B have been fully extracted. This will allow room for the asphalt plant to be put in place.

The hours of operation at the Quarry for the Proposed Extraction Scenario are:

- Drilling and extraction at the working face: Monday to Saturday 0700-1900h;
- Aggregate processing at the primary crusher: Monday to Saturday 0700-1900h;
- Conveyor to the mobile crusher plants: Monday to Saturday 0700-1900h;
- Aggregate processing at the processing plant: Monday to Saturday 0700-1900h;
- Aggregate shipping from processing plant stockpile: 24 hours per day, 7 days a week;
- Hauling aggregates from processing plant stockpiles to the asphalt plant: 24 hours per day, 7 days a week;
- Asphalt plant: 24 hours per day, 7 days a week;
- HMA shipping from asphalt plant: 24 hours per day, 7 days a week; and
- Asphalt cement (AC) and reclaimed asphalt pavement (RAP) receiving at the asphalt plant: 24 hours per day, 7 days a week.

2.2 Modelled Phases

The receptors surrounding the Quarry will experience the most impact from the Quarry during different phases. Therefore, the modelled scenarios are selected based on the worst-case extraction location for the different receptors.

The modelled phases for the Proposed Extraction Scenario are:

- Phase 1A Sinking Cut (P1A_Sinkcut*):
- Sinking cut in Mid Extraction Area
- Phase 1A South Sinking Cut (P1AS_Sinkcut*):
- Sinking cut in South Extraction Area
- Phase 2A Sinking Cut (P2A_Sinkcut*):
- Sinking cut in North Extraction Area
- Phase 3A (P3A*):
- Extraction in northern portion of Phase 3A, with AP operational
- Phase 3B Northeast (P3B_NE*):
- Extraction in the northeastern corner of North Extraction Area, with AP operational
- Phase 4 Southeast (P4_SE*):
- Extraction in southeastern corner of Mid Extraction Area, with AP operational
- Phase 5 East (P5_E*):
- Extraction in eastern corner of South Extraction Area, with AP operational

Sinking cut in Phase 3A was also assessed but was deemed to be less impactful than Phase 2A sinking cut. Phase $3 B$ sinking cut is expected to have similar impacts. Therefore sinking cuts in Phases 3A/3B were not evaluated further. The operation overviews of the modelled scenarios are shown in Figures $\mathbf{2 a}$ through $\mathbf{2 g}$.

3 NOISE SOURCE SUMMARY

A summary of significant sound sources is provided in Table 1, including sound power levels, location, sound characteristics, operating duration, and vehicle route assumptions. Sound power levels for the proposed sources are based on historical measurement data on file at RWDI. The overview of the locations of the modelled sources are shown in Figures $\mathbf{2 a}$ through $\mathbf{2 g}$. Detailed examples of the significant source locations are shown in Figures $\mathbf{2 h}$ and $\mathbf{2 i}$.

3.1 Continuous Sources

The continuous sources modelled are:

- Working Face (WF) and Primary Crusher (PC) sources (daytime only, 0700 to 1900 h):
- One (1) silenced drill working on the $1^{\text {st }}$ bench;
- One (1) loader working on the $2^{\text {nd }}$ bench;
- Dumping of rocks into primary crusher;
- One (1) primary crusher; and
- One (1) primary screen.
- Conveyor from Working Face Primary Crusher to Processing Plant (daytime only, 0700 to 1900h).
- Processing Plant (PP) sources:
- Two (2) secondary crushers (daytime only, 0700 to 1900h);
- Two (2) secondary \& tertiary screens (daytime only, 0700 to 1900 h);
- Two (2) tertiary crushers (daytime only, 0700 to 1900h);
- One (1) loader working at piles (24h/day); and
- Two (2) idling shipping trucks (24h/day).
- Asphalt Plant (AP) sources (operating continuously, 24 hours per day):
- Two (2) loaders working;
- Two (2) idling trucks;
- One (1) compressor vent;
- One (1) dust collector blower motor;
- One (1) dust collector blower stack;
- One (1) elevator motor;
- One (1) conveyor motor;
- One (1) oven motor;
- One (1) pug mill door (pressure relief noise through the door); and
- One (1) pug mill motor.
- Internal Haul Truck Routes:
- Haul roads between PP and AP for aggregates (24h/day).
- Shipping Truck Routes (24h/day):
- Shipping of aggregate from PP stockpiles to offsite;
- Shipping of HMA from AP to offsite; and
- Receiving of AC and RAP at AP.

All continuous sources are assumed to be operating constantly in their respective operating periods. During the sinking cut, only one (1) secondary and one (1) tertiary crusher will be deployed. As the Quarry progresses to later phases, two (2) sets of secondary and tertiary crushers will be deployed at the processing plant. Asphalt plant noise sources were based on the existing asphalt plant at Walker Brothers Quarry and Asphalt Plant in Niagara Falls.

Shipping truck traffic modelled using moving point source calculation method. Shipping trucks on site are expected to travel at a mean speed of approximately $20 \mathrm{~km} / \mathrm{h}$. The number of vehicle trips per hour are calculated based on peak daily production rate and typical vehicle payload and are shown in Table 1.

3.2 Impulsive Sources

The only impulsive source considered in this study is the impulses associated with the asphalt plant silos (ASPH_imp_silo), which could operate up to 24 hours a day. As per NPC-300, the sound limits are based on the number of impulses per hour. Nine (9) or more impulses are anticipated to occur at a worst-case hour during daytime, evening, and nighttime.

3.3 Construction Sources

Temporary construction noise from the Quarry is anticipated for short periods throughout its lifespan. Activities considered to be construction noise include overburden removal and berm creation. Details on construction noise assessment are provided in Section 5.

3.4 Identifiable Source Characteristics

Continuous sources that warrant adjustment due to tonal, cyclically varying, quasi-steady impulsive or beating sound characteristics receive additional consideration in accordance with MOECC NPC-104 guidelines (MOECC, 1978). These guidelines specify that a penalty is applicable for tonal, cyclically varying, or quasi-steady impulsive sound characteristics. No sources were identified to exhibit tonal, cyclically varying, quasi-steady impulsive or beating sound characteristics per NPC-103.

4 POINTS OF RECEPTION

Sound levels from sources at the Quarry were determined at points of reception (PORs) located on noise sensitive land uses. Noise sensitive land uses are defined in the MOECC's environmental guideline, Publication NPC-300 (MOECC, 2013), as the property of a person that accommodates a dwelling, a noise sensitive commercial building or a noise sensitive institutional building. In some cases, a vacant lot may be considered noise sensitive provided it is zoned to allow a sensitive use.

A noise sensitive land use may have one or more POR. PORs for an acoustic assessment are those locations where sound from the facility is received and assessed against the applicable limits. Sound levels may be assessed at the façade of the building and/or outdoor areas, depending on the type of sensitive land use assessed. Outdoor PORs are only assessed for dwellings and are not assessed for commercial and institutional noise sensitive land uses.

4.1 Surrounding Noise Sensitive Land Uses

Representative receptors with noise-sensitive land uses were identified from zoning maps and aerial photography of the area surrounding the facility. Zoning information for the area surrounding the Quarry is provided in
Appendix A. These receptors are:

- R1, Residence at 10148 Beaverdams Rd;
- R2, Residence at 9722 Beaverdams Rd;
- R3, Residence at 9602 Beaverdams Rd;
- R4, Residence at 5584 Beechwood Rd;
- R5, Residence at 5769 Beechwood Rd; and
- R6, Residence at 9944 Lundy's Ln.

There is a neighboring church on the southwest corner of the intersection of Upper's Lane and Beechwood Rd, approximately 60 m from the Quarry boundary. WAI has a special agreement in place with the Church to avoid noise disturbance. Therefore, the Church was not assessed as a noise sensitive receptor.

There is a residential-zoned vacant lot for the Rolling Meadows development approximately 420 m west of the Quarry. The vacant lot was not considered as a receptor for this assessment since the land developer will be required to mitigating any noise within 500 m of the bed rock resource area according to policy B.8.12.3. of the Rolling Meadows Secondary Plan. The policy is included in Appendix B.

4.2 Modelled Points of Reception

Two PORs were used to assess the sound level at residential receptors (R1 through R6): the façade POR and the outdoor POR. The façade PORs are placed at the closest window facing the Quarry. For two-storey residences, the façade POR is modelled 4.5 m above ground. For one-storey residence, the POR is modelled 1.5 m above ground. All outdoor PORs are modelled at a height of 1.5 m .

The locations of the modelled PORs are shown in Figure 1. The location of the PORs are also shown on the zoning map Figure A. 1 in Appendix A.

5 ASSESSMENT CRITERIA

The assessment criteria for sound levels at the receptors is the higher of either the exclusion limit per NPC-300 or the minimum background sound level that occurs or is likely to occur. The exclusion limit is the highest sound level limit that may be used for a receptor when the background sound level is lower than the exclusion limit.

The sound from the facility was assessed during a given worst-case hour occurring in three time periods in NPC 300:

- Daytime, 0700-1900h;
- Evening, 1900-2300h; and
- Nighttime, 2300-0700h.

The outdoor location is only assessed during daytime and evening periods, and may have a different evening sound level limit than the corresponding façade depending on the Class. The type of acoustic environment, or "Class", defines the set of sound level limits based on the level of urbanization.

- Class 1, an acoustical environment which is typical of a major population centre that is dominated by sounds of human activity and traffic.
- Class 2, an acoustical environment which is dominated by sounds of human activity and traffic during the daytime (07:00-19:00) and defined by the environmental and infrequent human activity at night (19:00-07:00).
- Class 3, an acoustical environment defined by the environmental and infrequent human activity.

Different types of sources are also assessed separately. There are separate assessment criteria for continuous sources vs. impulsive sources.

5.1 Exclusion Limits for Continuous Sources

The exclusion limits are determined from the level of urbanization, or 'Class', at the noise-sensitive land use. The acoustic environment surround the Quarry is characterized primarily by CN rail to the south and road traffic surrounding the site. Noise sensitive land uses for the receptors are therefore in a Class 2 acoustical environment, which is typical of a suburban area that is dominated by sounds of human activity and road traffic. As such, the MOECC Publication NPC-300 Class 2 exclusion limits apply to PORs in this study. The exclusion limits for each POR are shown in Tables 3a through 3g.

5.2 Exclusion Limits for Impulsive Sources

The effect of impulsive sources of sound is evaluated separately from that of continuous sources. The sound level limits for impulsive sources are determined by the number of impulses expected to occur during a worst-case hour.

Since there is only one impulsive source on site (ASPH_imp_silo), it is evaluated against the limit associated with the number of impulses per hour for this individual source. There is expected to be nine or more impulses per hour. Therefore, the strictest Class 2 impulsive limits apply. The worst-case impulsive sound level impacts and associated limits for each POR are summarized in Tables 3h.

5.3 Construction Limits

Overburden-clearing and berm construction are considered short-term construction activities and are not examined explicitly in this assessment. Construction activities is generally temporary in nature and is not part of the day-to-day operation of the site. The sound level due to temporary construction events are not generally assessed at the surrounding receptors.

The following best practice recommendations have been provided in order to minimize the potential for construction noise impacts:

- Construction should be limited to the time periods allowed by the locally applicable bylaws. If construction activities are required outside of these hours, WAI must seek permits / exemptions directly from the municipalities in advance.
- Ensure that all internal combustion engines are fitted with appropriate muffler systems.
- WAI operating procedures should contain a provision that any initial noise complaint will trigger verification that the general noise control measures agreed to are in effect.
- In the event of verified noise complaints, all construction equipment should be verified to comply with MOECC NPC-115 guidelines, as outlined below.
- In the event of verified noise complaints, alternative noise control measured may be required, where reasonably available. In selecting appropriate noise control and mitigation measures, consideration should be given to the technical, administrative and economic feasibility of the various alternatives.

All construction equipment must meet the sound emission standards defined in MOECC publication NPC-115 (MOECC, 1977). The applicable guidelines for sound emissions from construction equipment are:

- For equipment manufactured after January 1, 1981:
- 83 dBA at 15 m for equipment under 75 kW ; and
- 85 dBA at 15 m for equipment 75 kW or larger.
- For equipment manufactured January 1, 1979 to December 31, 1980:
- 85 dBA at 15 m for equipment under 75 kW ; and
- 88 dBA at 15 m for equipment 75 kW or larger.

6 NOISE CONTROL RECOMMENDATIONS

The following recommendations are provided in order to meet the applicable compliance criteria:

1. Minimum 3 m tall perimeter berms shall be constructed around the Quarry as shown in Figure 1. The perimeter berms shall be constructed as soon as possible during site preparation prior to extraction.
2. The primary crusher shall stay within 30 m of the working face to maximize shielding effect of the Quarry terrain.
3. Material extracted from the South Extraction Area shall be processed in the Mid Extraction Area.
4. While processing in Phase 4, the licensee shall maintain an 8 m tall barrier at a radius of 40 m to the southeast of the processing plant secondary crushers as shown in Figures $\mathbf{2 f}$ and $\mathbf{2 g}$. The barrier can be material stockpiles, noise walls, or a combination of both. The barrier shall extend long enough to shield R4 and R5 from the secondary crushers.

Although construction noise is not part of the assessment, RWDI recommends the following best practices to minimize potential for construction noise impacts and complaints:
5. All construction equipment shall meet the sound emission standards defined in MECP Publication NPC-115.
6. Construction will be limited to time periods allowed by the City's applicable by-laws. If construction activities are required outside of these hours, the licensee will seek permits / exemptions directly from the City in advance.
7. All internal combustion engines will be fitted with appropriate muffler systems.
8. The licensee's operating procedures will contain a provision that any initial complaint will trigger verification that the general noise control measures agreed to on this Plan are in effect.
9. In the presences of persistent noise complaints, all construction equipment will be verified to comply with MECP's NPC-115 guidelines.
10. In the presence of persistent noise complaints and subject to the results of a field investigation, alternative noise control measures may be required, where reasonably available. In selecting appropriate noise control and mitigation measures, consideration will be given to the technical, administrative and economic feasibility of the various alternatives.

7 IMPACT ASSSSESSMENT

The Quarry sound emissions were modelled based on the operating scenarios as described in Section 2. The sound levels at surrounding PORs are calculated by modelling the sound propagation from the significant sources at the Quarry. The modelled sound levels at the PORs were assessed against the applicable limits.

Modelling of sound level propagation to the PORs was completed using Cadna/A, a commercially available implementation of the ISO 9613 (ISO, 1994b and ISO, 1996) algorithms. Cadna/A is produced by Datakustik GmbH . The modelling took into account the following factors:

- Source sound power level;
- Distance attenuation;
- Source-receptor geometry including heights, elevations and topography;
- Barrier effects of terrains, berms, and surrounding buildings;
- Duration of events;
- Ground and air (atmospheric) attenuation; and
- Meteorological effects on sound propagation.

Sample calculations showing step-by-step calculation parameters is included in Appendix C. Key modelling parameters are also summarized in Appendix C.

Ground absorption surrounding the Quarry is modelled as 0.8 , to account for the predominantly soft ground. Ground absorption within the Quarry boundary is modelled as 0.2 to account for the hard rock surfaces.

Existing terrain surrounding the quarry was extracted from the Southwestern Ontario Orthophotography Project (SWOOP) 2015 Digital Elevation Model (MNRF, 2015).

The individual contribution of each source at the modelled PORs are presented for Proposed Phase 1A Sinking Cut and Proposed Phase 4 Southeast in Tables $\mathbf{2 a}$ and $\mathbf{2 b}$, respectively, as representative sample results.

The predicted sound levels at PORs were assessed using applicable sound level limits, as shown in Tables 3a to $\mathbf{3 g}$ for continuous sources, and Table $\mathbf{3 h}$ for impulsive source. The predicted sound levels at each POR complies with the applicable NPC-300 exclusion limits for all scenarios.

Predicted sound level contours (isopleths of equal sound level) for continuous sources were generated for the worst-case operating scenario for the modelled phases described in Section 2. The sound level contours are shown in Figures 3a through 3n.

8 ALTERNATE EXTRACTION SCENARIO

In the event that Walker obtains permission from the City of Niagara Falls, extraction will include the two road allowances bisecting the proposed quarry site:
i. Upper's Lane, between the North Extraction Area and the Mid Extraction Area; and
ii. the unopened road allowance between Lots 120 and 136, between the Mid Extraction Area and the South Extraction Area.

The assessment results and recommendations for the alternate extraction scenario are included in Appendix \mathbf{D}.

9 CONCLUSIONS

An assessment of the sound levels from the Upper's Quarry operation was completed by modelling the contribution of the significant sources at the representative receptors. The sound levels due the Quarry are predicted to comply with MOECC NPC-300 Class 2 exclusion limits at the representative receptors with the implementation of the mitigation measures described in Section 6.

10 REFERENCES

1. Aggregate Resources Act (ARA), 1996, Ontario Regulation 244/97, Bill 52, Aggregate and Petroleum Resources Statue Law Amendment Act.
2. International Organization for Standardization (ISO), 1994, International Standard ISO 9613-1:1994, Acoustics -Attenuation of Sound during propagation outdoors. Part 1: Calculation of the absorption of sound by the atmosphere.
3. International Organization for Standardization (ISO), 1996, International Standard ISO 9613-2:1996, Acoustics - Attenuation of sound during propagation outdoors - Part 2: General method of calculation.
4. Ministry of Natural Resources (MNR), 2006, Policy \#A.R. 2.01.09, Licence Applications: Noise Assessment and Blast Design Report Standards.
5. Ontario Ministry of Natural Resources and Forestry (MNRF), 2015, Southwestern Ontario Orthophotography (SWOOP) 2015 Digital Elevation Model
6. Ontario Ministry of the Environment and Climate Change (MOECC), 1977, Publication NPC-115, Construction Equipment, published under the Model Municipal Noise Control Bylaw
7. Ontario Ministry of the Environment and Climate Change (MOECC), 1978, Model Municipal Noise Control Bylaw, which includes Publication NPC-103 - Procedures, and Publication NPC-104 - Sound Level Adjustments.
8. Ontario Ministry of the Environment and Climate Change (MOECC), 1995, Publication NPC-233, Information to be Submitted for Approval of Stationary Sources of Sound.
9. Ontario Ministry of the Environment and Climate Change (MOECC), 2012, Guide to Applying for an Environmental Compliance Approval.
10. Ontario Ministry of the Environment and Climate Change (MOECC), August 2013, Publication NPC-300, Environmental Noise Guideline Stationary and Transportation Sources - Approval and Planning.
11. RWDI AIR Inc. (RWDI), 2020, Upper's Quarry: Air Quality Assessment

TABLES

Wherever possible, the Source ID matches the identifiers used in the ESDM repor.
Sound Power Level of Source, in dBA, not including sound characteristic adjustments per
NPC-104.
Source Location: $\mathrm{O}=$ Outside of building, including the roof, $\mathrm{I}=$ Inside of building.

$I=$ Impulive
$-\mathrm{B}=$ Buzzing

${ }_{c}^{1-\text { cocosicic }}$

Where noise control measures are specified in construction drawings or were found on exisising equipmen,
octave band sound power tevevs include the effects of the noise control measurus. Noise control measurus octave band sound power evels include the e ffects of the noise control measures
fecommended in the mititgation section of t this report are not included in this tabl

Suurce Description	$\begin{gathered} \text { Sound } \\ \left.\begin{array}{c} \text { Power } \\ \text { Pevel } \end{array}\right] \end{gathered}$	$\begin{array}{\|c} \text { Source } \\ \text { Location }{ }^{[3]} \end{array}$	$\begin{gathered} \text { Sound } \\ \text { Characteristics }{ }^{[4]} \end{gathered}$	Noise Control Measures ${ }^{[5]}$
	(dBA)	(or O)	(s,Q, , , , , , C)	S,A,B,L,E,0

 oint source, and PWL is calculated from a single-verhicle passby.

EC= Engineering Cald based on specififations
Same
SHI\# same type a s sourc no.

For loader dumping into p primary cruster, it is assumed each dump takes approximately 10 s

${ }^{30}$ dumps hr	-	
60 min		
60 min	.	-
60 min		
60 min	60 min	60 min
60 min	-	-
60 min		
60 min		
60 min	60 min	60 min
60 min	60 min	60 min
60 min		
30 dumpshr	.	.
60 min	-	
60 min	.	-
60 min	-	-
60 min	60 min	60 min
60 min		
60 min	-	.
60 min		
60 min	60 min	60 min
60 min	60 min	60 min
60 min		
30 dumpshr	-	-
60 min	.	.
60 min	-	
60 min	-	\cdots
60 min	60 min	60 min
60 min	-	-
60 min	-	-
60 min		
60 min	60 min	60 min
$\frac{60 \mathrm{~min}}{60 \mathrm{~min}}$	60 min	60 min
60 min		
60 dumps hr	-	-
60 min	-	-
60 min		-
60 min	-	.
60 min	60 min	60 min
60 min		
60 min		.
$\frac{60 \mathrm{~min}}{60 \mathrm{~min}}$		-

Table 1: Noise Source Summary - Proposed Extraction Scenario Upper's Quarry, 1603157					
Nolest					
1.	Wherevere possible, the Source ID matches the identifiers used in the ESDM report.				
2.	Sound Power Level of Source, in dBA, not including sound characteristic adjustments per NPC-104				
3.	Source Location: $\mathrm{O}=$ Outside of building, including the roof, $\mathrm{I}=$ Inside of building.				
4.	Sound Characteristic, per NPC.-104:				
5.	S = Silencer/Muffler A = Acoustic lining, plenum	Noise control measures currently in place or specified in construction drawings:			
	Where noise control measures are specified in construction drawings or were found on existing equipment, octave band sound power levels include the effects of the noise control measures. Noise control measures recommended in the mitigation section of this report are not included in this table.				
Source id ${ }^{\text {" }}$	Surre Descripion	$\begin{gathered} \text { Sound } \\ \text { Sower } \\ \text { Povel } \\ \text { Level } \end{gathered}$	$\begin{gathered} \text { Source } \\ \text { Location }{ }^{81} \end{gathered}$	$\underset{\text { Charateristics }{ }^{\text {P1 }}}{ }{ }^{\text {S1 }}$	Noise Control Measures ${ }^{[5]}$
ASPH comp		(dBA)	(O or 0)	(S, , , , , , , , , , C	(S,A, , , L, E, , , , ()
	Asphal Plant-Compressor Vent	96	0		U
ASPH $\mathrm{DCP}_{\text {cm }}$	Asphalt Plant- Dust Collector Blower (motor)	105	0	s	
ASPH DC. m	Asphat Plant-Dust Collector Blower (stack)	110	\bigcirc	s	U
ASPF DCles	Asphalt Plant - Elevator Motor	100	\bigcirc	s	U
	Asphalt Plant - Idling Truck	${ }_{9} 6$	\bigcirc	s	
$\frac{\text { ASPH_DIE TRK1 }}{\text { ASPH IDLE TRK2 }}$	Asphalt Plant- -diling Truck	96	\bigcirc	s	U
ASPH_IDLE _TRK2	Asphalt Plant - Silo - Impulsive	127	0	1	U
	Asphat Plant- Loader Activity	102	\bigcirc	s	
ASPH Ldr Actl	Asphat Plant- Loader Activity	102	\bigcirc	s	U
ASPH motor	Asphalt Plant- Conveyor motor, gravel hiting metal plate	107	\bigcirc	s	
ASPH oven	Asphalt Plant- OVen Motor	102	$\stackrel{0}{0}$	s	U
ASPH pugdoor	Asphalt Plant-Puy Mill door (pressure erelief noise)	107	\bigcirc	s	U
ASPH pugtor	Asphalt Plant - Pug Mill Motor	105	0	s	U

Table 1: Additional Data
6. $\begin{aligned} & \text { Source type indicates Cadna/A modedling methododogy. For Point, Line, and Area sources, PWLs represent } \\ & \text { the overall level for the entire source. Where source ypp is Mobile Equipment, the source is modelled as a moving }\end{aligned}$
Sound Power Level Data Source
-Man $=$ Manutucturers Dotas
-Mea $=$ Measured Directly
EC= Engineering Cald based on specifications
Same
S\#\#\# = same typ a s source no.
8 For loader dumping into primary crusher, it is assumed each dump takes approximately 10 s

1/1 Octave Band Sound Power Level Data if available (dB)									Source Type ${ }^{\text {61] }}$	PwL Data Surce ${ }^{[1]}$	Height Anope Roof (m)	Local Roof Height Ab. Grade (m)	$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { Height } \\ \text { Above } \\ \text { Grade } \end{array} \\ \hline(\mathrm{m}) \\ \hline \end{array}$	Source Co-ordinates for point sources (m)					
31.5	63		250	500	1000	2000	4000	8000						-	Y	z	Daytime	Evening	Nighttime
91.4	88.5	99.4	96.2	93.0	90.2	87.4	84.9	${ }^{81.3}$	Point	Hist			0.6	${ }^{648875}$	${ }_{472829}$	143.6	60 min	60 min	60 min
110.8	113.6	105.4	104.1	102.2	99.8	94.9	93.4	91.5	Point	Hist			2.0	648856	4772826	145.0	60 min	60 min	60 min
125.3	126.2	117.0	110.0	1058	103.5	98.5	93.6	86.1	Point	Hist	${ }^{0.1}$	20.0	20.1	648855	4772826	163.1	60 min	60 min	60 min
95.7	97.7	95.1	95.2	97.8	95.5	91.5	87.3	77.2	Point	Hist			19.0	648861	4772835	162.0	60 min	60 min	60 min
101.7	98.9	94.6	90.2	90.5	92.8	90.1	81.6	${ }^{73.8}$	Point	Hist			3.5	648880	4772826	146.5	60 min	60 min	60 min
101.7	98.9	94.6	90.2	90.5	92.8	90.1	81.6	${ }^{73.8}$	Point	Hist			3.5	648880	4772825	146.5	60 min	60 min	60 min
122.0	127.9	114.5	107.6	106.6	108.5	117.9	122.3	123.2	Point	Hist	1.0	21.0	22.0	648888	4772842	165.0	60 min	60 min	60 min
103.6	109.2	104.1	99.2	97.3	95.8	94.2	93.1	88.0	Point	Hist			2.5	648870	4772830	145.5	60 min	60 min	60 min
103.6	109.2	104.1	99.2	97.3	95.8	94.2	93.1	88.0	Point	Hist			2.5	648864	4772827	145.5	60 min	60 min	60 min
100.5	102.5	94.2	95.5	98.9	103.0	102.0	95.1	91.4	Point	Hist	.	.	4.0	648854	4772834	147.0	60 min	60 min	60 min
111.4	110.7	104.0	100.1	98.3	97.8	93.9	91.9	89.9	Point	Hist			5.8	648858	4772832	148.8	60 min	60 min	60 min
${ }^{114.6}$	112.8	109.9	106.3	105.2	101.2	96.8	94.9	93.4	Point	Hist			4.0	648863	4772834	147.0	60 min	60 min	60 min
0.0	1050	1046	100.8	94.8	4.7	96.6	99.5	99.3	Point	Hist			5.0	648870	472837	148.0	60 min	60 min	60 min

P1A Sinkcut_ Conveyor	P1A Sinkut, Conveyor	83	0	s	U
Pla Sinkut RD_ SHP Ager $^{\text {Em }}$	PIA S Sinkut, Aggregate Shipping from PP, Emply	104	0	s	U
	PIA, Sinkut, Aggregate Shipping fom PP, Full	104	\bigcirc	s	U
P1AS Sinkut Conveyor	PIAS Sinkut, Conveyor	83	\bigcirc	s	
Plas Sinkut RD_SHP Aggr Em	PIAS Sinkut, Aggregate Shipping fom PP, Emply	104	0	s	U
	PIAS S Sincut, Aggregate Shipping from PP, Full	104	\bigcirc	s	U
P2A Sinkeut Conveyor	P2A S Sikcut, Conveyor	83	\bigcirc	s	U
P2A_Sinkut RD D SHP $\mathrm{Aggrg}_{\text {Em }}$	P2A_Sinkeut, Aggregate Slipping from PP, Empty	104	0	s	U
P2A_S Sinkcut RD_SHP_Agrf Fu	P2A, Sinkut, Aggregate Shipping from PP, Full	104	\bigcirc	s	U
P3A Conveyor	P3A, Conveyor	83	0	s	U
P3A R RD Haul PPPAP Em	P3A, Aggregat Haul road d/w PP and AP, Emply	108	0	s	U
P3A_RD Haul PP PAP Fu	P3A, Aggregate Haul road b/w PP and AP, Full	112	\bigcirc	s	U
P3A_ RD_SHP_Agry Em	P3A, Aggregate Shipping fom PP, Empty	104	0	s	U
P3A RD_ SHP Agger fu	P3A, Aggregate Shipping from PP, Full	104	0	s	,
P3B_NE_Conveyor	P3B_ NE, Conveyor	83	\bigcirc	s	U
P3B_NE_RD_Hall PP_AP_Em	P3B NE, Aggregate Haul road b/w PP and AP, Emply	108	\bigcirc	s	U
P3B_NE RD_ Haul PP AP AP Fu	P3B NE, Aggregate Haul road b / w PP and AP, Full	112	0	S	,
P3B_NE_RD_SHP_Aggr_Em	P3B_NE, Aggreate Stipping fom PP, Empty	104	\bigcirc	s	U
P3B_ NE RD_SHP_Aggr Fu	P3B NE, Aggregate Shipping fom PP, Full	104	0	s	U
P4, SE Conveyor	P4, SE, Conveyor	83	0	s	U
P4_SE_RD_Hall_PP_AP Em	P4 SE, Aggreate Hal road b/w PP and AP, Empty	108	\bigcirc	s	U
P4_SE_RD_Haul_PP_AP_ Fu	P4 SE, Aggregate Haul road b/w PP and AP, Full	112	0	s	
P4_SE_ RD_ SHP Aggr_ Em	P4, SE, Aggregate Shipping fiom PP, Empty	104	0	s	U
	P4, SE, Aggregate Shipping from PP, Full	104	0	s	U
P5 E_Conveyor	PS. E, Conveyor	83	\bigcirc	s	U
PS E_ ERD Haul PP AP Em	PS E, Aggregate Haul road bw PP and AP, Emply	108	0	s	U
PS E_ _ RD_Hall PP AP AP Fu	PS E, Aggregate Haul road b/w PP and AP, Full	112	0	s	U
P5 E_RD_SHP _ Aggr Em	PS E, A, Agregate Shipping from PP, Empty	104	\bigcirc	s	U
PS E E RD_ SHP A Agrt Fu	PS E, Aggregate Shipping fom PP, Full	104	0	s	U
AP_RD_SHP_AC_RAP_Em	AP, AC and RAP shipped from Offsite, Empty	104	0	s	
AP_RD_SHP $A C _$RAP Fu	AP, AC and RAP shipped from Offsite, Full	104	\bigcirc	s	U
AP_RD SHP _HMA_Em	AP, HMA product shiping, Empty	104	0	s	U
AP_RD SHP_HMA Fu	AP, HMA product shipping, Full	104	0	s	U

							Standen	demen	${ }_{\text {ata }}$	atastow	
Remomememen											

curime nes.

said

Nemen

smemim＂	mexs omesimin
	Cotatme
Sututem	
Sistuticic	隹
	mat
Semmmer	
Sinfectumome	Semer
何	
dit fr	
	Resmemmen
	\％s．preprim
ausf pret	Pasemumerat
	Mas．vemim
（t）	
	何
	Senme

，		litum	${ }_{\text {ontame }}$	Sesmeme	（timen			timen
${ }^{\text {som}}$			so		${ }^{\text {datan }}$	1ata		
${ }_{\text {\％}}^{48}$		${ }_{\text {did }}^{\text {did }}$	${ }^{\frac{818}{813}}$	！	did			
${ }_{\text {\％}}^{60}$	${ }_{21}^{21}$	${ }_{\text {a }}^{\text {and }}$			${ }_{\text {a }}^{\text {and }}$	${ }_{\text {cos }}^{104}$		
$\stackrel{\text { \％}}{81}$		din	边	$\stackrel{1}{2}$	did	\％om	－	
＋17	\square	din	${ }^{104}$	S	did	\％		
${ }^{1119}$	${ }^{2}$							
${ }^{114}$			\％	，	${ }_{\text {a }}^{4}$	${ }^{0.8}$		
	$\stackrel{28}{8}$	${ }_{\text {did }}^{\text {did }}$		2	${ }_{\text {din }}^{\text {did }}$	\％	S	
${ }_{\text {cose }}^{80}$	${ }_{3}^{88}$	${ }_{\text {dan }}^{\text {dia }}$	${ }_{\substack{\text { wis }}}^{\substack{\text { mid }}}$	${ }_{3}$	${ }_{\text {ald }}^{\text {ald }}$	（emm		
\％	${ }_{\square}^{8 .}$		\％	－	${ }_{\text {din }}^{\text {din }}$	\％	${ }^{2}$	
${ }_{\text {cos }}$	，	${ }_{\text {din }}^{\text {din }}$	${ }^{\frac{8}{88}}$	，	${ }_{\text {dan }}^{\text {din }}$	${ }_{\substack{\text { sio } \\ 80}}$		
sic	－			${ }^{18}$	${ }^{\text {and }}$			
\％iss	${ }_{2}^{2}$		mis	${ }^{2}$	did	mis		
边								
\square	${ }_{2}$	din	${ }_{\text {andis }}$	${ }_{23}^{23}$	${ }_{\text {ada }}^{\text {adx }}$		${ }_{\text {a }}^{20}$	
mis	${ }^{18}$	$\stackrel{\text { and }}{\text { ald }}$		${ }^{10}$	and	mism		
0	$\stackrel{2 r}{2}$	an	\cdots	$\stackrel{4}{4}$	${ }_{\text {did }}$	mims		

same		liew	mame	demememe	timem	pitame		\％imm	notme		Limm	Dismer		tuma	Ditame		cimen
			come														
\％						${ }_{\text {1ata }}$			\％e		${ }^{\text {ald }}$						
${ }^{1010}$			， 107		dind	${ }^{102}$			${ }^{2 \times 2}$								
${ }^{1012}$	${ }^{10}$	\％	\％	，	${ }_{\text {a }}^{4}$	${ }^{\text {atac }}$	${ }^{10}$	din	200		（int	${ }_{30}$	${ }^{20}$	did	\％		
			8			${ }^{100}$			${ }^{164}$								
					dis	${ }^{62}$		din	${ }^{16}$		dis						
\％	${ }_{2}$	$\stackrel{\text { dan }}{ }$	${ }^{4 s}$	${ }^{8}$	${ }_{\text {din }}$	So	${ }_{29}$	${ }_{\text {dan }}$	，${ }^{19}$	${ }^{6} 6$		${ }^{19}$		dan	${ }^{\text {an }}$		
			${ }_{\text {cosem }}$		$\frac{\mathrm{d}}{\text { din }}$						${ }_{\text {dat }}^{\text {did }}$			${ }_{\text {did }}^{\substack{\text { din } \\ \text { din }}}$			
${ }^{\text {cio }}$	${ }_{2}^{2}$			S	${ }_{\text {din }}^{4}$	${ }_{\text {sib }}$	${ }_{28}^{2.8}$	${ }_{\text {did }}^{\text {did }}$	${ }^{\text {amam }}$	${ }^{\text {a }}$	${ }_{\text {a }}^{\text {dan }}$	${ }^{64}$	${ }_{4}$	${ }_{\text {a }}^{\text {and }}$	${ }_{\text {a }}^{68}$		
\％		dos	\％		$\stackrel{\text { din }}{ }$						\％	46					
											${ }_{\text {a }}^{\text {and }}$						
${ }_{\text {kom }}$		${ }_{\text {and }}$	${ }_{\text {cosem }}$	，	${ }_{\text {a }}^{\text {and }}$	\％	－	${ }_{\text {atan }}^{\text {a }}$	\％	${ }^{26}$	${ }_{\text {and }}$	58		${ }_{\text {ada }}$			
${ }^{\text {osis }}$	${ }_{-2}$	${ }_{\substack{\text { ain } \\ \text { din }}}$	ems	，			，	${ }_{\text {ama }}^{\text {ama }}$			${ }_{\text {and }}^{\substack{\text { and } \\ \text { and }}}$		${ }^{\circ}$	${ }_{\text {a }}^{\substack{\text { ama } \\ \text { din }}}$	its		
${ }^{\text {momes}}$	${ }^{4}$	${ }_{\text {din }}^{\text {din }}$		，	$\stackrel{\text { and }}{\text { and }}$	${ }_{\text {max }}$	，	${ }_{\text {aind }}$	mas		did	momed			${ }_{\text {matem }}$		
$\underline{\text { mism }}$	．		\ldots	${ }^{2}$	$\stackrel{\text { a }}{\substack{\text { and } \\ 0}}$	${ }_{\text {mas }}$	$\stackrel{3}{0}$	din	${ }_{\text {atam }}$		did						
－		${ }_{\text {a }}$		2	$\stackrel{\mathrm{dam}}{0}$					${ }^{26}$	${ }_{\text {din }}$	\pm		${ }_{\text {din }}$	mex		

nimem	dememe	${ }^{\text {unimm }}$	Dimeme		limiv	${ }_{\text {Nomama }}$		Limm
${ }^{\text {ras }}$								
${ }_{\text {ctas }}^{\substack{24 \\ 24}}$	${ }^{2}$		${ }^{1145}$	$\stackrel{20}{10}$	${ }_{\text {dan }}^{\text {dan }}$			
，		${ }_{\text {dis }}$	11	${ }^{13}$	did	${ }^{104}$		
		${ }_{\text {ala }}$	${ }^{1185}$		dia	${ }_{\text {las }}$		
${ }_{\text {\％}}^{10}$		${ }_{\text {did }}$	${ }^{113}$	${ }^{26}$	${ }_{\text {as }}$	${ }^{119}$	${ }^{2}$	
${ }^{37}$	${ }^{2}$	${ }_{\text {di4 }}$	＋198	${ }_{2}$	dis	${ }^{1188}$	${ }^{24}$	
Sis	，	dea	1199		din	Lis		
						，		
＋		din	退		din	${ }^{1010}$		
\％	28	${ }_{\text {das }}$	${ }^{\frac{1229}{123}}$		dis		，	
\％	en	${ }_{\text {din }}^{\text {din }}$		${ }^{30}$	（ax	bige		
${ }^{36}$								
${ }^{33}$	－	dis	${ }^{109}$	${ }_{3}$	dia	${ }^{1199}$	${ }^{25}$	
mis		din						
	${ }^{2}$	${ }_{\text {a }}^{\text {din }}$	${ }^{\circ}$	${ }_{\text {\％}}^{\text {\％}}$	${ }_{\text {din }}$	dems		
mind			mime					
mer			netat					

Table 3a: Acoustic Assessment Summary, Proposed Phase 1A Sinking Cut
Upper's Quarry, 1603157

Notes to Table:

- "Table A3" in Appendix A of Basic CCofA Guide.

1. "Continuous" noise sources includes sum of steady, quasi-steady impulsive, tonal, cyclical and buzzing noise sources, with appropriate penalties applied, in accordance with documents NPC-104 and NPC-300. Impulsive and emergency noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from $0700-1900$ h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit.
6. Performance limit (aka guideline limit) based on following:
$-\mathrm{C}=$ Calculated based on road traffic volumes in compliance with NPC-206 requirements.
$-\mathrm{M}=$ Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.

- $\mathrm{D}=$ Default guideline minima per NPC-300.

Assessment of Impacts for "Continuous" Noise Sources ${ }^{[1]}$

Point of Reception ID	Point of Reception Description	Time Period [2]	Total Sound Level at PoR [3] (dBA)	Verified by Acoustic Audit ${ }^{[4]}$ (Yes/No)	Performance Limit ${ }^{\mid 5]}$ (dBA)	Peformance Limit Source [6] $(\mathbf{C} / \mathbf{M} / \mathbf{D})$	CompliancewithPerformanceLimit(Yes/No)	UTM Coordinate (Zone 17N)		Height Relative to Local Grade\qquad (m)
								X (m)	Y (m)	
R1f	Facade of dwelling (10148 Beaverdams Rd)	Daytime	49	No	50	D	Yes	648766	4773660	4.5
		Evening	32	No	50		Yes			
		Nighttime	32	No	45		Yes			
R1o	Outdoor area of dwelling (10148 Beaverdams Rd)	Daytime	46	No	50	D	Yes	648766	4773629	1.5
		Evening	30	No	45		Yes			
R2f	Facade of dwelling (9722 Beaverdams Rd)	Daytime	47	No	50	D	Yes	649394	4773728	4.5
		Evening	31	No	50		Yes			
		Nighttime	31	No	45		Yes			
R2o	Outdoor area of dwelling (9722 Beaverdams Rd)	Daytime	42	No	50	D	Yes	649391	4773698	1.5
		Evening	26	No	45		Yes			
R3f	Facade of dwelling (9602 Beaverdams Rd)	Daytime	47	No	50	D	Yes	649571	4773645	4.5
		Evening	31	No	50		Yes			
		Nighttime	31	No	45		Yes			
R3o	Outdoor area of dwelling (9602 Beaverdams Rd)	Daytime	42	No	50	D	Yes	649553	4773620	1.5
		Evening	26	No	45		Yes			
R4f	Facade of dwelling (5584 Beechwood Rd)	Daytime	50	No	50	D	Yes	649611	4772698	4.5
		Evening	35	No	50		Yes			
		Nighttime	35	No	45		Yes			
R4o	Outdoor area of dwelling (5584 Beechwood Rd)	Daytime	45	No	50	D	Yes	649594	4772727	1.5
		Evening	29	No	45		Yes			
R5f	Facade of dwelling (5769 Beechwood Rd)	Daytime	48	No	50	D	Yes	649553	4772408	4.5
		Evening	31	No	50		Yes			
		Nighttime	31	No	45		Yes			
R5o	Outdoor area of dwelling (5769Beechwood Rd)	Daytime	44	No	50	D	Yes	649532	4772429	1.5
		Evening	29	No	45		Yes			
R6f	Facade of dwelling (9944 Lundy's Ln)	Daytime	47	No	50	D	Yes	649084	4771672	4.5
		Evening	27	No	50		Yes			
		Nighttime	27	No	45		Yes			
R6o	Outdoor area of dwelling (9944 Lundy's Ln)	Daytime	41	No	50	D	Yes	649070	4771693	1.5
		Evening	25	No	45		Yes			

Table 3b: Acoustic Assessment Summary, Proposed Phase 1A South Sinking Cut Upper's Quarry, 1603157

Notes to Table:

- "Table A3" in Appendix A of Basic CCofA Guide.

1. "Continuous" noise sources includes sum of steady, quasi-steady impulsive, tonal, cyclical and buzzing noise sources, with appropriate penalties applied, in accordance with documents NPC-104 and NPC-300. Impulsive and emergency noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from $0700-1900$ h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit.
6. Performance limit (aka guideline limit) based on following:
$-\mathrm{C}=$ Calculated based on road traffic volumes in compliance with NPC-206 requirements.
$-\mathrm{M}=$ Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.

- $\mathrm{D}=$ Default guideline minima per NPC-300.

Assessment of Impacts for "Continuous" Noise Sources ${ }^{[1]}$

Point of Reception ID	Point of Reception Description	Time Period [2]	Total Sound Level at PoR [3] (dBA)	Verified by Acoustic Audit ${ }^{[4]}$ (Yes/No)	$\begin{aligned} & \text { Performance } \\ & \text { Limit }^{[5]} \\ & \text { (dBA) } \\ & \hline \end{aligned}$	Peformance Limit Source [6] $(\mathbf{C} / \mathbf{M} / \mathbf{D})$	Compliance with Performance Limit (Yes/No)	UTM Coordinate (Zone 17N)		Height Relative to Local Grade (m)
								\mathbf{X} (m)	Y (m)	
R1f	Facade of dwelling (10148 Beaverdams Rd)	Daytime	44	No	50	D	Yes	648766	4773660	4.5
		Evening	30	No	50		Yes			
		Nighttime	30	No	45		Yes			
R1o	Outdoor area of dwelling (10148 Beaverdams Rd)	Daytime	43	No	50	D	Yes	648766	4773629	1.5
		Evening	29	No	45		Yes			
R2f	Facade of dwelling (9722 Beaverdams Rd)	Daytime	43	No	50	D	Yes	649394	4773728	4.5
		Evening	30	No	50		Yes			
		Nighttime	30	No	45		Yes			
R2o	Outdoor area of dwelling (9722 Beaverdams Rd)	Daytime	40	No	50	D	Yes	649391	4773698	1.5
		Evening	25	No	45		Yes			
R3f	Facade of dwelling (9602 Beaverdams Rd)	Daytime	43	No	50	D	Yes	649571	4773645	4.5
		Evening	30	No	50		Yes			
		Nighttime	30	No	45		Yes			
R3o	Outdoor area of dwelling (9602 Beaverdams Rd)	Daytime	40	No	50	D	Yes	649553	4773620	1.5
		Evening	25	No	45		Yes			
R4f	Facade of dwelling (5584 Beechwood Rd)	Daytime	49	No	50	D	Yes	649611	4772698	4.5
		Evening	34	No	50		Yes			
		Nighttime	34	No	45		Yes			
R4o	Outdoor area of dwelling (5584 Beechwood Rd)	Daytime	44	No	50	D	Yes	649594	4772727	1.5
		Evening	28	No	45		Yes			
R5f	Facade of dwelling (5769 Beechwood Rd)	Daytime	49	No	50	D	Yes	649553	4772408	4.5
		Evening	29	No	50		Yes			
		Nighttime	29	No	45		Yes			
R5o	Outdoor area of dwelling (5769 Beechwood Rd)	Daytime	47	No	50	D	Yes	649532	4772429	1.5
		Evening	29	No	45		Yes			
R6f	Facade of dwelling (9944 Lundy's $\mathrm{Ln})$	Daytime	47	No	50	D	Yes	649084	4771672	4.5
		Evening	31	No	50		Yes			
		Nighttime	31	No	45		Yes			
R6o	Outdoor area of dwelling (9944 Lundy's Ln)	Daytime	44	No	50	D	Yes	649070	4771693	1.5
		Evening	26	No	45		Yes			

Table 3c: Acoustic Assessment Summary, Proposed Phase 2A Sinking Cut Upper's Quarry, 1603157

Notes to Table:

- "Table A3" in Appendix A of Basic CCofA Guide.

1. "Continuous" noise sources includes sum of steady, quasi-steady impulsive, tonal, cyclical and buzzing noise sources, with appropriate penalties applied, in accordance with documents NPC-104 and NPC-300. Impulsive and emergency noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from $0700-1900$ h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit.
6. Performance limit (aka guideline limit) based on following:

- C = Calculated based on road traffic volumes in compliance with NPC-206 requirements.
$-\mathrm{M}=$ Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.
- $\mathrm{D}=$ Default guideline minima per NPC-300.

Assessment of Impacts for "Continuous" Noise Sources ${ }^{[1]}$

Point of Reception ID	Point of Reception Description	Time Period [2]	Total Sound Level at PoR [3] (dBA)	Verified by Acoustic Audit ${ }^{[4]}$ (Yes/No)	Performance Limit ${ }^{\mid 5]}$ (dBA)	Peformance Limit Source [6] $(\mathbf{C} / \mathbf{M} / \mathbf{D})$	CompliancewithPerformanceLimit(Yes/No)	UTM Coordinate (Zone 17N)		Height Relative to Local Grade\qquad (m)
								X (m)	Y (m)	
R1f	Facade of dwelling (10148 Beaverdams Rd)	Daytime	50	No	50	D	Yes	648766	4773660	4.5
		Evening	35	No	50		Yes			
		Nighttime	35	No	45		Yes			
R1o	Outdoor area of dwelling (10148 Beaverdams Rd)	Daytime	50	No	50	D	Yes	648766	4773629	1.5
		Evening	34	No	45		Yes			
R2f	Facade of dwelling (9722 Beaverdams Rd)	Daytime	47	No	50	D	Yes	649394	4773728	4.5
		Evening	30	No	50		Yes			
		Nighttime	30	No	45		Yes			
R2o	Outdoor area of dwelling (9722 Beaverdams Rd)	Daytime	43	No	50	D	Yes	649391	4773698	1.5
		Evening	28	No	45		Yes			
R3f	Facade of dwelling (9602 Beaverdams Rd)	Daytime	48	No	50	D	Yes	649571	4773645	4.5
		Evening	32	No	50		Yes			
		Nighttime	32	No	45		Yes			
R3o	Outdoor area of dwelling (9602 Beaverdams Rd)	Daytime	43	No	50	D	Yes	649553	4773620	1.5
		Evening	27	No	45		Yes			
R4f	Facade of dwelling (5584 Beechwood Rd)	Daytime	49	No	50	D	Yes	649611	4772698	4.5
		Evening	32	No	50		Yes			
		Nighttime	32	No	45		Yes			
R4o	Outdoor area of dwelling (5584 Beechwood Rd)	Daytime	43	No	50	D	Yes	649594	4772727	1.5
		Evening	27	No	45		Yes			
R5f	Facade of dwelling (5769 Beechwood Rd)	Daytime	45	No	50	D	Yes	649553	4772408	4.5
		Evening	31	No	50		Yes			
		Nighttime	31	No	45		Yes			
R5o	Outdoor area of dwelling (5769Beechwood Rd)	Daytime	43	No	50	D	Yes	649532	4772429	1.5
		Evening	26	No	45		Yes			
R6f	Facade of dwelling (9944 Lundy's Ln)	Daytime	40	No	50	D	Yes	649084	4771672	4.5
		Evening	24	No	50		Yes			
		Nighttime	24	No	45		Yes			
R6o	Outdoor area of dwelling (9944 Lundy's Ln)	Daytime	39	No	50	D	Yes	649070	4771693	1.5
		Evening	23	No	45		Yes			

Table 3d: Acoustic Assessment Summary, Proposed Phase 3A
Upper's Quarry, 1603157

Notes to Table:

- "Table A3" in Appendix A of Basic CCofA Guide.

1. "Continuous" noise sources includes sum of steady, quasi-steady impulsive, tonal, cyclical and buzzing noise sources, with appropriate penalties applied, in accordance with documents NPC-104 and NPC-300. Impulsive and emergency noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from $0700-1900$ h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit.
6. Performance limit (aka guideline limit) based on following:
$-\mathrm{C}=$ Calculated based on road traffic volumes in compliance with NPC-206 requirements.
$-\mathrm{M}=$ Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.

- $\mathrm{D}=$ Default guideline minima per NPC-300.

Assessment of Impacts for "Continuous" Noise Sources ${ }^{[1]}$

Point of Reception ID	Point of Reception Description	Time Period [2]	Total Sound Level at PoR [3] (dBA)	Verified by Acoustic Audit ${ }^{[4]}$ (Yes/No)	Performance Limit ${ }^{\mid 5]}$ (dBA)	Peformance Limit Source [6] $(\mathbf{C} / \mathbf{M} / \mathbf{D})$	CompliancewithPerformanceLimit(Yes/No)	UTM Coordinate (Zone 17N)		Height Relative to Local Grade\qquad (m)
								X (m)	Y (m)	
R1f	Facade of dwelling (10148 Beaverdams Rd)	Daytime	47	No	50	D	Yes	648766	4773660	4.5
		Evening	38	No	50		Yes			
		Nighttime	38	No	45		Yes			
R1o	Outdoor area of dwelling (10148 Beaverdams Rd)	Daytime	47	No	50	D	Yes	648766	4773629	1.5
		Evening	36	No	45		Yes			
R2f	Facade of dwelling (9722 Beaverdams Rd)	Daytime	43	No	50	D	Yes	649394	4773728	4.5
		Evening	36	No	50		Yes			
		Nighttime	36	No	45		Yes			
R2o	Outdoor area of dwelling (9722 Beaverdams Rd)	Daytime	42	No	50	D	Yes	649391	4773698	1.5
		Evening	33	No	45		Yes			
R3f	Facade of dwelling (9602 Beaverdams Rd)	Daytime	45	No	50	D	Yes	649571	4773645	4.5
		Evening	35	No	50		Yes			
		Nighttime	35	No	45		Yes			
R3o	Outdoor area of dwelling (9602 Beaverdams Rd)	Daytime	44	No	50	D	Yes	649553	4773620	1.5
		Evening	31	No	45		Yes			
R4f	Facade of dwelling (5584 Beechwood Rd)	Daytime	47	No	50	D	Yes	649611	4772698	4.5
		Evening	35	No	50		Yes			
		Nighttime	35	No	45		Yes			
R4o	Outdoor area of dwelling (5584 Beechwood Rd)	Daytime	43	No	50	D	Yes	649594	4772727	1.5
		Evening	33	No	45		Yes			
R5f	Facade of dwelling (5769 Beechwood Rd)	Daytime	44	No	50	D	Yes	649553	4772408	4.5
		Evening	35	No	50		Yes			
		Nighttime	35	No	45		Yes			
R5o	Outdoor area of dwelling (5769Beechwood Rd)	Daytime	42	No	50	D	Yes	649532	4772429	1.5
		Evening	34	No	45		Yes			
R6f	Facade of dwelling (9944 Lundy's Ln)	Daytime	40	No	50	D	Yes	649084	4771672	4.5
		Evening	34	No	50		Yes			
		Nighttime	34	No	45		Yes			
R6o	Outdoor area of dwelling (9944 Lundy's Ln)	Daytime	38	No	50	D	Yes	649070	4771693	1.5
		Evening	33	No	45		Yes			

Table 3e: Acoustic Assessment Summary, Proposed Phase 3B Northeast
Upper's Quarry, 1603157

Notes to Table:

- "Table A3" in Appendix A of Basic CCofA Guide.

1. "Continuous" noise sources includes sum of steady, quasi-steady impulsive, tonal, cyclical and buzzing noise sources, with appropriate penalties applied, in accordance with documents NPC-104 and NPC-300. Impulsive and emergency noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from $0700-1900$ h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit.
6. Performance limit (aka guideline limit) based on following:
$-\mathrm{C}=$ Calculated based on road traffic volumes in compliance with NPC-206 requirements.
$-\mathrm{M}=$ Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.

- $\mathrm{D}=$ Default guideline minima per NPC-300.

Assessment of Impacts for "Continuous" Noise Sources ${ }^{[1]}$

Point of Reception ID	Point of Reception Description	Time Period [2]	Total Sound Level at PoR [3] (dBA)	Verified by Acoustic Audit ${ }^{[4]}$ (Yes/No)	Performance Limit ${ }^{\mid 5]}$ (dBA)	Peformance Limit Source [6] $(\mathbf{C} / \mathbf{M} / \mathbf{D})$	CompliancewithPerformanceLimit(Yes/No)	UTM Coordinate (Zone 17N)		Height Relative to Local Grade\qquad (m)
								X (m)	Y (m)	
R1f	Facade of dwelling (10148 Beaverdams Rd)	Daytime	46	No	50	D	Yes	648766	4773660	4.5
		Evening	38	No	50		Yes			
		Nighttime	38	No	45		Yes			
R1o	Outdoor area of dwelling (10148 Beaverdams Rd)	Daytime	44	No	50	D	Yes	648766	4773629	1.5
		Evening	37	No	45		Yes			
R2f	Facade of dwelling (9722 Beaverdams Rd)	Daytime	47	No	50	D	Yes	649394	4773728	4.5
		Evening	38	No	50		Yes			
		Nighttime	38	No	45		Yes			
R2o	Outdoor area of dwelling (9722 Beaverdams Rd)	Daytime	45	No	50	D	Yes	649391	4773698	1.5
		Evening	35	No	45		Yes			
R3f	Facade of dwelling (9602 Beaverdams Rd)	Daytime	48	No	50	D	Yes	649571	4773645	4.5
		Evening	38	No	50		Yes			
		Nighttime	38	No	45		Yes			
R3o	Outdoor area of dwelling (9602 Beaverdams Rd)	Daytime	47	No	50	D	Yes	649553	4773620	1.5
		Evening	35	No	45		Yes			
R4f	Facade of dwelling (5584 Beechwood Rd)	Daytime	49	No	50	D	Yes	649611	4772698	4.5
		Evening	41	No	50		Yes			
		Nighttime	41	No	45		Yes			
R4o	Outdoor area of dwelling (5584 Beechwood Rd)	Daytime	45	No	50	D	Yes	649594	4772727	1.5
		Evening	39	No	45		Yes			
R5f	Facade of dwelling (5769 Beechwood Rd)	Daytime	46	No	50	D	Yes	649553	4772408	4.5
		Evening	39	No	50		Yes			
		Nighttime	39	No	45		Yes			
R5o	Outdoor area of dwelling (5769Beechwood Rd)	Daytime	43	No	50	D	Yes	649532	4772429	1.5
		Evening	38	No	45		Yes			
R6f	Facade of dwelling (9944 Lundy's Ln)	Daytime	41	No	50	D	Yes	649084	4771672	4.5
		Evening	36	No	50		Yes			
		Nighttime	36	No	45		Yes			
R6o	Outdoor area of dwelling (9944 Lundy's Ln)	Daytime	39	No	50	D	Yes	649070	4771693	1.5
		Evening	34	No	45		Yes			

Table 3f: Acoustic Assessment Summary, Proposed Phase 4 Southeast
Upper's Quarry, 1603157
Notes to Table:

- "Table A3" in Appendix A of Basic CCofA Guide.

1. "Continuous" noise sources includes sum of steady, quasi-steady impulsive, tonal, cyclical and buzzing noise sources, with appropriate penalties applied, in accordance with documents NPC-104 and NPC-300. Impulsive and emergency noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from $0700-1900$ h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit.
6. Performance limit (aka guideline limit) based on following:
$-\mathrm{C}=$ Calculated based on road traffic volumes in compliance with NPC-206 requirements.
$-\mathrm{M}=$ Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.

- $\mathrm{D}=$ Default guideline minima per NPC-300.

Assessment of Impacts for "Continuous" Noise Sources ${ }^{[1]}$

Point of Reception ID	Point of Reception Description	Time Period [2]	Total Sound Level at PoR [3] (dBA)	Verified by Acoustic Audit ${ }^{[4]}$ (Yes/No)	$\begin{aligned} & \text { Performance } \\ & \text { Limit }^{[5]} \\ & \text { (dBA) } \\ & \hline \end{aligned}$	Peformance Limit Source ${ }^{[6]}$ $(\mathbf{C} / \mathbf{M} / \mathbf{D})$	Compliance with Performance Limit (Yes/No)	UTM Coordinate (Zone 17N)		Height Relative to Local Grade\qquad (m)
								X (m)	Y (m)	
R1f	Facade of dwelling (10148 Beaverdams Rd)	Daytime	45	No	50	D	Yes	648766	4773660	4.5
		Evening	38	No	50		Yes			
		Nighttime	38	No	45		Yes			
R1o	Outdoor area of dwelling (10148 Beaverdams Rd)	Daytime	43	No	50	D	Yes	648766	4773629	1.5
		Evening	36	No	45		Yes			
R2f	Facade of dwelling (9722 Beaverdams Rd)	Daytime	46	No	50	D	Yes	649394	4773728	4.5
		Evening	37	No	50		Yes			
		Nighttime	37	No	45		Yes			
R2o	Outdoor area of dwelling (9722 Beaverdams Rd)	Daytime	39	No	50	D	Yes	649391	4773698	1.5
		Evening	33	No	45		Yes			
R3f	Facade of dwelling (9602 Beaverdams Rd)	Daytime	46	No	50	D	Yes	649571	4773645	4.5
		Evening	37	No	50		Yes			
		Nighttime	37	No	45		Yes			
R3o	Outdoor area of dwelling (9602 Beaverdams Rd)	Daytime	40	No	50	D	Yes	649553	4773620	1.5
		Evening	33	No	45		Yes			
R4f	Facade of dwelling (5584 Beechwood Rd)	Daytime	49	No	50	D	Yes	649611	4772698	4.5
		Evening	41	No	50		Yes			
		Nighttime	41	No	45		Yes			
R4o	Outdoor area of dwelling (5584 Beechwood Rd)	Daytime	48	No	50	D	Yes	649594	4772727	1.5
		Evening	40	No	45		Yes			
R5f	Facade of dwelling (5769 Beechwood Rd)	Daytime	46	No	50	D	Yes	649553	4772408	4.5
		Evening	40	No	50		Yes			
		Nighttime	40	No	45		Yes			
R5o	Outdoor area of dwelling (5769 Beechwood Rd)	Daytime	44	No	50	D	Yes	649532	4772429	1.5
		Evening	39	No	45		Yes			
R6f	Facade of dwelling (9944 Lundy's $\mathrm{Ln})$	Daytime	40	No	50	D	Yes	649084	4771672	4.5
		Evening	36	No	50		Yes			
		Nighttime	36	No	45		Yes			
R6o	Outdoor area of dwelling (9944 Lundy's Ln)	Daytime	39	No	50	D	Yes	649070	4771693	1.5
		Evening	34	No	45		Yes			

Table 3g: Acoustic Assessment Summary, Proposed Phase 5 East
Upper's Quarry, 1603157
Notes to Table:

- "Table A3" in Appendix A of Basic CCofA Guide.

1. "Continuous" noise sources includes sum of steady, quasi-steady impulsive, tonal, cyclical and buzzing noise sources, with appropriate penalties applied, in accordance with documents NPC-104 and NPC-300. Impulsive and emergency noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from $0700-1900$ h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit.
6. Performance limit (aka guideline limit) based on following:
$-\mathrm{C}=$ Calculated based on road traffic volumes in compliance with NPC-206 requirements.
$-\mathrm{M}=$ Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.

- $\mathrm{D}=$ Default guideline minima per NPC-300.

Assessment of Impacts for "Continuous" Noise Sources ${ }^{[1]}$

Point of Reception ID	Point of Reception Description	Time Period [2]	Total Sound Level at PoR [3] (dBA)	Verified by Acoustic Audit ${ }^{[4]}$ (Yes/No)	Performance Limit ${ }^{\mid 5]}$ (dBA)	Peformance Limit Source [6] $(\mathbf{C} / \mathbf{M} / \mathbf{D})$	CompliancewithPerformanceLimit(Yes/No)	UTM Coordinate (Zone 17N)		Height Relative to Local Grade\qquad (m)
								X (m)	Y (m)	
R1f	Facade of dwelling (10148 Beaverdams Rd)	Daytime	41	No	50	D	Yes	648766	4773660	4.5
		Evening	38	No	50		Yes			
		Nighttime	38	No	45		Yes			
R1o	Outdoor area of dwelling (10148 Beaverdams Rd)	Daytime	40	No	50	D	Yes	648766	4773629	1.5
		Evening	36	No	45		Yes			
R2f	Facade of dwelling (9722 Beaverdams Rd)	Daytime	42	No	50	D	Yes	649394	4773728	4.5
		Evening	37	No	50		Yes			
		Nighttime	37	No	45		Yes			
R2o	Outdoor area of dwelling (9722 Beaverdams Rd)	Daytime	36	No	50	D	Yes	649391	4773698	1.5
		Evening	33	No	45		Yes			
R3f	Facade of dwelling (9602 Beaverdams Rd)	Daytime	43	No	50	D	Yes	649571	4773645	4.5
		Evening	37	No	50		Yes			
		Nighttime	37	No	45		Yes			
R3o	Outdoor area of dwelling (9602 Beaverdams Rd)	Daytime	36	No	50	D	Yes	649553	4773620	1.5
		Evening	33	No	45		Yes			
R4f	Facade of dwelling (5584 Beechwood Rd)	Daytime	47	No	50	D	Yes	649611	4772698	4.5
		Evening	41	No	50		Yes			
		Nighttime	41	No	45		Yes			
R4o	Outdoor area of dwelling (5584 Beechwood Rd)	Daytime	45	No	50	D	Yes	649594	4772727	1.5
		Evening	40	No	45		Yes			
R5f	Facade of dwelling (5769 Beechwood Rd)	Daytime	43	No	50	D	Yes	649553	4772408	4.5
		Evening	40	No	50		Yes			
		Nighttime	40	No	45		Yes			
R5o	Outdoor area of dwelling (5769Beechwood Rd)	Daytime	42	No	50	D	Yes	649532	4772429	1.5
		Evening	39	No	45		Yes			
R6f	Facade of dwelling (9944 Lundy's Ln)	Daytime	40	No	50	D	Yes	649084	4771672	4.5
		Evening	36	No	50		Yes			
		Nighttime	36	No	45		Yes			
R6o	Outdoor area of dwelling (9944 Lundy's Ln)	Daytime	38	No	50	D	Yes	649070	4771693	1.5
		Evening	34	No	45		Yes			

Table 3h: Acoustic Assessment Summary, Proposed Scenario Impulsive Source
Upper's Quarry, 1603157

Notes to Table:

- "Table A3" in Appendix A of Basic CCofA Guide.

1. Impulsive noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from 0700-1900h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit, based on more than 9 impulses per hour in a Class 2 area.
6. Performance limit (aka guideline limit) based on following:

- C = Calculated based on road traffic volumes in compliance with NPC-206 requirements.
$-M=$ Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.
- D = Default guideline minima per NPC-300.

Assessment of Impacts for "Impulsive" Noise Sources ${ }^{[1]}$

Point of Reception ID	Point of Reception Description	Time Period [2]	Total Sound Level at PoR [3](dBA)	Verified by Acoustic Audit ${ }^{[4]}$ (Yes/No)	$\begin{aligned} & \text { Performance } \\ & \text { Limit }^{[5]} \\ & \text { (dBA) } \\ & \hline \end{aligned}$	Peformance Limit Source [6] $(\mathbf{C} / \mathbf{M} / \mathbf{D})$	Compliance with Performance Limit (Yes/No)	UTM Coordinate (Zone 17N)		Height Relative to Local Grade (m)
								X (m)	Y (m)	
R1f	Facade of dwelling (10148 Beaverdams Rd)	Daytime	39	No	50	D	Yes	648766	4773660	4.5
		Evening	39	No	50		Yes			
		Nighttime	39	No	45		Yes			
R1o	Outdoor area of dwelling (10148 Beaverdams Rd)	Daytime	38	No	50	D	Yes	648766	4773629	1.5
		Evening	38	No	45		Yes			
R2f	Facade of dwelling (9722 Beaverdams Rd)	Daytime	38	No	50	D	Yes	649394	4773728	4.5
		Evening	38	No	50		Yes			
		Nighttime	38	No	45		Yes			
R2o	Outdoor area of dwelling (9722 Beaverdams Rd)	Daytime	36	No	50	D	Yes	649391	4773698	1.5
		Evening	36	No	45		Yes			
R3f	Facade of dwelling (9602 Beaverdams Rd)	Daytime	38	No	50	D	Yes	649571	4773645	4.5
		Evening	38	No	50		Yes			
		Nighttime	38	No	45		Yes			
R3o	Outdoor area of dwelling (9602 Beaverdams Rd)	Daytime	36	No	50	D	Yes	649553	4773620	1.5
		Evening	36	No	45		Yes			
R4f	Facade of dwelling (5584 Beechwood Rd)	Daytime	42	No	50	D	Yes	649611	4772698	4.5
		Evening	42	No	50		Yes			
		Nighttime	42	No	45		Yes			
R4o	Outdoor area of dwelling (5584 Beechwood Rd)	Daytime	43	No	50	D	Yes	649594	4772727	1.5
		Evening	43	No	45		Yes			
R5f	Facade of dwelling (5769 Beechwood Rd)	Daytime	41	No	50	D	Yes	649553	4772408	4.5
		Evening	41	No	50		Yes			
		Nighttime	41	No	45		Yes			
R5o	Outdoor area of dwelling (5769 Beechwood Rd)	Daytime	41	No	50	D	Yes	649532	4772429	1.5
		Evening	41	No	45		Yes			
R6f	Facade of dwelling (9944 Lundy's Ln)	Daytime	35	No	50	D	Yes	649084	4771672	4.5
		Evening	35	No	50		Yes			
		Nighttime	35	No	45		Yes			
R6o	Outdoor area of dwelling (9944 Lundy's Ln)	Daytime	35	No	50	D	Yes	649070	4771693	1.5
		Evening	35	No	45		Yes			

FIGURES

Site Overview and Sensitive Receptor Locations Proposed Extraction Scenario

Proposed Phase 1A Sinking Cut Operation Overview

Proposed Phase 1A South Sinking Cut Operation Overview

Drawn by: RNL Figure: 2b Approx. Scale: 1:10000 Date Revised: Sep 22, 2021

8

Proposed Phase 2A Sinking Cut Operation Overview

Proposed Phase 3A Operation Overview

Drawn by: RNL Figure: 2d

Approx. Scale: 1:10000

8

Proposed Phase 3B Northeast Operation Overview

Drawn by: RNL Figure: 2e Approx. Scale: 1:10000 Date Revised: Sep 22, 2021

8 SK

Proposed Phase 4 Southeast Operation Overview

True North
Drawn by: RNL Figure: $2 f$

Approx. Scale: 1:10000

Date Revised: Sep 22, 2021

Sil

Proposed Phase 5 East Operation Overview

Significant Source Locations (Detailed Example)	True North	Drawn by: RNL	Figure: 2 i	$\square \nabla^{\prime}$
Proposed Phase 4 Southeast	,	Approx. Scale:	1:5000	
Map Projection: NAD 1983 UTM Zone 17N Walker Aggregates Inc., Upper's Quarry - Niagara Region, Ontario	Project \#: 1603157	Date Revised:	Sep 22, 2021	

Sound Level Contours
 Proposed Phase 1A South Sinking Cut, Daytime

True North Drawn by: RNL Figure: 3c

Approx. Scale: 1:12000

Date Revised: Sep 22, 2021

8

Sound Level Contours
 Proposed Phase 1A South Sinking Cut, Evening/Nighttime

Sound Level Contours Proposed Phase 3A, Daytime

Sound Level Contours
 Proposed Phase 3A, Evening/Nighttime

True North Drawn by: RNL Figure: 3h

Sound Level Contours
 Proposed Phase 3B Northeast, Daytime

Sound Level Contours
 Proposed Phase 3B Northeast, Evening/Nighttime

True North Drawn by: RNL Figure: 3j
1
Approx. Scale: 1:12000

Date Revised: Sep 22, 2021

81

Sound Level Contours Proposed Phase 4 Southeast, Daytime

Sound Level Contours
 Proposed Phase 4 Southeast, Evening/Nighttime

True North Drawn by: RNL Figure: 3I

Approx. Scale: 1:12000

Date Revised: Sep 22, 2021

5

Sound Level Contours
 Proposed Phase 5 East, Evening/Nighttime

Drawn by: RNL Figure: 3n

Approx. Scale: 1:12000

511

APPENDIX A

SECTION 3 -ZONES

3.1 CLASSIFICATION OF ZONES: For the purpose of this By-law, the following defined areas of the City of Niagara Falls, namely:
(a) all of the former Village of Chippawa, and
(b) all of the remaining part of the City of Niagara Falls lying north of the middle of the main channel of the Welland River are hereby divided into the following zones, which are hereby established and the lands included in each zone are shown on the Zoning Maps appended hereto as Schedule "A".

ZONES

Residential 1A Density Zone
Residential 1B Density Zone
Residential 1C Density Zone
Residential 1D Density Zone
Residential 1E Density Zone
Residential 1F Density Zone
Residential Mobile Home Park Zone
Residential and Two Zone
Residential Mixed Zone
Residential Low Density, Group Multiple Dwelling Zone
Residential Apartment 5A Density Zone
Residential Apartment 5B Density Zone
Residential Apartment 5C Density Zone
Residential Apartment 5D Density Zone
Residential Apartment 5E Density Zone
Residential Apartment 5F Density Zone
Transition Residential Multiple Zone
Neighbourhood Commercial Zone
General Commercial Zone
Deferred Commercial Zone
Planned Shopping Centre Commercial Zone
Central Business Commercial Zone
Tourist Commercial Zone
Camping Establishment Zone
Deferred Tourist Commercial Zone
Automobile Service Station and Gasoline Bar

SHORT TITLES

R1A
R1B
R1C
R1D
R1E
R1F
RMP
R2
R3
R4
R5A
R5B
R5C
R5D
R5E
R5F TRM

NC
GC
DC
SC
CB
TC

CE

DTC
AS

Institutional Zone	I
Prestige Industrial Zone	PI
Light Industrial Zone	LI
General Industrial Zone	GI
Heavy Industrial Zone	HI
Transportation - Distribution Industrial Zone	TDI
Extractive Industrial Zone	EI
Agricultural Zone	A
Rural Zone	R
Open Space Zone	OS
Development Holding Zone	DH
Hazard Land Zone	HL
Parking Zone	P
Parking Holding Zone	PH
Environmental Protection Area Zone	EPA

3.2 ZONING MAPS: The Zones aforesaid and the boundaries of such Zones are shown on one or more of the Zoning Maps appended thereto as Schedule " A ", referred to in this By-law as "Zoning Maps", each of which Zoning Maps and the Key Map contained in the said Schedule "A" and the Setback Plans appended hereto as Schedules "B-1", "B-2", "B-3" and "B-4", Schedule "C" and Schedules "C-A" through to and including "C-F" and Schedules "C-H" through to and including "C-K", and Schedule "D" together with all titles, symbols, notations, references and information shown therein shall form a part of this by-law to the same extent as if fully described in the text of this By-law.".
3.3 SHORT TITLES: The short titles of the Zones listed in Section 3.1 may be used to refer to buildings and structures and uses of buildings, structures and land permitted by this By-law in such Zones; and whenever in this By-law the word "Zone" is used preceded by any of the said short titles, such references shall mean any area of the City of Niagara Falls delineated and designated on the said Zoning Maps by such short title.
3.3.1 "RESIDENTIAL ZONE": The expression "residential zone", whenever used in this By-law, means an area of the City of Niagara Falls delineated on a Zoning Map and designated therein as R1A, R1B, R1C, R1D, R1E, R1F, RMP, R2, R3, R4, R5A, R5B, R5C, R5D, R5E, R5F or TRM.
3.3.2 "COMMERCIAL ZONE": The expression "commercial zone" whenever used in this By-law, means an area of the City of Niagara Falls delineated on a Zoning Map and designated therein as NC, GC, DC, SC, CB, TC, CE, DTC, AS, P or PH.
3.3.3 "INDUSTRIAL ZONE": The expression "industrial zone" whenever used in this By-law means an area of the City of Niagara Falls delineated on a Zoning Map and designated therein as PI , $\mathrm{LI}, \mathrm{GI}, \mathrm{HI}, \mathrm{TDI}$ or EI.
3.4 ZONE BOUNDARIES: Where any uncertainty exists with respect to the boundary of any zone as shown on the Zoning Maps, the following rules shall apply:
(a) a boundary indicated as following a highway, street or lane shall be the centre line of such highway, street or lane;
(b) where a street or part of a street referred to in Section 4.27 .1 of this By-law as a Type A, Type B, Type C, Type D, Type E or Transitional street.
(i) forms a boundary between zones, it is shown on the Zoning Maps by one or more of the respective symbols set forth in Column 2 of the following Table:

Column 1

Type of Street
Type A (Green)
Type B (Salmon)
Type C (Magenta)
Type D (Cyan)
Type E (Gold)
Transitional (Red)

Column 2
Symbol

$-----=-$

MMMMMMMMMMMMM

\|IIIIIIIIIIIIIIIIIIIII

(ii) does not form a boundary between zones, it is shown on the Zoning Maps by one or more of the respective symbols set forth in Column 2 of the following Table:

Column 1

Type of Street

Type A (Green)
Type B (Salmon)
Type C (Magenta)
Type D (Cyan)
Type E (Gold)
Transitional (Red)
(c) generally, boundaries between zones are indicated either by an unbroken heavy line or by one or more of the symbols set forth in subclause I of clause b of this section.
(d) a boundary indicated as following a watercourse, creek, stream, power canal, or the right-of-way of a railway or of an electrical, gas or oil transmission line shall be the centre line of such watercourse, creek, stream, power canal or right-of-way;
(e) a boundary indicated as approximately following lot lines shall follow such lot lines;
(f) in every case, where
(i) any street or lane or portion thereof is altered, diverted or closed,
(ii) the right-of-way of a railway or of an electrical, gas or oil transmission line or portion of any such right-of-way is altered, diverted or ceases to be used for railway purposes or transmission line purposes,
(iii) a watercourse or portion thereof is altered or diverted, the land formerly included in such street, lane, railway right-of-way, transmission line right-of-way or watercourse, or portion thereof shall be included within the zone adjoining such land. Where such land formed a boundary between different zones, the new zone boundaries shall be the former centre line of such street, lane, railway right-of-way, transmission line right-of-way or watercourse;
(g) where any zone boundary remains uncertain after the application of the rules set forth in clauses a to f inclusive, then the boundary shall be determined by scale from the Zoning Map or Maps.

ZONE LEGEND (Rolling Meadows)
rm-R1B - Residential First Density B Zone rm-R1B - Residential First Density B Zone
rm-R1C - Residential First Density C Zone rm-R2 - Residential Second Density Zone rm-R3 - Residential Third Density Zone rm-OS - Open Space Zone
ZONE LEGEND

R1A - Residential First Density A Zone R1B - Residential First Density B Zone R1C - Residential First Density C Zone R1C - Residential First Density C Zone R2 - Residential Second Density Zone
R2 - Residential Second Density Zone
R3 - Residential Third Density Zone
R4A - Residential Fourth Density A Zone R4B - Residential Fourth Density B Zone CC - Central Commercial Zone
HCN - Highway Commercial Node Zone
NC - Neighbourhood Commercial Zone
SC - Shopping Centre Commercial Zone
HC - Highway Commercial Zone
RUC - Rural Commercial Zone

CITY OF THOROLD Zoning By-law No. 2140(97) SCHEDULE 'A2'

CI - Highway Commerciallndstial

 - Prestige Office Zone PI - Prestige Industrial Zone LI - Light Industrial Zone HI - Heavy Industrial Zone DI - Dry Industrial Zone Institutional Zone OS - Open Space ZoneEC - Environmental Conservation Zone
D - Development Zone - Agricultural Zone

- Lands to which Development

Control of the Niagara Escarpment Commission applies Lands subject to By-laws 1448(90) and 1449(90)

CITY OF THOROLD Zoning By-law No. 2140(97) 'A2' ZOOM

ZONE LEGEND

R1A - Residential First Density A Zone R1B - Residential First Density B Zone R1C - Residential First Density C Zone R1C - Residential First Density C Zone
R1D - Residential First Density D Zone R1D - Residential First Density D Zone
R2S - Residential Second Density Special Zone
R3 - Residential Third Density Zone
R4A - Residential Fourth Density A Zone
R4B - Residential Fourth Density B Zone CC - Central Commercial Zone
HCN - Highway Commercial Node Zone
NC - Neighbourhood Commercial Zone
SC - Shopping Centre Commercial Zone
HC - Highway Commercial Zone
RUC - Rural Commercial Zone

This is Schedule 'A2' to By-law No. 2140(97) passed this 2nd day of July, 1997.

ZONE LEGEND
R1A - Residential First Density A Zone R1B - Residential First Density B Zone R1C - Residential First Density C Zone R1D - Residential First Density D Zone R2 - Residential Second Density Zone R2S - Residential Second Density Special Zone
R3 - Residential Third Density Zone
R4A - Residential Fourth Density A Zone
R4B - Residential Fourth Density B Zone
CC - Central Commercial Zone
HCN - Highway Commercial Node Zone
NC - Neighbourhood Commercial Zone
SC - Shopping Centre Commercial Zone
HC - Highway Commercial Zone
RUC- Rural Commercial Zone
HCl - Highway Commercial/Industrial Zone
PO - Prestige Office Zone
PI - Prestige Industrial Zone
LI - Light Industrial Zone
HI - Heavy Industrial Zone
DI - Dry Industrial Zone

This is Schedule 'A9' to By-law No. 2140(97) passed this 2nd day of July, 1997.

I - Institutional Zone
OS - Open Space Zone
EC - Environmental Conservation Zone
D - Development Zone
A - Agricultural Zone

ZONE LEGEND (Rolling Meadows)
rm-R1B - Residential First Density B Zone rm-R1C - Residential First Density C Zone rm-R2 - Residential Second Density Zone rm-R3 - Residential Third Density Zone
rm-OS - Open Space Zone
\square - Lands subject to final approval

- See Zoom Schedule

ZONE LEGEND (Rolling Meadows)
rm-R1B - Residential First Density B Zone rm-R1C - Residential First Density C Zone m-R1C - Residential First Density C Zone
rm-R2 - Residential Second Density Zone rm-R2 - Resideniial Second Denstiy Zon
rm-OS - Open Space Zone

rm-OS - O
Lands Subiect to Final Appoval

CITY OF THOROLD

Zoning By-law No. 2140(97) 'A9' ZOOM

R1A - Residential First Density A Zone R1B - Residential First Density B Zone R1C - Residential First Density C Zone R1C - Residential First Density C Zone R2 - Residential Second Density Zone
R2S - Residential Second Density Special Zone
R3 - Residential Third Density Zone
R4A - Residential Fourth Density A Zone
R4B - Residential Fourth Density B Zone CC - Central Commercial Zone
HCN - Highway Commercial Node Zone
NC - Neighbourhood Commercial Zone
SC - Shopping Centre Commercial Zone
HC - Highway Commercial Zone
RUC - Rural Commercial Zone

This is Schedule 'A9' to By-law No. 2140(97) passed this 2nd day of July, 1997.

HCl - Highway Commercial/Industrial Zone
PO - Prestige Office Zone
PI - Prestige Industrial Zone
LI - Light Industrial Zone

- Heavy Industrial Zone

DI - Dry Industrial Zone

- Institutional Zone
- Open Space Zone

EC - Environmental Conservation Zone
D - Development Zone

- Agricultural Zone

SECTION 5: ZONES

5.1 Establishment of Zones

5.1.1 For purposes of this By-law, the following zones are established:

ZONE CLASS
ZONE SYMBOL
SECTION
RESIDENTIAL ZONES
Residential First Density A Zone R1A 7
Residential First Density B Zone R1B 8
Residential First Density C Zone R1C 9
Residential First Density D Zone R1D 10
Residential Second Density Zone R2 11
Residential Second Density Special Zone R2S 12
Residential Third Density Zone R3 13
Residential Fourth Density A Zone R4A 14
Residential Fourth Density B Zone R4B 15
Office Residential OR Zone OR 16
COMMERCIAL ZONES
Central Commercial Zone CC 17
Neighbourhood Commercial Zone NC 18
Commercial
Shopping Centre Commercial Zone
Highway Commercial Zone
Highway Commercial/Industrial Zone
Highway Commercial Node Zone
C

INDUSTRIAL ZONES
Prestige Office Zone PO 23
Prestige Industrial Zone PI 24
Light Industrial Zone LI 25
Heavy Industrial Zone $\quad \mathrm{HI} \quad 26$
Dry Industrial Zone DI
27
INSTITUTIONAL ZONE
Institutional Zone I 28
OPEN SPACE ZONE
Open Space Zone OS 29
Environmental Conservation Zone EC 30

ZONE SYMBOL
SECTION

DEVELOPMENT ZONE

Development Zone
Residential Development
Residential Development
Rural Residential
AGRICULTURAL ZONE
Agricultural Zone

A

32

Rural Commercial Zone
WEST NEIGHBOURHOOD ZONES

West Neighbourhood Residential		
First Density B Zone	wn-R1B	34
West Neighbourhood Residential		
First Density D Zone	wn-R1D	35
West Neighbourhood Residential		
First Density E Zone	wn-R1E	36
West Neighbourhood Residential		
First Density F Zone	wn-R1F	37
West Neighbourhood Residential		
Second Density Zone	wn-R2	38
West Neighbourhood Residential		
Third Density B Zone	wn-R3	39
West Neighbourhood Open Space Zone	wn-OS	40
West Neighbourhood Open Space/		
Institutional Zone	wn-OS/l	41
West Neighbourhood Open Space/		
Woodlot Zone	wn-OSW	42
West Neighbourhood		
Neighbourhood Commercial Zone	wn-NC	43
ROLLING MEADOWS ZONES		
Rolling Meadows Open Space	RM-OS	44
Rolling Meadows Residential First Density B Zone	RM-R1B	45
Rolling Meadows Residential First Density C Zone	RM-R1C	46
Rolling Meadows Residential Second Density	RM-R2	47
Rolling Meadows Residential Third Density	RM-R3	48

5.1.2 A zone class may be identified solely by its zone symbol and may be referred to as a zone e.g. R1A Zone means Residential First Density R1A Zone Class and may be referred to as a Residential First Density R1A Zone. On a Zone Map, the zone symbol R1A has the same meaning.
5.1.3 Whenever lands on any Zoning Schedule have the zone symbol followed directly by a dash (-) and a number, e.g. A-1, such lands shall be considered to have a "Special Provision" number
and to have reference to a Zone subsection. The said lands shall be subject to the provisions of the relevant zone category and all other provisions contained herein, and shall in addition, be subject to any special provisions provided for within the relevant special provision subsection of the relevant zone.
5.1.4 Holding zones are hereby established by the use of the symbol (H) as a suffix to the zone symbols in Sections 5.1.1 and 5.1.3. Lands subject to the symbol (H) shall not be used, nor any building or structure used, altered or erected until the (H) is removed by amendment, pursuant to the provisions of the Planning Act, provided the following occurs:
(a) adequate servicing including sanitary sewers, storm sewers, stormwater management facilities and waterlines can be provided to the lands to the satisfaction of Regional Niagara and the City of Thorold, and/or
(b) approvals have been obtained from the Regional Public Health Department, and
(c) the provisions of Section 7.15 .1 of the Official Plan are satisfied.

This provision shall not prevent continuation of uses existing at the time of establishment of the (H) symbol on said lands.

5.2 Zone Maps - Schedule A

5.2.1 Maps Identified

The Zone Maps comprising Schedule A to this By-law shall form part of this By-law, and consist of the following:
(1) Key Map - Schedule A
(2) Area Maps - Schedules A1 to A12
5.2.2 Zones Indicated on Maps

The boundaries and zone symbols of the lands included in each zone class established by this By-law are shown on the Area Maps forming Schedule A1 to A12 of this By-law.

5.3 Determination of Zone Boundaries

The boundaries of any zone shown on a Zone Map shall be determined in accordance with the following rules:
5.3.1 Zone boundaries are indicated by heavy black lines.
5.3.2 Centre lines

Where a zone boundary is indicated as following approximately the centre line of a street or lane and/or its production, such centre line and/or its production shall be deemed to be the boundary.

5.3.3 Railways

Where a zone boundary is indicated as following the centre line or outer limit of a railway right-of-way or an electrical, gas or oil transmission line, the centre line or outer limit of such right-of-way, as the case may be, shall be deemed to be the boundary.

5.3.4 Watercourses

Where a zone boundary is indicated as following the centre line or edge of a body of water, such centre line or edge, as the case may be, shall be deemed to be the boundary.

5.3.5 Welland Ship Canal

Where a zone boundary is indicated as following a side of the Welland Ship Canal, the boundary shall be deemed to coincide with the lot line, on that side of the Welland Ship Canal, of lands owned by or under the jurisdiction of the St. Lawrence Seaway Authority.
5.3.6 Identified Lot Lines

Where a zone boundary is indicated as following an identified lot line and/or its production shown on a registered plan or former Township lot line, such lot line and/or its production shall be deemed to be the boundary. A street line and/or its production shall be deemed to be an identified lot line.
5.3.7 Top of Bank

Where a zone boundary is indicated as following the top of bank, such top of bank as the case may be, shall be deemed to be the boundary and in the event of change to the top of bank, the boundary shall be construed as moving with the actual top of bank.

5.3.8 City Limits

Where a zone boundary is indicated as following the limits of the City, such City limits, as the case may be, shall be deemed to be the boundary.

5.3.9 Street Closure

In the event a dedicated street, road allowance or lane shown on any Schedule forming part of this By-law is closed, the property formerly in such street, road allowance, or lane shall be included with the zone of the joining property on either side of such closed street, road allowance or lane.
If a closed street, road allowance or lane is the boundary between two or more different zones, the new zone boundaries shall be the former centreline of the closed street, road allowance or lane as such are adjacent to such zones.
5.3.10 Zone Measurement

Where the zone boundary is not a street, road allowance or lane, nor a lot line and a specific measurement indicating the position of the said boundary is not shown on the Zoning Schedules or indicated in the text of this By-law, the position thereof shall be determined by scaling from the Zoning Schedules.

5.3.11 Zoning Maps

The extent and boundaries of all zones are shown on the following Schedules which form part of this By-law and are attached hereto:

Schedule A	- Key Map (Zone Schedules)
Schedule A1	- Decew (Northwest Rural)
Schedule A2	- Lake Gibson/Blackhorse/The Neighbourhoods of Rolling Meadows
	(Northeast Rural)
Schedule A3	- Thorold South East (Southeast Rural)
Schedule A4	- Turners Corners (Southwest Rural)
Schedule A5	- Brock Neighbourhood (Lake Gibson Brock)
Schedule A6	- Confederation Heights
Schedule A7	- Thorold Centre (Old Town)
Schedule A7-1	- Permissible Bed \& Breakfast Locations
Schedule A8	- Beaverdams
Schedule A9	- Thorold South/The Neighbourhoods of Rolling Meadows
Schedule A10	- Allanburg
Schedule A11	- Allanport Road
Schedule A12	- Port Robinson

5.4 Deemed Amendments to the Zone Maps

5.4.1 The Zone Maps, Schedule A and any other schedule affected, shall be deemed to be amended from time to time as necessary to reflect changes, correction, alterations and additions to lot lines, lot numbers, road patterns, railway lines, hydro, gas and other utility lines, watercourses, subdivisions, municipal boundaries, status and jurisdiction, and all similar or other features, except zoning changes.

APPENDIX B

B1.8.12 Land Use Compatibility

It is a requirement of this Plan that appropriate measures be undertaken to attenuate the effects of noise, visual intrusion or other undesirable impacts of residential development adjacent to Highways 58 and 20, Thorold Townline Road and other environmentally incompatible land uses.

B1.8.12.1 Residential Development Adjacent to Provincial Highways and Regional Arterial Roads

Where residential development is proposed to be located adjacent to Highway 58 and 20 three alternative design considerations can be utilized to achieve environmental compatibility:
a) Acoustical barriers such as berms or walls; or
b) Minimum building setbacks of 65 metres from Highway 20 and 85 metres from Highway 58; or
c) Single loaded window streets with the dwelling units facing the highway.

For residential development within 250 metres of Highway 58 and 20 and 100 metres of Thorold Townline Road the developer shall be required to prepare a detailed noise study. A noise feasibility study is required within 50 metres of a provincial highway in accordance with Provincial Guideline NPC-300. The noise study shall include recommendations regarding noise attenuation measures which are required in order to satisfy Provincial sound level objectives. Noise attenuation measures may include but shall not be limited to the following:
a) Sound proofing measures and construction techniques;
b) Warning clauses; and,
c) Equipping the dwelling units with air conditioning or special ventilation.

B1.8.12.2 Residential Development Adjacent to Stationary Noise Sources and Industrial Facilities

Located within the Blackhorse Community are a number of existing uses which are stationary noise sources and may therefore impact sensitive receptors. A noise study is required for residential uses and noise sensitive land uses, such as a daycare facility, institutional use, or hotel/motel, if these uses are to be located within:
a) 300 metres of the commercial vehicle refuelling station; or,
b) $\quad 70$ metres of the natural gas metering facility.

The noise study shall include recommendations regarding noise attenuation measures which are required in order to satisfy Provincial sound level objectives.

When residential development is proposed adjacent to the natural gas metering facility a 20 metre separation distance is required measured from lot line to line.
a) The utilization of window streets abutting the industrial area and the dwelling units having flanking yards;
b) Sound proofing and construction techniques;
c) Acoustical barriers such as berms or walls; and
d) A forced air ventilation system with central air conditioning or some other form of mechanical ventilation.

B1.8.12.3 Aggregate Resource Protection Policies

The Ministry of Natural Resources and Forestry has identified lands east of Thorold Townline Road, north of the Hydro One corridor, as a potential bedrock resource area. Development applications within 500 metres of this potential bedrock resource area shall be reviewed having regard to this identified resource area and the need to demonstrate that future aggregate extraction will not be precluded or hindered and to achieve land use compatibility. Mitigation measures which shall be determined through appropriate studies prepared by the developer may be necessary and include but shall not be limited to the following:
a) Building orientation;
b) The utilization of window streets and dwelling units having flanking yards;
c) Sound proofing and construction techniques;
d) Increasing building setbacks or possibly the need for additional spatial separation; and
e) Landscape treatments.

In order to determine the necessary mitigation, the developer when proceeding before a quarry application shall be required to prepare the following studies assuming that a proposed quarry will be located on the east side of Thorold Townline Road:
a) Operational noise;
b) Blasting;
c) Traffic; and,
d) Any other technical report considered appropriate by Council.

The 500 metre study area is identified on Schedule A-3.
It shall also be recognized that Thorold Townline Road is a Regional arterial road and is the likely aggregate haul route required to serve any future aggregate extraction
operation to the east. Accordingly, all studies required by any policy of this Plan shall recognize that Thorold Townline Road is a future aggregate haul route. The haul route shall be restricted from the future extraction operation entrance southerly to Highway 20, a major arterial.

Once the proponent has prepared the appropriate studies and the necessary mitigation is incorporated into the proposed development, if necessary, the utilization of such mitigation measures does not relieve the new mineral aggregate operation from providing appropriate setbacks and mitigation measures in order to achieve land use compatibility.

B1.8.12.4 Residential Development Adjacent to Thorold Townline Road

When residential development is proposed to be located adjacent to the Townline Road and the easterly located agricultural lands in the City of Niagara Falls consideration shall be given to utilizing design elements of dwelling orientation, window streets, increased building setbacks, and landscape treatments to achieve land use compatibility.

B1.8.13 Servicing and Transportation

B1.8.13.1 General

a) All development within the Neighbourhoods of Rolling Meadows shall be developed with full municipal services in accordance with Municipal Policy.
b) Extension of municipal services into the Neighbourhoods of Rolling will be required to service development.
c) Easements to accommodate municipal services shall be granted as a condition of development approval.
d) Easements to accommodate utilities shall be granted as a condition of development approval.
e) The provision of a water distribution system, wastewater collection system, stormwater management facilities, road network, and other municipal services will be achieved with minimum costs to the City.
f) In order to achieve the proper co-ordination of services and consistence in development standards, the orderly development of land by way of plan of subdivision and site plan will be required throughout the neighbourhood. Consents to sever land to create development blocks will only be permitted when it is determined to the satisfaction of the City that the severance of land will not prejudice or jeopardize the subsequent development of the balance of the lands.

B1.8.13.2 Infrastructure Improvements

In order to accommodate development within the Neighbourhoods of Rolling Meadows, it will be necessary to address off-site upgrading or expansion of infrastructure such as:
a) The extension of the Allanburg Road trunk sanitary sewer easterly to the

APPENDIX C

Table C.1: Key Parameters Included in the Cadna/A Noise Modelling
Upper's Quarry, 1603157

Parameter	Value	Rationale
Ground Absorption, within extraction limit	0.2	Accounts for hard ground (exposed rock surfaces) within extraction limit
Ground Absorption, outside of extraction limit	0.8	Accounts for mostly soft ground outside of quarry extraction limit
Temperature	$10^{\circ} \mathrm{C}$	Ontario standard conditions
Relative Humidity	70%	Ontario standard conditions
Max. Order of Reflection	1	1st order reflection considered
Absorption Coefficient Alpha	0.37	Cadna/A default value for structured facade

Cadna/A ISO-9613 Calculation Protocol - Definitions		
Parameter	Unit	Definition
Nr		Ray Number X-axis Cartesian Coordinate Y-axis Cartesian Coordinate Z-axis Cartesian Coordinate Order of Reflection Time of Day (Day, Evening, or Night) 1/1 Octave Band Dominant Frequency or Frequency Type ("A" for A-weighted)
X	(m)	
Y	(m)	
Z	(m)	
Refl.	order	
DEN	D/E/N	
Freq.	(Hz)	
Lw	(dBA)	
1/a	dB	Line/Area Source Correction
Optime	dB	Operating Time Correction
K0	(dB)	D_omega in ISO 9613-2 (correction for radiation into solid angles less than 4 Pi)
Di	(dB)	Directivity Index
Adiv	(dB)	Attenuation Due to Divergence
Aatm	(dB)	Atmospheric Attenuation
Agr	(dB)	Ground Attenuation
Afol	(dB)	Attenuation Due to Foliage
Ahous	(dB)	Attenuation from Houses
Abar	(dB)	Barrier Attenuation
Cmet	(dB)	Meteorological Correction
RL	(dB)	Reflection Loss
Lr	(dBA)	Resulting Noise Impact at Receptor - Leq (1-Hr)

Receiver
Name: \quad Facade of dwelling (5584 Beechwood Rd)
ID: R4f
X: $\quad 649610.64 \mathrm{~m}$
Y: $\quad 4772697.98 \mathrm{~m}$
Z: $\quad 190.50 \mathrm{~m}$

Point Source, ISO 9613, Name: "P1A_Sinkcut, PP Loader", ID: "P1A_Sinkcut_PP_Ldr"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
146	648801.86	4772799.02	179.50	0	D	A	105.6	0.0	0.0	0.0	0.0	69.2	5.1	-1.7	0.0	0.0	0.0	0.0	0.0	33.0

Point Source, ISO 9613, Name: "P1A_Sinkcut, PC Primary Crusher", ID: "P1A_Sinkcut_PC_PrimaryCrush"

Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB(A)									
147	648674.53	4772846.65	180.00	0	D	A	117.6	0.0	0.0	0.0	0.0	70.5	3.3	-1.7	0.0	0.0	0.0	0.0	0.0	45.

Point Source, ISO 9613, Name: "P1A_Sinkcut, PP Secondary Crusher", ID: "P1A_Sinkcut_PP_SecondaryCrush"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
148	648791.38	4772792.73	180.00	0	D	A	114.6	0.0	0.0	0.0	0.0	69.3	4.0	-1.7	0.0	0.0	0.0	0.0	0.0	43.0

Point Source, ISO 9613, Name: "P1A_Sinkcut, PP Idling Truck", ID: "P1A_Sinkcut_PP_Trk2"

Nr.	X	Y	Z	Refl.	DEN	Freq.	LW	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
149	648806.63	4772810.88	180.00	0	D	A	96.3	0.0	0.0	0.0	0.0	69.2	3.8	-1.8	0.0	0.0	0.0	0.0	0.0	25.1

Point Source, ISO 9613, Name: "P1A_Sinkcut, PP Idling Truck", ID: "P1A_Sinkcut_PP_Trk1"

Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
150	648804.44	4772810.35	180.00	0	D	A	96.3	0.0	0.0	0.0	0.0	69.2	3.8	-1.8	0.0	0.0	0.0	0.0	0.0	25.0

t Source, ISO 9613, Name: "P1A_Sinkcut, PP Secondary \& Tertiary Screen", ID: "P1A_Sinkcut_PP_SecondaryTertiaryScreen"																				
Nr .	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
152	648792.65	4772791.54	180.00		D	A	113.8	0.0	0.0	0.0	0.0	69.3	4.1	-1.6	0.0	0.0	0.0	0.0	0	42.0

Point Source, ISO 9613, Name: "P1A_Sinkcut, PC Primary Screen", ID: "P1A_Sinkcut_PC_PrimaryScreen"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
156	648675.85	4772845.10	180.00	0	D	A	113.8	0.0	0.0	0.0	0.0	70.5	4.5	-1.9	0.0	0.0	0.0	0.0	0.0	40.7

Point Source, ISO 9613, Name: "P1A_Sinkcut, PC loader dumping into crusher", ID: "P1A_Sinkcut_PC_CrusherDump"

Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB(A)									
159	648673.29	4772848.33	180.00	0	D	A	123.0	0.0	-10.8	0.0	0.0	70.5	4.2	-1.9	0.0	0.0	0.0	0.0	0.0	39.3

Point Source, ISO 9613, Name: "P1A_Sinkcut, WF Drill", ID: "P1A_Sinkcut_WF_Drill"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB(A)									
160	648631.06	4772869.76	179.50	0	D	A	110.0	0.0	0.0	0.0	0.0	71.0	6.6	-2.2	0.0	0.0	0.0	0.0	0.0	34.7

Line Source, ISO 9613, Name: "P1A_Sinkcut, Aggregate Shipping from PP, Full", ID: "P1A_Sinkcut_RD_SHP_Aggr_Fu"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB(A)									
161	648768.21	4772877.52	180.57	0	DEN	A	67.0	21.7	0.0	0.0	0.0	69.7	3.9	-1.6	0.0	0.0	0.0	0.0	0.0	16.7
165	648622.64	4772934.55	186.30	0	DEN	A	67.0	22.1	0.0	0.0	0.0	71.1	4.3	-1.5	0.0	0.0	0.0	0.0	0.0	15.1
176	648527.52	4772909.10	187.70	0	DEN	A	67.0	15.5	0.0	0.0	0.0	71.9	4.5	-1.6	0.0	0.0	0.0	0.0	0.0	7.7
179	648721.07	4772946.02	182.79	0	DEN	A	67.0	13.2	0.0	0.0	0.0	70.3	4.1	-1.5	0.0	0.0	0.0	0.0	0.0	7.3
182	648706.19	4772952.83	185.02	0	DEN	A	67.0	10.9	0.0	0.0	0.0	70.5	4.1	-1.4	0.0	0.0	0.0	0.0	0.0	4.7

Line Source, ISO 9613, Name: "P1A_Sinkcut, Aggregate Shipping from PP, Empty", ID: "P1A_Sinkcut_RD_SHP_Aggr_Em"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
163	648765.56	4772875.98	180.50	0	DEN	A	67.0	21.7	0.0	0.0	0.0	69.7	3.9	-1.6	0.0	0.0	0.0	0.0	0.0	16.6
166	648622.41	4772930.83	186.31	0	DEN	A	67.0	22.1	0.0	0.0	0.0	71.1	4.3	-1.5	0.0	0.0	0.0	0.0	0.0	15.1
174	648527.49	4772905.03	187.73	0	DEN	A	67.0	15.6	0.0	0.0	0.0	71.8	4.5	-1.6	0.0	0.0	0.0	0.0	0.0	7.7
178	648717.20	4772944.52	182.76	0	DEN	A	67.0	13.6	0.0	0.0	0.0	70.3	4.1	-1.5	0.0	0.0	0.0	0.0	0.0	7.7
184	648703.40	4772950.40	185.07	0	DEN	A	67.0	8.8	0.0	0.0	0.0	70.5	4.1	-1.4	0.0	0.0	0.0	0.0	0.0	2.6
186	648728.07	4772939.89	180.50	0	DEN	A	67.0	1.1	0.0	0.0	0.0	70.2	4.0	-1.6	0.0	0.0	0.0	0.0	0.0	-4.

Point Source, ISO 9613, Name: "P1A_Sinkcut, PC Loader", ID: "P1A_Sinkcut_PC_Ldr"																				
Nr .	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
169	648672.13	4772849.77	179.50	0	D	A	105.6	0.0	0.0	0.0	0.0	70.6	5.5	-1.9	0.0	0.0	0.0	0.0	0.0	31.4

Line Source, ISO 9613, Name: "P1A_Sinkcut, Conveyor", ID: "P1A_Sinkcut_Conveyor"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
170	648733.39	4772817.27	180.50	0	D	A	82.7	20.8	0.0	0.0	0.0	69.9	3.8	-1.9	0.0	0.0	0.0	0.0	0.0	31.7

Point Source, ISO 9613, Name: "P1A_Sinkcut, PP Tertiary Crusher", ID: "P1A_Sinkcut_PP_TertiaryCrush"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
173	648793.79	4772790.45	180.00	0	D	A	99.2	0.0	0.0	0.0	0.0	69.3	3.3	-1.6	0.0	0.0	0.0	0.0	0.0	28.2

Receiver
Name: \quad Facade of dwelling (5584 Beechwood Rd)
ID: R4f
X: $\quad 649610.64 \mathrm{~m}$
Y: $\quad 4772697.98 \mathrm{~m}$
Z: $\quad 190.50 \mathrm{~m}$

Point Source, ISO 9613, Name: "Asphalt Plant - Dust Collector Blower (stack)", ID: "ASPH_DC_s"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB(A)									
547	648854.54	4772826.22	166.05	0	D	A	109.5	0.0	0.0	0.0	0.0	68.7	1.8	-1.3	0.0	0.0	4.6	0.0	0.0	35.7

Point Source, ISO 9613, Name: "P4_SE, PC Primary Crusher", ID: "P4_SE_PC_PrimaryCrush"

Point Source, ISO 9613, Name: "P4_SE, PC Primary Crusher", ID: "P4_SE_PC_PrimaryCrush"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1549	649480.08	4772803.25	164.50	0	D	A	117.6	0.0	0.0	0.0	0.0	55.6	0.9	-0.8	0.0	0.0	21.2	0.0	0.0	40.7

Point Source, ISO 9613, Name: "P4_SE, PP Loader", ID: "P4_SE_PP_Ldr"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1551	649152.30	4772897.23	148.50	0	D	A	105.6	0.0	0.0	0.0	0.0	65.0	4.0	-2.6	0.0	0.0	10.3	0.0	0.0	28.9

Point Source, ISO 9613, Name: "P4_SE, PC loader dumping into crusher", ID: "P4_SE_PC_CrusherDump"																				
Nr .	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cm	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1554	649481.42	4772802.28	164.50	0	D	A	123.0	0.0	-7.8	0.0	0.0	55.5	1.1	-1.0	0.0	0.0	22.6	0	0.0	37.0

Point Source, ISO 9613, Name: "Asphalt Plant - Pug Mill door (pressure relief noise)", ID: "ASPH_pugdoor"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1557	648862.85	4772834.18	150.00	0	D	A	107.0	0.0	0.0	0.0	0.0	68.6	2.7	-2.6	0.0	0.0	23.8	0.0	0.0	14.5
1559	648862.85	4772834.18	150.00	1	D	A	107.0	0.0	0.0	0.0	0.0	68.8	2.7	-2.7	0.0	0.0	4.7	0.0	19.8	-86.4
1562	648862.85	4772834.18	150.00		D	A	107.0	0.0	0.0	0.0	0.0	68.8	2.7	-2.7	0.0	0.0	4.7	0.0	15.	18.0

Point Source, ISO 9613, Name: "Asphalt Plant - Conveyor motor, gravel hitting metal plate", ID: "ASPH_motor"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1564	648854.17	4772834.20	150.00	0	D	A	107.0	0.0	0.0	0.0	0.0	68.7	4.6	-3.0	0.0	0.0	5.9	0.0	0.0	30.8
1567	648854.17	4772834.20	150.00		D	A	107.0	0.0	0.0	0.0	0.0	68.8	4.6	-3.0	0.0	0.0	4.8	0.0	20.	-88.2

Point Source, ISO 9613, Name: "P4_SE, PC Primary Screen", ID: "P4_SE_PC_PrimaryScreen"

Point Source, ISO 9613, Name: "P4_SE, PC Primary Screen", ID: "P4_SE_PC_PrimaryScreen"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1569	649478.69	4772804.35	164.50	0	D	A	113.8	0.0	0.0	0.0	0.0	55.7	1.5	-1.1	0.0	0.0	21.7	0.0	0.0	35.9

Point Source, ISO 9613, Name: "Asphalt Plant - Pug Mill Motor", ID: "ASPH_pugmill"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB(A)									
1571	648870.31	4772836.62	151.00	0	D	A	104.8	0.0	0.0	0.0	0.0	68.6	7.2	-2.4	0.0	0.0	6.5	0.0	0.0	25.1
1574	648870.31	4772836.62	151.00	1	D	A	104.8	0.0	0.0	0.0	0.0	68.9	7.3	-2.4	0.0	0.0	20.6	0.0	14.2	-103.7
1577	648870.31	4772836.62	151.00	1	D	A	104.8	0.0	0.0	0.0	0.0	68.6	7.2	-2.4	0.0	0.0	4.7	0.0	3.4	23.2

Point Source, ISO 9613, Name: "Asphalt Plant - Dust Collector Blower (motor)", ID: "ASPH_DC_m"

Point Source, ISO 9613, Name: "Asphalt Plant - Dust Collector Blower (motor)", ID: "ASPH_DC_m"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1579	648856.17	4772826.28	148.00	0	D	A	104.8	0.0	0.0	0.0	0.0	68.7	2.9	-2.7	0.0	0.0	4.8	0.0	0.0	31.2
1582	648856.17	4772826.28	148.0		D	A	104.8	0.0	0.0	0.0	0.0	68.7	2.9	-2.7	0.0	0.0	4.8	0.0	8.3	22.9

Point Source, ISO 9613, Name: "P4_SE, WF Drill", ID: "P4_SE_WF_Drill"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1584	649522.65	4772781.71	180.50	0	D	A	110.0	0.0	0.0	0.0	0.0	52.7	1.6	-0.7	0.0	0.0	16.4	0.0	0.0	40.0

Point Source, ISO 9613, Name: "Asphalt Plant - Oven Motor", ID: "ASPH_oven"

Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB(A)									
1587	648858.27	4772831.59	151.80	0	D	A	102.4	0.0	0.0	0.0	0.0	68.7	3.4	-2.6	0.0	0.0	4.7	0.0	0.0	28.3
1590	648858.27	4772831.59	151.80	1	D	A	102.4	0.0	0.0	0.0	0.0	68.8	3.4	-2.6	0.0	0.0	4.7	0.0	46.3	-18.1

Point Source, ISO 9613, Name: "Asphalt Plant - Loader Activity", ID: "ASPH_Ldr_Act1"

Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB(A)									
1597	648869.76	4772830.27	148.50	0	D	A	101.7	0.0	0.0	0.0	0.0	68.5	3.8	-2.7	0.0	0.0	12.1	0.0	0.0	20.1
1600	648869.76	4772830.27	148.50	1	D	A	101.7	0.0	0.0	0.0	0.0	68.9	3.8	-2.7	0.0	0.0	4.7	0.0	20.1	-93.1

Point Source, ISO 9613, Name: "Asphalt Plant - Loader Activity", ID: "ASPH_Ldr_Act2"

Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1603	648864.03	4772827.02	148.50	0	D	A	101.7	0.0	0.0	0.0	0.0	68.6	3.8	-2.7	0.0	0.0	4.7	0.0	0.0	27.3
1607	648864.03	4772827.02	148.50	1	D	A	101.7	0.0	0.0	0.0	0.0	68.8	3.8	-2.7	0.0	0.0	4.7	0.0	44.6	-17.6

Point Source, ISO 9613, Name: "Asphalt Plant - Elevator Motor", ID: "ASPH_elev"

Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1609	648861.24	4772834.76	165.00	0	D	A	99.8	0.0	0.0	0.0	0.0	68.6	3.1	-1.5	0.0	0.0	4.8	0.0	0.0	24.9
1612	648861.24	4772834.76	165.00	1	D	A	99.8	0.0	0.0	0.0	0.0	68.8	3.1	-1.6	0.0	0.0	4.8	0.0	28.5	103.8

Point Source, ISO 9613, Name: "P4_SE, PP Idling Truck", ID: "P4_SE_PP_Trk1"

Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1615	649143.29	4772895.19	149.00	0	D	A	96.3	0.0	0.0	0.0	0.0	65.1	2.6	-2.7	0.0	0.0	5.2	0.0	0.0	26.1

Point Source, ISO 9613, Name: "P4_SE, PP Idling Truck", ID: "P4_SE_PP_Trk2"																				
Nr .	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1617	649141.96	4772897.03	149.00	0	D	A	96.3	0.0	0.0	0.0	0.0	65.2	2.6	-2.7	0.0	0.0	5.2	0.0	0.0	26.0

Point Source, ISO 9613, Name: "Asphalt Plant - Compressor Vent", ID: "ASPH_comp"																				
Nr .	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1620	648874.75	4772829.07	146.60	0	D	A	96.0	0.0	0.0	3.0	0.0	68.5	2.9	-1.5	0.0	0.0	21.0	0.0	0.0	8.2
623	648874.75	4772829.07	146.60		D	A	96.0	0.0	0.0	3.0	0.0	68.9	3.0	-1.5	0.0	0.0	4.7	0.	22.	98.

Line Source, ISO 9613, Name: "P4_SE, Conveyor", ID: "P4_SE_Conveyor"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB(A)									
1627	649434.42	4772810.92	149.50	0	D	A	82.7	18.8	0.0	0.0	0.0	57.6	1.2	-1.4	0.0	0.0	23.8	0.0	0.0	20.4
1629	649359.39	4772823.01	149.50	0	D	A	82.7	18.8	0.0	0.0	0.0	60.1	1.5	-1.8	0.0	0.0	14.9	0.0	0.0	26.9
1631	649246.84	4772841.14	149.50	0	D	A	82.7	21.8	0.0	0.0	0.0	62.9	2.0	-2.3	0.0	0.0	8.5	0.0	0.0	33.5
1804	649473.37	4772804.82	157.25	0	D	A	82.7	12.0	0.0	0.0	0.0	56.0	1.0	-1.1	0.0	0.0	24.8	0.0	0.0	14.1
1973	649171.27	4772858.25	149.50	0	D	A	82.7	10.0	0.0	0.0	0.0	64.4	2.3	-2.6	0.0	0.0	5.8	0.0	0.0	22.8
1983	649168.92	4772879.80	149.50	0	D	A	82.7	15.2	0.0	0.0	0.0	64.6	2.3	-2.6	0.0	0.0	13.6	0.0	0.0	20.0
2190	649475.97	4772804.73	165.00	0	D	A	82.7	3.7	0.0	0.0	0.0	55.8	1.0	-1.1	0.0	0.0	22.3	0.0	0.0	8.4

Line Source, ISO 9613, Name: "P4 SE, Aggregate Haul road b/w PP and AP, Full", ID: "P4_SE_RD_Haul_PP_AP_Fu"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1633	649130.91	4772889.48	149.50	0	DEN	A	73.4	14.1	0.0	0.0	0.0	65.3	2.5	-2.6	0.0	0.0	5.1	0.0	0.0	17.2
1635	649078.32	4772852.64	149.50	0	DEN	A	73.4	20.1	0.0	0.0	0.0	65.9	2.6	-2.6	0.0	0.0	4.9	0.0	0.0	22.7
1706	649017.68	4772815.35	149.50	0	DEN	A	73.4	16.0	0.0	0.0	0.0	66.6	2.8	-2.7	0.0	0.0	4.8	0.0	0.0	17.8
1709	648907.21	4772814.73	149.50	0	DEN	A	73.4	17.2	0.0	0.0	0.0	68.1	3.2	-2.8	0.0	0.0	4.8	0.0	0.0	17.3
17	648907.21	4772814.73	149.50		DEN	A	73.4	17	0.0	0.0	0.0	68.6	3.	-2.8	0.0	0.0	4.8	0.0	16.	0.2
1712	648907.21	4772814.73	149.50		DEN	A	73.4	17.2	0.0	0.0	0.0	68.7	3.4	-2.8	0.0	0.0	4.8	0.0	51.8	-35.2
17	648907.21	4772814.73	0		DEN	A	73.4	17.2	0.0	0.0	0.0	68.7	3.	-2.8	0.0	0.0	4.8	0.0	17.2	-0.6
1716	648907.21	4772814.73	149.5		DEN	A	73.4	17	0.0	0.0	0.0	68.7	3.4	-2.8	0.0	0.0	4.8	0.0	51.	-34.7
1718	648953.45	4772804.66	149.50	0	D	A	73.4	16.3	0.0	0.0	0.0	67.5	3.1	-2.7	0.0	0.0	4.8	0.0	0.0	17.
1720	648953.45	4772804.6	149.5		D	A	73.4	16.3	0.0	0.0	0.0	69.2	3.5	-2.9	0.0	0.0	4.8	0.0	29.	-114.6
1722	648953.45	4772804.66	149.50		DEN	A	73.4	16.3	0.0	0.0	0.0	69.1	3.5	-2.9	0.0	0.0	4.8	0.0	29.2	-114
1724	648986.92	4772804.88	149.50	0	DEN	A	73.4	14.0	0.0	0.0	0.0	67.0	2.9	-2.7	0.0	0.0	4.8	0.0	0.0	15.3
1726	648986	4772804.88	149.50		DEN	A	73.4	14	0.0	0.	0.0	69.	3.6	-2.9	0.0	0.0	4.8	0.0	34.3	-12

Line Source, ISO 9613, Name: "P4 SE, Aggregate Haul road b/w PP and AP, Full", ID: "P4_SE_RD_Haul_PP_AP_Fu"																				
Nr .	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1728	648986.92	4772804.88	149.50	1	DEN	A	73.4	14.0	0.0	0.0	0.0	69.5	3.6	-2.9	0.0	0.0	4.8	0.0	33.9	121.5

Line Source, ISO 9613, Name: "P4_SE, Aggregate Shipping from PP, Empty", ID: "P4_SE_RD_SHP_Aggr_Em																				
Nr.	X	Y	Z	Refl.	DEN	Fre	Lw	I/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cm	RL	
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB)	dB(A)								
1639	49139.	72890	149.50		DEN	A	71.	10.6	0.0	0.0	0.0	65.	2.8	-2.4	0.0	0.0	5.1	0.0	0.0	11.8
	64913	4772882.08	149.50			A	71.7	9.6	0.0	0.0	0.0	65.	2.8	-24	0.0		5.1			
1644	6490	4772817.35	149.50		EN	A	71.7	21.8	0.0	0.0	0	65.7	2.9	2.	0.0	,	5.0			
1680	648907.83	4772725.25	149.50		EN	A	71.7	21.4	0.0	0.0	0.0	68.0	3.4	-2.5	0.0	0	4.7		0.	
1695	648778.40	4772772.26	149.50		den	A	71.7	21.6	0.0	0.0	0.0	69.4	3.8	-2.6	0.0	0.0	4.7	0.0	0.0	
	649007.42	4772736.56	149.50		DEN	A	71.7	18.7	0.0	0.0	0.0	66.6	3.1	-2.4	0.0	0.0	4.8	0.0	0.0	
	648707.63	29	187.19		DEN	A	71.7	18.5	0.0	0.0	0.0	70.5	4.1	-2.8	0.0	0.0	0.0	0.0	0.0	
	64	4772847.10	149.50			A	71.7	11.	0.0	0.0	0.0	70.	4.1	2.7	0.0	0.0	4.7	0		
	64868	4772854.30				A	71.	2.5	0.0	0.	0		4.1		0.0		.			
		4772856.50				A	71.				,		4.1		0.0		4.7			
	648689.85	4772858.41	149.50		DEN	A	71,	07	0	0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7			
1741	648690.19	285	149.50		DEN	A	71.7	2.9	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.	0.	
	648690.76	477286	149.50		DEN	A	71.7	5.1	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.	
	648691.22	4772864.59	149.50		den	A	71.7	0.3	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.	
	648691.79	28	149.5			A	71.7	6.2	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7			
	64869	4772870.25	149.5			A	71.7	3.4	0.0	0.0	0.0		4.1		0.0	0.0	4.7	0	0.0	
	648693.11	4772873.10	149.50			A	71.7			0.0			4.1				4.7			
	64	4772876.77	149.50			A	71.7	5.8	0	0.0			4.1		0.0	0.	5.8		0.	
	648	4772880.62	149.50		EN	A	71.7	6.1	0.0	0.0	0.0		4.1	-2.7	0.0	0.0	5.9	0.	0.	
	648698.2	4772896.37	149.5		DEN	A	71.	14.	0.0	0.0	0.0		4.1	-2.7	0.0	0.0	4.7	0.0	0.	
	64	477292	187.43		DEN	A	71.7	18.	0.0	0.0	0.0		4.4	-2.8	0.0	0.0	0.0	0.0	0.	
	64	477291	187.5		DEN	A	71.7	1.5	0.0	0.0		71.7	4.5	-2.8	0.0	0.0	0.0			
	64	4772939.7	187.3		DEN	A	71.7	17	0.0	0.0			4.3		0.0	0.0	0.0			
	648724.	4772925.31	149.50			A	71.						4.0			,				
	64870	4772825.84	149.5			A	71.7	16.					4.1				4.7			
	648	4772910.77	187.55		DEN	A	71.7	9.2	0.0	0.0	0.0		4.5	-2.8	0.0	0.0	0.0	0.0		
	648533.50	729	187.66		DEN	A	71.7	10	0.0	0.0	0.0	71.	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	
	648523.62	7290	187.7		DEN	A	71.	9.9	0.0	0.0	0.0	71.9	4.6	-2.7	0.0	0.0	0.0	0.0	0.	
	648	477290	187.8		EN	A	71.	7.7	0.0	0.0	0.0	71.9	4.6	-2.6	0.0	0.0	0.0	0.0	0.	
	648	477290	187.9			A	71.	4.3	0.0	0.0	0.0		4.6	2.	0.0	0.0	0			
	64	295				A	71.	11.		0.0			4.0							
	6487	477294				A	71.7	10.		0.			4.0							
	6487	4772937.5	149.5		DEN	A	71.7	9.8	0.0	0.0	0.0		4.0	-2.7	0.0	0.0	4.7			
	6487	477296	187.		DEN	A	71.7	8.0	0.0	0.0	0.0	70.	4.0	-2.7	0.0	0.0	0.0	0.0	0.	
2210	648	477291	149.50		DEN	A	71.7	8.0	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.	
2213	648	4772963.29	18		DEN	A	71.7	7.6	0.0	0.0	0.0	70.	4.0	-2.7	0.0	0.0	0.0	0.0		
2216	648	477294	149.50		DEN	A	71.7	7.4	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0		
2219	64875	4772952.63	166.8	0	DEN	A	71.7	7.5	0.0	0.0	0.0	0.	4.0	-2.7	0.0	0.0	0.0			
	64875	4772954.5	崖		DEN	A	71.7	5.7	0.0	0.0	0.0	,	4.0	-2.7	0.0	0.0	0.0			
	648753	4772951.19	162.5		N	A	71.7	5.4	0,	0.0	0.0	0.0	4.0	-2.	0.0	0.0	4.7	0.	0.	
2357	648754.15	4772948.34	159.8		DEN	A	71.7	5.2	0.0	0.0	0.0	70.0	4.0	2.7	0.0	0.0	4.7	0.	0.	
2391	648753.76	4772949.94	159.69		DEN	A	71.7	4.6	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	
03	648751.31	4772960.40	185.82		DEN	A	71.7	4.5	0.0	0.0	0.0	70.1	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	
442	648754.2	4772946.0	149.5		DEN		71.7	1.6	0.0	0.0	0.0		4.0			0.0				

Point Source, ISO 9613, Name: "P4_SE, PC Loader", ID: "P4_SE_PC_Ldr"																															
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous		Cmet	RL	Lr											
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)		1647	649483.67	4772800.84	164.00	0	D	A	105.6	0.0	0.0	0.0	0.0	55.4	2.2	-1.1	0.0	0.0	22.0	0.0
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---													
0.0	27.1																														

Line Source, ISO 9613, Name: "P4_SE, Aggregate Shipping from PP, Full", ID: "P4_SE_RD_SHP_Aggr_Fu"																				
Nr.	X	Y	z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cm	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1650	649083.00	4772818.36	149.50	0	DEN	A	71.7	21.8	0.0	0.0	0.0	65.7	2.9	-2.4	0.0	0.0	4.9	0.0	0.0	22.4
1652	649129.95	4772881.4	149.50	0	DEN	A	71.7	7.4	0.0	0.0	0.0	65.	2.8	-2.4	0.0	0.0	5.0	0.0	0.0	8.5
1653	649136.50	4772890.23	149.50	0	DEN	A	71.7	12.1	0.0	0.0	0.0	65.2	2.8	-2.	0.0	0.0	5.1	0.0	0.0	13.3
1682	648908.30	4772726.7	149.50	0	DEN	A	71.7	21.3	0.0	0.0	0.0	68.0	3.4	-2.	0.0	0.0	4.7	0.0	0.0	19.5
1690	648779.52	4772773.2	49.50	0	den	A	71.7	21.6	0.0	0.0	0.0	69.4	3.8	-2.6	0.0	0.0	4.7	0.0	0.0	18.0

Line Source, ISO 9613, Name: "P4_SE, Aggregate Shipping from PP, Full", ID: "P4_SE_RD_SHP_Aggr_Fu"																				
Nr.	X	Y	2	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1703	649006.55	4772737.99	149.50		DEN	A	71.7	18.7	0.0	0.0	0.0	66.7	3.1	-2.4	0.0	0.0	4.8	0.0	0.0	18.2
1776	648581.82	4772923.96	187.43	0	DEN	A	71.7	18.6	0.0	0.0	0.0	71.5	4.4	-2.8	0.0	0.0	0.0	0.0	0.0	17.3
1786	648645.08	4772941.51	187.31	0	DEN	A	71.7	17.7	0.0	0.0	0.0	71.0	4.3	-2.8	0.0	0.0	0.0	0.0	0.0	17.0
1790	648725.03	4772924.59	149.50	0	DEN	A	71.7	16.5	0.0	0.0	0.0	70.2	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	11.9
1796	648702.68	4772826.35	149.50	0	DEN	A	71.7	16.3	0.0	0.0	0.0	70.3	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	11.7
1799	648753.85	4772957.12	176.06	0	DEN	A	71.7	13.8	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	14.2
1802	648755.28	4772949.98	157.24	0	DEN	A	71.7	12.2	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	8.0
1830	648699.37	4772896.12	149.50	0	DEN	A	71.7	14.5	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	9.7
1833	648696.01	4772880.51	149.50	0	DEN	A	71.7	5.8	0.0	0.0	0.0	70.4	4.	-2.7	0.0	0.0	6.0	0.0	0.0	-0.2
1835	648695.18	4772876.66	149.50	0	D	A	71.7	6.1	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	5.9	0.0	0.0	0.2
1837	648694.57	4772873.82	149.50	0	DEN	A	71.7	2.4	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-2.4
1861	648727.75	4772964.09	187.15	0	DEN	A	71.7	14.4	0.0	0.0	0.0	70.3	4.1	-2.7	0.0	0.0	0.0	0.0	0.0	14.5
1888	648703.57	4772957.74	187.20	0	DEN	A	71.7	13.5	0.0	0.0	0.0	70.5	4.1	-2.8	0.0	0.0	0.0	0.0	0.0	3.4
1892	648520.98	4772907.90	187.83	0	DEN	A	71.7	1.2	0.0	0.0	0.0	71.9	4.6	-2.8	0.0	0.0	0.0	0.0	0.0	-0.8
1893	648526.62	4772909.39	187.76	0	DEN	A	71.7	10.1	0.0	0.0	0.0	71.9	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	8.3
1896	648536.87	4772912.10	187.63	0	DEN	A	71.7	10.4	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	8.6
1898	648544.39	4772914.08	187.53	0	DE	A	71.7	6.7	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.	0.0	5.0
1902	648682.94	4772952.40	187.24	0	DEN	A	71.7	13.1	0.0	0.0	0.0	70.7	4.2	-2.8	0.0	0.0	0.0	0.0	0.0	12.7
1932	648691.53	4772858.14	149.50	0	DEN	A	71.7	0.9	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-3.9
1935	648691.07	4772856.22	149.50	0	DEN	A	71.7	4.3	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-0.4
1940	648690.55	4772854.03	149.50	0	DEN	A	71.7	2.5	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	6.8	0.0	0.0	-4.3
19	648688.94	4772847.25	149.50	0	DEN	A	71.7	10.8	0.0	0.0	0.0	70.4	4.1	-2.	0.0	0.0	4.7	0.0	0.0	6.
2006	648694.20	4772872.02	149.50	0	DEN	A	71.7	2.9	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-1.9
2008	648693.82	4772869.99	149.50	0	DEN	A	71.7	3.4	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.	0.	0.	-1.4
2011	648693.23	4772866.93	149.50	0	DEN	A	71.7	6.1	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	1.3
2014	648692.74	4772864.36	149.50	0	DEN	A	71.7	0.7	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-4.
2017	648692.34	4772862.28	149.50	0	DEN	A	71.7	4.9	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	0.
2019	648691.86	4772859.75	149.50	0	DEN	A	71.7	3.2	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-1.6
2095	648749.24	4772936.89	149.50	0	DEN	A	71.7	10.0	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	5.7
2120	648745.26	4772967.67	187.11	0	DEN	A	71.7	9.2	0.0	0.0	0.0	70.1	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	9.5
2131	648754.61	4772943.40	149.50	0	DEN	A	71.7	8.9	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	4.6
2142	648751.23	4772964.48	187.11	0	DEN	A	71.7	8.6	0.0	0.0	0.0	70.1	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	9.0
2162	648511.34	4772905.30	187.89	0	DEN	A	71.7	0.5	0.0	0.0	0.0	72.0	4.6	-2.7	0.0	0.0	0.0	0.0	0.0	-1.7
2163	648516.12	4772906.59	187.86	0	DEN	A	71.7	9.4	0.0	0.0	0.0	71.9	4.6	-2.7	0.0	0.0	0.0	0.0	0.0	7.4
2225	648703.63	4772912.51	149.50	0	DEN	A	71.7	7.7	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	3.0

Point Source, ISO 9613, Name: "P4_SE, PP Secondary Crusher", ID: "P4_SE_PP_SecondaryCrush2"

Point Source, ISO 9613, Name: "P4_SE, PP Secondary Crusher", ID: "P4_SE_PP_SecondaryCrush1"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB(A)									
1655	649165.78	4772899.34	149.00	0	D	A	114.6	0.0	0.0	0.0	0.0	64.8	2.8	-2.6	0.0	0.0	11.6	0.0	0.0	38.0

Point Source, ISO 9613, Name: "Asphalt Plant - Idling Truck", ID: "ASPH_IDLE_TRK2"

Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Aba	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1657	648879.73	4772824.63	149.50	0	D	A	96.3	0.0	0.0	0.0	0.0	68.4	3.5	-2.9	0.0	0.0	4.8	0.0	0.0	22.5
1660	648879.73	4772824.63	149.50		D	A	96.3	0.0	0.0	0.0	0.0	68.5	3.6	. 9	0.0	0.0	14.7	0.0	59.	-47.0
1662	648879.73	4772824.6	149.50		D	A	96.3	0.0	0.0	0.0	0.0	69.0	3.7	-3.0	0.0	0.0	4.8	0.0		

Point Source, ISO 9613, Name: "Asphalt Plant - Idling Truck", ID: "ASPH_IDLE_TRK1"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1666	648879.52	4772825.56	149.50	0	D	A	96.3	0.0	0.0	0.0	0.0	68.4	3.5	-2.9	0.0	0.0	4.8	0.0	0.0	22.5
1670	648879.52	4772825.56	149.50	1	D	A	96.3	0.0	0.0	0.0	0.0	68.5	3.6	-2.9	0.0	0.0	15.3	0.0	59.6	-47.8
1672	648879.52	4772825.56	149.50		D	A	96.3	0.0	0.0	0.0	0.0	69.0	3.7	-3.0	0.0	0.0	4.8	0.0	32.2	110.

Point Source, ISO 9613, Name: "P4_SE, PP Secondary \& Tertiary Screen", ID: "P4_SE_PP_SecondaryTertiaryScreen2"

Nr	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	dB(A)									
1674	649164.92	4772897.98	149.00	0	D	A	113.8	0.0	0.0	0.0	0.0	64.8	3.0	-2.6	0.0	0.0	11.0	0.0	0.0	37.5

Point Source, ISO 9613, Name: "P4_SE, PP Secondary \& Tertiary Screen", ID: "P4_SE_PP_SecondaryTertiaryScreen1"																				
Nr	X	Y	Z	Refl.	DEN	Freq.	Lw	I/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1677	649164.51	4772898.84	149.00	0	D	A	113.8	0.0	0.0	0.0	0.0	64.8	3.0	-2.6	0.0	0.0	10.9	0.0	0.0	37.6

Line Source, ISO 9613, Name: "P4 SE, Aggregate Haul road b/w PP and AP, Empty", ID: "P4_SE_RD_Haul_PP_AP_Em"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	LW	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1686	649132.52	4772888.09	149.50	0	DEN	A	69.7	13.8	0.0	0.0	0.0	65.3	2.4	-2.5	0.0	0.0	5.1	0.0	0.0	13.3
1688	649079.54	4772851.39	149.50	0	DEN	A	69.7	20.2	0.0	0.0	0.0	65.9	2.5	-2.6	0.0	0.0	4.9	0.0	0.0	19.2
1762	649018.07	4772813.70	149.50	0	DEN	A	69.7	16.0	0.0	0.0	0.0	66.6	2.7	-2.6	0.0	0.0	4.8	0.0	0.0	14.2
1767	648907.31	4772812.89	149.50	0	DEN	A	69.7	17.3	0.0	0.0	0.0	68.1	3.0	-2.7	0.0	0.0	4.8	0.0	0.0	13.8
1769	648907.31	4772812.89	149.50	1	DEN	A	69.	17.3	0.0	0.	0.0	68.6	3.2	-2.8	0.0	0.0	4.8	0.0	18.0	-4.9
1770	648907.31	4772812.89	149.50	1	DEN	A	69.7	17.3	0.0	0.0	0.0	68.7	3.2	-2.8	0.0	0.0	4.8	0.0	54.4	-41.3
1772	648907.3	4772812.89	149.50	1	DEN	A	69.7	17.	0.0	0.0	0.0	68.7	3.2	-2.8	0.0	0.0	4.8	0.0	18.7	-5.6
1774	648907.31	4772812.89	149.50	1	DEN	A	69.7	17.3	0.0	0.0	0.0	68.7	3.2	-2.8	0.0	0.0	4.8	0.0	53.9	-40.8
1779	648954.09	4772802.59	149.50	0	DEN	A	69.7	16.3	0.0	0.0	0.0	67.5	2.9	-2.7	0.0	0.0	4.8	0.0	0.0	13.5
1781	648954.09	4772802.59	149.50	1	DEN	A	69.7	16.3	0.0	0.0	0.0	69.2	3.4	-2.8	0.0	0.0	4.8	0.0	31.8	120.3
1783	648954.09	4772802.59	149.50	1	DEN	A	69.7	16.3	0.0	0.0	0.0	69.2	3.3	-2.8	0.0	0.0	4.8	0.0	31.3	119.8
1843	648987.53	4772802.96	149.50	0	DEN	A	69.7	14.0	0.0	0.0	0.0	67.0	2.8	-2.6	0.0	0.0	4.8	0.0	0.0	11.7
1845	648987.53	4772802.96	149.50	1	DEN	A	69.7	14.0	0.0	0.0	0.0	69.5	3.4	-2.8	0.0	0.0	4.8	0.0	36.3	-127.5
1847	648987.53	4772802.96	149.50	1	DEN	A	69.7	14.0	0.0	0.0	0.0	69.5	3.4	-2.8	0.0	0.0	4.8	0.0	35.9	-127.1

Line Source, ISO 9613, Name: "AP, AC and RAP shipped from Offsite, Empty", ID: "AP_RD_SHP_AC_RAP_Em"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	LW	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1805	648854.10	4772824.67	149.50	0	DEN	A	68.7	17.0	0.0	0.0	0.0	68.7	3.6	-2.6	0.0	0.0	4.7	0.0	0.0	11.3
1807	648854.10	4772824.67	149.50	1	DEN	A	68.7	17.0	0.0	0.0	0.0	68.7	3.6	-2.6	0.0	0.0	4.7	0.0	19.9	-8.6
1852	648748.87	4772829.28	149.50	0	DEN	A	68.7	17.4	0.0	0.0	0.0	69.8	3.9	-2.7	0.0	0.0	4.7	0.0	0.0	10.3
1857	648582.08	4772924.01	187.43	0	DEN	A	68.7	18.4	0.0	0.0	0.0	71.4	4.4	-2.8	0.0	0.0	0.0	0.0	0.0	14.1
1874	648716.72	4772961.26	187.17	0	DEN	A	68.7	17.0	0.0	0.0	0.0	70.4	4.1	-2.8	0.0	0.0	0.0	0.0	0.0	14.0
1886	648724.77	4772924.42	149.50	0	DEN	A	68.7	16.4	0.0	0.0	0.0	70.2	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	8.9
189	648639.14	4772939.74	187.32	0	DE	A	68.7	16.9	0.0	0.0	0.0	71.0	4.3	-2.8	0.0	0.0	0.0	0.0	0.0	13.1
1956	648697.76	4772852.98	149.50	0	DEN	A	68.7	6.6	0.0	0.0	0.0	70.3	4.1	-2.7	0.0	0.0	7.2	0.0	0.0	-3.6
1958	648710.76	4772843.05	149.50	0	DEN	A	68.7	14.5	0.0	0.0	0.	70.2	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	O
1967	648816.82	4772822.79	149.50	0	DEN	A	68.7	13.9	0.0	0.0	0.0	69.1	3.7	-2.7	0.0	0.0	4.7	0.0	0.0	7.7
1985	648699.40	4772895.90	149.50	0	DEN	A	68.7	14.4	0.0	0.0	0.	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0	7
1987	648696.05	4772880.50	149.50	0	DEN	A	68.7	5.8	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	6.0	0.0	0.0	-3.2
1989	648695.53	4772878.14	149.50	0	DEN	A	68.7	0.1	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	5.9	0.0	0.0	-8.8
2035	648754.54	4772953.97	168.09	0	DEN	A	68.7	8.2	0.0	0.0	0.	70.0	4.0	-2.7	0.0	0.0	0	0.0	0	5.7
2037	648755.32	4772950.00	157.25	0	DEN	A	68.7	12.2	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	4.9
2097	648784.26	4772822.42	149.50	0	DEN	A	68.7	12.4	0.0	0.0	0.	69.5	3.8	-2.7	0.0	0.0	4.7	0.0	0.0	8
2112	648753.70	4772958.16	178.99	0	DEN	A	68.7	12.3	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	9.7
2148	648798.6	4772821.27	149.50	0	DEN	A	68.7	10.7	0.0	0.0	0.	69.3	3.8	-2.7	0.0	0.0	4.7	0.0	0.0	4.3
2167	648695.49	4772876.08	149.50	0	DEN	A	68.7	5.0	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	5.9	0.0	0.0	-4.0
2169	648695.63	4772872.62	149.50	0	DEN	A	68.7	5.8	0.0	0.0	0.	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-2.0
2172	648695.75	4772869.63	149.50	0	DEN	A	68.7	3.5	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-4.3
2174	648695.88	4772866.44	149.50	0	DEN	A	68.7	6.2	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-1.6
2177	648695.98	4772864.08	149.50	0	DEN	A	68.7	-2.5	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-10.2
2200	648526.89	4772909.46	187.86	0	DEN	A	68.7	9.9	0.0	0.0	0.0	71.9	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	5.0
2203	648535.60	4772911.74	187.89	0	DEN	A	68.7	9.1	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	3
2231	648749.03	4772936.75	149.50	0	DEN	A	68.7	10.3	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	3.0
2261	648667.84	4772948.21	187.27	0	DEN	A	68.7	10.5	0.0	0.0	0.0	70.8	4.2	-2.8	0.0	0.0	0.0	0.0	0.0	7.0
2274	648695.99	4772861.94	149.50	0	DEN	A	68.7	5.7	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-2.0
2277	648695.98	4772859.00	149.50	0	DEN	A	68.7	3.3	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-4.4
2280	648695.97	4772857.34	149.50	0	DEN	A	68.7	0.8	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-7.0
2282	648695.97	4772855.55	149.50	0	DEN	A	68.7	3.8	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-3.9
2287	648745.25	4772967.66	187.11	0	DEN	A	68.7	9.3	0.0	0.0	0.0	70.1	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	6.6
2305	648754.63	4772943.48	149.50	0	DEN	A	68.7	8.9	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	1.7
2308	648511.35	4772905.30	187.89	0	DEN	A	68.7	0.5	0.0	0.0	0.0	72.0	4.6	-2.7	0.0	0.0	0.0	0.0	0.0	-4.6
2310	648516.74	4772906.76	187.87	0	DEN	A	68.7	10.0	0.0	0.0	0.0	71.9	4.6	-2.7	0.0	0.0	0.0	0.0	0.0	5.0

Line Source, ISO 9613, Name: "AP, AC and RAP shipped from Offsite, Empty", ID: "AP_RD_SHP_AC_RAP_Em"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cme	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
2312	648521.86	4772908.15	187.85	0	DEN	A	68.7	-2.4	0.0	0.0	0.0	71.9	4.6	-2.8	0.0	0.0	0.0	0.0	0.0	-7.3
1	648751.28	4772964.42	186.95	0	DEN	A	8.7	8.7	0.0	0.0	0.0	70.	4.0	-2.	0.0	0.0	0.0	0.0	0.0	6.0
2345	648688.63	4772953.85	187.23	0	DEN	A	68.7	8.9	0.0	0.0	0.0	70.	4.2	-2.8	0.0	0.0	0.0	0.0	0.0	5.7
2395	648703.62	4772912.2	149.50		DEN	A	68.7	7.9	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	0.2
2417	648675.54	4772950.43	187.25		DEN	A	68.7	6.8	0.0	0.0	0.0	70.7	4.2	-2.8	0.0	0.0	0.0	0.0	0.0	3.4
26	648679.94	4772951.59	187.24	0	DEN	A	68.7	6.3	0.0	0.0	0.0	70.7	4.2	-2.8	0.0	0.0	0.0	0.0	0.0	2.9
2445	648683.41	4772952.51	187.24	0	DEN	A	68.7	4.7	0.0	0.0	0.0	70.7	4.2	-2.	0.0	0.0	0.0	0.0	0.0	1.3
2447	648546.64	4772914.6	187.5		DEN	A	68.7	5.5	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	0.8
2450	648543.26	4772913.80	187.73	0	DEN	A	68.7	5.4	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	0.7
2470	648540.12	4772912.94	187.89		DEN	A	68.7	0.6	0.0	0.0	0.0	71.8	4.5	2.8	0.0	0.0	0.0	0.0	0.0	-4.2
2489	648541.33	4772913.29	187.85		DEN	A	68.7	-2.9	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-7.7
2493	648540.88	4772913.15	187.87		DEN	A	68.7	-3.6	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-8.4

Line Source, ISO 9613, Name: "AP, HMA product shipping, Full", ID: "AP_RD_SHP_HMA_Fu"

Nr.	X	Y	z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous			RL	
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1811	885	282	49.5			A	68.7	17.0	0.0	0.0	0	68.7	3.6	2.6	0.0	0.0	4.7	0.0	0.0	
1813	6488	4772824.66	149.50		DEN		68.7	17.0	0.0	0.0	0.0	68.	3.6	-2.6	0.0	0.0	4.7	0.0	19.7	
1849	6487	4772	149		DEN	A	68.	17.	0.0	0.0	0.0	69.	3.9	-2.	0.0	0.0	4.7	0.0	0.0	10
1859	648	477292	187.43		DEN		68.7	18.4	0.0	0.0	0.0	71.4	4.4	-2.8	0.0	0.0	0.0	0.0	0.0	
1881	64872	4772924.	149.50		DEN		68.7	16.5	0.0	0.0	0.0	70	4.0	2.7	0.0	0.0	4.7	0.0	0.0	
1891	6486	47729	187.32		den	A	68.7	16.	0.0	0.0	0.0	71.0	4.3	-2.8	0.0	0.0	0.0	0.0	0.0	
1904	64	4772963	187.16				68.7	15.6		0.0	0.0		4.1	28	0	0.0	0			
	64869	4772853.01						6.7	0	0.0	0.0		4,		0		7.2			
1951	648710.78	4772843.00	149.50		DEN		68.7	14.5	0.0	0.0	0.0	70.2	4.0	-2.7	0.0	0.0	4.7	0.0		
1962	6488	477282	149.50		DEN	A	68.7	13.9	0.0	0.0	0.0	69.1	3.7	-2.7	0.0	0.0	4.7	0.0	0.0	
2026	64875	477295	168.51		DEN		68.7	8.8	0.0	0.0	0.0	70.0	4.0	2.7	0.0	0.0	0.0	0.0	0.0	
2029	64	4772950.08	157.24		DEN	A	68.7	12	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	
2091	648	4772898.02	149.50		DEN		68.7	13.8	0.0	0.0	0.0	70.	4.1	-2.7	0.0	0.0	4.7	0.	0.0	
2100	64	4772822.41	149.50				68.7	12	0.0	0.0	0.0		3.8	-2.7	0.0	0.0	4.7	0		
2124	64	4772956.05	187.2					12.	0	0.0	0.0						0.0			
2127	64	4772958.4	179.54					12	0	0.0	0.0	70.	4.0		0		0.			
2145	64879	28	149.50		den	A	68.7	10.	0.0	0.0	0.0	69.3	3.8	-2.7	0.0	0.0	4.7	0.0	0.0	
2232	64851	477290	187.90		DEN		68.7	0.3	0.0	0.0	0.0	72.0	4.6	2.7	0.0	0.0	0.0	0.	0.0	
2237	6485	477290	187.89		den	A	68.7	10.1	.	0.0	0.0	71.9	4.6	2.7	0.0	0.0	0.0			
2239	64852	477290	187.88				68.	6.9	0.0	0.0	0.0	71.9	4.6	-2.8	0.0	0.0	0.0			
2242	64	4772872.15	149.50					4.5	0.0	0.0	0.0		4.	-2.7	0	0.0	4.7	0.		
2244	648695.78	4772869.63	149.50		DEN		68.	3.4	0.0	0.0	0.0	70.4		-2.7	0		4.7			
2246	64869	4772866.44	149.50		DEN		68.	6.2	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	
2249	64869	4772863.86	149.50		DEN	A	68.7	0.1	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	
2251	64869	4772862.88	149.50		DEN	A	68.7	-0.3	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0		
2253	64874	4772	149.5		den	A	68.7	10.1	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.		
	64852	477291	187.8			A	68.7	7.4	0.0	0.0	0	71.	4.5	-2.8	0.0	0.0	0.0			
2267	64853	477291	187.90			A	68.	9.3	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.		
2270	64	4772948.3	187.2				68.7	10.4		0.0	0.0									
2290	64	4772967.67	187.11		DEN	A	68.	9.3	0.0	0.0	0.0		4.		0		0.0			
2294	6486	4772884.38	149.50		DEN	A	68.	6.2	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	
2297	6486	4772	149.50		DEN		68.	5.8	0.0	0.0	0.0	70.	4.1	-2.7	0.0	0.0	6.0	0.0	0.0	
2300	64869	4772878.	149.50		DEN	A	68.7	-0.0	0.0	0.0	0.0	70	4.1	-2.7	0.0	0.0	5.9	0.0	0.0	
2302	64875	4772943.4	149.50	0	DEN	A	68.7	8.9	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0		
2315	648696	4772861.2	149.5		DEN	A	68	3.7	0.0	0.0	0.0	70.4	4.1	2.7	0.0	0.0	4.7	0.0		
2318	648696.0	4772859.0			D		68	3.3	0.0	0.0	0.0	70.			.		4.7			
21	648695.9	4772857.3	149.5		DE	A	68	0.8	0.0	0.0	0.0									
2323	648695.	285	49.5		DE	A	68	3.6	0.0	0.0	0.0	70.4	4.1	-2.7	0	0	4.7	0.0		
2335	6487	477296	187		DEN	A	68	8.	0.0	0.0	0.0	70.1	4.0	2.7	0.0	0.0	0.0	0.0	0.0	
2387	64868	4772952.9	187.2		den		68.7	8.3	0.0	0.0	0.0	70.	4.2	2.8	0.0	0.0	0.0	0.0		
2400	64870	47729	149.5		DEN		68	7.9	0.0	0.0	0.0	70.	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	
2409	64854	47729	187.6	0	Den	A	68.	8.6	0.0	0.	0.0	71.	4.5	-2.8	0.0	0.0	0.	0.0		
2414	648675.6	4772950.	187.2		Den	A	68.7	7.1	0.0	0.0	0.0	\%	4.2	-2.	0.0	0.0	0.0	0.0	0.	
20	648695.5	4772876.0	49.50		DEN	A	68.	5.0	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	5.9	0.0	0.0	
2423	648695.6	2874.0	149.50		DEN	A	68.7	0.3	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	
2434	648680.0	4772951.5	187.2		den		68.7	6.0	0.0	0.0	0.0	70.7	4.2	-2.8	0.0	0.0	0.0	0.0	0.0	
2459	648541.57	4772913.36	187.8		DEN	A		. 1	0.0	0.0	0.0		4.5	-2.8	0.0	0.0	0.0	0.0		

Line Source, ISO 9613, Name: "AP, HMA product shipping, Full", ID: "AP_RD_SHP_HMA_Fu"

Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	I/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
2462	648542.23	4772913.53	187.80	0	DEN	A	68.7	-4.8	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-9.6
2468	648540.46	4772913.06	187.88	0	DEN	A	68.7	1.0	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-3.8

Line Source, ISO 9613, Name: "AP, AC and RAP shipped from Offsite, Full", ID: "AP_RD_SHP_AC_RAP_Fu"

Nr.	X	Y	Z	Refl.	DEN	Freq.	LW	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1817	648855.31	4772823.42	149.50	0	DEN	A	68.7	16.8	0.0	0.0	0.0	68.7	3.6	-2.6	0.0	0.0	4.7	0.0	0.0	11.1
1820	648855.31	4772823.42	149.50	1	DEN	A	68.7	16.8	0.0	0.0	0.0	68.7	3.6	-2.6	0.0	0.0	4.7	0.0	20.8	-9.7
1854	648547.38	4772912.13	187.50	0	DEN	A	68.7	1.1	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-3.6
185	648582.7	4772921	187.4	0	DEN	A	68.	18.6	0.0	0.0	0.0	71.4	4.4	-2.8	0.0	0.0	0.0	0.0	0.0	14.2
1872	648645.49	4772939.72	187.31	0	DEN	A	68.7	17.7	0.0	0.0	0.0	71.0	4.3	-2.8	0.0	0.0	0.0	0.0	0.0	13.9
188	648724.08	47	149	0	DE	A	68	16	0.0	0.0	0.0	70	0	-2	0.	0.	4.7	0.0	0	8.9
1906	648761.28	4772825.07	149.50	0	DEN	A	68.7	14.9	0.0	0.0	0.0	69.7	3.9	-2.7	0.0	0.0	4.7	0.0	0.0	8.0
1914	648695.81	4772853.02	149.50	0	DEN	A	68.7	5.0	0.0	0.	0.0	70.4	4.1	-2.7	0.0	0.0	1	0.0	. 0	-5.1
1916	648709.29	4772842.40	149.50	0	DEN	A	68.7	14.9	0.0	0.0	0.0	70.2	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	7.4
1924	648818.15	4772821.17	149.50	0	DEN	A	68.7	14.2	0.0	0.0	0.0	69.1	3.7	-2.7	0.0	0.0	4.7	0.0	0.0	8.0
1929	648724.87	4772961	187.15	0	DEN	A	68.	15.	0.0	0.0	0.0	70.3	4.1	-2.7	0.0	0.0	0.0	0.0	0.0	12.5
1992	648698.23	4772896.28	149.50	0	DEN	A	68.7	14.5	0.0	0.	0.	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	6.
19	648694.8	47	149	0	D	A	68	5.6	0.0	0.0	0.	70	4.1	-2.7	0.0	0.0	5.9	0.0	0	3
2020	648733.88	4772830.35	149.50	0	DEN	A	68.7	14.0	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	6.8
20	648694.46	4772876.87	149	0	D	A	68	6	0.	0.0	0	70	4.	-2.7	0.0	0.0	5.9	0.0	0.0	, 6
2067	648694.48	4772872.84	149.50	0	DEN	A	68.7	5.7	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-2.0
206	648694.49	4772869	149	0	DE	A	68	3.	0.	0.	0.	70.4	4	-2.7	0.0	0.0	7	0.0	0	3
20	648694.5	47	149	0	DE	A	68	6.	0.0	0.	0.	70	4.	-2	0.0	0.0	7	0.0	0	-1.6
2073	648694.51	4772864.12	149.50	0	DEN	A	68.7	0.1	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	7.7
20	648694.52	47728	14	0	D	A	68	5.2	0.	0.0	0.	70	4.1	-2	0.0	0.0	7	0.0	0	-2.6
2079	648694.53	4772859.26	149.50	0	DEN	A	68.7	3.3	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-4.4
208	648694.5	477285	149	0	DE	A	68	0.	0.	0.	0.	70	4.1	-2.7	0.0	0.0	7	0.0	0	-7.0
2084	648694.54	4772855.62	149.5	0	DEN	A	68.7	4.4	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-3.4
208	648694	477285	149	0	DE	A	68	-6.	0.0	0.	0.	70.4	4	-2.7	0.0	0.0	7.0	0.0	0.0	-16.0
21	648784.43	4772820	149	0	D	A	68	12	0.0	0.	0.	69	3.8	-2.7	0.0	0.	7	0.0	0	5.6
2118	648699.22	4772954.75	187.20	0	DEN	A	68.7	12.6	0.0	0.0	0.0	70.5	4.1	-2.8	0.0	0.0	0.0	0.0	0.0	9.4
213	648798.77	4772819.6	149.5	0	DE	A	68	11	0.0	0.	0.	69.3	3.8	-2.7	0.0	0.0	7	0.0	0	4.6
2157	648753.09	4772952.75	168.18	0	DEN	A	68.7	8.8	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	6.2
216	648753.8	4772949	162.6	0	DE	A	68	7.	0.0	0.	0.	70.0	4.0	-2.7	0.0	0.0	7	0.0	0.0	0.1
2179	648524.67	4772905	187.8	0	D	A	68.7	8.8	0.0	0.0	0.0	71.9	4.6	-2.7	0.0	0.0	0.0	0.0	0.0	.9
218	648533.20	4772908	187.8	0	DEN	A	68.	10.	0.0	0.	0.	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	5.2
2183	648538.71	4772909.63	187.9	0	DEN	A	68.	1.5	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-3.3
2222	648754.34	4772947.36	154.95	0	DEN	A	68.7	10.4	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	3.1
2227	648752.15	4772956.76	176.3	0	DEN	A	68.7	10.3	0.0	0.	0.	70.1	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	. 8
2256	648748.13	4772937.49	149.50	0	DEN	A	68.7	9.	0.0	0.	0.	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	2.6
2337	648686.5	4772951.37	187.23	0	DEN	A	68.7	9.1	0.0	0.0	0.0	70.6	4.2	-2.8	0.0	0.0	0.0	0.0	0.0	5.8
2341	648753.34	4772943.47	149.50	0	DEN	A	68.7	8.5	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	1.2
2348	648512.04	4772902.19	187.9	0	DEN	A	68.	4.	0.0	0.	0.	72.0	4.6	-2.6	0.0	0.0	0.0	0.0	0.0	-1.1
2351	648516.09	4772903.34	187.88	0	DEN	A	68.7	7.6	0.0	0.0	0.0	71.9	4.6	-2.6	0.0	0.0	0.0	0.0	0.0	2.5
2353	648519.94	4772904.42	187.85	0	DEN	A	68.	3.	0.0	0.	0.	71.9	4.6	-2.7	0.0	0.0	0.0	0.0	0.0	-1.7
2372	648744.93	4772965.78	187.11	0	DEN	A	68.7	8.1	0.0	0.0	0.0	70.1	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	5.4
2378	648751.44	4772959.80	184.18	0	DEN	A	68.7	7.8	0.0	0.0	0.0	70.1	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	5.2
2384	648702.66	4772912.83	149.50	0	DEN	A	68.7	8.1	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	0.
2397	648749.69	4772963.23	187.06	0	DEN	A	68.7	7.6	0.0	0.0	0.0	70.1	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	5.0
2412	648676.12	4772948.70	187.25	0	DEN	A	68	7.	0.0	0.	0.	70.7	4.2	-2.8	0.0	0.0	0.0	0.0	0.0	3.
2429	648680.63	4772949.82	187.24	0	DEN	A	68.7	6.1	0.0	0.0	0.0	70.7	4.2	-2.8	0.0	0.0	0.0	0.0	0.0	2.7
2452	648545.12	4772911.47	187.61	0	DEN	A	68.7	5.3	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	0.6
2471	648540.35	4772910.13	187.90	0	DEN	A	68.7	-1.1	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-5.9
2478	648541.87	4772910.57	187.82	0	DEN	A	68.7	-1.7	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-6.4
2484	648543.19	4772910.92	187.73	0	DEN	A	68.7	-2.0	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-6.7
2486	648539.68	4772909.92	187.91	0	DEN	A	68.7	-2.0	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-6.8
2491	648542.42	4772910.73	187.78	0	DEN	A	68.7	-3.4	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-8.1
2494	648540.93	4772910.29	187.88	0	DEN	A	68.7	-3.6	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-8.4
2496	648541.34	4772910.41	187.85	0	DEN	A	68.7	-3.7	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-8.4
2498	648542.76	4772910.82	187.76	0	DEN	A	68.7	-5.9	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-10.7

Line Source, ISO 9613, Name: "AP, HMA product shipping, Empty", ID: "AP_RD_SHP_HMA_Em"

Nr .	X	Y	Z	Refl.	DEN	Fr	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	et	RL	
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
1824	648855.34	4772823.41	149.50		DEN	A	68.7	16.8	0.0	0.0	0.0	68.7	3.6	-2.6	0.0	0.0	4.7	0.0	0.0	1.1
1826	648855.34	4772823.41	149.50		DEN	A	68.7	16.8	0.0	0.0	0.0	68.7	3.6	-2.6	0.0	0.0	4.7	0.0	20.8	-9.7
183	648547.50	4772912.12	187.50	0	DEN	A	68.7	0.8	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-3.9
1840	648589.87	4772923.90	187.42		DEN	A	68.7	19.4	0.0	0.0	0.0	71.4	4.4	-2.8	0.0	0.0	0.0	0.0	0.0	15
18	648718.93	4772959.74	187.17		DEN	A	68	16.7	0.0	0.0	0.0	70.4	4.1	-2.8	0.0	0.0	0.0	0	0.0	13.8
18	648724.21	4772925.31	149.50		DEN	A	68.7	16	0.0	0.	0.0	70.2	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	8.9
1900	648738.26	4772829.50	149.50		DEN	A	68.7	15.3	0.0	0.0	0.0	69.9	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	8.1
19	648695.80	4772853.04	149.50		DEN	A	68	5.2	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	7.1	0.0	0.0	-4.9
19	648709.32	4772842.40	149.50		DEN	A	68.7	14.9	0.0	0.0	0.0	70.2	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	7.4
19	64881	4772821.15	149.50		DEN	A	68.7	14.2	0.0	0.0	0.0	69.1	3.7	-2.7	0.0	0.0	4.7	0.0	0.0	8.1
19	64	4772940.38	18		DEN	A	68.7	15	0.0	0.0	0.0	70.9	4.3	-2.8	0.0	0.0	0.0	0.0	0.0	11.6
20	648765.65	4772824.22	14	0	D	A	68.7	13.4	0.0	0.0	0.0	69.6	3.9	-2.7	0.0	0.0	4.7	0.0	0.0	6.5
20	6486	477287	149.50		D	A	68.7	6.4	0.0	0.0	0.0	70	4.1	-2.7	0.0	0.0	5.9	0.0	0.0	. 5
204	648694.5	4772872.84	149.5	0	DEN	A	68.7	5.7	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-2.0
20	648694.50	4772869.87	149.5		DEN	A	68.7	3.4	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-4.3
2045	648694	4772866.70	149	0	DEN	A	68.7	6.2	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-1.6
20	64869	4772864.12	14		DEN	A	68.7	0.1	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-7.7
2050	48	47728	149.50	0	DEN	A	68.7	5.2	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.	4.7	0.0	0.0	6
20	64869	477	149.50	0	DEN	A	68	3.3	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-4.4
2056	64	47	149.50	0	DEN	A	68.7	0.8	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-7.0
2057	64	47	149.50	0	D	A	68.7	4.4	0.0	0.0	0.0	0.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	-3.
20	64869	4772854.16	14	0	DEN	A	68.7	-6.8	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	7.0	0.0	0.0	-16.8
2102	6	47	149.50		D	A	8.7	12.2	0.0	0.0	0.0	69.4	3.8	-2.7	0.0	0.	4.7	0.0	0.0	5.6
2115	64869	4772900.94	149.5	0	DEN	A	8.7	12	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	4.8
2123	64	4772957.69	178.	0	DEN	A	8.7	12	0.0	0.0	0.0	70.1	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	9.6
2138	6487	47728	149	0	DEN	A	8.7	11.	0.0	0.0	0.0	69.3	3.8	-2.7	0.0	0.0	4.7	0.0	0.0	4.5
2150	648524	4772905.67	187.	0	DEN	A	68.7	9.2	0.0	0.0	0.0	71.9	4.6	-2.7	0.0	0.0	0.0	0.0	0.0	4.2
21	6485	4772	187	0	DEN	A	68.7	10.0	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	5.2
2155	648538	4772909.71	187	0	DEN	A	68.7	2.8	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-2.0
21	64	4772887.30	14	0	D	A	68	9.8	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	
21	64869	4772880.85	149.5	0	DEN	A	68.7	5.5	0.0	0.0	0.0	70.4	4.1	-2.7	0.0	0.0	5.9	0.0	0.0	-3.4
22	64875	4772947.08	155.3	0	D	A	68.7	10.7	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	
22	6487	477293	149.	0	DEN	A	8.7	9.8	0.0	0.0	0.0	70.0	4.0	-2.	0.0	0.0	4.7	0.0	0.0	2.5
2285	648668.80	4772946.67	187.2	0	DEN	A	68.7	10.0	0.0	0.0	0.0	70.8	4.2	-2.8	0.0	0.0	0.0	0.0	0.0	6.5
2328	648692.16	477	187.22	0	DEN	A	68.7	9.2	0.0	0.	0.0	70.6	4.1	-2.8	0.0	0.0	0.0	0.0	0.0	
2333	648753	4772950.64	161.7	0	DEN	A	68	8.6	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	1.3
23	64875	47729	168	0	DEN	A	68.7	8.4	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	0.0	0.0	0.0	5
2360	648753.26	4772943.23	149.5	0	DEN	A	68.7	8.2	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	0.9
23	648511.95	4772902.22	187.9	0	DEN	A	68.7	4.1	0.0	0.0	0.0	72.0	4.6	-2.	0.0	0.	0.0	0.0	0.0	-1.1
2365	648516.01	477290	187.8	0	DEN	A	68	7.7	0.0	0.0	0.0	71.9	4.6	-2.6	0.0	0.0	0.0	0.0	0.0	2.5
2368	648519.59	4772904.35	187.84	0	DEN	A	68.7	2.0	0.0	0.0	0.0	71.9	4.6	-2.7	0.0	0.0	0.0	0.0	0.0	-3.1
23	6487	477	187.11	0	DEN	A	68.7	8.1	0.0	0.0	0.0	70.1	4.0	-2.7	0.0	0.0	0.0	. 0	0.0	5.4
2375	648702.67	4772912.81	149.50	0	DEN	A	68.7	8.2	0.0	0.0	0.0	70.	4.1	-2.7	0.0	0.0	4.7	0.0	0.0	0.4
2381	648749.6	4772963.17	186.8	0	N	A	68.7	7.7	0.0	0.0	0.0	70.1	4.0	-2.7	. 0	0.0	0.0	0.0	0.0	5.1
2406	6486	4772951.12	187.	0	DE	A	68	7.7	0.0	0.0	0.0	70.6	4.2	-2.8	0.0	0.0	0.	0.0	0.0	4.4
2432	648754.16	4772948.31	159.8	0	DEN	A	68	5.4	0.0	0.0	0.0	70	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	-1.9
24	64868	4772949.89	187.	0	D	A	68.7	5.9	0.0	0.0	0.0	70.7	4.	-2.8	0.0	0.0	0.0	0.0	0.0	2.5
2439	648675.46	4772948.58	187.25	0	D	A	68	5.9	0.0	0.0	0.0	70.7	4.2	-2.8	0.0	0.0	0.0	0.0	0.0	2.5
2455	648545	4772911.54	187.5	0	DEN	A	68.7	5.0	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	0.3
2457	648678.00	4772949.23	187.	0	D	A	68	1.2	0.0	0.0	0.0	70	4.2	-2.81	0.0	0.0	0.0	0.0	0.0	-2.2
2465	648543.27	4772910.96	187.7	0	DEN	A	68.7	1.1	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-3.6
2474	648754.44	4772946.55	149.5	0	DEN	A	8.7	-2.9	0.0	0.0	0.0	70.0	4.0	-2.7	0.0	0.0	4.7	0.0	0.0	-10.1
2476	648542.28	4772910.69	187.79	0	DEN	A	68.7	-1.2	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-5.9
2480	648540.13	4772910.06	187.9	0	DEN	A	68.7	-1.8	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-6.5
2482	648541.60	4772910.48	187.84	0	DEN	A	68.7	-1.8	0.0	0.0	0.0	71.7	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-6.6
2488	648540.71	4772910.22	187.89	0	DEN	A	68.7	-2.6	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-7.3
2499	648541.06	4772910.32	187.87		DEN	A	68.7	-7.6	0.0	0.0	0.0	71.8	4.5	-2.8	0.0	0.0	0.0	0.0	0.0	-12.3
2501	648541.22	4772910.37	187.8	0	DEN	A	68.	-8.	0.0	0.0	0.0	71.8	4.5	-2.	0.0	0.0	0.0	0.0	0.0	-13

Point Source, ISO 9613, Name: "P4_SE, PP Tertiary Crusher", ID: "P4_SE_PP_TertiaryCrush2"

Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	$\mathrm{dB}(\mathrm{A})$									
1999	649163.60	4772897.34	149.00	0	D	A	99.2	0.0	0.0	0.0	0.0	64.8	2.3	-2.4	0.0	0.0	10.3	0.0	0.0	24.2

Point Source, ISO 9613, Name: "P4_SE, PP Tertiary Crusher", ID: "P4_SE_PP_TertiaryCrush1"																				
Nr.	X	Y	Z	Refl.	DEN	Freq.	Lw	1/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	$\mathrm{dB}(\mathrm{A})$	dB	dB	(dB)	dB(A)									
2002	649163.10	4772898.30	149.00	0	D	A	99.2	0.0	0.0	0.0	0.0	64.8	2.3	-2.4	0.0	0.0	10.2	0.0	0.0	24.2

APPENDIX D

Noles Io Table:		
1.	Wherever possible, the Source ID matches the identifiers used in the ESDM report.	
2.	Sound Power Level of Source, in dBA, not including sound characteristic adjustments per NPC-104.	
3.	Source Location: $\mathrm{O}=$ Outside of building, including the roof $\mathrm{I}=$ Inside of building.	
4.		$\begin{aligned} -\mathrm{T}=\text { Tonal } \\ -\mathrm{COCOyc} \end{aligned}$
5.	Noise control measures currently in place or specified in construction drawings: $-\mathrm{S}=$ Silencer/Muffler $-\mathrm{L}=$ Lagging $-\mathrm{A}=$ Acoustic lining, plenum $-\mathrm{E}=$ Acoustic enclosure $-\mathrm{B}=$ Barrier/Berm	$\begin{aligned} & -\mathrm{O}=\text { Other } \\ & -\mathrm{U}=\text { Uncontrolled } \end{aligned}$
	Where noise control measures are specified in construction drawings or were found on existing octave band sound power levels include the effects of the noise control wasures. Noise contro recommended in the mitigation section of this report are not included in this table	quipment,

6. $\begin{aligned} & \text { Source type indicates Cadna/A modelling methododogy. For Point, Line, and Area sources. PWLL represent } \\ & \text { the verall level tor the entire source. Where source type is Mobile Equipment the source is modelled as a moving }\end{aligned}$ Doo veranl Ivevel for the entire source. Where source type is Mobbly
7. $\begin{aligned} & \text { Sound Power Level Data Source: } \\ & \text {-Man }=\text { Mantutatrers Doas } \\ & \text { Men }\end{aligned}$
$\mathrm{EC}=$ Engineering Cala based on specifications
Same $\#$ \#\#\#n same type a s source no. \#\#\#
Mea Measured Directy , Hist $=$ Historical Data on Fie at RWDI
Same \#\#\#\# $=$ same type as source no. \#\#\#f

8 For loader dumping into primary crusher, it is assumed each dump takes approximately 10 s

.	.	3.0
-	.	2.5
.		${ }^{3.0}$
-		3.0
.	-	2.5
		3.0
	-	3.0
.	-	3.0
		3.0
.	.	3.0
	-	3.0
		3.0
.	.	3.0
-	-	2.5
		3.0
.	.	2.5
-	-	3.0
		3.0
-	.	2.5
	-	3.0
		3.0
.	.	3.0
		3.0
		3.0
-	.	3.0
		3.0
		3.0
.	.	2.5
		3.0
		2.5
	.	${ }^{3.0}$

64892	473389	168.7
648793	473390	168.2
648791	477388	168.7
648791	473387	168.7
648709	4773141	145.5
648709	4773154	146.0
648710	4773154	146.0
648709	4773152	146.0
648710	4773152	146.0
648709	4773150	146.0
648710	4773150	146.0
648707	4773129	146.0
648709	4773129	146.0
648805	477341	175.5
649438	4773415	165.0
64941	4773417	164.5
649436	4773413	165.0
649435	4773411	165.0
648892	477322	150.5
648906	473263	151.0
648907	477322	151.0
648905	477323	151.0
648905	477322	151.0
648903	477323	151.0
648902	477322	151.0
648884	473264	151.0
648885	477322	151.0
64941	473447	177.5
694482	472801	164.0
64943	472801	163.5
69481	472802	164.0

60 dump hr	-	
60 min		-
60 min	.	.
60 min		
60 min	60 min	60 min
60 min	-	
60 min	.	
60 min		
60 min	.	.
60 min	-	
60 min		
60 min	60 min	60 min
60 min	60 min	60 min
60 min		
60 dumpshr	.	-
60 min	-	,
60 min	-	
60 min		
60 min	60 min	60 min
60 min		
60 min	-	-
60 min	.	.
60 min	-	.
60 min	-	
60 min		
60 min	60 min	60 min
60 min	60 min	60 min
60 min		
60 dumps hr	-	-
60 min		
60 min	.	

Table D.1: Noise Source Summary - Alternate Extraction Scenario Upper's Quarry, 1603157	
Sto rabe:	
1.	Wherever possible, the Source ID matches the idenififirs used in the ESDM report.
2.	Sound Power Level of Source, in dBA, not including sound characteristic adjustments per NPC-104.
3.	Source Location: $\mathrm{O}=$ Outside of building, including the roof, $\mathrm{I}=$ Inside of building.
4.	Sound Characteristic, per NPC-104: - $\mathrm{S}=$ Steady $\mathrm{I}=$ Impulsive $\quad-\mathrm{T}=$ Tonal
5.	Noise control measures currently in place or specified in construction drawings: $-\mathrm{S}=$ Silencer/Muffler $-\mathrm{L}=$ Lagging $-\mathrm{O}=$ Other $-\mathrm{A}=$ Acoustic lining, plenum $-\mathrm{E}=$ Acoustic enclosure $-\mathrm{U}=$ Uncontrolled $-\mathrm{B}=$ Barrier/Berm
	Where noise control measures are specified in construction drawings or were found on existing equipment, octave band sound power levels include the effects of the noise control measures. Noise control measures recommended in the mitigation section of this report are not included in this table.

Table 1: Additional Data
S. Source type indicates Cadna/A modedling methodology. For Point, Line, and Area soureses, PWLL reppesent The overall level for the entire source. Where souruce ypp is Mobit
Mea $=$ Measured Directly
Hist $=$ Historical Data
File at
Same \#\#\#n= samene type a s source no. \#\#\#\#

```
Sound PowerL Level Data Source,
Sound PowerL Level Data Source,
MC= EnginecingCald based on specifications
MC= EnginecingCald based on specifications
8 For loader dumping into primary cruster, it is assumed each dump takes approximately 10 s
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{\begin{tabular}{l}
1/1 Octave Band Sound Power Level Data
if available \\
(dB)
\end{tabular}} & \multirow[t]{2}{*}{Source Type \({ }^{\text {ef }}\)} & \multirow[t]{2}{*}{PWL Data Source \({ }^{111}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Height } \\
\substack{\text { Above } \\
\text { Roof }}
\end{gathered}
\]} & \multirow[t]{2}{*}{Height Ab. Grade (m)} & \multirow[t]{2}{*}{\[
\begin{array}{|c|c}
\begin{array}{c}
\text { Height } \\
\text { Above } \\
\text { Grade }
\end{array} \\
\hline(\mathrm{m}) \\
\hline
\end{array}
\]} & \multicolumn{3}{|c|}{Source Co-ordinates
for point sources
(m)} & \multicolumn{3}{|l|}{} \\
\hline 31.5 & 63 & 125 & 250 & 500 & 1000 & 2000 & 4000 & 8000 & & & & & & X & Y & Z & Daytime & Evening & Nighttime \\
\hline 102.4 & 11.2 & 104.7 & 101.4 & 99.9 & 99.2 & 97.5 & 97.7 & 98.5 & Point & Hist & & & 2.5 & \({ }^{6419}\) & 4772897 & 14.5 & 60 min & 60 min & 60 min \\
\hline 102.3 & 108.9 & 111.7 & 110.8 & 109.6 & 110.5 & 107.4 & 104.6 & 99.0 & Point & Hist & & . & 3.0 & 649166 & 4772899 & 148.0 & 60 min & & \\
\hline 1023 & 108.9 & 111.7 & & 109.6 & 110.5 & 107.4 & 104.6 & 99.0 & Point & Hist & & & 3.0 & 649166 & 472898 & 148.0 & 60 min & & \\
\hline 111.4 & 113.6 & 111.5 & 111.1 & 110.9 & 106.9 & 106.5 & 105.2 & 101.7 & Point & Hist & . & & 3.0 & 649165 & 472889 & 148.0 & 60 min & & \\
\hline 111.4 & 113.6 & 111.5 & 111.1 & 110.9 & 106.9 & 106.5 & 105.2 & 101.7 & Point & Hist & & . & 3.0 & 649165 & 472898 & 148.0 & 60 min & & \\
\hline 103.4 & 106.7 & 97.1 & 99.9 & 96.0 & 92.8 & 91.3 & 88.6 & 83.9 & Point & Hist & & & 3.0 & 649163 & 472898 & 148.0 & 60 min & & \\
\hline 103.4 & 106.7 & 97.1 & 99.9 & 96.0 & 92.8 & 91.3 & 88.6 & 83.9 & Point & Hist & . & . & 3.0 & 649163 & 472887 & 148.0 & 60 min & & \\
\hline 101.7 & 98.9 & 94.6 & 90.2 & 90.5 & 92.8 & 90.1 & 81.6 & 73.8 & Point & Hist & - & . & 3.0 & 649143 & 472895 & 148.0 & 60 min & 60 min & 60 min \\
\hline 101.7 & 98.9 & 94.6 & 90.2 & 90.5 & 92.8 & 90.1 & 81.6 & 73.8 & Point & Hist & & & 3.0 & 649142 & 472887 & 148.0 & 60 min & 60 min & 60 min \\
\hline 96.8 & 101.2 & 99.3 & 96.9 & 102.5 & 104.3 & 104.4 & 102.0 & 99.5 & Point & Hist & . & - & 2.5 & 649512 & 472788 & 180.5 & 60 min & & \\
\hline 91.4 & 88.5 & 99.4 & 96.2 & 93.0 & 90.2 & 87.4 & 84.9 & 81.3 & Point & Hist & . & . & 0.6 & \({ }^{648875}\) & 472829 & 143.6 & 60 min & 60 min & 60 min \\
\hline 110.8 & 113.6 & 105.4 & 104.1 & 102.2 & 99.8 & 94.9 & 93.4 & 91.5 & Point & Hist & & & 2.0 & 648856 & 472826 & 145.0 & 60 min & 60 min & 60 min \\
\hline \({ }^{125.3}\) & 126.2 & 117.0 & 110.0 & 105 & 103.5 & 98.5 & 93.6 & 86.1 & Point & Hist & \({ }^{0.1}\) & 20.0 & 20.1 & \({ }^{648855}\) & \({ }^{4728226}\) & 163.1 & 60 min & 60 min & 60 min \\
\hline 95.7 & 97.7 & 95.1 & 95.2 & 97.8 & 95.5 & 9.5 & 87.3 & 77.2 & Point & Hist & & . & 19.0 & 648861 & 472835 & 162.0 & 60 min & 60 min & 60 min \\
\hline 101.7 & 98.9 & 94.6 & 90.2 & 90.5 & 92.8 & 90.1 & 81.6 & 73.8 & Point & Hist & & & 3.5 & 648880 & 472826 & 146.5 & 60 min & 60 min & 60 min \\
\hline \begin{tabular}{|l|l|l|}
\hline 101.7 \\
\hline 1.2 \\
\hline
\end{tabular} & 98.9 & 94.6 & 90.2 & 90.5 & 92.8 & 90.1 & 81.6 & 73.8 & Point & Hist & - & & 3.5 & 648880 & 4772825 & 146.5 & 60 min & 60 min & 60 min \\
\hline 122.0 & 127.9 & 114.5 & 107.6 & 106.6 & 108.5 & 117.9 & 122.3 & 123.2 & Point & Hist & 1.0 & 21.0 & 22.0 & \({ }^{648888}\) & 4772842 & 165.0 & 60 min & 60 min & 60 min \\
\hline 103.6 & 109.2 & 104.1 & 99.2 & 97.3 & 95.8 & 94.2 & 93.1 & 88.0 & Point & Hist & & & 2.5 & 648870 & 472830 & 145.5 & 60 min & 60 min & 60 min \\
\hline 103.6 & 109.2 & 104.1 & 99.2 & 97.3 & 95.8 & 94.2 & 93.1 & 88.0 & Point & Hist & . & . & 2.5 & 648864 & 472827 & 145.5 & 60 min & 60 min & 60 min \\
\hline 100.5 & 102.5 & 94.2 & 95.5 & 98.9 & 103.0 & 102.0 & 95.1 & 91.4 & Point & Hist & & - & 4.0 & 648854 & 472883 & 147.0 & 60 min & 60 min & 60 min \\
\hline 111.4 & 110.7 & 104.0 & 100.1 & 98.3 & 97.8 & 93.9 & 91.9 & 89.9 & Point & Hist & & & 5.8 & 648858 & 472832 & 148.8 & 60 min & 60 min & 60 min \\
\hline 114.6 & 112.8 & 109.9 & 106.3 & 105.2 & 101.2 & 96.8 & 94.9 & 93.4 & Point & Hist & . & - & 4.0 & 648863 & 472834 & 147.0 & 60 min & 60 min & 60 min \\
\hline 0.0 & 105.0 & 104.6 & 100.8 & 94.8 & 94.7 & 96.6 & 99.5 & 99.3 & Point & Hist & - & - & 5.0 & 648870 & 4772837 & 148.0 & 60 min & 60 min & 60 min \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline
\end{tabular}


Table D.2a: Acoustic Assessment Summary, Alternate Phase 1B North
Upper's Quarry, 1603157

Notes to Table:
- "Table A3" in Appendix A of Basic CCofA Guide.
1. "Continuous" noise sources includes sum of steady, quasi-steady impulsive, tonal, cyclical and buzzing noise sources, with appropriate penalties applied, in accordance with documents NPC-104 and NPC-300. Impulsive and emergency noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from \(0700-1900\) h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit.
6. Performance limit (aka guideline limit) based on following:
\(-\mathrm{C}=\) Calculated based on road traffic volumes in compliance with NPC-206 requirements.
\(-\mathrm{M}=\) Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.
- \(\mathrm{D}=\) Default guideline minima per NPC-300.

Assessment of Impacts for "Continuous" Noise Sources \({ }^{[1]}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Point of Reception ID} & \multirow[t]{2}{*}{Point of Reception Description} & \multirow[t]{2}{*}{\begin{tabular}{l}
Time Period \\
[2]
\end{tabular}} & \multirow[t]{2}{*}{Total Sound Level at PoR [3] (dBA)} & \multirow[t]{2}{*}{Verified by Acoustic Audit \({ }^{[4]}\) (Yes/No)} & \multirow[t]{2}{*}{Performance Limit \({ }^{\mid 5]}\) (dBA)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Peformance \\
Limit Source \\
[6]
\[
(\mathbf{C} / \mathbf{M} / \mathbf{D})
\]
\end{tabular}} & \multirow[t]{2}{*}{Compliance
with
Performance
Limit
(Yes/No)} & \multicolumn{2}{|l|}{UTM Coordinate (Zone 17N)} & \multirow[t]{2}{*}{Height Relative to Local Grade
\(\qquad\) (m)} \\
\hline & & & & & & & & X (m) & Y (m) & \\
\hline \multirow{3}{*}{R1f} & \multirow[t]{3}{*}{Facade of dwelling (10148 Beaverdams Rd)} & Daytime & 47 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{648766} & \multirow{3}{*}{4773660} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 39 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 39 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R1o} & \multirow[t]{2}{*}{Outdoor area of dwelling (10148 Beaverdams Rd)} & Daytime & 46 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{648766} & \multirow[t]{2}{*}{4773629} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 37 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R2f} & \multirow[t]{3}{*}{Facade of dwelling (9722 Beaverdams Rd)} & Daytime & 40 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649394} & \multirow{3}{*}{4773728} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 33 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 33 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R2o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9722 Beaverdams Rd)} & Daytime & 38 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649391} & \multirow[t]{2}{*}{4773698} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 28 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R3f} & \multirow[t]{3}{*}{Facade of dwelling (9602 Beaverdams Rd)} & Daytime & 37 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649571} & \multirow{3}{*}{4773645} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 32 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 32 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R3o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9602 Beaverdams Rd)} & Daytime & 35 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649553} & \multirow[t]{2}{*}{4773620} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 27 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R4f} & \multirow[t]{3}{*}{Facade of dwelling (5584 Beechwood Rd)} & Daytime & 37 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649611} & \multirow{3}{*}{4772698} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 33 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 33 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R4o} & \multirow[t]{2}{*}{Outdoor area of dwelling (5584 Beechwood Rd)} & Daytime & 30 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649594} & \multirow[t]{2}{*}{4772727} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 27 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R5f} & \multirow[t]{3}{*}{Facade of dwelling (5769 Beechwood Rd)} & Daytime & 38 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649553} & \multirow{3}{*}{4772408} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 30 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 30 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R5o} & \multirow[t]{2}{*}{Outdoor area of dwelling (5769 Beechwood Rd)} & Daytime & 32 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649532} & \multirow[t]{2}{*}{4772429} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 29 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R6f} & \multirow{3}{*}{\begin{tabular}{l}
Facade of dwelling (9944 Lundy's \\
Ln)
\end{tabular}} & Daytime & 38 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649084} & \multirow{3}{*}{4771672} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 30 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 30 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R6o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9944 Lundy's Ln)} & Daytime & 37 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649070} & \multirow[t]{2}{*}{4771693} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 30 & No & 45 & & Yes & & & \\
\hline
\end{tabular}

Table D.2b: Acoustic Assessment Summary, Alternate Phase 2 Northeast
Upper's Quarry, 1603157

Notes to Table:
- "Table A3" in Appendix A of Basic CCofA Guide.
1. "Continuous" noise sources includes sum of steady, quasi-steady impulsive, tonal, cyclical and buzzing noise sources, with appropriate penalties applied, in accordance with documents NPC-104 and NPC-300. Impulsive and emergency noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from \(0700-1900\) h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit.
6. Performance limit (aka guideline limit) based on following:
\(-\mathrm{C}=\) Calculated based on road traffic volumes in compliance with NPC-206 requirements.
\(-\mathrm{M}=\) Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.
- \(\mathrm{D}=\) Default guideline minima per NPC-300.

Assessment of Impacts for "Continuous" Noise Sources \({ }^{[1]}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Point of Reception ID} & \multirow[t]{2}{*}{Point of Reception Description} & \multirow[t]{2}{*}{Time Period [2]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Total Sound \\
Level at PoR \\
[3] \\
(dBA)
\end{tabular}} & \multirow[t]{2}{*}{Verified by Acoustic Audit \({ }^{[4]}\) (Yes/No)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Performance } \\
& \text { Limit }^{[5]} \\
& \text { (dBA) } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Peformance Limit Source \\
[6]
\[
(\mathbf{C} / \mathbf{M} / \mathbf{D})
\]
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l} 
Compliance \\
with \\
Performance \\
Limit \\
(Yes/No) \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{UTM Coordinate (Zone 17N)} & \multirow[t]{2}{*}{Height Relative to Local Grade (m)} \\
\hline & & & & & & & & \(\mathbf{X}\) (m) & Y (m) & \\
\hline \multirow{3}{*}{R1f} & \multirow{3}{*}{Facade of dwelling (10148 Beaverdams Rd)} & Daytime & 46 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{648766} & \multirow{3}{*}{4773660} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 41 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 41 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R1o} & \multirow[t]{2}{*}{Outdoor area of dwelling (10148 Beaverdams Rd)} & Daytime & 45 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{648766} & \multirow[t]{2}{*}{4773629} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 40 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R2f} & \multirow[t]{3}{*}{Facade of dwelling (9722 Beaverdams Rd)} & Daytime & 47 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649394} & \multirow{3}{*}{4773728} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 35 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 35 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R2o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9722 Beaverdams Rd)} & Daytime & 45 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649391} & \multirow[t]{2}{*}{4773698} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 34 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R3f} & \multirow{3}{*}{Facade of dwelling (9602 Beaverdams Rd)} & Daytime & 48 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649571} & \multirow{3}{*}{4773645} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 36 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 36 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R3o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9602 Beaverdams Rd)} & Daytime & 48 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649553} & \multirow[t]{2}{*}{4773620} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 33 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R4f} & \multirow[t]{3}{*}{Facade of dwelling (5584 Beechwood Rd)} & Daytime & 48 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649611} & \multirow{3}{*}{4772698} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 36 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 36 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R4o} & \multirow[t]{2}{*}{Outdoor area of dwelling (5584 Beechwood Rd)} & Daytime & 44 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649594} & \multirow[t]{2}{*}{4772727} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 30 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R5f} & \multirow[t]{3}{*}{Facade of dwelling (5769 Beechwood Rd)} & Daytime & 45 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649553} & \multirow{3}{*}{4772408} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 32 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 32 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R5o} & \multirow[t]{2}{*}{Outdoor area of dwelling (5769 Beechwood Rd)} & Daytime & 43 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649532} & \multirow[t]{2}{*}{4772429} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 31 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R6f} & \multirow[t]{3}{*}{\begin{tabular}{l}
Facade of dwelling (9944 Lundy's \\
\(\mathrm{Ln})\)
\end{tabular}} & Daytime & 40 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649084} & \multirow{3}{*}{4771672} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 31 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 31 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R6o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9944 Lundy's Ln)} & Daytime & 39 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649070} & \multirow[t]{2}{*}{4771693} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 31 & No & 45 & & Yes & & & \\
\hline
\end{tabular}

Table D.2c: Acoustic Assessment Summary, Alternate Phase 3 Southeast
Upper's Quarry, 1603157

Notes to Table:
- "Table A3" in Appendix A of Basic CCofA Guide.
1. "Continuous" noise sources includes sum of steady, quasi-steady impulsive, tonal, cyclical and buzzing noise sources, with appropriate penalties applied, in accordance with documents NPC-104 and NPC-300. Impulsive and emergency noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from \(0700-1900\) h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit.
6. Performance limit (aka guideline limit) based on following:
\(-\mathrm{C}=\) Calculated based on road traffic volumes in compliance with NPC-206 requirements.
\(-\mathrm{M}=\) Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.
- \(\mathrm{D}=\) Default guideline minima per NPC-300.

Assessment of Impacts for "Continuous" Noise Sources \({ }^{[1]}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Point of Reception ID} & \multirow[t]{2}{*}{Point of Reception Description} & \multirow[t]{2}{*}{\begin{tabular}{l}
Time Period \\
[2]
\end{tabular}} & \multirow[t]{2}{*}{Total Sound Level at PoR [3] (dBA)} & \multirow[t]{2}{*}{Verified by Acoustic Audit \({ }^{[4]}\) (Yes/No)} & \multirow[t]{2}{*}{Performance Limit \({ }^{\mid 5]}\) (dBA)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Peformance \\
Limit Source \\
[6]
\[
(\mathbf{C} / \mathbf{M} / \mathbf{D})
\]
\end{tabular}} & \multirow[t]{2}{*}{Compliance
with
Performance
Limit
(Yes/No)} & \multicolumn{2}{|l|}{UTM Coordinate (Zone 17N)} & \multirow[t]{2}{*}{Height Relative to Local Grade
\(\qquad\) (m)} \\
\hline & & & & & & & & X (m) & Y (m) & \\
\hline \multirow{3}{*}{R1f} & \multirow[t]{3}{*}{Facade of dwelling (10148 Beaverdams Rd)} & Daytime & 48 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{648766} & \multirow{3}{*}{4773660} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 41 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 41 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R1o} & \multirow[t]{2}{*}{Outdoor area of dwelling (10148 Beaverdams Rd)} & Daytime & 47 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{648766} & \multirow[t]{2}{*}{4773629} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 40 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R2f} & \multirow[t]{3}{*}{Facade of dwelling (9722 Beaverdams Rd)} & Daytime & 47 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649394} & \multirow{3}{*}{4773728} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 38 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 38 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R2o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9722 Beaverdams Rd)} & Daytime & 45 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649391} & \multirow[t]{2}{*}{4773698} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 37 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R3f} & \multirow[t]{3}{*}{Facade of dwelling (9602 Beaverdams Rd)} & Daytime & 47 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649571} & \multirow{3}{*}{4773645} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 38 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 38 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R3o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9602 Beaverdams Rd)} & Daytime & 46 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649553} & \multirow[t]{2}{*}{4773620} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 37 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R4f} & \multirow[t]{3}{*}{Facade of dwelling (5584 Beechwood Rd)} & Daytime & 49 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649611} & \multirow{3}{*}{4772698} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 41 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 41 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R4o} & \multirow[t]{2}{*}{Outdoor area of dwelling (5584 Beechwood Rd)} & Daytime & 48 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649594} & \multirow[t]{2}{*}{4772727} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 40 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R5f} & \multirow[t]{3}{*}{Facade of dwelling (5769 Beechwood Rd)} & Daytime & 43 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649553} & \multirow{3}{*}{4772408} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 40 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 40 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R5o} & \multirow[t]{2}{*}{Outdoor area of dwelling (5769
Beechwood Rd)} & Daytime & 42 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649532} & \multirow[t]{2}{*}{4772429} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 39 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R6f} & \multirow{3}{*}{\begin{tabular}{l}
Facade of dwelling (9944 Lundy's \\
Ln)
\end{tabular}} & Daytime & 42 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649084} & \multirow{3}{*}{4771672} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 37 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 37 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R6o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9944 Lundy's Ln)} & Daytime & 41 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649070} & \multirow[t]{2}{*}{4771693} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 36 & No & 45 & & Yes & & & \\
\hline
\end{tabular}

Table D.2d: Acoustic Assessment Summary, Alternate Scenario Impulsive Source
Upper's Quarry, 1603157

Notes to Table:
- "Table A3" in Appendix A of Basic CCofA Guide.
1. Impulsive noise sources are assessed separately from continuous noise sources.
2. Daytime occurs from 0700-1900h. Evening occurs from 1900h-2300h. Nighttime occurs from 2300-0700h.
3. Worst-case cumulative sound level from all applicable sources operating.
4. Has an acoustic audit (as defined in Publication NPC-233) been conducted with source in place and operating?
5. Applicable worst-case NPC-300 sound level limit, based on more than 9 impulses per hour in a Class 2 area.
6. Performance limit (aka guideline limit) based on following:
\(-\mathrm{C}=\) Calculated based on road traffic volumes in compliance with NPC-206 requirements.
\(-M=\) Measured based on monitoring for a minimum 48 hour period, in accordance with NPC-233 requirements.
- \(\mathrm{D}=\) Default guideline minima per NPC-300.

Assessment of Impacts for "Impulsive" Noise Sources \({ }^{[1]}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Point of Reception ID} & \multirow[t]{2}{*}{Point of Reception Description} & \multirow[t]{2}{*}{\begin{tabular}{l}
Time Period \\
[2]
\end{tabular}} & \multirow[t]{2}{*}{Total Sound Level at PoR [3]
(dBA)} & \multirow[t]{2}{*}{Verified by Acoustic Audit \({ }^{[4]}\) (Yes/No)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Performance } \\
& \text { Limit }^{[5]} \\
& \text { (dBA) } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Peformance \\
Limit Source \\
[6]
\[
(\mathbf{C} / \mathbf{M} / \mathbf{D})
\]
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l} 
Compliance \\
with \\
Performance \\
Limit \\
(Yes/No) \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{UTM Coordinate (Zone 17N)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Height Relative to Local Grade \\
(m)
\end{tabular}} \\
\hline & & & & & & & & X (m) & Y (m) & \\
\hline \multirow{3}{*}{R1f} & \multirow{3}{*}{Facade of dwelling (10148 Beaverdams Rd)} & Daytime & 41 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{648766} & \multirow{3}{*}{4773660} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 41 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 41 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R1o} & \multirow[t]{2}{*}{\begin{tabular}{l}
Outdoor area of dwelling (10148 \\
Beaverdams Rd)
\end{tabular}} & Daytime & 41 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{648766} & \multirow[t]{2}{*}{4773629} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 41 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R2f} & \multirow{3}{*}{Facade of dwelling (9722 Beaverdams Rd)} & Daytime & 38 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649394} & \multirow{3}{*}{4773728} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 38 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 38 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R2o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9722 Beaverdams Rd)} & Daytime & 38 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649391} & \multirow[t]{2}{*}{4773698} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 38 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R3f} & \multirow{3}{*}{Facade of dwelling (9602 Beaverdams Rd)} & Daytime & 38 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649571} & \multirow{3}{*}{4773645} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 38 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 38 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R3o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9602 Beaverdams Rd)} & Daytime & 38 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649553} & \multirow[t]{2}{*}{4773620} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 38 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R4f} & \multirow{3}{*}{Facade of dwelling (5584 Beechwood Rd)} & Daytime & 42 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649611} & \multirow{3}{*}{4772698} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 42 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 42 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R4o} & \multirow[t]{2}{*}{Outdoor area of dwelling (5584 Beechwood Rd)} & Daytime & 43 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649594} & \multirow[t]{2}{*}{4772727} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 43 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R5f} & \multirow[t]{3}{*}{Facade of dwelling (5769 Beechwood Rd)} & Daytime & 41 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649553} & \multirow{3}{*}{4772408} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 41 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 41 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R5o} & \multirow[t]{2}{*}{Outdoor area of dwelling (5769 Beechwood Rd)} & Daytime & 42 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649532} & \multirow[t]{2}{*}{4772429} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 42 & No & 45 & & Yes & & & \\
\hline \multirow{3}{*}{R6f} & \multirow[t]{3}{*}{Facade of dwelling (9944 Lundy's Ln)} & Daytime & 35 & No & 50 & \multirow{3}{*}{D} & Yes & \multirow{3}{*}{649084} & \multirow{3}{*}{4771672} & \multirow{3}{*}{4.5} \\
\hline & & Evening & 35 & No & 50 & & Yes & & & \\
\hline & & Nighttime & 35 & No & 45 & & Yes & & & \\
\hline \multirow[t]{2}{*}{R6o} & \multirow[t]{2}{*}{Outdoor area of dwelling (9944 Lundy's Ln)} & Daytime & 36 & No & 50 & \multirow[t]{2}{*}{D} & Yes & \multirow[t]{2}{*}{649070} & \multirow[t]{2}{*}{4771693} & \multirow[t]{2}{*}{1.5} \\
\hline & & Evening & 36 & No & 45 & & Yes & & & \\
\hline
\end{tabular}



\section*{Alternate Phase 1B North Operation Overview \\ }


\section*{Alternate Phase 2 Northeast Operation Overview \\ Drawn by: RNL Figure: D.2b \\ Approx. Scale: 1:10000 \\ 8}


\section*{Alternate Phase 3 Southeast Operation Overview \\ }


\section*{Sound Level Contours Alternate Phase 1B North, Daytime}


\section*{Sound Level Contours \\ Alternate Phase 1B North, Evening/Nighttime}


\section*{Sound Level Contours Alternate Phase 2 Northeast, Daytime}


\section*{Sound Level Contours \\ Alternate Phase 2 Northeast, Evening/Nighttime}

True North Drawn by: RNL Figure: D.3d
(1) Approx. Scale: 1:12000 Date Revised: Sep 22, 2021

5


\section*{Sound Level Contours Alternate Phase 3 Southeast, Daytime}

Drawn by: RNL Figure: D.3e

Approx. Scale: 1:12000

Date Revised: Sep 22, 2021


\section*{Sound Level Contours \\ Alternate Phase 3 Southeast, Evening/Nighttime}

True North Drawn by: RNL Figure: D. 3 f
1
Approx. Scale: 1:12000
Date Revised: Sep 22, 2021

8

\section*{APPENDIX E}


\section*{SLAVI GROZEV, P.ENG., B.A.SC. SENIOR ENGINEER \\ T: 647-475-1048 X 2609 | Slavi.Grozev@rwdi.com}

Slavi is an acoustics specialist who supports our clients with a range of noise-related processes, including permitting, compliance, modeling and complaint investigation. His project experience spans a range of industries, including manufacturing, utilities and distribution, food and beverage, quarries and pits, wastewater treatment, waste disposal and land development. Our clients benefit in particular from the depth of Slavi's experience with transportation-related noise. In a previous role with the Ontario Ministry of Transportation, he carried out noise impact assessments of highway and transit corridors and interchange reconfigurations, and also supported roadway noise abatement strategies and transportation policy development. Slavi is RAQS-certified and is experienced in a variety of road traffic models including TNM 2.5.

Employment History

2019-Present
Senior Engineer, RWDI

2017-2019
Senior Environmental Engineer (Acoustics), Arcadis Canada Inc.

2015-2017
Senior Policy Analyst, Acoustics, Air Quality and Climate Change, Ontario Ministry of Transportation

2010-2015

\section*{Project}

Manager/Engineer, Air and Noise Quality Group, GHD Limited

Education

Bachelor of Science
(Chemical Engineering) (Hons.), University of Waterloo, Waterloo, ON, 2010

Affiliations

Member, Professional Engineers of Ontario, 2015 - Present Member, Air \& Waste Management Association, 2018 - Present

\section*{Technical Expertise}
- Compliance and permitting
- Environmental Noise
- Government Reporting
- Industrial Noise
- Noise Impact Assessments
- Noise Modeling
- Transportation Noise

\section*{Project Experience}
- Lafarge Woodstock Quarry, Woodstock, ON
- McCreedy Mine, Sudbury, ON
- IKO Crusher Plant, Ingersoll, ON
- Tri City Spencer Pit, Guelph, ON
- Tri City Kitchener Pit, Kitchener, ON
- KPM Reid Pit, Brantford, ON


Ray joined RWDI in 2018 and has become an integral part of the noise, acoustics, and vibration team. He has conducted noise and vibration studies in multiple jurisdictions across Canada and for a wide range of clients. His expertise is with energy production, industrial facilities, and mining operations.

Ray is also well versed in construction vibration and has helped clients manage construction vibration levels in dense urban areas.

\section*{Project Experience}

\section*{Energy \& Power}
- Prairie Lights Power Plant - AB
- Hidden Lake Compressor Station - AB
- Buffalo Creek Compressor Station - AB
- Hidden Lake Compressor Station - AB
- Kaybob Gas Plant - AB
- ALC Scotford Generator Addition - AB
- Fox Creek Wells - AB
- Enbridge Valve Stations Blowdown - BC
- Claresholm Solar Farm - AB
- Greengate Solar Farm - AB

\section*{Ontario Regulatory Applications}
- ECA/EASR noise assessment for industrial facilities
- Land use planning for developments

\section*{Construction Vibration}
- Calgary Cancer Centre - Calgary, AB
- Trans Mountain Pipeline - Edmonton, AB

\section*{Mining and Quarry}
- Upper's Quarry - Niagara Falls, ON
- Melbourne Road Quarry - Thunder Bay, ON
- North Coal - Sparwood, BC
- Portable Crusher Plants - ON

Employment History

2018-Present
Noise and Vibration Engineer, RWDI

2016-2018
Research Assistant, University of Alberta

2015
Engineer-in-Training, TransCanada Pipelines

2013-2014
Engineering Intern, TransCanada Pipelines

Education

Master of Science
(Materials Engineering), University of Alberta, Canada

Bachelor of Science
(Mech. Engineering), University of Calgary, Canada

\section*{Affiliation \\ Association of Professional Engineers and Geoscientists of Alberta (APEGA)}```

