

2000 Argentia Road, Plaza One, Suite 203 Mississauga, Ontario, Canada L5N 1P7 t: 905.826.4044

Noise Impact Study Proposed Change of Use 7715 Beaverdams Road Niagara Falls, Ontario

PROFESSIONAL PROFE

100224844

HOVINCE OF ONTIRE

Prepared for:

Pranajan Group Ltd. 7715 Beaverdams Road Niagara Falls, ON, L2H 2J4

Prepared by

Yvonne Lo, MEng, PEng

Reviewed by

Sheeba Paul, MEng, PEng

October 20, 2023

HGC Project No. 02300519

Table of Contents

1	Intr	oduction and Summary	1
2		Description and Sources of Sound	
3		teria for Acceptable Sound Levels	
	3.1	Road Traffic Noise Criteria	
4	Tra	ffic Sound Level Assessment	
•	4.1	Road Traffic Data	
	4.2	Road Traffic Noise Predictions	
5	Tra ⁻	ffic Noise Recommendations	
•	5.1	Outdoor Living Areas	
	5.2	Indoor Living Areas	
	5.3	Building Façade Constructions.	7
	5.4	Warning Clauses	7
6	Stat	tionary Noise Assessment	8
	6.1	Stationary Noise Criteria	8
	6.2	Noise Source Description	9
	6.3	Assumptions	9
	6.4	Assessment of Noise from the Existing Commercial Buildings on Subject Building	11
	6.5	Noise Control Recommendations for the Existing Commercial Uses	11
7	Sun	nmary and Recommendations	12

Figure 1: Key Plan

Figure 2: Site Plan Showing Prediction Locations

Figure 3: Existing Noise Source Locations

Figure 4: Predicted Daytime Sound Levels at the Subject Building, dBA (Without Mitigation)

Figure 5: Predicted Nighttime Sound Levels at Subject Building, dBA (Without Mitigation)

Appendix A: Supporting Drawings Appendix B: Road Traffic Data

Appendix C: Sample STAMSON 5.04 Output

1 Introduction and Summary

HGC Engineering was retained by Pranajan Group Ltd. to conduct a noise impact study for a proposed change of use for a single-storey building that is currently located at 7715 Beaverdams Road in Niagara Falls, Regional Municipality of Niagara (RMON), Ontario. The study is required as part of the submission to the RMON to assess the impact of traffic noise from surrounding roads and stationary noise from existing commercial uses as part of a Zoning Bylaw Amendment.

The primary traffic noise sources impacting the site are road traffic on Montrose Road and Lundy's Lane. Secondary sources of noise include road traffic on Beaverdams Road and the Queen Elizabeth Way (QEW). Road traffic data was obtained from the relevant authorities. The data was used to predict future traffic sound levels at various locations around the subject building. The predicted sound levels were compared to the guidelines of the Ministry of the Environment, Conservation and Parks (MECP) and the RMON.

The sound level predictions indicate that future road traffic sound levels will exceed MECP guidelines at the subject building. Forced air ventilation systems with ductwork sized for the future installation of central air conditioning by the occupant will be required for the building. Building constructions meeting the minimum requirements of the Ontario Building Code will provide sufficient acoustical insulation for the building. Warning clauses are also recommended to inform future owners of the building and the occupants of the traffic noise impacts, to address sound level excesses and to indicate the presence of existing retail/commercial uses.

There are existing commercial uses at the east side of the site, including a Dulux Paint and Muller's Work Wear. The sound emissions from the rooftop mechanical equipment associated with these uses have been evaluated. A computer model of the area was created using acoustic modelling software to predict the sound levels from the existing commercial uses at the sensitive receptors of the subject building. Results indicate that the potential sound impact of the existing commercial uses is expected to be within the applicable noise guideline limits of the MECP at the subject building. Noise mitigation is not required for the existing commercial buildings. A warning clause is required to inform future owners/tenants of the subject building of the proximity to existing commercial uses.

2 Site Description and Sources of Sound

A key plan showing the location of the subject site is indicated in Figure 1. The site is located at 7715 Beaverdams Road in Niagara Falls, Ontario. A site plan prepared by Chintan Virani Architect Inc. dated April 20, 2017 is attached as Figure 2. The existing building is currently a senior residence and will become a boarding house. There are no changes to the existing building beyond the proposed use. Appendix A includes the floor plans and building elevations.

A site visit was performed by HGC Engineering personnel in October 2023 to investigate the surrounding land uses and to identify the significant noise sources in the vicinity. The primary sources of noise are road traffic on Montrose Road and Lundy's Lane, with lesser contributions from the QEW and Beaverdams Road.

There are existing lodging and residential uses to the west and north, respectively. There are existing commercial/retail buildings located to the east and south, including a Dulux Paint and a commercial building with uses such as Muller's Work Wear and Pho Bowl Vietnamese. There are small rooftop units atop the existing commercial buildings. During the site visit, traffic sounds dominated the site, nevertheless, a noise warning clause informing future owners and occupants of the subject building of the proximity to existing commercial/retail uses is recommended as included in Section 6.5.

3 Criteria for Acceptable Sound Levels

3.1 Road Traffic Noise Criteria

Guidelines for acceptable levels of road traffic noise impacting residential developments are given in the MECP publication NPC-300, "Environmental Noise Guideline Stationary and Transportation Sources – Approval and Planning", Part C release date October 21, 2013 and are listed in Table 1 below. The values in Table 1 are energy equivalent (average) sound levels [LeQ] in units of A weighted decibels [dBA]. These criteria have generally been adopted by the Regional Municipality of Niagara.

Table 1: Road Traffic Noise Criteria

	Daytime L _{EQ(16 hour)} Road	Nighttime L _{EQ(8 hour)} Road
Outdoor Living Areas	55 dBA	
Inside Living/Dining Rooms	45 dBA	45 dBA
Inside Bedrooms	45 dBA	40 dBA

Daytime refers to the period between 07:00 and 23:00, while nighttime refers to the period between 23:00 and 07:00. The term "Outdoor Living Area" (OLA) is used in reference to an outdoor patio, a backyard, a terrace or other area where passive recreation is expected to occur. Balconies that are less than 4 m in depth are not considered to be outdoor living areas under MECP guidelines.

The guidelines in the MECP publication allow the sound level in an OLA to be exceeded by up to 5 dBA, without mitigation, if warning clauses are placed in the purchase and rental agreements and offers of purchase and sale for the property. When OLA sound levels exceed 60 dBA, physical mitigation is required to reduce the OLA sound level to below 60 dBA and as close to 55 dBA as technically, economically and administratively feasible.

A central air conditioning system as an alternative means of ventilation to open windows is required for dwellings where nighttime sound levels outside bedroom/living/dining room windows exceed 60 dBA or daytime sound levels exceed 65 dBA outside bedroom/living room windows. A forced air ventilation system with ducts sized for the future provision of air conditioning, or some other alternative form of mechanical ventilation, is required where nighttime sound levels at bedroom/living/dining room windows are in the range of 51 - 60 dBA or daytime sound levels are in the range of 56 - 65 dBA.

Building components such as walls, windows and doors must be designed to achieve indoor sound level criteria when the plane of bedroom/living/dining room window sound level is greater than 60 dBA or the daytime sound level is greater than 65 dBA due to road traffic noise.

Warning clauses are required to notify future residents of possible excesses when nighttime sound levels exceed 50 dBA at the plane of the bedroom/living/dining room window and daytime sound

levels exceed 55 dBA in the outdoor living area and at the plane of the bedroom/living/dining room window due to road traffic.

4 Traffic Sound Level Assessment

4.1 Road Traffic Data

Road traffic data for Lundy's Lane (Regional Road 20) and Montrose Road (Regional Road 98) was provided by RMON personnel in the form of Turning Movement Counts. A commercial vehicle percentage of 1.4% was further split into 0.9% heavy trucks and 0.5% medium trucks for Lundy's Lane. A commercial vehicle percentage of 2.2% was further split into 1.4% heavy trucks and 0.8% medium trucks for Montrose Road. The data was projected 20 years to the year 2043 as per RMON requirements using a 2.5% growth rate. A day/night split of 90%/10% and a posted speed limit of 50 km/h were used in the analysis.

Road traffic data for the QEW was obtained from the Ministry of Transportation and projected to the year 2033 at a conservative growth rate of 2.5%/year. A commercial vehicle percentage of 20% was further split into 5% medium trucks and 15% heavy trucks. These vehicles were assumed to be travelling at the posted maximum speed of 100 km/hr. A 67%/33% day/night split was used in the analysis.

Road traffic data for Beaverdams Road was provided by City of Niagara Falls personnel in the form of hourly traffic counts. A commercial vehicle percentage of 2.0% was further split into 0.8% heavy trucks and 1.2% medium trucks for Lundy's Lane. The data was projected to the year 2033 at a conservative growth rate of 2.5%/year. A day/night split of 90%/10% and a posted speed limit of 50 km/h were used in the analysis.

The projected road traffic volumes are shown in Table 2 below and included in Appendix B.

Table 2: Projected Road Traffic Data

Road Nan	ne	Cars	Medium Trucks	Heavy Trucks	Total
T 11 T	Daytime	25 301	128	231	25 661
Lundy's Lane (projected to 2043)	Nighttime	2 811	14	26	2 851
(projecteu to 2043)	Total	28 113	143	257	28 512
Mantuaga Dand	Daytime	19 875	163	285	20 322
Montrose Road (projected to 2043)	Nighttime	2 208	18	32	2 258
(projected to 2043)	Total	22 083	181	316	22 580
Owen Elizabeth West	Daytime	55 768	3 486	10 457	69 010
Queen Elizabeth Way (projected to 2033)	Nighttime	27 880	1 742	5 227	34 850
(projected to 2055)	Total	83 648	5 228	15 684	104 560
Dearwardama Daad	Daytime	2 520	23	28	2 572
Beaverdams Road	Nighttime	280	3	3	284
(projected to 2033)	Total	2 800	26	31	2 857

4.2 Road Traffic Noise Predictions

To assess the levels of road traffic noise which would impact the site in the future, road traffic predictions were made using STAMSON version 5.04, a computer algorithm developed by the MECP. Sample STAMSON output is included in Appendix C.

Prediction locations were chosen around the site to obtain a good representation of the future sound levels at the building facades with exposure to the surrounding roadways. Since the building is a single-storey building, a maximum ground floor window height of 1.5 m was used in the analysis. The results of these predictions are summarized in Table 3.

Table 3: Future Road Traffic Sound Levels, [dBA], Without Mitigation

Prediction Location	Description	Daytime in OLA LEQ-16 hr	Daytime at Façade L _{EQ-16 hr}	Nighttime at Façade L _{EQ-8 hr}
[A]	East Façade		60	52
[B]	North Façade		<55	< 50
[C]	West Façade		55	< 50
[D]	South Façade		57	52
[E]	Outdoor Amenity Area	55		

5 Traffic Noise Recommendations

The predictions indicate that the future traffic sound levels will exceed MECP guidelines at the subject site. Recommendations to address these excesses are discussed below.

5.1 Outdoor Living Areas

The predicted daytime sound level in the assumed outdoor amenity area at the south side of the building (Prediction Location [E]) will be 55 dBA. Physical mitigation will not be required for this area.

5.2 Indoor Living Areas

Provision for the Future Installation of Air Conditioning

The predicted future sound levels outside the top storey windows of the building will be between 56 and 65 dBA during the daytime hours and between 51 and 60 dBA during the nighttime. To address this excess, the MECP guidelines recommend that the building be equipped with a forced air ventilation system with ducts sized to accommodate the future installation of air conditioning by the occupant.

Window or through-the-wall air conditioning units are not recommended for any residential units because of the noise they produce and because the units penetrate through the exterior wall which degrades the overall noise insulating properties of the envelope. The location, installation and sound ratings of the outdoor air conditioning devices should minimize noise impacts and comply with

criteria of MECP publication NPC-300, as applicable. The guidelines also recommend warning clauses for all units with ventilation requirements.

5.3 Building Façade Constructions

The maximum predicted sound level at the top storey façade of the subject building will be less than 65 dBA during the daytime and less than 60 dBA during the nighttime. For the building, any exterior wall, and double glazed window construction meeting the minimum requirements of the Ontario Building Code (OBC) will provide adequate sound insulation for the dwelling units.

5.4 Warning Clauses

The MECP guidelines recommend that warning clauses be included in the property and tenancy agreements and offers of purchase and sale for all units with anticipated traffic sound level excesses. Examples are provided below.

Suggested wording for dwellings which have sound level excesses but do not require mitigation measures is given below.

Type A:

Purchasers/tenants are advised that sound levels due to increasing road traffic may occasionally interfere with some activities of the dwelling unit occupants as the sound levels exceed the Municipality's and the Ministry of the Environment, Conservation and Parks' noise criteria.

A suggested wording for future dwellings requiring forced air ventilation systems is given below.

Type B:

This dwelling unit has been designed with the provision for adding central air conditioning at the occupant's discretion. Installation of central air conditioning by the occupant in low and medium density developments will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment, Conservation and Parks.

These sample clauses are provided by the MECP as examples and can be modified by the Municipality as required.

6 Stationary Noise Assessment

An industrial or commercial facility is classified in MECP Guideline NPC-300 as a stationary source of sound (as compared to sources such as traffic or construction, for example) for noise assessment purposes. In terms of background sound, the development is located in an urban (Class I) acoustical environment which is characterized by an acoustical environment dominated by road traffic and human activity. The rooftop mechanical equipment associated with the existing commercial uses to the east and south are considered stationary noise sources and have the potential to impact the subject building.

6.1 Stationary Noise Criteria

NPC-300 is intended for use in the planning of both residential and commercial/industrial land uses and provides the acceptability limits for sound due to commercial operations in that regard. The façade of a residence (i.e., in the plane of a window), or any associated usable outdoor area is considered a sensitive point of reception. NPC-300 stipulates that the exclusionary minimum sound level limit for a stationary noise source in an urban Class 1 area is taken to be 50 dBA during daytime/evening hours (07:00 to 23:00), and 45 dBA during nighttime hours (23:00 to 07:00). If the background sound levels due to road traffic exceed the exclusionary limits, then the background sound level becomes the criterion. The background sound level is defined as the sound level that occurs when the source under consideration is not operating, and may include traffic noise and natural sounds. To ensure a conservative analysis, the exclusionary minimum criteria has been adopted at all receptors.

Commercial activities such as the occasional movement of customer vehicles, occasional deliveries, and garbage collection are not of themselves considered to be significant noise sources in the MECP guidelines. The occasional movement of customer vehicles on the property are not of themselves considered to be significant noise sources in the MECP guidelines. Noise from safety equipment (e.g. back-up beepers) is also exempt from consideration and may be audible on occasion.

The MECP guidelines stipulate that the sound level impact during a "predicable worst-case hour" be considered. This is defined to be an hour when a typically busy "planned and predictable mode of operation" occurs at the subject facility, coincident with a period of minimal background sound. Compliance with MECP criteria generally results in acceptable levels of sound at residential receptors although there may still be residual audibility during periods of low background sound.

6.2 Noise Source Description

The primary source of sound associated with the existing commercial development to the east and south (including Dulux Paints and Muller's Work Wear) is the rooftop HVAC equipment. Typical sound levels associated with these sources were obtained from HGC Engineering's project files for similar past projects and the locations are indicated on the aerial view. Sensitive receptor locations were taken at the facades of the subject building. Each receptor location was assessed at the closest top floor window of the building as these represent the most potentially impacted locations.

6.3 Assumptions

Predictive noise modelling was used to assess the sound impact of the existing commercial buildings on sensitive receptors at the subject building, in accordance with MECP guidelines. The noise prediction model was based on a review of the site plan, aerial photos, estimates of sound emission levels for rooftop mechanical equipment on the existing buildings, assumed operational profiles, and established engineering methods for the prediction of outdoor sound propagation. These methods include the effects of distance, air absorption, and acoustical screening by barrier obstacles.

The source sound level associated with the equipment is listed in Table 4 below in terms of sound power level.

Table 4: Source Sound Power Level [dB re 10-12 W]

Course	Oc	Octave Band Centre Frequency [Hz]										
Source	63	125	250	500	1k	2k	4k	8k				
Lennox LGA060 (5 Tons)		67	72	77	76	73	68	61				

The above outlined sound levels were used as input to a predictive computer model. The software used for this purpose (*Cadna/A version 2023 MR1 (32 bit) build: 197.5343*) is a computer implementation of ISO Standard 9613-2.2 "Acoustics - Attenuation of Sound During Propagation Outdoors."

The following information and assumptions were used in the analysis.

- The height of the existing commercial buildings is assumed to be up to 5.0 m in height.
- Lennox LGH060 models (5 Tons) were assumed for the rooftop air conditioning units on the existing buildings.
- The existing noise sources were assumed to be located as shown in Figure 3. The green
 crosses represent noise sources such as rooftop HVAC equipment. The rooftop equipment is
 assumed to be Lennox models at 1.5 m in height. Sound data was obtained from HGC project
 files which were originally obtained from the manufacturer.

Cadna Evaluation Parameters:

- Temperature: 10°C, Relative Humidity: 70%
- Reference Time: Day (07:00 23:00) and Night (23:00 07:00)
- Maximum Order of Reflections: 1
- Building Reflection Coefficients: 0.2
- Generally flat terrain
- Global Ground Absorption: 0.25

In this impact assessment, we have considered typical worst-case (busiest hour) scenarios for each time period to be as follows:

Assumed day worst-case scenario:

• All rooftop equipment operating continuously at 75% capacity;

Assumed night worst-case scenario:

• All rooftop equipment operating on a 33% duty cycle;

6.4 Assessment of Noise from the Existing Commercial Buildings on Subject Building

The unmitigated sound levels due to noise sources associated with the existing uses at the subject building are summarized in Table 5 below. Resultant sound levels at the subject building are shown graphically in Figures 4 and 5.

Table 5: Predicted Sound Levels from the Existing Commercial Development at the Subject Building [dBA]

Receptor	Criteria (Day/Night)	Day	Night
East Façade *	50/45	49	46
North Façade	50/45	41	37
West Façade	50/45	38	35
South Façade	50/45	49	45

Note:

The results of the calculations indicate that the predicted daytime and nighttime sound levels due to the operation of the rooftop mechanical equipment at the existing commercial uses will be within MECP limits at the sensitive points of reception at the subject building. Physical mitigation will not be required.

6.5 Noise Control Recommendations for the Existing Commercial Uses

To inform future tenants/owners of the subject building of potential noise from the existing commercial uses, the following warning clause is recommended.

1. Warning Clause

The following noise warning clause is required to notify future residents of the presence of the

^{*} Windows to sensitive spaces are not indicated on the closest east façade and are therefore not considered as sensitive points of reception.

existing commercial uses is given below.

Type C:

Purchasers are advised of the proximity of adjacent commercial facilities, the sound from which may at times be audible.

7 Summary and Recommendations

The following list and Table 6 summarize the recommendations made in this report.

- 1. Forced air ventilation systems with ductwork sized for the future installation of central air conditioning system will be required for the building. The location, installation and sound ratings of the air conditioning devices should comply with NPC-300, as applicable.
- 2. Building constructions meeting the minimum requirements of the Ontario Building Code will provide sufficient acoustical insulation for the indoor spaces of the subject building.
- 3. Warning clauses should be used to inform future residents of the traffic noise issues and the presence of the surrounding commercial and retail facilities.

Table 6: Summary of Noise Control Requirements and Noise Warning Clauses

Prediction Location	Acoustic Barrier	Ventilation Requirements *	Type of Warning Clause	Building Façade Constructions
North Facade	-			
East Facade	1	Forced Air	A.D.C	OBC
South Facade	1	Forced Air	A, B, C	ОВС
West Facade				
OLA				

Notes:

OBC – meeting the minimum requirements of the Ontario Building Code

⁻⁻ no specific requirement

^{*} The location, installation and sound rating of the air conditioning condensers must be compliant with MOE Guideline NPC-300, as applicable

Figure 1: Key Plan

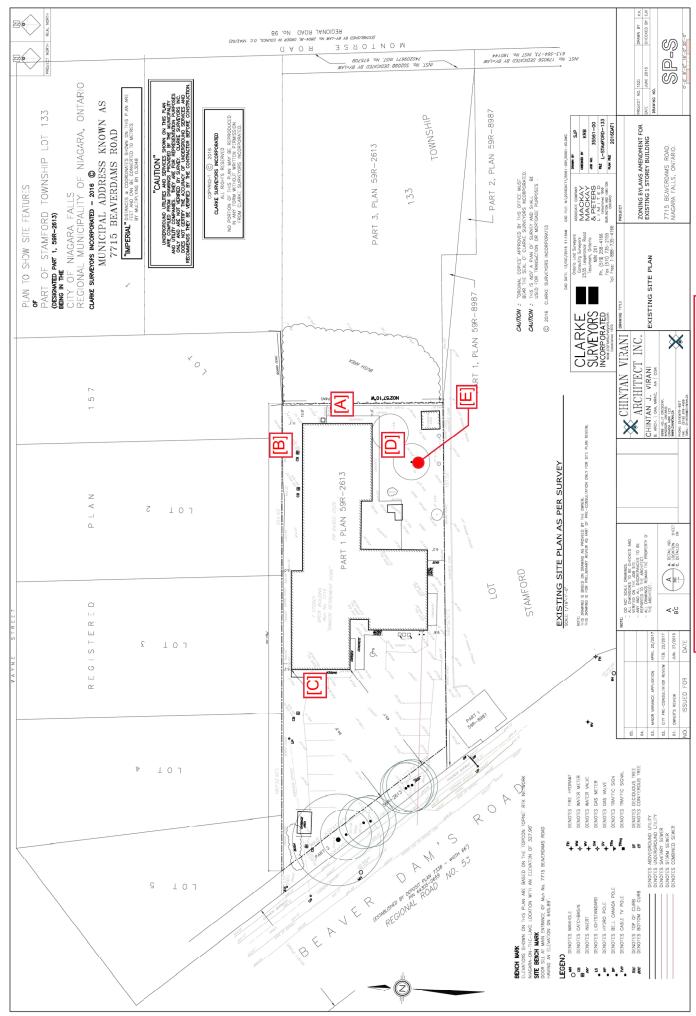


Figure 2: Site Plan Showing Prediction Locations

Figure 3: Existing Noise Source Locations

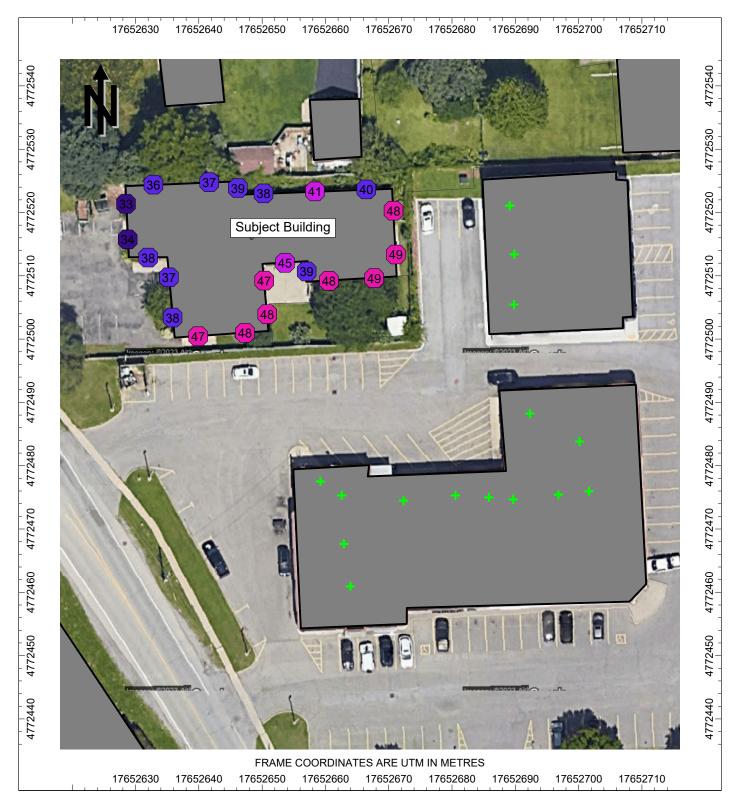
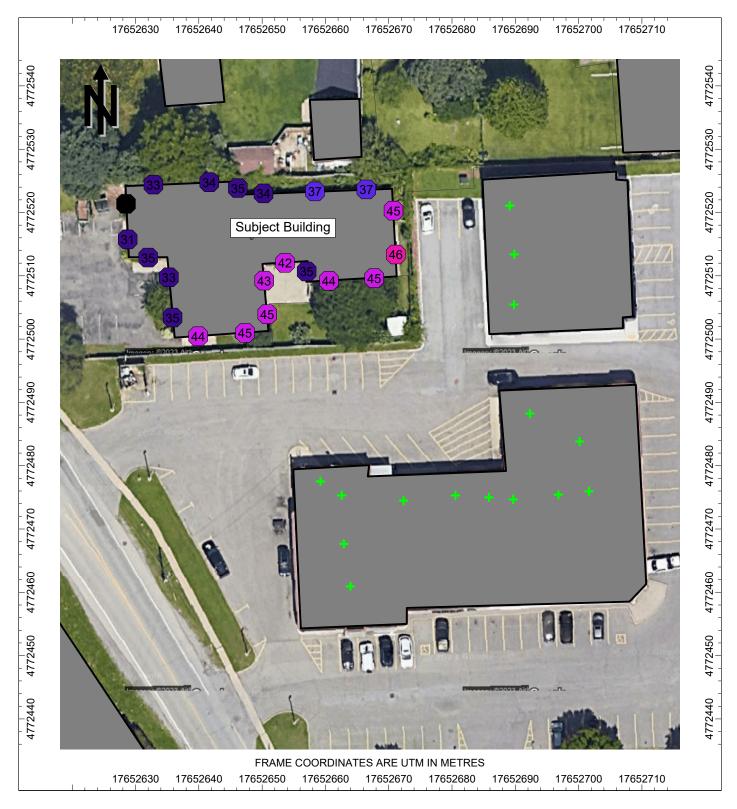
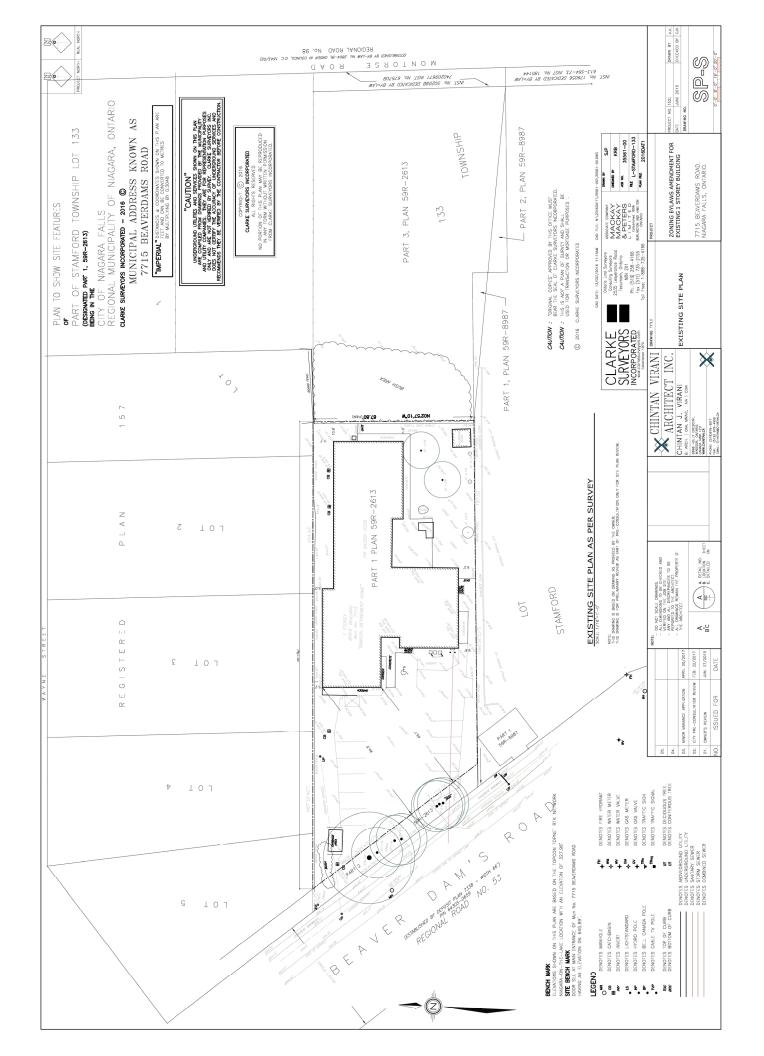
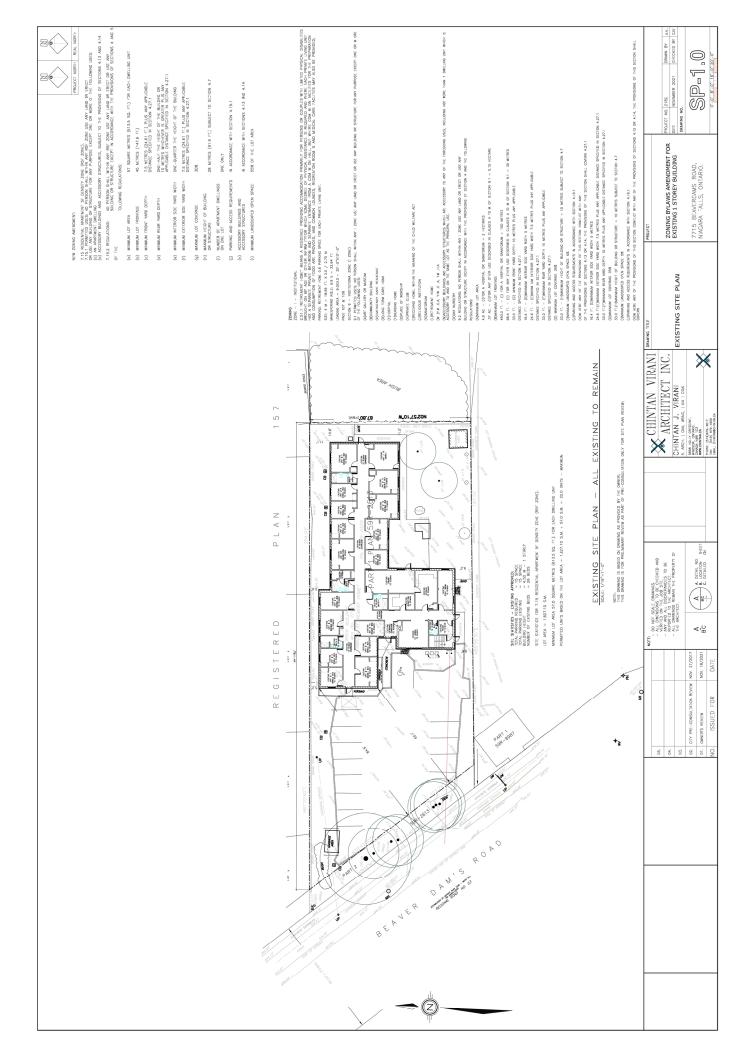
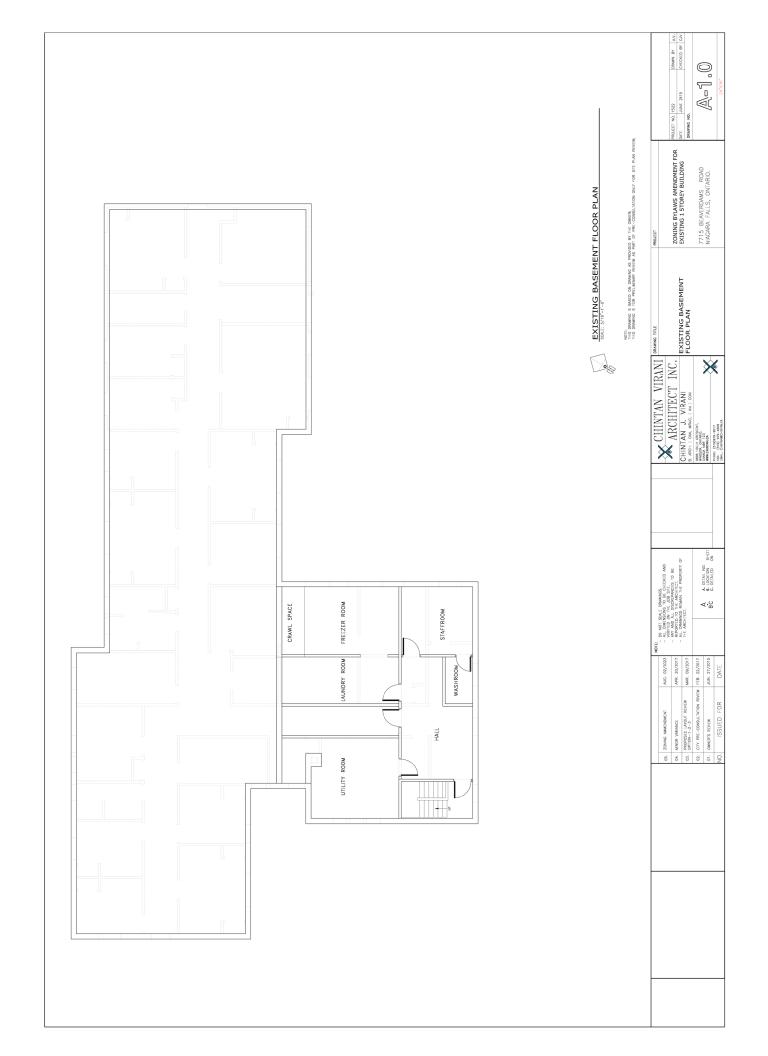
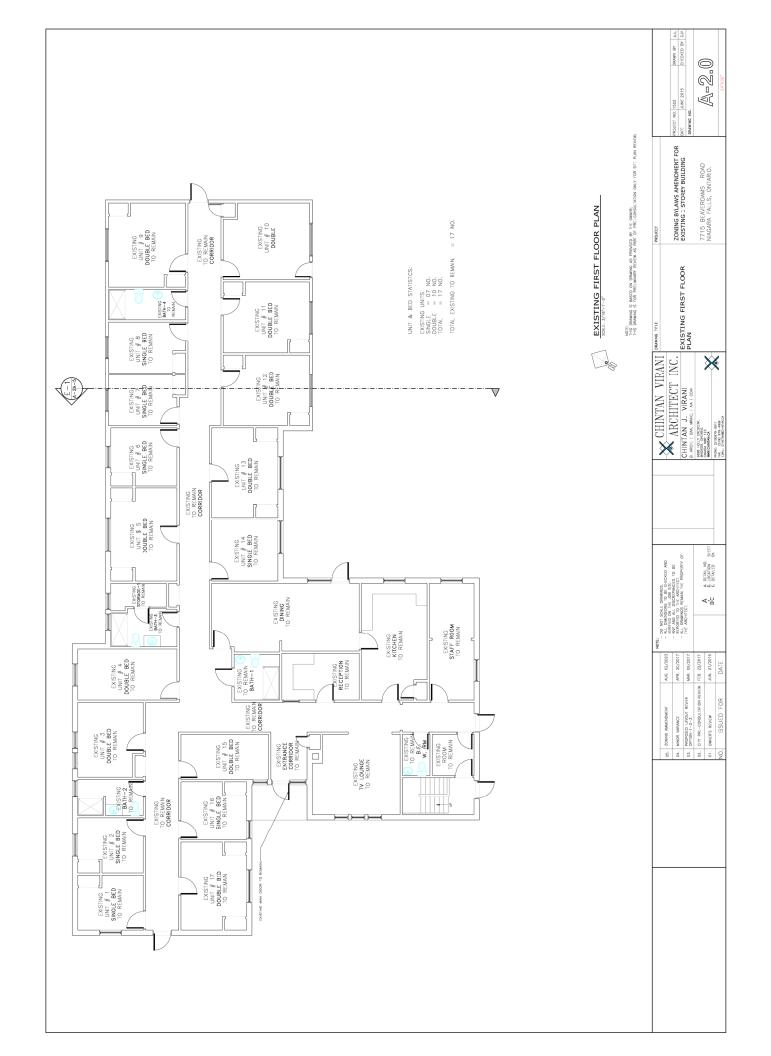
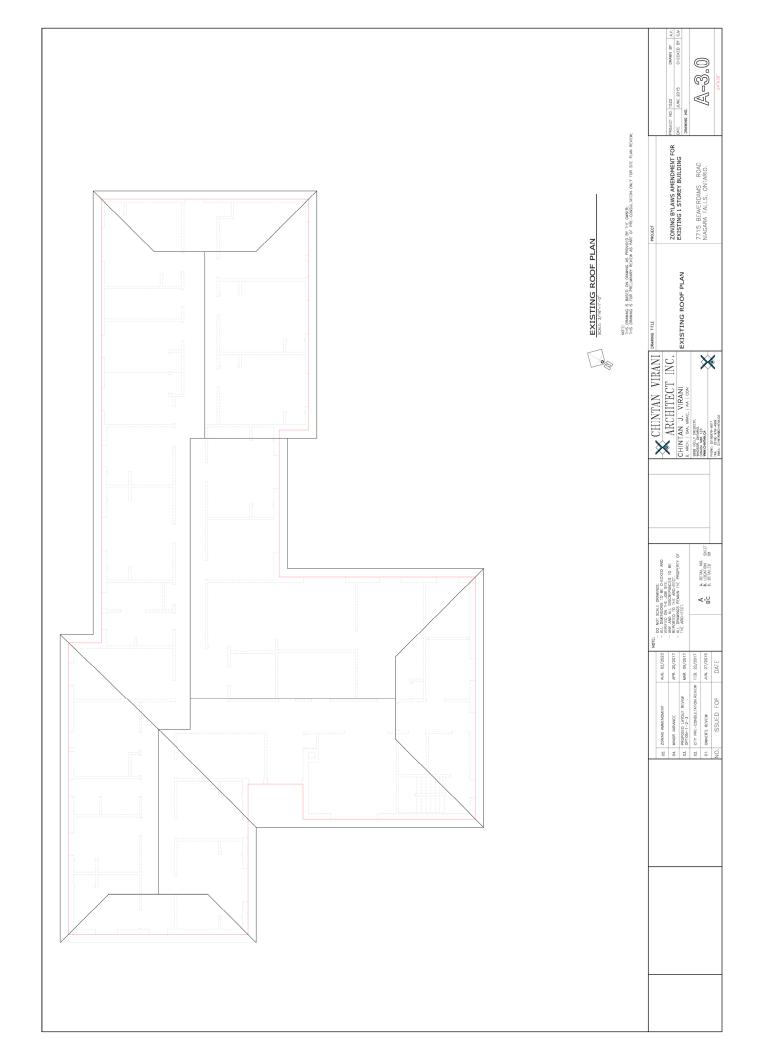
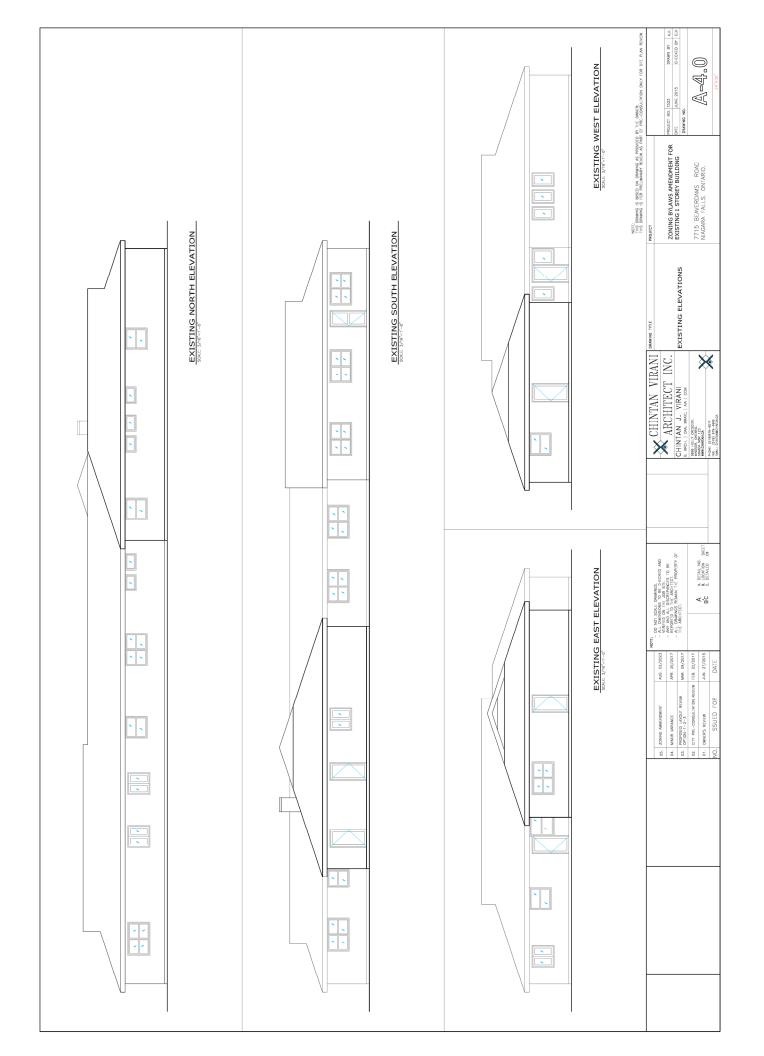


Figure 4: Predicted Daytime Sound Levels at the Subject Building, dBA (Without Mitigation)


Figure 5: Predicted Nighttime Sound Levels at the Subject Building, dBA (Without Mitigation)


APPENDIX A Supporting Drawings



APPENDIX B Road Traffic Data

		Dist		Pattern				
Highway	Location Description	(KM)	Year	Type	AADT	SADT	SAWDT	WADT
QEW	Location Description	(KIVI)	2015	IC	44300	49000	48800	39300
QEW			2016	IC	45100	49900	49700	40000
QEW			2017	IC	45900	50300	50700	41700
QEW			2018	IC	46700	51400	51700	42300
QEW			2019	IC	47500	52200	52400	42900
QEW	HWY 420 IC-30	2.0	1988	CTR	40000	52000	48800	33600
QEW			1989	CTR	41500	52700	50200	35700
QEW			1990	CTR	43400	54200	51200	37800
QEW			1991	CTR	42200	53200	52800	36700
QEW			1992	CTR	42200	51900	50200	36700
QEW			1993	CTR	42600	53700	51500	36200
QEW			1994	С	41700	45700	46500	37700
QEW			1995	С	43800	47800	49100	40100
QEW			1996	C	46100	52300	52400	41600
QEW			1997	CTR	48200	61700	59300	40500
QEW			1998	CTR	51200	65000	62500	43000
QEW			1999	CTR	50200	63300	60700	42200
QEW			2000	CTR	51600	65000	62400	43300
QEW			2001	С	51300	57800	57900	46200
QEW			2002	C	54500	61000	61500	49000
QEW			2003	Č	56000	62600	63000	50500
QEW			2004	C	57400	64600	64800	51700
QEW			2005	C	56200	62600	63100	50500
QEW			2006	C	57500	63900	64400	51700
QEW			2007	С	58800	65300	66200	52800
QEW			2008	С	60200	66400	65500	54000
QEW			2009	С	61500	67600	68300	55400
QEW			2010	С	62800	69200	69800	56500
QEW			2011	С	64300	70900	71500	57900
QEW			2012	С	66000	72700	71200	59400
QEW			2013	С	66800	73600	72700	60100
QEW			2014	UC	68100	68300	65500	64600
QEW			2015	UC	69200	69400	66600	65700
QEW			2016	UC	70400	70600	67700	66800
QEW			2017	UC	71600	71100	71800	68600
QEW			2018	UC	72800	72200	73400	69900
QEW			2019	UC	74000	72900	7 <mark>4000</mark>	71300
QEW	THOROLD STONE RD IC-32	2.5	1988	CTR	39200	51000	47800	32900
QEW			1989	CTR	41100	52200	49700	35300
QEW			1990	CTR	43000	53800	50700	37400
QEW			1991	CTR	40400	50900	50500	35100
QEW			1992	CTR	40300	49600	48000	35100
QEW			1993	CTR	40800	51400	49400	34700
QEW			1994	CTR	40500	51800	49400	34000
QEW			1995	CTR	44500	57100	54700	37300

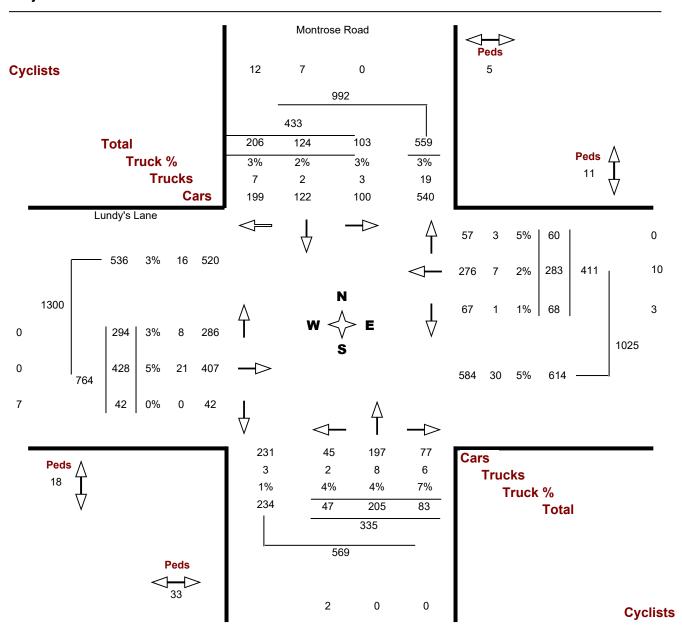
1988-2019 Traffic Volumes Pub lication Page 8 of 1229

Turning Movements Report - AM Period

Location...... Lundy's Lane @ Montrose Road

Municipality. NIAGARA FALLS Count Da

Traffic Cont.


Major Dir.... East west

GeoID..... 01594

Count Date. Wednesday, 18 January, 2023

Count Time. 07:00 AM — 09:00 AM

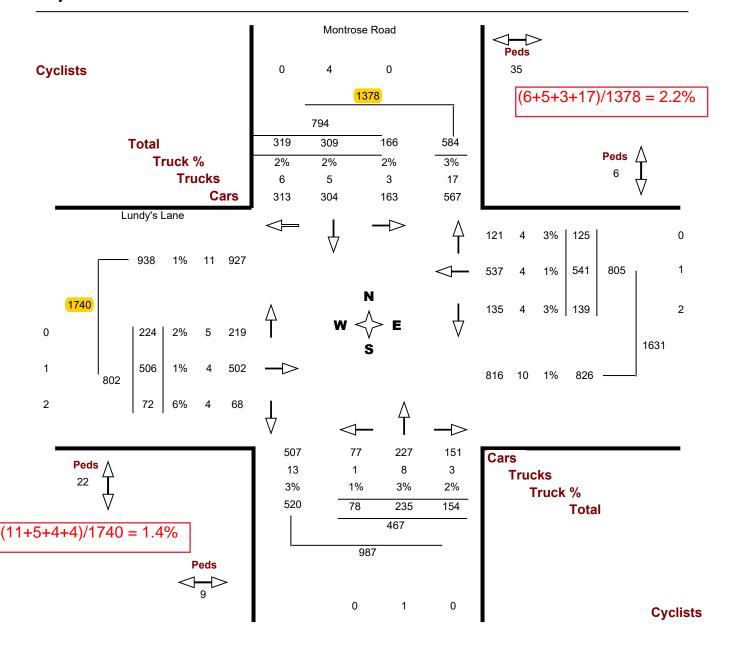
Peak Hour.. 08:00 AM — 09:00 AM

Turning Movements Report - PM Period

Location...... Lundy's Lane @ Montrose Road

Municipality. NIAGARA FALLS

Traffic Cont.

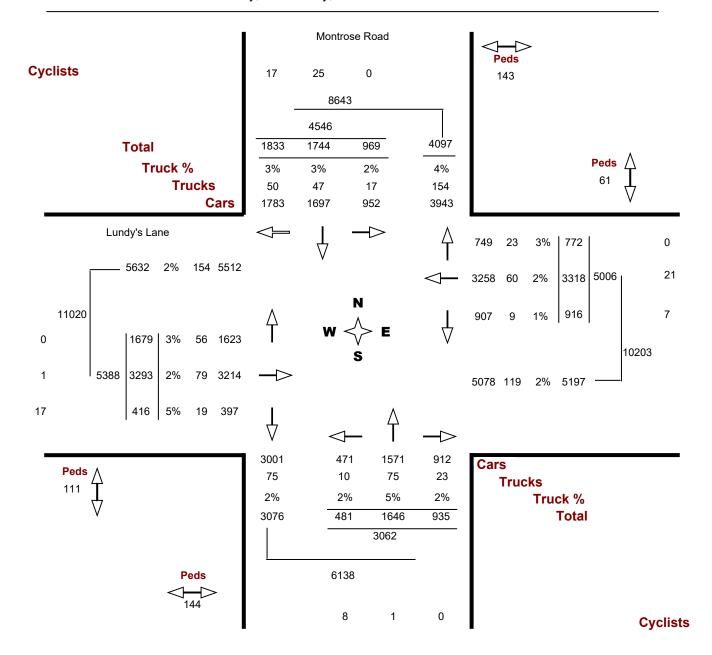

Major Dir.... East west

GeoID..... 01594

Count Date. Wednesday, 18 January, 2023

Count Time. 03:00 PM — 06:00 PM

Peak Hour.. 03:45 PM — 04:45 PM


Turning Movement Count Report Full Study

Location..... Lundy's Lane @ Montrose Road

Municipality...... NIAGARA FALLS

GeoID...... 01594

Count Date...... Wednesday, 18 January, 2023

Turning Movement Count - Details Report (15 min)

Location..... Lundy's Lane @ Montrose Road

Municipality..... NIAGARA FALLS

Count Date...... Wednesday, January 18, 2023

Montrose Road											Lundy's Lane									
		South	Approa	ach		East Approach					Wes	t Appro	oach							
Time Period	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT
07:00 07:15	7	5	13	0	25	6	22	11	0	39	5	48	5	0	58	30	49	4	0	83
07:15 07:30	8	20	31	0	59	10	47	14	0	71	6	62	3	0	71	31	48	9	0	88
07:30 07:45	9	26	33	0	68	14	44	10	0	68	13	50	8	0	71	60	56	4	0	120
07:45 08:00	14	31	41	0	86	11	58	15	0	84	10	67	9	0	86	60	66	7	0	133
Hourly Total	38	82	118	0	238	41	171	50	0	262	34	227	25	0	286	181	219	24	0	424
08:00 08:15	30	28	50	0	108	11	49	16	0	76	13	67	19	0	99	72	87	5	0	164
08:15 08:30	16	38	65	0	119	8	64	18	0	90	18	72	9	0	99	89	109	15	0	213
08:30 08:45	19	27	48	0	94	15	43	26	0	84	20	75	16	0	111	70	115	9	0	194
08:45 09:00	38	31	43	0	112	13	49	23	0	85	17	69	16	0	102	63	117	13	0	193
Hourly Total	103	124	206	0	433	47	205	83	0	335	68	283	60	0	411	294	428	42	0	764
11:00 11:15	27	59	39	0	125	14	40	23	0	77	25	99	19	0	143	43	96	12	0	151
11:15 11:30	20	60	47	0	127	20	49	27	0	96	23	83	36	0	142	37	82	14	0	133
11:30 11:45	21	45	44	0	110	9	52	22	0	83	24	125	24	0	173	49	108	13	0	170
11:45 12:00	34	52	56	0	142	15	49	31	0	95	23	94	25	0	142	43	91	15	0	149
Hourly Total	102	216	186	0	504	58	190	103	0	351	95	401	104	0	600	172	377	54	0	603
12:00 12:15	29	44	56	0	129	15	68	48	0	131	20	125	27	0	172	53	109	11	0	173
12:15 12:30	29	60	72	0	161	15	64	36	0	115	38	106	26	0	170	45	83	11	0	139
12:30 12:45	22	50	41	0	113	19	51	21	0	91	44	119	25	0	188	50	113	8	0	171
12:45 13:00	38	73	50	0	161	19	42	27	0	88	39	109	34	0	182	52	106	20	0	178
Hourly Total	118	227	219	0	564	68	225	132	0	425	141	459	112	0	712	200	411	50	0	661
13:00 13:15	37	54	48	0	139	16	52	24	0	92	35	115	31	0	181	47	97	19	0	163
13:15 13:30	25	65	47	0	137	17	50	33	0	100	24	105	27	0	156	42	111	15	0	168
13:30 13:45	38	70	58	0	166	15	46	37	0	98	37	93	29	0	159	45	103	15	0	163
13:45 14:00	28	61	65	0	154	16	52	35	0	103	26	99	34	0	159	52	109	8	0	169
Hourly Total	128	250	218	0	596	64	200	129	0	393	122	412	121	0	655	186	420	57	0	663
15:00 15:15	37	59	85	0	181	16	48	35	0	99	35	130	23	0	188	58	141	24	0	223
15:15 15:30	46	51	72	0	169	21	62	32	0	115	48	106	30	0	184	56	111	16	0	183
15:30 15:45	37	76	69	0	182	9	52	43	0	104	38	146	33	0	217	57	130	14	0	201
15:45 16:00	47	93	65	0	205	17	50	39	0	106	41	134	30	0	205	57	127	14	0	198
Hourly Total	167	279	291	0	737	63	212	149	0	424	162	516	116	0	794	228	509	68	0	805

204

43

128

154

228

107

16:00 16:15 41

165

Montrose Road Lundy's Lane

North Approach							South Approach					East Approach					West Approach			
Time Period	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT
16:15 16:30	34	77	77	0	188	15	55	36	0	106	42	144	34	0	220	58	128	16	0	202
16:30 16:45	44	70	83	0	197	23	68	36	0	127	19	109	24	0	152	63	144	30	0	237
16:45 17:00	43	79	66	0	188	18	50	28	0	96	48	125	20	0	193	48	137	20	0	205
Hourly Total	162	295	320	0	777	79	235	143	0	457	146	532	115	0	793	215	516	78	0	809
17:00 17:15	41	61	81	0	183	15	62	33	0	110	42	121	35	0	198	63	99	10	0	172
17:15 17:30	55	75	74	0	204	11	65	32	0	108	31	148	29	0	208	46	104	7	0	157
17:30 17:45	23	70	67	0	160	18	44	39	0	101	46	112	30	0	188	46	99	10	0	155
17:45 18:00	32	65	53	0	150	17	37	42	0	96	29	107	25	0	161	48	111	16	0	175
Hourly Total	151	271	275	0	697	61	208	146	0	415	148	488	119	0	755	203	413	43	0	659
Grand Total	969	1744	1833	0	4546	481	1646	935	0	3062	916	3318	772	0	5006	1679	3293	416	0	5388
Truck %	2%	3%	3%	0%	3%	2%	5%	2%	0%	4%	1%	2%	3%	0%	2%	3%	2%	5%	0%	3%

Prepared For: City of Niagara Falls Prepared By: *PYRAMID* Traffic Inc.

Prepared By: *PYRAMID* Traffic Inc.

Site ID: 2669
Location: Beaverdams Rd, btwn Hodgson Ave & Lundy's Lane

Interval: 15 min.

Start Date: Thursday Oct 18, 2018

Period	Channel 1	Channel 2	Hourly		Period	Channel 1	Channel 2	Hourly
Ending	EB	WB	Summary		Ending	EB	WB	Summary
0:15	3	0			12:15	30	13	138
0:30	3	1			12:30	15	13	133
0:45	4	4			12:45	25	12	142
1:00	4	0	19		13:00	13	12	133
1:15	6	1	23		13:15	9	8	107
1:30	0	1	20		13:30	21	11	111
1:45	4	2	18		13:45	13	14	101
2:00	1	0	15		14:00	21	11	108
2:15	1	1	10		14:15	18	6	115
2:30	0	0	9		14:30	16	14	113
2:45	2		5		14:45	23	11	120
3:00	2		6		15:00	28	10	126
3:15	1	0	5		15:15	22	13	
3:30	0	0	5		15:30	37	18	
3:45	0	1	4		15:45	21	12	
4:00	3	0	5		16:00	18	16	
4:15	1	1	6		16:15	21	11	154
4:30	4	1	11		16:30	35	14	148
4:45	2		14		16:45	29	6	150
5:00	2	2	15		17:00	30	12	158
5:15	2		20		17:15	23	19	168
5:30	5	1	21		17:30	32	11	162
5:45	1	3	21		17:45	22		167
6:00	4	1	22		18:00	29	12	166
6:15	2		21		18:15	23	12	
6:30	3	2	20		18:30	25	12	
6:45	5	4	25		18:45	18	11	142
7:00	5	8	33		19:00	18	12	131
7:15	13	7	47		19:15	23	7	126
7:30	9	11	62		19:30	19	7	115
7:45	12		73		19:45	15	10	
8:00	18	9	87		20:00	14		102
8:15	17	11	95		20:15	18		94
8:30	30	15			20:30	21	4	
8:45 9:00	25 22	13 13	138 146		20:45 21:00	20 10	12 6	100 95
9:00 9:15	18		148		21:00	11	8	92
9:13	12				21:13			
9.30 9:45	8	6 10	121 101		21:30	14 9	5 5	86 68
10:00	11	12			21.43	20	7	79
10:00		5	84		22:00	11	2	
10.15	20 13	5 6	85		22:15	6	5	73 65
10.30	8	9	84		22.30 22:45	6	ວ າ	59
11:00	9	9 5	75		22.45	3	2	38
11:00	15	12	75 77		23:15	7	3	35
11:13	21	12	91		23:30	13	4	41
11:30	23	5	102		23:45	6		41
12:00	23 21	13			0:00	5	3 5	42 46
12.50		.0		ı	0.00			.0

AM Peak: 148 PM Peak: 168 24 HR VOLUME: 1973

APPENDIX C Sample STAMSON 5.04 Output

Page 1 of 4 Prediction Location A

STAMSON 5.0 NORMAL REPORT Date: 20-10-2023 09:49:00 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: a.te Time Period: Day/Night 16/8 hours Description: Predicted daytime and nighttime sound levels at the east façade of the building, prediction location [A] Road data, segment # 1: Montrose (day/night) _____ Car traffic volume : 19875/2208 veh/TimePeriod * Medium truck volume: 163/18 veh/TimePeriod *
Heavy truck volume: 285/32 veh/TimePeriod *
Posted speed limit: 50 km/h
Road gradient: 0 %
Road pavement: 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 13780 Percentage of Annual Growth : 2.50 Number of Years of Growth : 20.00 Medium Truck % of Total Volume : 0.80
Heavy Truck % of Total Volume : 1.40
Day (16 hrs) % of Total Volume : 90.00 Data for Segment # 1: Montrose (day/night) _____ Angle1 Angle2 : -90.00 deg 90.00 deg
Wood depth : 0 (No woods.)
No of house rows : 1 / 1
House density : 90 %
Surface : 2 (Reflective ground surface) Receiver source distance : 70.00 / 70.00 m Receiver height : 1.50 / 1.50 m Topography : 1 (Flat/gentle slope; no barrier)Reference angle : 0.00 Road data, segment # 2: Lundy (day/night) _____ Car traffic volume : 25301/2811 veh/TimePeriod * Medium truck volume : 128/14 veh/TimePeriod * Heavy truck volume : 231/26 veh/TimePeriod * Posted speed limit : 50 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete) * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 17400 Percentage of Annual Growth : 2.50 : 20.00 Number of Years of Growth Medium Truck % of Total Volume : 0.50
Heavy Truck % of Total Volume : 0.90

Page 2 of 4 Prediction Location A

```
Day (16 hrs) % of Total Volume : 90.00
Data for Segment # 2: Lundy (day/night)
 ______
Angle1 Angle2 : 0.00 deg 90.00 deg

Wood depth : 0 (No woods.)

No of house rows : 1 / 1

House density : 50 %

Surface : 2 (Reflective ground surface)

Receiver source distance : 92.00 / 92.00 m
Receiver height : 1.50 / 1.50 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00
Road data, segment # 3: QEW (day/night)
 _____
Car traffic volume : 55768/27880 veh/TimePeriod *
Medium truck volume : 3486/1742 veh/TimePeriod *
Heavy truck volume : 10457/5227 veh/TimePeriod *
Posted speed limit : 100 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
 * Refers to calculated road volumes based on the following input:
           24 hr Traffic Volume (AADT or SADT): 74000
          Percentage of Annual Growth : 2.50
Number of Years of Growth : 14.00
          Medium Truck % of Total Volume : 5.00
Heavy Truck % of Total Volume : 15.00
Day (16 hrs) % of Total Volume : 66.67
Data for Segment # 3: QEW (day/night)
 _____
Angle1 Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods. No of house rows : 3 / 3 House density : 90 % Surface : 1 (Absorptive Control of the control 
                                                                                                  (No woods.)
                                                                                                  (Absorptive ground surface)
Receiver source distance : 425.00 / 425.00 m
Receiver height : 1.50 / 1.50 m
Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00
Results segment # 1: Montrose (day)
 _____
Source height = 1.09 \text{ m}
ROAD (0.00 + 51.59 + 0.00) = 51.59 \text{ dBA}
Angle1 Angle2 Alpha RefLeg P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
 ______
```

Page 3 of 4 Prediction Location A

```
-90 90 0.00 66.09 0.00 -6.69 0.00 0.00 -7.82 0.00
51.59
 -----
Segment Leq: 51.59 dBA
Results segment # 2: Lundy (day)
Source height = 0.97 \text{ m}
ROAD (0.00 + 52.72 + 0.00) = 52.72 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
______
      90 0.00 66.26 0.00 -7.88 -3.01 0.00 -2.65 0.00
______
Segment Leq: 52.72 dBA
Results segment # 3: QEW (day)
______
Source height = 1.97 \text{ m}
ROAD (0.00 + 49.37 + 0.00) = 49.37 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
_____
 -90 90 0.65 83.97 0.00 -23.90 -1.43 0.00 -9.26 0.00
49.37
______
Segment Leg: 49.37 dBA
Total Leq All Segments: 56.21 dBA
Results segment # 1: Montrose (night)
______
Source height = 1.09 \text{ m}
ROAD (0.00 + 45.07 + 0.00) = 45.07 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
______
```

Page 4 of 4 Prediction Location A

-90 90 0.00 59.58 0.00 -6.69 0.00 0.00 -7.82 0.00 45.07 Segment Leq: 45.07 dBA Results segment # 2: Lundy (night) Source height = 0.98 mROAD (0.00 + 46.21 + 0.00) = 46.21 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ 90 0.00 59.74 0.00 -7.88 -3.01 0.00 -2.65 0.00 ______ Segment Leq: 46.21 dBA Results segment # 3: QEW (night) ______ Source height = 1.97 mROAD (0.00 + 49.37 + 0.00) = 49.37 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ -90 90 0.65 83.97 0.00 -23.90 -1.43 0.00 -9.26 0.00 49.37 ______ Segment Leg: 49.37 dBA Total Leq All Segments: 52.05 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 56.21

(NIGHT): 52.05