Revised Final Report

Transportation Impact Study – 6546 Fallsview Boulevard, Niagara Falls

Document Control Page

CLIENT:	Hennepin Fallsview Inc.
PROJECT NAME:	6546 Fallsview Boulevard, Niagara Falls, Ontario
REPORT TITLE:	Transportation Impact Study – 6546 Fallsview Boulevard, Niagara Falls
IBI REFERENCE:	141561
VERSION:	6.0
DIGITAL MASTER:	
ORIGINATOR:	Jason Endrawis, Habeeb Olorode, Gurminder Jagjait
REVIEWER:	Andrae Griffith
AUTHORIZATION:	Peter Richards
CIRCULATION LIST:	
HISTORY:	1.0 Draft Report #1 – February 2023 2.0 Final Report – March 2023 3.0 Revised Final Report – March 2023 4.0 Revised Final Report – January 2024 5.0 Revised Final Report – January 2024 6.0 Revised Final Report – February 2024

Table of Contents

1	Introd	uction		6
	1.1	Study	Area	7
	1.2	Analys	sis Periods	8
	1.3	Propos	sed Development	8
2	2023 I	Existing	Conditions	12
	2.1	Existin	ng Road Network	12
	2.2	Existin	ng Transit Network	14
	2.3	Existin	ng Active Transportation Network	18
	2.4	Turnin	g Movement Counts	18
	2.5	Signal	Timing Plans	22
	2.6	2023 E	Existing Conditions Analysis	22
		2.6.1	Signalized Intersections	22
		2.6.2	Unsignalized Intersections	27
3	Future	e Backg	round Conditions	29
	3.1	Horizo	n Year	29
	3.2	Growth	h Rate	29
	3.3	Future	Transportation Network Improvements	29
	3.4	Backg	round Developments	30
	3.5	2033 F	Future Background Conditions Analysis	30
		3.5.1	Signalized Intersections	32
		3.5.2	Unsignalized Intersections	37
4	Future	e Total C	Conditions	39
	4.1	Propos	sed Site Access	39
	4.2	Trip G	eneration	39
		4.2.1	Net Trip Generation	39
		4.2.2	Trip Distribution and Assignment	42
	4.3	2033 F	Future Total Conditions Analysis	44
		4.3.1	Signalized Intersections	44
		4.3.2	Unsignalized Intersections	51

5	Traff	c Operations Mitigation Measures	53
	5.1	Signalized Intersections	53
	5.2	Unsignalized Intersections	65
6	Traff	ic Analysis Summary	66
	6.1	Sensitivity Analysis: Existing plus Site Traffic Conditions Analysis	66
	6.2	Comparison Between 2033 Mitigated Future Total and Future Background Conditions	82
7	Parki	ng Analysis	91
	7.1	Parking Demand Review	91
	7.2	Transportation Demand Management Considerations	93
8	Vehic	cle Swept Path Analysis	95
9	Cond	lusions and Recommendations	96
	9.1	TIS Findings	96
	9.2	Parking Analysis	97
	9.3	Vehicle Swept Path Analysis	98

List of Exhibits

Exhibit 1-1: Development Study Area
Exhibit 1-2: Proposed Site Plan – Hotel Redevelopment (6546 Fallsview Boulevard) 10
Exhibit 1-3: Proposed Site Plan – Parking Facility (6519 Stanley Avenue)11
Exhibit 2-1: Study Roadway Characteristics
Exhibit 2-2: Existing Study Area Lane Configurations
Exhibit 2-3: Existing Transit Network (Excluding WEGO Routes)
Exhibit 2-4: WEGO Transit Network
Exhibit 2-5: Existing Transit Service Patterns
Exhibit 2-6: City of Niagara Falls Bicycle Route Map
Exhibit 2-7: Traffic Data Information
Exhibit 2-8: 2023 Existing Conditions Traffic Volumes
Exhibit 2-9: 2023 Existing Conditions Traffic Operations – Signalized Intersections Summary
Exhibit 2-10: 2023 Existing Conditions Traffic Operations - Unsignalized Intersections 27
Exhibit 3-1: 2033 Future Background Conditions Traffic Volumes
Exhibit 3-2: 2033 Future Background Conditions Traffic Operations - Signalized Intersections
Exhibit 3-3: 2033 Future Background Conditions Traffic Operations - Unsignalized Intersections
Exhibit 4-1: Proposed Development Trip Generation
Exhibit 4-2: Site Trip Distribution
Exhibit 4-3: Net New Site-Generated Traffic Volumes
Exhibit 4-4: 2033 Future Total Conditions Traffic Volumes
Exhibit 4-5: 2033 Future Total Conditions Traffic Operations - Signalized Intersections 46
Exhibit 4-6: 2033 Future Total Conditions Traffic Operations - Unsignalized Intersections 51
Exhibit 5-1: 2033 Future Total Conditions Traffic Operations – Signalized Intersections (Mitigated)
Exhibit 5-2: 2033 Future Background Conditions Traffic Operations – Signalized Intersections – Mitigated

Exhibit 6-1: 2023 Existing plus Site Traffic Conditions Traffic Operations - Signalized Intersections
Exhibit 6-2: 2023 Existing plus Site Traffic Conditions Traffic Operations - Unsignalized Intersections71
Exhibit 6-3: Existing Conditions Signalized Intersection Traffic Operations Comparison 74
Exhibit 6-4: Existing Conditions Unsignalized Intersection Traffic Operations Comparison
Exhibit 6-5: 2033 Signalized Intersection Traffic Operations Comparison
Exhibit 6-6: 2033 Unsignalized Intersection Traffic Operations Comparison 89
Exhibit 7-1: Minimum Vehicular Parking Spaces Operationally Required

List of Appendices

Appendix A: Scope of Investigation

Appendix B: Turning Movement Counts

Appendix C: Signal Timing Plans

Appendix D: 2023 Existing Conditions Synchro Reports

Appendix E: 2033 Future Background Conditions Synchro Reports

Appendix F: 2033 Future Background Conditions Synchro Reports - Mitigated

Appendix G: ITE Trip Generation Manual Source Data

Appendix H: 2033 Future Total Conditions Synchro Reports

Appendix I: 2033 Future Total Conditions Synchro Reports - Mitigated

Appendix J: Sensitivity Analysis – Existing plus Site Traffic Conditions Synchro

Reports

Appendix K: Vehicle Swept Path Analysis

1 Introduction

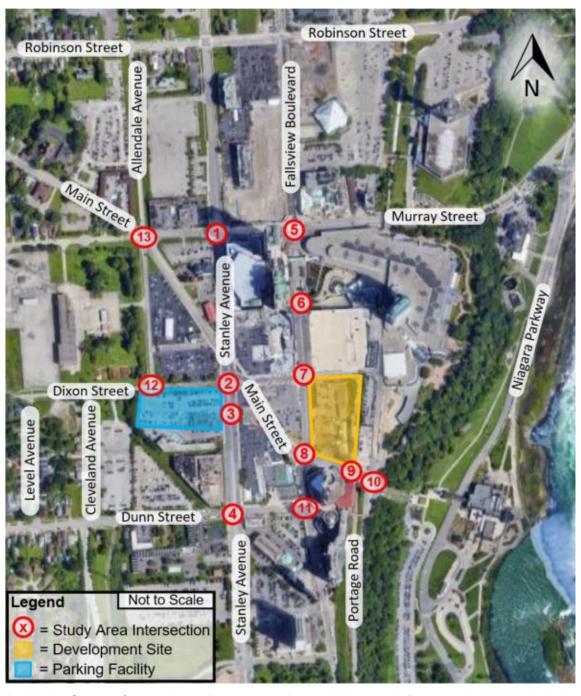
Hennepin Fallsview Inc. (the 'Applicant') is proposing to amend the Official Plan and Zoning By-Law (the 'Application') for the purposes of redeveloping the existing hotel at 6546 Fallsview Boulevard, at the northeast corner of the Fallsview Boulevard and Portage Road / Main Street intersection (the 'Hotel Redevelopment Site'), and to develop a parking facility that will accommodate the majority of hotel guest parking at 6519 Stanley Avenue (the 'Off-site Parking Facility'). Given the interrelated nature of these facilities, both the proposed hotel redevelopment and the proposed off-site parking facility are subject of a single Transportation Impact Study (TIS) report. The hotel redevelopment site is proposed to comprise of approximately 1,140 hotel rooms and 126 residential and/or vacation rental units, in addition to a number of ancillary non-residential uses.

The purpose of this TIS report is to analyze the impact that the proposed development may have on the surrounding transportation network. This report takes into consideration background traffic growth and other proposed developments in the area. The TIS also examines the appropriateness of the proposed parking supply, functional circulation for vehicular traffic, and transportation demand management (TDM) considerations.

This report is outlined with the following sections:

- Section 1 through Section 6 discuss the TIS;
- Section 7 discusses the appropriateness of the proposed parking supply as well as options for TDM;
- Section 8 discusses the vehicle swept path analysis; and
- Section 9 discusses the study conclusions and recommendations.

This report was prepared to respond to submission requirements determined through the pre-consultation process. Section 14 of the City's Official Plan requires a pre-application consultation between an applicant and the City prior to submission of an application under the Planning Act to determine submission requirements for a complete application.


The pre-consultation checklists issued in connection with a pre-consultation meeting held on December 15, 2022 included as a submission requirement a Transportation Impact Study and Parking Impact Analysis, each subject to a Terms of Reference to be determined through discussion with City and Regional staff.

This report adheres to the scope of investigation developed by Arcadis and discussed with City of Niagara Falls and Regional Municipality of Niagara staff on January 5, 2023. This correspondence is presented in **Appendix A**.

1.1 Study Area

The proposed development is located on the northeast corner of the Fallsview Boulevard and Portage Road / Main Street intersection, in the City of Niagara Falls, as illustrated in **Exhibit 1-1**.

Exhibit 1-1: Development Study Area

Base Map Source: Google Maps. Retrieved on December 23, 2022 from https://www.google.com/maps/

Under existing conditions, the areas north, west, and south of the development site largely consist of commercial and entertainment uses with several other hotels in the vicinity. The area east of the development is a natural and scenic area with trees, trails, and the Niagara River. This area of the City of Niagara Falls is a renowned touristic destination.

The study area intersections were determined through consultation with the Review Agency staff and consist of the following locations (as noted in **Exhibit 1-1**):

- Stanley Avenue & Murray Street (signalized);
- 2. Stanley Avenue & Main Street / Dixon Street (signalized);
- 3. Stanley Avenue & Proposed Parking Facility Access (unsignalized);
- 4. Stanley Avenue & Dunn Street (signalized);
- Fallsview Boulevard & Murray Street (signalized);
- 6. Fallsview Boulevard & Fallsview Casino Resort Access / Hilton Niagara Falls/Fallsview Hotel & Suites Access (signalized);
- 7. Fallsview Boulevard & Dixon Street / Fallsview Casino Resort Garage (unsignalized);
- 8. Fallsview Boulevard & Main Street / Portage Road (signalized);
- 9. Portage Road & Proposed Hotel Site Access (unsignalized);
- Portage Road & Fallsview Casino Resort Rear Access (signalized);
- 11. Fallsview Boulevard & Dunn Street (signalized);
- 12. Dixon Street & Proposed Parking Facility Access (unsignalized); and
- 13. Main Street & Murray Street & Allendale Avenue (signalized).

1.2 Analysis Periods

Based on the proposed development's land uses and size, the following analysis periods were used in this study:

- PM Peak Period 5:00 p.m. to 1:00 a.m. on a typical summer weekend: and
- PM Peak Period 5:00 p.m. to 1:00 a.m. on a summer long weekend.

1.3 Proposed Development

The proposed development contemplated in the Application includes the proposed Hotel Redevelopment Site and the Off-site Parking Facility. Specifically, the Application contemplates amendments to the Official Plan and Zoning By-law to permit the development of a hotel complex comprised of two high-density hotel buildings collectively containing approximately 1,140 rooms and 126 residential and/or vacation rental units, along with hotel-related food

ARCADIS FINAL REPORT

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

and beverage areas, a spa, ancillary retail and service uses, as well as a variety of entertainment uses including gaming and gaming-related retail space, and a music entertainment space. The primary access to the Hotel Redevelopment Site would be via Portage Road. Existing uses on the property are proposed to be removed.

Hotel guest parking will be accommodated, primarily, off-site in a structured parking facility located at 6519 Stanley Avenue on the southwest corner of the Stanley Avenue and Dixon Street intersection. The Application contemplates a structured parking facility with capacity for approximately 1,047 vehicles, with vehicle access via Stanley Avenue and Dixon Street. It is our understanding that 912 of the off-site parking spaces will be dedicated to hotel guests, with the remainder available to the general public. The conceptual site plan for the structured parking facility also includes a terminal that will accommodate hotel guest check-in, luggage transfer/storage, a guest waiting area for a dedicated shuttle service, and ancillary services.

In addition, on-site parking at the 6546 Fallsview Boulevard site will also be provided through both an underground parking facility and through ground floor surface parking spaces. This on-site parking will include a total of 273 parking spaces where the majority of those would be provided in the underground parking facility and only 10 of them will be surface "temporary car spaces" on the ground floor. The proposed development therefore comprises a total of 1,320 parking spaces.

Build-out of the proposed development is envisioned to occur in a single phase.

The proposed site plans are illustrated in **Exhibit 1-2** and **Exhibit 1-3**. It must be noted that small changes in building sizes may occur as this development moves through the approval process. However, the assumptions in this report are conservative, and differences in traffic operations from these changes are expected to be negligible.

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS

Prepared for Hennepin Fallsview Inc.

Exhibit 1-2: Proposed Site Plan – Hotel Redevelopment (6546 Fallsview Boulevard)

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS

Prepared for Hennepin Fallsview Inc.

Exhibit 1-3: Proposed Site Plan – Parking Facility (6519 Stanley Avenue)

Prepared for Hennepin Fallsview Inc.

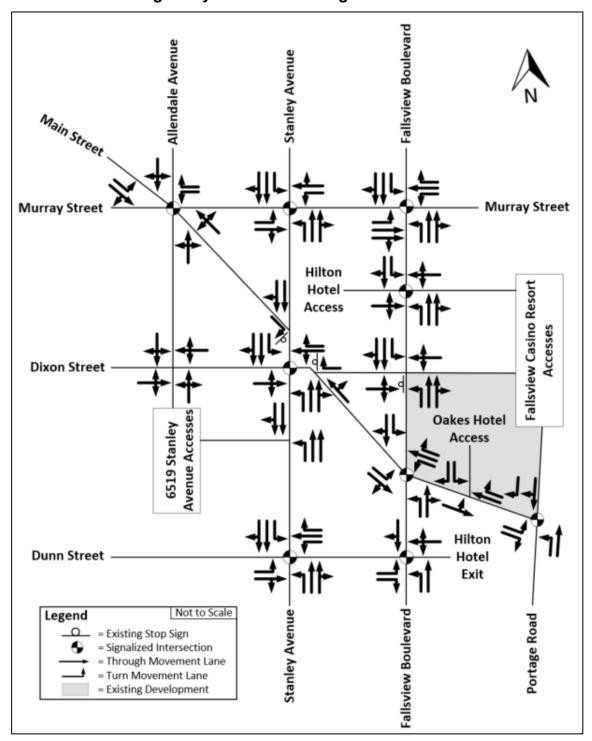
2 2023 Existing Conditions

This section documents the transportation network in the study area in late 2023 / early 2024, including existing roadways, transit operations, active transportation facilities, traffic control measures, and intersection performance.

2.1 Existing Road Network

Exhibit 2-1 summarizes the characteristics of the study area roadways.

Exhibit 2-1: Study Roadway Characteristics


Street Name	Class.1	Orient.	Road Width (Lanes)	Traffic Direction	From	То	On-Street Parking	Speed Limit
Fallsview Boulevard	Local	North / South	2-4	Two-way	Ferry Street	Dead End	Prohibited	50 km/h
Murray Street	Local	East / West	2-4	Two-way	Franklin Avenue	Niagara Parkway	Prohibited east of Allendale Avenue	50 km/h
Portage Road	Arterial	North / South	2-4	Two-way	Fallsview Boulevard	Bridgewater Street	Prohibited	50-60 km/h
Main Street	Arterial	North / South	2-4	Two-way	North Street	Fallsview Boulevard	Prohibited east of Allendale Avenue	50 km/h
Stanley Avenue	Arterial	North / South	2-5	Two-way	Stamford Town Line Road	Dead End	Prohibited north of Marineland Parkway	50-70 km/h
Dunn Street	Local	East / West	2-3	Two-way	Waters Avenue	Fallsview Boulevard	Mostly prohibited east of Kiwanis Crescent	50 km/h
Dixon Street	Local	East / West	2	Two-way	Drummond Road	Fallsview Boulevard	Prohibited east of Stanley Avenue	50 km/h

Lane configurations for study area roadways are illustrated in **Exhibit 2-2**.

February 12, 2024

.

¹ Road classifications were obtained from the City of Niagara Falls Transportation Master Plan, dated October 2011. (https://niagarafalls.ca/pdf/transportation/transportation-master-plan-report.pdf)

Exhibit 2-2: Existing Study Area Lane Configurations

ARCADIS FINAL REPORT

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

2.2 Existing Transit Network

The proposed development site is located within proximity to several Niagara Falls Transit bus routes, which primarily provide access to/from the Main Street and Ferry Street transit hub. The closest transit stops to the development are located directly adjacent to the proposed development site along Fallsview Boulevard. It should be noted that the existing Niagara Region Transit, Niagara Falls Transit, St. Catharines Transit, Welland Transit and Fort Erie Transit systems are in the process of amalgamation. As a result, service changes are expected in the coming years as part of the integration process. In addition, the WEGO visitor transit system provides tourist-oriented transit service to major attractions and destinations within Niagara Falls, and reciprocal transfer privileges with Niagara Falls Transit are available. Finally, intercity operators connecting the Greater Toronto Area to the city and to the Fallsview Casino Resort (such as GO Transit and Flixbus) are also available.

Transit services in close proximity to the development site are illustrated in **Exhibit 2-3** and **Exhibit 2-4**. Service patterns and destinations of the routes in close proximity are detailed in **Exhibit 2-5**.

Exhibit 2-3: Existing Transit Network (Excluding WEGO Routes)

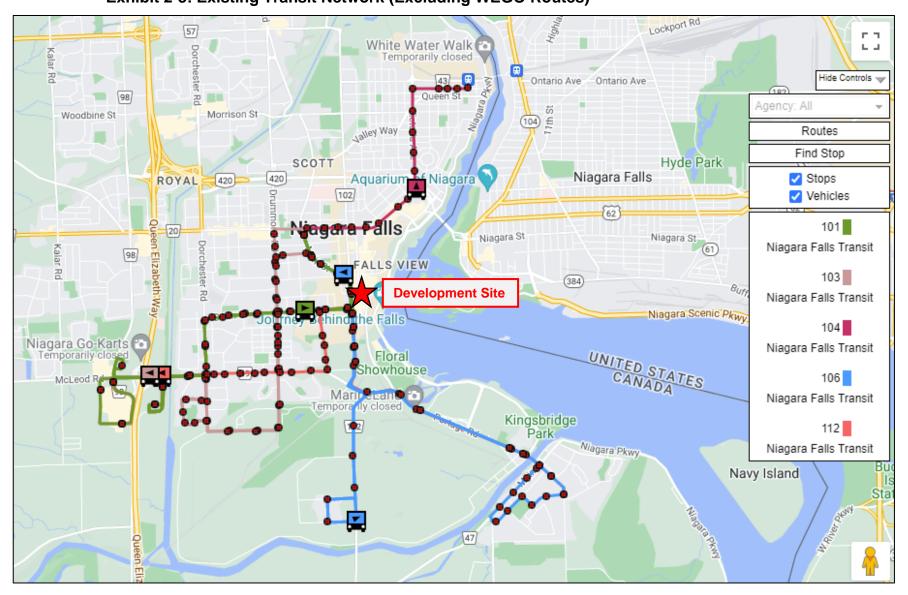


Image Source: Niagara Falls Transit Services. Retrieved December 22, 2022 from http://whereis.yourbus.com/bustime/map/

SYSTEM MAP WEGO Red Line - EXPRESS Blue Line - Fallsview/Clifton Hill Blue Line - "Seasonal Orange Line - NOTL Shuttle α Table Rock Centre WEGO Stop **USA Development Site**

Exhibit 2-4: WEGO Transit Network

Image Source: WEGO Niagara Falls. Retrieved December 22, 2022 from https://wegoniagarafalls.com/pdf/wego-route-map.pdf

Exhibit 2-5: Existing Transit Service Patterns

Route	Onward Transit Connections	Approximate Walking Distance to Nearest Bus Stop ²	Average Peak Hour Bus Service Frequency
101	Canadian Drive Hub, Walmart Plaza, Dorchester & Dunn, Main & Ferry Hub	240 metres (4 minutes)	30 minutes
102	Train/Bus Terminal, Morrison/Dorchester, GNGH Hospital, Main & Ferry Hub	1.35 kilometers (23 minutes)	30 minutes
103	Canadian Drive Hub, Walmart Plaza, Dorchester & McLeod, Drummond & McLeod, Main & Ferry Hub	1.35 kilometers (23 minutes)	30 minutes
203	Canadian Drive Hub, Walmart Plaza, Drummond & Dunn, Main & Ferry Hub	1.35 kilometers (23 minutes)	30 minutes
104	Train/Bus Terminal, Ellen & Centre, and Main & Ferry Hub	1.11 kilometers (19 minutes)	30 minutes
204	Train/Bus Terminal, Ellen & Centre, and Main & Ferry Hub	1.11 kilometers (19 minutes)	30 minutes
106	Gunning & Willoughby, Don Murie & Stanley, Stanley & McLeod, Main & Ferry Hub	240 metres (4 minutes)	30 minutes
206	Gunning & Willoughby, Don Murie & Stanley, Dunn & Stanley, Main & Ferry Hub	240 metres (4 minutes)	30 minutes
107	Town & Country Plaza, Church & Stanley, Town & Country Plaza, Main & Ferry Hub	1.35 kilometers (23 minutes)	30 minutes
110	Morrison/Dorchester Hub, Drummond & Valley, Main & Ferry Hub	1.10 kilometers (19 minutes)	30 minutes
210	Morrison/Dorchester Hub, Drummond & Valley, GNGH Hospital, Main & Ferry Hub	1.35 kilometers (23 minutes)	30 minutes
112	Canadian Drive Hub, Walmart Plaza, Ailanthus & McLeod, Gunning & Willoughby	340 metres (6 minutes)	60 minutes
WEGO Red Line	Lundy & Campark, Main & Ferry, Table Rocks / Falls	500 metres (9 minutes)	30 minutes
WEGO Blue Line	Convention Center, Table Rock, Clifton, Victoria/Clifton, Skylon Tower, Copacabana, Convention Center	Directly Adjacent (< 1 minute)	40 minutes
WEGO Green Line	Rapidsview, Table Rock, Downtown, GO/VIA Station, Floral Clock	350 metres ³ (6 minutes)	20-30 minutes
Flixbus	Direct intercity travel	Directly Adjacent (< 1 minute)	Varies

² Approximate walking speed of 1 m/s.³ Using the Falls Incline Railway.

2.3 Existing Active Transportation Network

The proposed development is well connected to the City of Niagara Falls cycling network and is located in close proximity to waterfront trails east of the site. The available cycling routes are illustrated in **Exhibit 2-6**.

City of 102 Whirlpool Bridge Niagara Falls seaverdams Rd (420) Rainbow Bridge **Development Site** Barron Rd McLeod Rd 49 Brown Rd 47 ∝ Reixinger R Weaver Rd ğ

Exhibit 2-6: City of Niagara Falls Bicycle Route Map

Image Source: Niagara Region. Retrieved July 15, 2022 from https://www.niagararegion.ca/exploring/cycle/bike-map.pdf

2.4 Turning Movement Counts

Existing vehicle turning movement counts (TMCs) for the study area intersections were collected through traffic surveys, neighbouring developments' Traffic Impact Study reports, and correspondence with the City of Niagara Falls, the Niagara Region, and the Niagara Parks Commission. TMCs were collected from these various sources at the following times:

 From 5:00 p.m. to 1:00 a.m. on Sunday, July 1, 2018, and Saturday, July 7, 2018 (summer long weekend and typical summer weekend peak period);

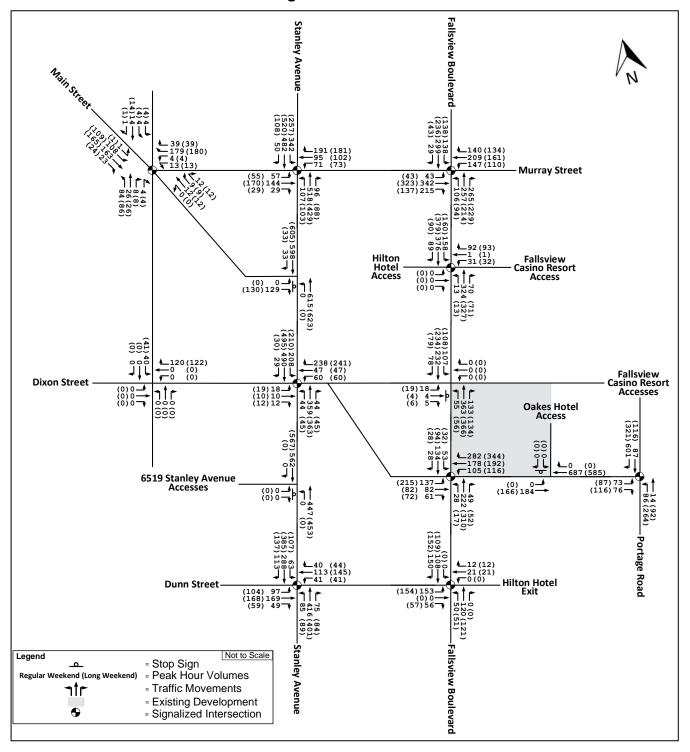
ARCADIS FINAL REPORT

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

- From 10:00 a.m. to 6:00 p.m. on Saturday, March 23, 2019 (off-season weekend peak period, to which adjustment factors were applied to approximate summer long weekend and typical summer weekend peak period);
- From 5:00 p.m. to 8:00 p.m. on Saturday, April 13, 2019 (off-season weekend peak period, to which adjustment factors were applied to approximate summer long weekend and typical summer weekend peak period); and
- From 10:00 a.m. to 2:00 p.m. on Saturday, July 13, 2019 (typical summer weekend peak period).

Exhibit 2-7 summarizes the TMC data sources, count dates, and peak hours by study area intersection.

Exhibit 2-7: Traffic Data Information


Intersection	Data Source	Count Dates	Peak Hour
Stanley Avenue & Murray	City of Niagara Falls and/or Niagara Region and/or Niagara Parks	Sunday, July 1, 2018	5:30 p.m. – 6:30 p.m.
Street	Commission	Saturday, July 7, 2018	5:30 p.m. – 6:30 p.m.
Stanley Avenue & Main Street / Dixon Street	Ontario Traffic Inc.	Saturday, April 13, 2019	5:00 p.m. – 6:00 p.m.
Stanley Avenue & Dunn	City of Niagara Falls and/or Niagara	Sunday, July 1, 2018	6:30 p.m. – 7:30 p.m.
Street	Region and/or Niagara Parks Commission	Saturday, July 7, 2018	5:00 p.m. – 6:00 p.m.
Fallsview Boulevard &	City of Niagara Falls and/or Niagara	Sunday, July 1, 2018	5:30 p.m. – 6:30 p.m.
Murray Street	Region and/or Niagara Parks Commission	Saturday, July 7, 2018	6:00 p.m. – 7:00 p.m.
Fallsview Boulevard & Fallsview Casino Resort Access / Hilton Niagara Falls/Fallsview Hotel & Suites Access	Ontario Traffic Inc.	Saturday, April 13, 2019	5:00 p.m. – 6:00 p.m.
Fallsview Boulevard & Dixon Street / Fallsview Casino Resort Garage	Ontario Traffic Inc.	Saturday, April 13, 2019	5:30 p.m. – 6:30 p.m.
Fallsview Boulevard &	City of Niagara Falls and/or Niagara Region and/or Niagara Parks	Sunday, July 1, 2018	6:30 p.m. – 7:30 p.m.
Main Street / Portage Road	Commission	Saturday, July 7, 2018	5:30 p.m. – 6:30 p.m.
Portage Road & Fallsview	City of Niagara Falls and/or Niagara Region and/or Niagara Parks	Sunday, July 1, 2018	7:15 p.m. – 8:15 p.m.
Casino Resort Bus Access	Commission	Saturday, July 7, 2018	10:45 p.m. – 11:45 p.m.
Fallsview Boulevard & Dunn Street	"6740 Fallsview Boulevard (Marriott Fallsview)" TIS Report	Saturday, July 13, 2019	10:45 a.m. – 11:45 a.m.
Main Street & Murray Street & Allendale Avenue	"6609 Stanley Avenue" TIS Report	Saturday, March 23, 2019	4:00 p.m. – 5:00 p.m.

Using the historical counts from **Exhibit 2-7**, TMC adjustment factors were developed by applying compounded annual traffic growth rates along the major study area roadways (Portage Road, Main Street, and Stanley Avenue) to estimate 2023 Existing Conditions traffic volumes. A summary of the estimated 2023 Existing Conditions traffic volumes is presented in **Exhibit 2-8**, with full turning movement count data presented in **Appendix B**.

It should be noted that the Existing Conditions Synchro model is based, in part, on the model developed by Arcadis IBI Group as part of the Niagara Events

Centre Parking and Traffic Study, which is based on data collected in 2018 and 2019 by Ontario Traffic Inc.

Exhibit 2-8: 2023 Existing Conditions Traffic Volumes

2.5 Signal Timing Plans

Signal timing plans for signalized study area intersections were provided by the Niagara Region and the City of Niagara Falls and are presented in **Appendix C**. The signalized study area intersections mostly function under a fully-actuated mode of operation.

As noted in **Section 2.4**, the Existing Conditions Synchro model is based, in part, on the model developed by Arcadis IBI Group as part of the Niagara Events Centre Parking and Traffic Study, which is based on data collected in 2018 and 2019 by Ontario Traffic Inc.

2.6 2023 Existing Conditions Analysis

Using the turning movement counts described in **Section 2.4**, the study area intersections were analyzed using the software package Synchro 11.0, which is based on the *Highway Capacity Manual* methodology.

Based on the *Niagara Region Guidelines for Transportation Impact Studies* (May 2012), the criteria for identifying critical signalized intersections or movements are as follows:

- Volume to capacity (v/c) ratio exceeds 0.85 for through movements, shared through-right movements, or right-turn movements; or
- v/c ratio exceeds 0.90 for dedicated left-turn movements.

Furthermore, the following criteria were used in identifying critical operations at unsignalized intersections:

- Level of service (LOS) based on average delay per vehicle for individual movements is "D" or worse; or
- 95th percentile queue for an individual lane exceeds the available queuing space.

Exhibit 2-9 and **Exhibit 2-10** detail existing traffic operations at the signalized intersections, and the unsignalized intersection, respectively, for the typical summer weekend and summer long weekend period peak hours. Full Highway Capacity Manual analysis for the 2023 Existing Conditions scenario is presented in **Appendix D**.

2.6.1 Signalized Intersections

The results of the 2023 Existing Conditions traffic operations analysis for signalized intersections are presented in **Exhibit 2-9**.

Exhibit 2-9: 2023 Existing Conditions Traffic Operations – Signalized Intersections Summary

	Intersection			Critical Movement						
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)	
	Typical Summer Weekend									
				EBL	С	26.9	0.58	32.1	50	
				EBR	С	20.5	0.04	3.6	-	
Fallsview Boulevard and	В	15	0.36	WBT	С	20.7	0.07	7.6	-	
Dunn Street	Ь	15	0.36	NBL	Α	5.9	0.09	7.0	•	
				NBT	Α	6.3	0.13	15.9	-	
				SBT	В	11.6	0.29	33.5	•	
				EBL	С	32.3	0.37	21.5	15	
				EBT	С	32.2	0.41	46.8	•	
				WBL	С	31.1	0.29	23.8	25	
Stanley Avenue and Murray	В	19	0.69	WBT	С	34.7	0.57	61.4	-	
Street		19		NBL	В	16.4	0.31	33.7	35	
				NBT	В	15.9	0.41	71.2	•	
				SBL	В	13.9	0.71	47.8	55	
				SBT	Α	9.0	0.26	35.9	-	
				EBL	С	24.4	0.12	12.1	30	
				EBT	С	32.6	0.57	61.2	•	
				WBL	С	23.1	0.53	33.2	35	
Fallsview				WBT	С	27.2	0.38	58.8	-	
Boulevard and	С	26	0.46	WBR	С	24.3	0.10	14.3	-	
Murray Street				NBL	В	16.8	0.22	20.4	10	
				NBT	С	24.0	0.32	34.5	-	
				SBL	В	17.0	0.37	25.7	65	
				SBT	С	22.9	0.27	36.7	-	
				EBL	С	32.2	0.35	30.7	75	
				EBT	С	34.1	0.52	58.5	-	
				WBL	С	30.9	0.21	15.9	25	
Ctopley Assessed				WBT	С	31.4	0.28	33.3	-	
Stanley Avenue and Dunn Street	В	20	0.34	WBR	С	29.3	0.03	3.0	25	
D O O				NBL	В	12.7	0.18	19.9	25	
				NBT	В	13.0	0.28	41.8	-	
				SBL	В	11.5	0.13	15.2	40	
				SBT	В	14.4	0.19	43.6		

	Intersection				Critical Movement					
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)	
				EBL	С	28.4	0.47	41.0	-	
				EBT	С	25.8	0.27	32.5	-	
				WBL	В	18.3	0.24	22.1	25	
Fallsview				WBT	В	18.9	0.27	37.7	-	
Boulevard and Main Street /	С	20	0.41	WBR	В	18.2	0.19	14.8	-	
Portage Road				NBL	В	18.4	0.07	10.4	20	
J				NBT	С	23.0	0.43	66.9	-	
				SBL	В	13.1	0.12	12.1	-	
				SBT	В	14.0	0.20	30.8	-	
				EBL	В	15.0	0.14	12.5	-	
Portage Road			0.30	EBR	В	14.5	0.05	6.6	-	
and Fallsview	D	12		NBL	Α	9.2	0.15	14.9	-	
Casino Rear	В			NBT	Α	8.2	0.02	3.9	-	
Access				SBT	Α	8.7	0.10	14.4	-	
				SBR	В	11.6	0.41	17.1	-	
Fallerdam	A		0.30	WBT	С	20.4	0.15	9.3	-	
Fallsview Boulevard and		8.7		WBR	В	19.9	0.07	9.6	-	
Hilton Hotel				NBL	Α	9.3	0.04	4.0	20	
Access /				NBT	В	10.5	0.31	25.0	-	
Fallsview Casino Access				SBL	Α	5.4	0.31	11.0	25	
Access				SBT	Α	5.2	0.25	16.7	-	
				EBT	D	38.8	0.18	14.3	-	
				WBT	D	46.7	0.63	36.7	•	
Stanley Avenue				WBR	D	38.7	0.18	20.3	•	
and Dixon Street	В	16	0.40	NBL	Α	5.9	0.09	8.5	65	
/ Main Street				NBT	В	10.4	0.22	43.4	•	
				SBL	Α	4.2	0.34	16.0	140	
				SBT	Α	6.0	0.26	31.0	•	
				WBL	D	40.1	0.10	9.9	55	
				WBR	F	87.6	0.93	99.3	-	
Allendale				NBLTR	D	43.6	0.46	44.5	=	
Avenue and Main Street and	Е	60	0.53	SBLTR	D	35.4	0.07	11.1	-	
Murray Street				SEL	Е	57.4	0.74	75.7	30	
				SETR	D	40.8	0.37	39.7	-	
				NWLTR	D	35.9	0.11	15.3	-	

	Intersection				Critical Movement						
Intersection	LOS	Delay	v/c Ratio	Movement	Los	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)		
	Summer Long Weekend										
				EBL	С	27.0	0.59	32.3	50		
				EBR	С	20.5	0.04	3.7	-		
Fallsview Boulevard and	В	15	0.36	WBT	С	20.7	0.07	7.6	-		
Dunn Street	Ь	15	0.36	NBL	Α	6.0	0.09	7.1	-		
				NBT	Α	6.3	0.13	16.1	-		
				SBT	В	11.7	0.29	34.0	-		
				EBL	D	42.7	0.57	22.1	15		
				EBT	D	39.6	0.62	54.6	-		
_				WBL	D	36.9	0.45	25.3	25		
Stanley Avenue	В	19	0.57	WBT	D	46.9	0.75	64.7	-		
and Murray Street				NBL	В	12.9	0.32	33.6	35		
				NBT	В	10.4	0.33	60.1	-		
				SBL	Α	8.0	0.50	35.8	55		
				SBT	Α	7.8	0.32	43.4	-		
				EBL	С	24.7	0.13	12.2	30		
				EBT	С	32.5	0.54	55.8	-		
				WBL	С	21.8	0.38	25.9	35		
Fallsview				WBT	С	27.1	0.33	46.8	-		
Boulevard and	С	25	0.43	WBR	С	24.9	0.10	14.1	-		
Murray Street				NBL	В	17.4	0.22	18.6	10		
				NBT	С	23.4	0.29	29.6	-		
				SBL	В	15.8	0.36	26.1	65		
				SBT	С	21.2	0.23	30.8	-		
				EBL	С	33.2	0.42	33.6	75		
				EBT	D	35.8	0.58	61.9	-		
				WBL	С	31.1	0.23	16.1	25		
Ctomless Assess				WBT	С	32.4	0.38	42.1	-		
Stanley Avenue and Dunn Street	С	21	0.39	WBR	С	29.1	0.03	4.1	25		
D O O				NBL	В	15.4	0.25	23.0	25		
				NBT	В	14.9	0.31	43.5	-		
				SBL	В	12.4	0.22	23.7	40		
				SBT	В	16.1	0.27	56.3	-		

	Intersection				Critical Movement					
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)	
				EBL	D	38.7	0.76	74.2	-	
				EBT	С	24.2	0.30	33.8	-	
				WBL	В	17.0	0.28	23.4	25	
Fallsview				WBT	В	17.7	0.30	39.8	-	
Boulevard and Main Street /	С	23	0.62	WBR	В	17.3	0.25	15.7	-	
Portage Road				NBL	В	17.5	0.04	7.1	20	
9				NBT	С	26.8	0.63	94.4	-	
				SBL	В	14.2	0.11	8.4	-	
				SBT	В	14.4	0.16	23.1	-	
				EBL	В	15.2	0.18	14.6	-	
Portage Road				EBR	В	14.7	0.09	8.1	-	
and Fallsview		12	0.38	NBL	В	13.9	0.51	48.0	-	
Casino Rear	В			NBT	Α	8.8	0.12	15.1	-	
Access				SBT	Α	9.1	0.15	18.3	-	
				SBR	Α	9.9	0.24	13.2	-	
	А	8.7	0.30	WBT	С	20.4	0.16	9.5	-	
Fallsview Boulevard and				WBR	В	19.9	0.07	9.7	-	
Hilton Hotel				NBL	Α	9.3	0.04	4.0	20	
Access /				NBT	В	10.5	0.31	25.2	-	
Fallsview Casino				SBL	Α	5.4	0.31	11.1	25	
Access				SBT	Α	5.2	0.26	16.8	-	
				EBT	D	38.9	0.19	14.6	-	
				WBT	D	46.7	0.63	36.7	-	
Stanley Avenue				WBR	D	38.8	0.18	20.5	-	
and Dixon Street	В	16	0.40	NBL	Α	4.0	0.09	5.9	65	
/ Main Street				NBT	В	10.2	0.22	42.4	-	
				SBL	Α	3.9	0.34	16.0	140	
				SBT	Α	6.3	0.27	28.7	-	
				WBL	D	39.1	0.09	9.9	55	
				WBR	F	84.1	0.92	97.3	-	
Allendale				NBLTR	D	42.5	0.46	44.5	-	
Avenue and Main Street and	Е	58	0.54	SBLTR	С	34.4	0.07	11.0	-	
Murray Street				SEL	Е	55.9	0.73	75.0	30	
				SETR	D	39.7	0.37	39.2	-	
				NWLTR	С	34.9	0.10	14.9	-	

Note: Red font represents an intersection/lane/movement which exceeds critical operational thresholds.

As shown in **Exhibit 2-9**, during the peak hour on a typical summer weekend in Existing Conditions at the study area signalized intersections, the following critical operation has been observed:

• At the Allendale Avenue and Main Street and Murray Street intersection, the westbound right-turn movement has been observed to have a critical v/c ratio of 0.93.

During the peak hour on a summer long weekend, the following critical operation has been observed:

• At the Allendale Avenue and Main Street and Murray Street intersection, the westbound right-turn movement has been observed to have a critical v/c ratio of 0.92.

2.6.2 Unsignalized Intersections

The results of the 2023 Existing Conditions traffic operations analysis for unsignalized intersections are presented in **Exhibit 2-10**.

Exhibit 2-10: 2023 Existing Conditions Traffic Operations - Unsignalized Intersections

Intersection	Intersection Delay (s)	Lane	Lane LOS	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Storage Capacity (m)			
Typical Summer Weekend										
	3.7	EBLTR	F	56.8	0.30	8.5	-			
Fallsview Boulevard and		WBLTR	Α	0.0	0.00	0.0	-			
Dixon Street / Fallsview Casino Access		NBL	С	16.0	0.15	4.1	-			
		SBL	В	12.1	0.19	5.2	-			
Dixon Street and	2.2	NBLTR	Α	0.0	0.39	0.0	-			
Allendale Avenue / 6519 Stanley Avenue Access		SBLTR	Α	9.0	0.05	1.1	-			
	Summer Long Weekend									
Fallsview Boulevard and Dixon Street / Fallsview Casino Access	1.8	EBLTR	В	14.4	0.08	1.9	-			
		WBLTR	Α	0.0	0.00	0.0	-			
		NBL	Α	8.1	0.05	1.2	-			
		SBL	Α	8.9	0.11	2.9	-			
Dixon Street and	0.0	NBLTR	Α	0.0	0.00	0.0	-			
Allendale Avenue / 6519 Stanley Avenue Access	2.3	SBLTR	Α	9.1	0.05	1.2	-			

Note: Red font represents an intersection/lane/movement which exceeds critical operational thresholds.

ARCADIS FINAL REPORT

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

As shown in **Exhibit 2-10**, during the peak hour on a typical summer weekend in Existing Conditions at the study area unsignalized intersections, the following critical operation has been observed:

 At the Fallsview Boulevard and Dixon Street / Fallsview Casino Access intersection, the eastbound left-turn, through, and right-turn lane has been observed to have a critical lane LOS of 'F'.

No movements exceeding critical thresholds were observed during the peak hour on a summer long weekend in Existing Conditions at the study area unsignalized intersections.

3 Future Background Conditions

This section discusses the proposed development horizon year, background traffic growth rate, anticipated future transportation network improvements, other development-related traffic in the study area, and future traffic conditions without the proposed development under the 2033 horizon year.

3.1 Horizon Year

As per the *City of Niagara Falls Guidelines for the Preparation of Transportation Impact Studies and Site Plan Review* (November 2011), a ten-year horizon year from the late 2023 / early 2024 date of this TIS (i.e., 2033) was selected for the Future Background Conditions and Future Total Conditions analyses.

3.2 Growth Rate

In lieu of other information and in accordance with the *City of Niagara Falls Guidelines for the Preparation of Transportation Impact Studies and Site Plan Review* (November 2011) and the *Niagara Region Guidelines for Transportation Impact Studies* (May 2012), an annual growth rate of 2.0% was assumed to account for the impact of growth occurring outside of the study area.

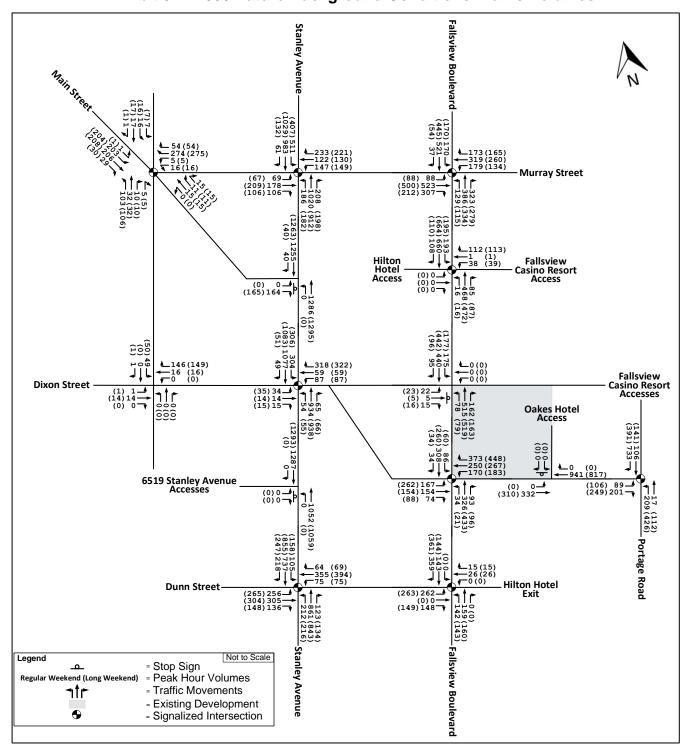
3.3 Future Transportation Network Improvements

Upon review of the *City of Niagara Falls Transportation Master Plan* (October 2011), the following major road network improvements within the proposed development's study area were identified:

- Allendale Avenue new connections to Stanley Avenue (Dixon Street to Stanley Avenue and Ferry Street to Forsythe Street);
- Allendale Avenue widening from Forsythe Street to south of Dunn Street;
- Livingston Street / Fallsview Boulevard connection to Portage Road;
- Buchanan Avenue / Fallsview Boulevard widening and realignment from Roberts Street to Livingston Street;
- Possible roundabout at the Allendale Avenue / Main Street / Murray Street intersection; and
- Active transportation recommended on-road routes: Stanley Avenue, Dunn Street, Portage Road / Main Street / Marineland Parkway / Willoughby Drive.

Given uncertainty with respect to the timeline of these improvements, they have not been included in the 2033 Future Background conditions scenario in order to provide a more conservative analysis of traffic operations.

3.4 Background Developments


Upon review of the City of Niagara Falls current planning applications webpage, and based on discussions with City staff regarding development projects in the vicinity of the study area, the following development applications were found to be within the vicinity and to likely introduce notable traffic volumes to study area intersections:

- 5566-5592 Robinson Street and 6158 Allendale Avenue (redevelopment of lands into a high-rise tower extending to 77 storeys with 962 residential condominium units and 516 m² of ground floor retail);
- Hyatt Centric Niagara Falls (a 14-storey hotel development which combined with the Hyatt Regency 16-storey hotel would introduce approximately 1,100 hotel rooms);
- 6740 Fallsview Boulevard (a 145-room expansion of existing Marriott Fallsview Hotel);
- 6609 Stanley Avenue (a large mixed-use tower of 72 storeys containing 456 hotel units and 275 residential units);
- 6663 Stanley Avenue (a 30-storey hotel containing 300 rooms, 1,100 m² GFA of retail and restaurant and 240 m² of hotel assembly space, and two 30-storey residential buildings containing 308 and 275 dwelling units, respectively);
- 6880 Stanley Avenue (a mixed-use development containing 250 hotel rooms, 264 residential units, as well as a 1,491m² restaurant and 3,185 m² of retail space); and
- Lot 175 Portage Road (a 35-storey building with 367 residential dwelling units and a 25-storey building with 256 residential dwelling units).

Site trip estimates obtained from Transportation Impact Studies provided for these developments have been included in the 2033 Future Background Conditions scenario.

3.5 2033 Future Background Conditions Analysis

The 2033 Future Background Conditions scenario was developed by adding the annual growth and background development-related growth discussed in **Section 3.2** and **Section 3.4** to the Existing Conditions scenario. These volumes are presented in **Exhibit 3-1**.

Exhibit 3-1: 2033 Future Background Conditions Traffic Volumes

The results of the 2033 Future Background analysis are summarized in the following subsections. Full Highway Capacity Manual analysis for the 2033 Future Background Conditions scenario is presented in **Appendix E**.

3.5.1 Signalized Intersections

The results of the 2033 Future Background conditions traffic operations analysis for signalized intersections are presented in **Exhibit 3-2**.

Exhibit 3-2: 2033 Future Background Conditions Traffic Operations - Signalized Intersections

	Intersection			Critical Movement						
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)	
Typical Summer Weekend										
		21.4	0.70	EBL	D	36.8	0.81	67.4	50	
				EBR	В	18.3	0.11	11.6	-	
Fallsview Boulevard and	С			WBT	В	18.0	0.07	8.9	-	
Dunn Street				NBL	В	11.1	0.46	16.1	-	
				NBT	Α	8.4	0.19	20.0	-	
				SBT	С	21.7	0.66	85.2	-	
		66.9	1.45	EBL	D	42.9	0.64	31.8	15	
				EBT	D	35.8	0.64	73.8	-	
				WBL	Е	72.8	0.89	63.6	25	
Stanley Avenue and	Е			WBT	D	40.4	0.74	84.3	-	
Murray Street	Ц			NBL	Е	73.9	1.00	77.9	35	
				NBT	С	20.8	0.89	168.3	-	
				SBL	F	324.1	1.62	204.6	55	
				SBT	В	12.2	0.53	83.3	-	
	С	33.2	0.71	EBL	С	24.3	0.30	21.3	30	
				EBT	D	48.3	0.91	118.8	-	
Fallsview				WBL	D	40.2	0.79	56.2	35	
				WBT	С	33.3	0.63	92.8	-	
Boulevard and				WBR	С	26.3	0.12	15.9	-	
Murray Street				NBL	В	17.9	0.36	24.1	10	
				NBT	С	27.7	0.53	63.7	-	
				SBL	С	20.4	0.57	31.2	65	
				SBT	С	26.3	0.47	64.0	-	

	Intersection			Critical Movement						
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)	
				EBL	F	309.5	1.55	125.5	75	
				EBT	D	46.5	0.86	138.8	-	
				WBL	Е	59.8	0.77	41.0	25	
Stanley				WBT	С	34.0	0.69	97.7	-	
Avenue and	D	53.4	1.16	WBR	С	24.9	0.04	8.7	25	
Dunn Street				NBL	F	90.6	1.01	94.8	25	
				NBT	С	23.9	0.67	108.7	-	
				SBL	С	20.2	0.41	23.0	40	
				SBT	С	22.6	0.52	118.2	-	
				EBL	С	34.5	0.63	51.2	-	
		23.9	0.63	EBT	С	29.7	0.52	58.9	-	
				WBL	В	19.2	0.43	34.0	25	
Fallsview				WBT	В	19.2	0.36	52.6	-	
Boulevard and Main Street /	С			WBR	В	18.1	0.25	16.5	-	
Portage Road				NBL	С	20.7	0.11	12.2	20	
				NBT	С	32.5	0.71	119.9	-	
				SBL	В	16.3	0.26	15.9	-	
				SBT	В	18.4	0.44	68.5	-	
		13.9		EBL	В	12.9	0.15	14.7	-	
Portage Road				EBR	В	12.8	0.14	10.5	-	
and Fallsview	В		0.34	NBL	В	13.9	0.41	34.8	-	
Casino Rear	ь	13.9	0.34	NBT	Α	9.8	0.02	4.4	-	
Access				SBT	В	10.6	0.14	16.8	-	
				SBR	В	14.8	0.50	18.5	-	
Fallerdand	Α	9.6	0.41	WBT	С	21.7	0.19	11.5	-	
Fallsview Boulevard and Hilton Hotel Access / Fallsview Casino Access				WBR	С	21.1	0.08	11.8	-	
				NBL	В	10.8	0.07	4.6	20	
				NBT	В	12.9	0.46	37.1	-	
				SBL	Α	5.6	0.38	13.8	25	
Oddino Access				SBT	Α	5.9	0.42	32.4	-	
				EBT	D	36.8	0.28	19.5	-	
				WBT	D	47.7	0.70	46.2	-	
Stanley				WBR	D	37.0	0.31	27.4	-	
Avenue and Dixon Street /	С	21.9	0.74	NBL	В	10.6	0.22	3.0	65	
Main Street				NBT	С	23.9	0.72	111.6	-	
IVIAIII SIIEEL				SBL	С	32.2	0.73	71.3	140	
				SBT	Α	9.3	0.61	72.0	-	

	Intersection			Critical Movement						
Intersection	Los	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)	
				WBL	D	40.6	0.12	11.6	55	
Allendale				WBR	F	251.1	1.41	162.6	-	
Avenue and				NBLTR	D	47.7	0.58	54.8	-	
Main Street	F	116.5	0.69	SBLTR	D	36.6	0.14	17.6	-	
and Murray				SEL	Е	65.0	0.82	86.8	30	
Street				SETR	D	51.2	0.70	81.1	-	
				NWLTR	D	36.2	0.13	17.6	-	
				Summer Long	Weeke	nd				
		21.6	0.70	EBL	D	37.1	0.82	67.6	50	
				EBR	В	18.3	0.11	11.6	-	
Fallsview Boulevard and	С			WBT	В	18.0	0.07	8.9	-	
Dunn Street				NBL	В	11.2	0.47	16.2	-	
				NBT	Α	8.4	0.19	20.2	-	
				SBT	С	22.0	0.67	86.9	-	
	П	56.7	1.31	EBL	D	35.4	0.54	27.7	15	
				EBT	D	38.8	0.73	87.2	-	
Stanley Avenue and Murray Street				WBL	F	102.3	0.99	70.6	25	
				WBT	D	40.4	0.75	95.5	-	
	_			NBL	F	172.0	1.28	81.6	35	
				NBT	С	22.7	0.91	151.7	-	
				SBL	F	229.6	1.40	158.9	55	
				SBT	В	15.7	0.66	103.3	-	
		31	0.67	EBL	С	24.0	0.28	21.5	30	
				EBT	D	45.6	0.88	104.4	-	
				WBL	С	30.0	0.65	33.1	35	
Fallsview				WBT	С	32.3	0.57	76.2	-	
Boulevard and	С			WBR	С	26.7	0.12	15.6	-	
Murray Street				NBL	В	17.3	0.32	22.1	10	
				NBT	С	26.3	0.47	52.2	-	
				SBL	В	18.9	0.54	31.7	65	
				SBT	С	25.4	0.45	57.5	-	

	li	ntersection	on			Critical	Movem	ent	
Intersection	LOS	Delay	v/c Ratio	Movement	Los	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)
				EBL	F	576.2	2.15	139.0	75
				EBT	Е	65.0	0.96	152.8	-
				WBL	F	99.9	0.91	44.3	25
Stanley				WBT	D	42.8	0.82	125.5	-
Avenue and	F	87.6	1.62	WBR	С	24.9	0.05	9.6	25
Dunn Street				NBL	F	269.8	1.47	108.9	25
				NBT	С	27.0	0.74	113.0	-
				SBL	С	26.0	0.64	38.6	40
				SBT	С	25.3	0.66	140.6	-
				EBL	Е	72.6	0.96	102.8	-
				EBT	С	28.0	0.52	63.2	-
				WBL	В	18.2	0.48	36.5	25
Fallsview Boulevard and Main Street / Portage Road			WBT	В	18.2	0.39	56.8	-	
	D	39.2	0.88	WBR	В	18.6	0.42	38.0	-
				NBL	С	21.7	0.07	8.7	20
				NBT	Е	76.2	1.03	179.5	-
				SBL	С	20.3	0.30	11.6	-
				SBT	С	20.4	0.43	59.6	-
				EBL	В	13.0	0.19	17.1	-
Portage Road			0.60	EBR	В	12.9	0.18	11.7	-
and Fallsview	С	22.2		NBL	D	45.6	0.95	105.6	-
Casino Rear	C	22.2		NBT	В	10.8	0.16	17.9	-
Access				SBT	В	11.2	0.21	21.7	-
				SBR	В	12.1	0.29	14.4	-
Fallerdam				WBT	С	21.7	0.19	11.8	-
Fallsview Boulevard and				WBR	С	21.1	0.08	11.8	-
Hilton Hotel	۸	0.6	0.41	NBL	В	10.8	0.08	4.6	20
Access /	Α	9.6	0.41	NBT	В	13.0	0.47	37.6	-
Fallsview Casino Access				SBL	Α	5.6	0.38	13.9	25
Casilio Access				SBT	Α	5.9	0.42	32.8	-
				EBT	D	36.8	0.29	19.9	-
				WBT	D	47.9	0.71	46.2	-
Stanley Avenue and Dixon Street / Main Street				WBR	D	37.1	0.33	28.7	-
	С	21.4	0.74	NBL	В	10.8	0.23	2.4	65
		21.4	0.74	NBT	С	21.8	0.73	104.9	-
				SBL	С	31.7	0.73	72.9	140
				SBT	В	10.1	0.62	81.8	-

	l	ntersecti	on			Critica	Movem	ent	
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)
				WBL	D	39.6	0.12	11.3	55
Allendale			3 0.70	WBR	F	242.3	1.39	160.0	-
Avenue and				NBLTR	D	46.7	0.58	54.6	-
Main Street	F	112.3		SBLTR	D	35.6	0.14	17.1	-
and Murray				SEL	Е	62.4	0.81	85.5	30
Street			_	SETR	D	49.9	0.69	80.2	-
				NWLTR	D	35.2	0.13	17.2	-

Note: Red font represents an intersection/lane/movement which exceeds critical operational thresholds.

As shown in **Exhibit 3-2**, during the peak hour on a typical summer weekend in Future Background Conditions at the study area signalized intersections, the following critical operations are anticipated:

- At the Stanley Avenue and Murray Street intersection, the northbound left-turn and southbound left-turn movements are expected to have critical v/c ratios of 1.00 and 1.62, respectively;
- At the Fallsview Boulevard and Murray Street intersection, the eastbound through movement is expected to have a critical v/c ratio of 0.91;
- At the Stanley Avenue and Dunn Street intersection, the eastbound left-turn, eastbound through, and northbound left-turn movements are expected to have critical v/c ratios of 1.55, 0.86, and 1.01, respectively;
- At the Allendale Avenue and Main Street and Murray Street intersection, the westbound right-turn movement is expected to have a critical v/c ratio of 1.41.

During the peak hour on a summer long weekend, the following critical operations are anticipated:

- At the Stanley Avenue and Murray Street intersection, the westbound left-turn, northbound left-turn, northbound through, and southbound left-turn movements are expected to have critical v/c ratios of 0.99, 1.28, 0.91, and 1.40, respectively;
- At the Fallsview Boulevard and Murray Street intersection, the eastbound through movement is expected to have a critical v/c ratio of 0.88;
- At the Stanley Avenue and Dunn Street intersection, the eastbound left-turn, eastbound through, westbound left-turn, and northbound left-turn movements are expected to have critical v/c ratios of 2.15, 0.96, 0.91, and 1.47, respectively;

- At the Fallsview Boulevard and Main Street / Portage Road intersection, the eastbound left-turn and northbound through movements are expected to have critical v/c ratios of 0.96 and 1.03, respectively;
- At the Portage Road and Fallsview Casino Rear Access intersection, the northbound left-turn movement is expected to have a critical v/c ratio of 0.95;
- At the Allendale Avenue and Main Street and Murray Street intersection, the westbound right-turn movement is expected to have a critical v/c ratio of 1.39.

3.5.2 Unsignalized Intersections

The results of the 2033 Future Background conditions traffic operations analysis for unsignalized intersections is presented in **Exhibit 3-3**.

Exhibit 3-3: 2033 Future Background Conditions Traffic Operations - Unsignalized Intersections

Intersection	Intersection Delay (s)	Lane	Lane LOS	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Storage Capacity (m)		
Typical Summer Weekend									
Fallsview Boulevard		EBLTR	F	801.1	1.82	36.7	-		
and Dixon Street /	20.6	WBLTR	Α	0.0	0.00	0.0	-		
Fallsview Casino Access		NBL	С	20.7	0.27	8.2	-		
Access		SBL	С	15.7	0.36	12.4	-		
Dixon Street and	0.4	NBLTR	Α	0.0	0.39	0.0	-		
Allendale Avenue / 6519 Stanley Avenue Access	2.1	SBLTR	Α	9.4	0.06	1.5	-		
		Summer I	Long W	eekend					
Fallerian Davidson		EBLTR	D	25.5	0.18	4.8	-		
Fallsview Boulevard and Dixon Street /	2.2	WBLTR	Α	0.0	0.00	0.0	-		
Fallsview Casino	2.3	NBL	Α	8.9	0.09	2.1	-		
Access		SBL	В	10.3	0.22	6.3	-		
Dixon Street and	0.4	NBLTR	Α	0.0	0.39	0.0	-		
Allendale Avenue / 6519 Stanley Avenue Access	2.1	SBLTR	Α	9.4	0.06	1.5	-		

Note: Red font represents an intersection/lane/movement which exceeds critical operational thresholds.

As shown in **Exhibit 3-3**, during the peak hour on a typical summer weekend in Future Background Conditions at the study area unsignalized intersections, the following critical operation is anticipated:

ARCADIS FINAL REPORT

TRANSPORTATION IMPACT STUDY -6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

 At the Fallsview Boulevard and Dixon Street / Fallsview Casino Access intersection, the eastbound left-turn, through, and right-turn lane is expected to have a critical lane LOS of 'F'.

During the peak hour on a summer long weekend, the following critical operation is anticipated:

 At the Fallsview Boulevard and Dixon Street / Fallsview Casino Access intersection, the eastbound left-turn, through, and right-turn lane is expected to have a critical lane LOS of 'D'.

4 Future Total Conditions

This section of the report analyzes the impact of the proposed development on the 2033 Future Background Traffic Conditions scenario.

4.1 Proposed Site Access

As discussed in **Section 1.3**, hotel guest parking will be accommodated, primarily, off-site in a structured parking facility located at 6519 Stanley Avenue on the southwest corner of the Stanley Avenue and Dixon Street intersection. The Application contemplates a structured parking facility with capacity for approximately 1,047 vehicles, with vehicle access via Stanley Avenue and Dixon Street. It is our understanding that 912 of the off-site parking spaces will be dedicated to hotel guests, with the remainder available to the general public. The conceptual site plan for the structured parking facility also includes a terminal that will accommodate hotel guest check-in, luggage transfer/storage, a guest waiting area for a dedicated shuttle service, and ancillary services.

In addition, on-site parking at the 6546 Fallsview Boulevard site will also be provided through both an underground parking facility and through ground floor surface parking spaces. This on-site parking will include a total of 273 parking spaces where the majority of those would be provided in the underground parking facility and only 10 of them will be surface "temporary car spaces" on the ground floor.

Based on this, vehicle traffic using the proposed site access is expected to consist to a small number of vehicles remaining on site, as well as vehicles and shuttles engaged in passenger pick-up / drop-off activities.

4.2 Trip Generation

The trips expected to be generated by the proposed development are examined in this section. The net trips generated are then assigned and distributed to the study area road network.

4.2.1 Net Trip Generation

Trip generation rates from the publication Trip Generation Manual, 11th Edition (Institute of Transportation Engineers, October 2021) were used to estimate future automobile trips associated with the proposed development. Based on the nature of the development, its location context, and the data quality, the fitted curve equations for the land use code (LUC) 310: Hotel – General Urban/Suburban, the LUC 222: Multifamily Housing (High-Rise) – General Urban/Suburban – Not Close to Rail Transit, and LUC 473: Casino – General Urban/Suburban were used to calculate the estimated vehicle trips during the peak hours. Trip generation source data is presented in **Appendix G**.

Based on a total of 1,140 hotel rooms and 126 residential units, the proposed development is expected to generate up to 861 vehicle trips during the Saturday

ARCADIS FINAL REPORT

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

Peak hour (483 inbound trips and 378 outbound trips). However, as there is an existing 275-room hotel on the site, up to 196 vehicle trips during the Saturday Peak hour (110 inbound trips and 86 outbound trips) are already expected to be captured in the existing conditions turning movement counts. The Casino/Gaming aspect of the development with a GFA of 2,648.30 m² (28,506.02 ft²) is expected to generate up to 132 vehicles trips during the Saturday Peak hour (71 inbound trips and 61 outbound trips) with an 85% internal capture reduction as per Trip Generation Handbook 3rd Edition (Institute of Transportation Engineers, September 2017). As a result, the net new trips generation from the proposed development is up to 797 net new vehicle trips during the Saturday Peak hour (444 inbound trips and 353 outbound trips). This is illustrated in **Exhibit 4-1**.

Exhibit 4-1: Proposed Development Trip Generation

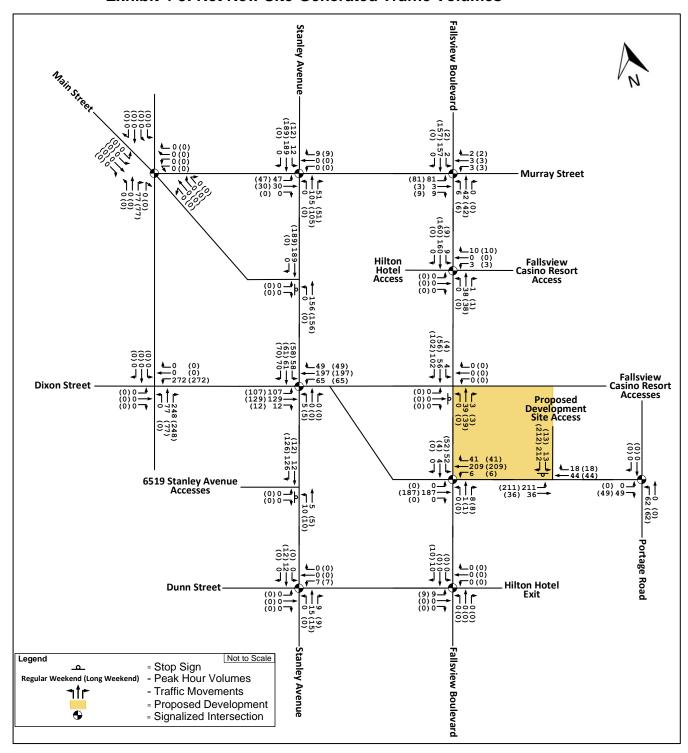
EXITIOIC	F1. F10posed Dev	• •					
		w Boulevard, Niagara					
LUC 3 ²	10: Hotel – General U		· · · · · · · · · · · · · · · · · · ·				
Term	Unit		Saturday Peak Hour				
T. 0 5 1		Inbound	Outbound	Total			
Trip Generation Fitted Curve Equation	vehicle trips / room		T = 0.69(X) + 5.95				
Directional Distribution	-	56%	44%	100%			
Gross Vehicular Trips	vehicle trips / hour	444	349	793			
LUC 222: Multifamily		 General Urban/Sub ed 126 Dwelling Units 	ourban – Not Close to Rail S	Transit –			
Term Unit Saturday Peak Hour							
remi	Offic	Inbound	Outbound	Total			
Trip Generation Fitted Curve Equation	vehicle trips / room		T = 0.30(X) + 30.34				
Directional Distribution	-	57%	43%	100%			
Gross Vehicular Trips	vehicle trips / hour	39	29	68			
LUC 310: Hotel – General Urban/Suburban – Existing 275 Rooms							
Term	Unit	Saturday Peak Hour					
I GIIII	Offic	Inbound	Outbound	Total			
Trip Generation Fitted Curve Equation	vehicle trips / room		T = 0.69(X) + 5.95				
Directional Distribution	-	56%	44%	100%			
Existing Vehicular Trips To Be Removed	vehicle trips / hour	-110	-86	-196			
LUC	C 473: Casino - Gener	ral Urban/Suburban -	· 28,506.02 sq. ft.⁴				
Term	Unit	9	Saturday Peak Hour				
TCIIII	Onit	Inbound	Outbound	Total			
Average Rate	vehicle trips / 1000 sq. ft. GFA		30.98				
Directional Distribution	-	54%	46%	100%			
Internal Trip Capture	vehicle trips / hour		85%				
Reduction	verilole trips / flour	-406	-345	-751			
Gross Vehicular Trips	vehicle trips / hour	71	61	132			
		Total					
Term	Unit		Saturday Peak Hour				
	Oilit	Inbound	Outbound	Total			
Net New Vehicular Trips	vehicle trips / hour	444	353	797			

⁴ Site Plan Update provides a total of 28,380.94 sq. ft. of Casino space. Trips are overestimated as analysis is completed for 28,506.02 sq. ft. of Casino space.

4.2.2 Trip Distribution and Assignment

The trip distribution for site trips was generally determined based on existing travel patterns and the available road network. The 2016 Transportation Tomorrow Survey (TTS) was also used to inform general anticipated travel patterns and trip distribution, though tourist-oriented trips are not necessarily well-represented in the TTS.

Given that offsite parking is proposed, trip distribution was further refined to consider various parking options available to future hotel guests. Based on a discussion with the proponent, it is expected that:


- 5% of guests will seek to park at the hotel site;
- 25% of guests will drop-off or pick-up individuals at the hotel site but park their vehicle at the off-site parking facility;
- 65% of guests will seek to directly park at the parking facility; and
- 5% of guests will seek to park at other parking facilities (i.e. Fallsview Casino Resort, due to a pre-existing discount entitlement).

For hotel guests who ultimately park their vehicle at the parking facility, a frequent shuttle service (assumed to operate every 10 minutes) is proposed.

The general trip distribution patterns are presented in **Exhibit 4-2** and the associated site-generated volume patterns are illustrated in **Exhibit 4-3**.

Exhibit 4-2: Site Trip Distribution

	Inboun	d Trips	Outbou	nd Trips
To / From	Typical Summer Weekend Peak Hour	Summer Long Weekend Peak Hour	Typical Summer Weekend Peak Hour	Summer Long Weekend Peak Hour
Fallsview Boulevard (north)	35%	35%	35%	35%
Portage Road (south)	15%	15%	15%	15%
Stanley Avenue (north)	45%	45%	45%	45%
Stanley Avenue (south)	5%	5%	5%	5%
Total	100%	100%	100%	100%

Exhibit 4-3: Net New Site-Generated Traffic Volumes

ARCADIS FINAL REPORT

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

4.3 2033 Future Total Conditions Analysis

New trips resulting from the construction of the proposed development were added to the 2033 Future Background Conditions scenario, producing the 2033 Future Total Conditions traffic volumes illustrated in **Exhibit 4-4**.

Using these 2033 Future Total Conditions traffic volumes, traffic operations analysis was conducted to determine future intersection performance with the impact of the proposed development. The results of the traffic operations analysis are presented in the following subsections. Full Highway Capacity Manual analysis for the 2033 Future Total Conditions scenario is presented in **Appendix H**.

4.3.1 Signalized Intersections

The results of the 2033 Future Total Conditions traffic operations analysis for signalized intersections is presented in **Exhibit 4-5**.

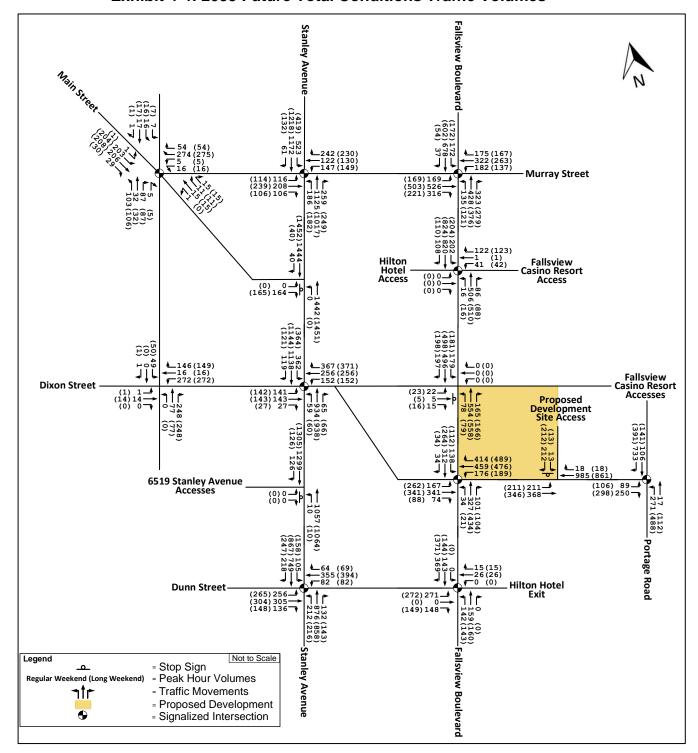


Exhibit 4-4: 2033 Future Total Conditions Traffic Volumes

Exhibit 4-5: 2033 Future Total Conditions Traffic Operations - Signalized Intersections

	I	ntersectio	n			Critica	l Movemei	nt	
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)
'			Турі	ical Summer	Week	rend			
				EBL	D	39.0	0.84	70.8	50
Fallsview				EBR	В	18.1	0.11	11.6	-
Boulevard	С	22.3	0.71	WBT	В	17.8	0.07	8.9	-
and Dunn	C	22.3	0.71	NBL	В	11.5	0.48	16.1	-
Street				NBT	Α	8.5	0.19	20.0	-
				SBT	С	22.4	0.68	87.7	-
				EBL	F	130.3	1.04	59.9	15
				EBT	D	37.2	0.69	84.1	-
Stanley				WBL	F	96.7	0.97	68.3	25
Avenue and	Е	79.0	1.51	WBT	D	39.4	0.73	86.5	-
Murray Street	L		1.51	NBL	F	167.5	1.29	69.7	35
				NBT	D	39.3	1.02	185.0	-
				SBL	F	341.6	1.66	209.6	55
				SBT	В	14.3	0.63	107.2	-
				EBL	C	26.0	0.56	37.7	30
				EBT	D	51.7	0.93	121.1	-
				WBL	D	42.4	0.80	53.9	35
Fallsview				WBT	D	37.6	0.70	93.8	-
Boulevard and Murray	С	34.8	0.74	WBR	С	28.2	0.12	16.0	-
Street				NBL	В	18.8	0.46	25.3	10
				NBT	O	28.3	0.57	71.7	-
				SBL	C	21.4	0.60	31.6	65
				SBT	С	28.5	0.61	85.2	-
				EBL	F	309.5	1.55	125.5	75
				EBT	D	46.5	0.86	138.8	-
				WBL	Е	73.4	0.84	45.1	25
Stanley				WBT	С	34.0	0.69	97.7	-
Avenue and	D	52.4	1.18	WBR	С	24.9	0.04	8.7	25
Dunn Street				NBL	F	97.6	1.04	95.6	25
			-	NBT	С	24.3	0.69	112.3	-
				SBL	В	14.9	0.42	12.5	40
				SBT	В	17.5	0.53	107.6	-

		ntersectio	n			Critica	l Moveme	nt	
Intersection	LOS	Delay		Movement	LOS		v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)
				EBL	D	51.3	0.81	65.7	-
				EBT	D	50.7	0.89	130.4	-
Fallsview				WBL	С	28.4	0.69	35.5	25
Boulevard				WBT	С	24.6	0.65	105.4	-
and Main Street /	С	31.2	0.77	WBR	В	18.9	0.28	17.2	-
Portage				NBL	С	23.3	0.11	12.2	20
Road				NBT	D	39.1	0.78	124.2	-
				SBL	В	19.0	0.47	26.2	-
				SBT	В	19.3	0.44	69.5	-
				EBL	В	12.7	0.15	14.7	-
Portage				EBR	В	12.9	0.17	11.6	-
Road and	В	14.3	0.27	NBL	В	16.2	0.54	47.2	-
Fallsview Casino Rear Access	ь		0.37	NBT	Α	9.8	0.02	4.4	-
				SBT	В	10.6	0.14	16.8	-
				SBR	В	14.8	0.50	18.5	-
Fallsview		9.8		WBT	С	22.1	0.20	12.4	-
Boulevard			0.48	WBR	С	21.4	0.09	12.4	-
and Hilton Hotel Access				NBL	В	10.9	0.09	4.8	20
/ Fallsview	Α			NBT	В	13.1	0.49	40.5	-
Casino				SBL	Α	5.7	0.41	14.7	25
Access				SBT	Α	6.4	0.50	43.1	-
				EBT	F	780.3	2.60	141.0	-
				WBT	F	178.0	1.27	166.8	-
Stanley				WBR	С	29.6	0.40	40.4	-
Avenue and Dixon Street	F	115.4	1.69	NBL	В	13.3	0.38	4.5	65
/ Main Street				NBT	С	31.4	0.83	112.0	-
				SBL	F	143.6	1.18	125.6	140
				SBT	В	19.5	0.85	103.3	-
				WBL	D	40.6	0.12	11.6	55
Allendale				WBR	F	251.1	1.41	162.6	-
Allendale Avenue and Main Street and Murray Street				NBLTR	Е	66.4	0.84	95.5	-
	F	115.5	0.76	SBLTR	D	36.9	0.15	17.7	-
		115.5	0.76	SEL	Е	65.0	0.82	86.8	30
				SETR	D	51.2	0.70	81.1	-
				NWLTR	D	36.3	0.13	17.8	-

	1	ntersectio	n			Critica	l Movemer	nt	
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)
			Sui	mmer Long \	Weeke	end			
				EBL	D	39.2	0.84	71.1	50
Fallsview			0.70	EBR	В	18.1	0.11	11.6	-
Boulevard	С	22.5		WBT	В	17.8	0.07	8.9	-
and Dunn	C	22.5	0.72	NBL	В	11.6	0.48	16.2	-
Street				NBT	Α	8.5	0.19	20.2	-
				SBT	С	22.7	0.69	89.5	-
				EBL	F	81.6	0.90	57.6	15
				EBT	D	41.2	0.78	106.4	-
Stanley				WBL	F	135.0	1.09	74.7	25
Avenue and Murray Street	_	70.5	4.55	WBT	D	39.6	0.75	98.6	-
	_	79.5	1.55	NBL	F	443.8	1.92	75.1	35
				NBT	D	50.8	1.06	168.5	-
				SBL	F	248.0	1.44	163.9	55
				SBT	В	19.3	0.78	134.8	-
				EBL	С	25.2	0.54	38.3	30
				EBT	D	48.3	0.90	106.9	-
				WBL	С	32.0	0.67	31.5	35
Fallsview				WBT	D	36.0	0.64	77.2	-
Boulevard and Murray	С	32.4	0.70	WBR	С	28.6	0.12	15.8	-
Street				NBL	В	17.9	0.41	23.3	10
				NBT	С	27.0	0.52	60.6	-
				SBL	В	19.6	0.57	32.1	65
				SBT	С	27.9	0.59	78.9	-
				EBL	F	576.2	2.15	139.0	75
				EBT	Е	65.0	0.96	152.8	-
				WBL	F	125.2	0.99	48.3	25
Stanley				WBT	D	42.8	0.82	125.5	-
Avenue and	F	86.8	1.64	WBR	С	24.9	0.05	9.6	25
Dunn Street				NBL	F	286.3	1.51	109.7	25
				NBT	С	27.7	0.76	117.0	-
				SBL	В	18.4	0.65	20.4	40
				SBT	В	20.0	0.67	125.1	-

		ntersectio	n			Critica	l Movemei	nt	
Intersection	LOS	Delay		Movement	LOS			95th Percentile Queue Length (m)	Storage Capacity (m)
				EBL	F	227.9	1.37	119.4	-
				EBT	Е	63.2	0.96	145.3	-
Fallsview				WBL	D	36.4	0.79	50.5	25
Boulevard				WBT	С	26.0	0.71	115.7	-
and Main Street /	Е	62.8	1.08	WBR	С	20.8	0.50	51.0	-
Portage				NBL	С	23.1	0.07	8.7	20
Road				NBT	F	95.7	1.08	186.1	-
				SBL	С	22.8	0.54	22.2	-
				SBT	В	19.9	0.42	60.2	-
				EBL	В	13.0	0.19	17.1	-
Portage				EBR	В	13.2	0.22	12.7	-
Road and	С	34.4	0.69	NBL	F	82.1	1.08	124.6	-
Fallsview Casino Rear Access			0.69	NBT	В	10.8	0.16	17.9	-
				SBT	В	11.2	0.21	21.7	-
				SBR	В	12.1	0.29	14.4	-
Fallsview		9.8	0.49	WBT	С	22.2	0.21	13.0	-
Boulevard				WBR	С	21.5	0.09	12.6	-
and Hilton Hotel Access				NBL	В	10.8	0.09	4.7	20
/ Fallsview	Α			NBT	В	13.1	0.49	40.8	-
Casino				SBL	Α	5.8	0.41	14.8	25
Access				SBT	Α	6.4	0.51	43.4	1
				EBT	F	783.7	2.61	141.4	-
				WBT	F	178.0	1.27	166.8	-
Stanley				WBR	С	29.7	0.41	41.5	-
Avenue and Dixon Street	F	115.3	1.71	NBL	В	12.9	0.39	3.6	65
/ Main Street				NBT	С	27.4	0.83	105.7	-
				SBL	F	145.7	1.20	116.8	140
				SBT	С	21.8	0.85	126.2	-
				WBL	D	39.6	0.12	11.3	55
Allendale				WBR	F	242.3	1.39	160.0	-
Allendale Avenue and Main Street				NBLTR	Е	64.6	0.84	89.8	-
	F	111.4	0.77	SBLTR	D	35.8	0.15	17.2	-
and Murray Street		111.4	0.77	SEL	Е	62.4	0.81	85.5	30
Sireet				SETR	D	49.9	0.69	80.2	-
				NWLTR	D	35.2	0.13	17.2	-

Note: Red font represents an intersection/lane/movement which exceeds critical operational thresholds.

As shown in **Exhibit 4-5**, during the peak hour on a typical summer weekend in Future Total Conditions at the study area signalized intersections, the following critical operations are anticipated:

- At the Stanley Avenue and Murray Street intersection, the eastbound left-turn, westbound left-turn, northbound left-turn, northbound through, and southbound left-turn movements are all expected to have critical v/c ratios of 1.04, 0.97, 1.29, 1.02, and 1.66, respectively;
- At the Fallsview Boulevard and Murray Street intersection, the eastbound through movement is expected to have a critical v/c ratio of 0.93;
- At the Stanley Avenue and Dunn Street intersection, the eastbound left-turn, eastbound through, and northbound left-turn movements are expected to have critical v/c ratios of 1.55, 0.86, and 1.04, respectively;
- At the Fallsview Boulevard and Main Street / Portage Road, the eastbound through movement is expected to have a critical v/c ratio of 0.89;
- At the Stanley Avenue and Dixon Street / Main Street intersection, the eastbound through, westbound through, and southbound left-turn movements are expected to have critical v/c ratios of 2.60, 1.27, and 1.18, respectively; and
- At the Allendale Avenue and Main Street and Murray Street intersection, the westbound right-turn movement is expected to have a critical v/c ratio of 1.41.

During the peak hour on a summer long weekend, the following critical operations are anticipated:

- At the Stanley Avenue and Murray Street intersection, the westbound left-turn, northbound left-turn, northbound through, and southbound left-turn movements are expected to have critical v/c ratios of 1.09, 1.92, 1.06, and 1.44, respectively:
- At the Fallsview Boulevard and Murray Street intersection, the eastbound through movement is expected to have a critical v/c ratio of 0.90;
- At the Stanley Avenue and Dunn Street intersection, the eastbound left-turn, eastbound through, westbound left-turn, and northbound leftturn movements are expected to have critical v/c ratios of 2.15, 0.96, 0.99, and 1.51, respectively;
- At the Fallsview Boulevard and Main Street / Portage Road intersection, the eastbound left-turn, eastbound through, and northbound through movements are expected to have critical v/c ratios of 1.37, 0.96, and 1.08, respectively;

- At the Portage Road and Fallsview Casino Rear Access intersection, the northbound left-turn movement is expected to have a critical v/c ratio of 1.08;
- At the Stanley Avenue and Dixon Street / Main Street intersection, the eastbound through, westbound through, and southbound left-turn movements are expected to have critical v/c ratios of 2.61, 1.27, and 1.20, respectively; and
- At the Allendale Avenue and Main Street and Murray Street intersection, the westbound right-turn movement is expected to have a critical v/c ratio of 1.39.

4.3.2 Unsignalized Intersections

The results of the 2033 Future Total Conditions traffic operations analysis for unsignalized intersections is presented in **Exhibit 4-6**.

Exhibit 4-6: 2033 Future Total Conditions Traffic Operations - Unsignalized Intersections

Intersection	Intersection Delay (s)	Lane	Lane LOS	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Storage Capacity (m)
		Туріс	cal Summe	r Weekend			
Fallsview		EBLTR	F	1151.6	2.55	46.8	-
Boulevard and	22.7	WBLTR	Α	0.0	0.00	0.0	-
Dixon Street / Fallsview Casino Access	30.7	NBL	С	23.1	0.30	9.3	-
		SBL	С	16.5	0.39	13.7	-
Dixon Street and	14.2	EBLTR	Α	0.5	0.00	0.0	-
Allendale Avenue		WBLTR	Α	5.4	0.18	5.1	-
/ 6519 Stanley		NBLTR	С	17.9	0.56	26.8	-
Avenue Access		SBLTR	F	70.7	0.51	17.6	-
Stanley Ave and		EBL	Α	0.0	0.00	0.0	-
6519 Stanley	0.0	EBR	Α	0.0	0.00	0.0	-
Avenue Access		NBL	В	11.5	0.02	0.5	-
Portage Road		EBL	В	10.5	0.35	12.1	-
and Proposed Development Site Access	4.8	SBL	F	99.0	0.27	7.1	-
		SBR	С	18.8	0.47	18.9	-

Intersection	Intersection Delay (s)	Lane	Lane LOS	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Storage Capacity (m)
		Sun	nmer Long	Weekend			
Fallsview		EBLTR	С	24.5	0.20	5.6	-
Boulevard and	0.0	WBLTR	Α	0.0	0.00	0.0	-
Dixon Street / Fallsview Casino	2.2	NBL	Α	9.2	0.09	2.3	-
Access		SBL	В	10.6	0.23	6.9	-
Dixon Street and	14.4	EBLTR	Α	0.5	0.00	0.0	-
Allendale Avenue		WBLTR	Α	5.4	0.18	5.1	-
/ 6519 Stanley		NBLTR	С	18.0	0.57	26.9	-
Avenue Access		SBLTR	F	72.3	0.52	18.2	-
Stanley Ave and		EBL	Α	0.0	0.00	0.0	-
6519 Stanley	0.0	EBR	Α	0.0	0.00	0.0	-
Avenue Access		NBL	В	11.5	0.02	0.5	-
Portage Road and Proposed Development Site Access		EBL	Α	9.4	0.31	10.3	-
	4.5	SBL	F	70.6	0.20	5.3	-
	4.5	SBR	С	16.6	0.43	16.1	-

Note: Red font represents an intersection/lane/movement which exceeds critical operational thresholds.

As shown in **Exhibit 4-6**, during the peak hour on a typical summer weekend in Future Total Conditions at the study area unsignalized intersections, the following critical operations are anticipated:

- At the Fallsview Boulevard and Dixon Street / Fallsview Casino Access intersection, the eastbound left-turn, through, and right-turn lane is expected to have a critical lane LOS of 'F';
- At the Dixon Street and Allendale Avenue / 6519 Stanley Avenue Access intersection, the southbound left-turn, through, and right-turn lane is expected to have a critical lane LOS of 'F'; and
- At the Portage Road and Proposed Development Site Access intersection, the southbound left-turn lane is expected to have a critical lane LOS of 'F'.

During the peak hour on a summer long weekend, the following critical operations are anticipated:

- At the Dixon Street and Allendale Avenue / 6519 Stanley Avenue
 Access intersection, the southbound left-turn, through, and right-turn
 lane is expected to have a critical lane LOS of 'F'; and
- At the Portage Road and Proposed Development Site Access intersection, the southbound left-turn lane is expected to have a critical lane LOS of 'F'.

5 Traffic Operations Mitigation Measures

As noted in **Section 2.6**, **Section 3.5**, and **Section 4.3**, several movement-specific traffic operations are observed to exceed critical operational thresholds under existing and future conditions. This section discusses measures to mitigate these constraints, as appropriate.

5.1 Signalized Intersections

Based on anticipated instances of movements exceeding critical thresholds, signal timing phase changes were considered to improve operations at the study area signalized intersections. The considered signal timing phase changes are as follows:

- At the Stanley Avenue and Murray Street intersection for both the typical summer and summer long weekend peak periods, the southbound left-turn movement phase was reduced from 18 to 17 seconds, while the northbound through movement phase was increased from 47 to 48 seconds;
- At the Fallsview Boulevard and Murray Street intersection for both the typical summer and summer long weekend peak periods, the northbound left-turn and southbound left-turn movement phases were reduced from 13 to 12 seconds, and the northbound through and southbound through movement phases were increased from 42.6 to 43.0 seconds. In addition:
 - During the typical summer weekend peak hour, the eastbound left-turn and westbound left-turn movement phases were reduced from 13 to 11 seconds, while the eastbound through and westbound through movement phases were increased from 33.3 to 35.9 seconds.
 - During the summer long weekend peak period, the eastbound left-turn and westbound left-turn movement phases were reduced from 13 to 10 seconds, while the eastbound through and westbound through movement phases were increased from 33.3 to 36.9 seconds;
- At the Stanley Avenue and Dunn Street intersection for both the typical summer and summer long weekend peak periods, the southbound left-turn movement phase was reduced from 13 to 11 seconds, while the eastbound through and westbound through movement phases were increased from 37 to 39 seconds;
- At the Fallsview Boulevard and Main Street / Portage Road intersection for the summer long weekend peak period, the southbound left-turn moment phase was reduced from 13 to 10 seconds, the northbound through and southbound through movement

ARCADIS FINAL REPORT

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

- phases were increased from 36.5 to 38 seconds, and the eastbound through movement phase was increased from 33.5 to 35.0 seconds;
- At the Portage Road and Fallsview Casino Rear Access intersection for the summer long weekend Saturday peak period, the overall cycle length was increased by 3 seconds from 62.2 to 65.2 seconds;
- At the Stanley Avenue and Dixon Street / Main Street intersection for both the typical summer and summer long weekend peak periods, the northbound left-turn and southbound left-turn movement phases were reduced from 18 to 17 seconds, while the eastbound through and westbound through movement phases were increased from 35 to 36 seconds; and
- At the Allendale Avenue and Main Street and Murray Street intersection for both the typical summer and summer long weekend Saturday peak periods, the northbound through and southbound through movement (along Main Street) phases were reduced from 31.8 to 30.0 seconds, the westbound right-turn (from Murray Street to Main Street) movement phase was increased from 26.8 to 29 seconds, and the northbound through and southbound through movements (along Allendale Avenue) were decreased from 31.8 to 31.4 seconds.

The results of the 2033 Future Total Mitigated Conditions traffic operations analysis for signalized intersections is presented in **Exhibit 5-1**. Full Highway Capacity Manual analysis for the 2033 Future Total Mitigated Conditions scenario is presented in **Appendix I**.

Exhibit 5-1: 2033 Future Total Conditions Traffic Operations – Signalized Intersections (Mitigated)

	I	ntersectio			Critic	al Moveme	ent		
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue Length (m)	Storage Capacity (m)
		•	Тур	ical Summe	r Wee	kend			
				EBL	D	39.0	0.84	70.8	50
Fallsview				EBR	В	18.1	0.11	11.6	-
Boulevard	С	22.3	0.71	WBT	В	17.8	0.07	8.9	1
and Dunn	C	22.3	0.71	NBL	В	11.5	0.48	16.1	1
Street				NBT	Α	8.5	0.19	20.0	-
				SBT	С	22.4	0.68	87.7	-
				EBL	F	130.3	1.04	59.9	15
				EBT	D	37.2	0.69	84.1	-
Stanley				WBL	F	96.7	0.97	68.3	25
Avenue and Murray Street	F	81.6	1.58	WBT	D	39.4	0.73	86.5	-
			1.56	NBL	F	168.3	1.29	70.8	35
				NBT	С	32.6	1.00	182.6	-
				SBL	F	380.5	1.75	213.5	55
				SBT	В	14.3	0.63	107.2	-
				EBL	С	27.1	0.59	37.3	30
				EBT	D	41.0	0.85	102.3	-
				WBL	F	87.9	0.99	63.7	35
Fallsview				WBT	С	33.8	0.65	88.9	-
Boulevard and Murray	С	33.7	0.78	WBR	С	26.3	0.12	15.2	-
Street				NBL	В	18.3	0.46	25.6	10
				NBT	С	27.1	0.56	71.1	-
				SBL	С	21.4	0.61	32.0	65
				SBT	С	27.5	0.59	84.5	-
				EBL	F	225.5	1.36	120.2	75
				EBT	D	39.2	0.81	131.1	-
				WBL	D	41.5	0.68	39.9	25
Stanley				WBT	С	31.2	0.64	94.6	-
Avenue and	D	46.7	1.16	WBR	С	23.5	0.04	8.4	25
Dunn Street				NBL	F	123.7	1.11	97.1	25
			_	NBT	С	25.9	0.71	112.3	-
				SBL	В	16.0	0.46	13.2	40
				SBT	В	18.7	0.55	108.2	-

	1	ntersectio	n			Critic	al Moveme	ent	
Intersection	LOS	Delay		Movement	LOS			95 th Percentile Queue Length (m)	Storage Capacity (m)
				EBL	D	51.3	0.81	65.7	-
				EBT	D	50.7	0.89	130.4	-
Fallsview				WBL	С	28.4	0.69	35.5	25
Boulevard				WBT	С	24.6	0.65	105.4	-
and Main Street /	С	31.2	0.77	WBR	В	18.9	0.28	17.2	-
Portage				NBL	С	23.3	0.11	12.2	20
Road				NBT	D	39.1	0.78	124.2	-
				SBL	В	19.0	0.47	26.2	-
				SBT	В	19.3	0.44	69.5	-
				EBL	В	12.7	0.15	14.7	-
Portage				EBR	В	12.9	0.17	11.6	-
Road and Fallsview	В	3 14.3	0.37	NBL	В	16.2	0.54	47.2	-
Casino Rear				NBT	Α	9.8	0.02	4.4	-
Access				SBT	В	10.6	0.14	16.8	-
				SBR	В	14.8	0.50	18.5	-
Fallsview	A			WBT	С	22.1	0.20	12.4	-
Boulevard and Hilton			0.48	WBR	С	21.4	0.09	12.4	-
Hotel				NBL	В	10.9	0.09	4.8	20
Access /		A 9.8		NBT	В	13.1	0.49	40.5	-
Fallsview				SBL	Α	5.7	0.41	14.7	25
Casino Access				SBT	Α	6.4	0.50	43.1	-
				EBT	F	663.5	2.35	161.1	-
				WBT	F	158.5	1.22	164.1	-
Stanley				WBR	С	29.1	0.42	42.9	-
Avenue and Dixon Street	F	106.6	1.66	NBL	В	13.9	0.39	5.1	65
/ Main Street				NBT	С	31.7	0.83	116.1	-
				SBL	F	167.6	1.24	129.1	140
				SBT	С	21.4	0.87	166.7	-
				WBL	D	38.5	0.11	11.2	55
Allendale				WBR	F	190.4	1.27	156.1	-
Avenue and				NBLTR	Е	68.8	0.85	96.6	-
Main Street	F	101.2	0.76	SBLTR	D	37.2	0.16	17.8	-
and Murray				SEL	Е	76.5	0.88	91.3	30
Street				SETR	Е	56.7	0.75	89.6	-
				NWLTR	D	37.9	0.14	18.2	-

		ntersectio	n			Critic	al Moveme	ent	
Intersection	LOS	Delay		Movement	LOS			95 th Percentile Queue Length (m)	Storage Capacity (m)
			Su	ımmer Long	Weel	kend			
				EBL	D	39.0	0.83	70.0	50
Fallsview				EBR	В	18.2	0.11	11.6	-
Boulevard	С	22.3	0.72	WBT	В	17.9	0.07	8.9	-
and Dunn	C	22.3	0.72	NBL	В	11.5	0.48	16.2	-
Street				NBT	Α	8.4	0.19	20.2	-
				SBT	С	22.5	0.69	88.9	-
				EBL	Е	64.2	0.82	51.6	15
			1.47	EBT	D	41.2	0.78	106.4	-
Stanley				WBL	F	135.0	1.09	74.7	25
Avenue and Murray Street	E	E 73.4		WBT	D	39.4	0.74	98.5	-
				NBL	F	366.6	1.74	77.1	35
				NBT	С	31.9	0.99	167.0	-
				SBL	F	275.8	1.51	165.9	55
				SBT	В	18.5	0.75	126.5	-
				EBL	С	24.6	0.49	33.5	30
				EBT	D	40.4	0.84	91.2	-
				WBL	D	40.2	0.76	36.1	35
Fallsview				WBT	С	32.6	0.59	73.2	-
Boulevard and Murray	С	29.9	0.68	WBR	С	26.7	0.12	15.0	-
Street				NBL	В	17.1	0.38	23.1	10
				NBT	С	25.6	0.50	58.1	-
				SBL	В	19.2	0.57	32.6	65
				SBT	С	26.1	0.55	72.8	-
				EBL	F	428.0	1.82	134.3	75
				EBT	D	50.6	0.90	145.8	-
				WBL	Е	60.3	0.79	43.2	25
Stanley				WBT	D	37.4	0.77	118.5	-
Avenue and	E	77.1	1.61	WBR	С	23.5	0.05	9.3	25
Dunn Street				NBL	F	342.1	1.63	85.4	25
				NBT	С	28.4	0.77	115.6	-
				SBL	С	26.1	0.72	23.3	40
				SBT	С	22.0	0.69	132.6	-

		ntersectio	n			Critic	al Moveme	ent	
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue Length (m)	Storage Capacity (m)
				EBL	F	127.2	1.12	109.7	-
				EBT	D	44.5	0.85	123.0	-
Fallsview				WBL	С	27.2	0.70	36.8	25
Boulevard				WBT	С	23.2	0.62	96.8	-
and Main Street /	D	44.3	0.97	WBR	С	21.1	0.53	57.3	-
Portage				NBL	С	21.4	0.07	8.5	20
Road				NBT	Е	64.6	0.98	179.7	-
				SBL	С	24.1	0.55	18.7	-
				SBT	С	20.6	0.43	62.2	-
				EBL	В	14.4	0.20	18.5	-
Portage				EBR	В	14.5	0.21	13.2	-
Road and Fallsview	С	25.1	0.65	NBL	D	53.0	0.99	120.5	-
Casino Rear				NBT	В	10.3	0.15	17.6	-
Access				SBT	В	10.6	0.19	21.4	-
				SBR	В	11.7	0.29	13.9	-
Fallsview				WBT	С	22.1	0.21	12.5	-
Boulevard			0.47	WBR	С	21.4	0.09	12.2	-
and Hilton Hotel				NBL	В	10.8	0.08	4.7	20
Access /	Α	9.7		NBT	В	13.1	0.49	40.2	-
Fallsview				SBL	Α	5.7	0.40	14.5	25
Casino Access				SBT	Α	6.3	0.49	40.6	-
				EBT	F	180.8	1.25	111.0	-
				WBT	F	86.6	1.02	131.8	-
Stanley				WBR	С	28.9	0.40	40.5	-
Avenue and Dixon Street	D	54.5	1.26	NBL	В	13.5	0.39	4.2	65
/ Main Street				NBT	O	29.4	0.83	109.2	-
				SBL	F	154.6	1.22	117.9	140
				SBT	C	22.2	0.85	122.6	
				WBL	D	36.5	0.11	11.0	55
Allendale				WBR	F	181.6	1.25	153.5	-
Avenue and				NBLTR	Е	66.9	0.85	95.6	-
Main Street	F	111.4	0.77	SBLTR	D	36.2	0.15	17.3	-
and Murray				SEL	Е	73.0	0.87	90.0	30
Street				SETR	Е	55.2	0.75	88.4	-
				NWLTR	D	36.8	0.14	17.6	-

Note: Red font represents an intersection/lane/movement which exceeds critical operational thresholds.

As shown in **Exhibit 5-1**, applying these signal timing plan changes is expected to result in improvements to the critical operations at the various study area

signalized intersections during both peak hour settings when compared to the unmitigated conditions.

While instances of movements exceeding critical thresholds are still expected to be present at various intersections, it must be noted that the most constrained movements for these intersections are comparable to Future Background Conditions. This suggests that, with signal timing plan changes, the proposed development's impact on traffic operations within the study area can be reduced. In addition, as per **Section 3.3** and according to the *City of Niagara Falls Transportation Master Plan* (October 2011), there are several major road network improvements – independent of the proposed development but within the site's study area – which are anticipated to be implemented in the short- and medium-term horizon. Improvements to Allendale Avenue, Livingston Street, Fallsview Boulevard and others are expected to further improve traffic operations by providing more capacity (through potential road widenings) and by better distributing traffic (through new connections). Specifically:

- The Allendale Avenue new connection to Stanley Avenue near Livingston Street may mitigate critical operations anticipated at the Stanley Avenue and Dixon Street / Main Street intersection – particularly the critical eastbound through and westbound through movements during both peak hours;
- The planned Livingston Street / Fallsview Boulevard connection to Portage Road can improve conditions at the Fallsview Boulevard and Portage Road / Main Street as well as the Portage Road and Fallsview Casino Rear Access intersections – particularly the critical northbound left-turn movement at the latter intersection during the summer long weekend peak hour – by providing an alternative travel path to motorists utilizing Portage Road; and
- The planned Allendale Avenue and Fallsview Boulevard widening is expected to provide increased north-south capacity to the road network and provide a viable alternative to Stanley Avenue. This can help improve conditions at all Stanley Avenue intersections within the study area:
 - At the Stanley Avenue and Murray Street intersection, the critical westbound left-turn movement during the summer long weekend peak hour can be alleviated through additional westbound left-turn movements at the nearby Fallsview Boulevard and Murray Street intersection which can be more appealing following the Fallsview Boulevard widening. In addition, volume at the critical northbound through, northbound left-turn and southbound left-turn movements at the Stanley Avenue and Murray Street intersection during both peak hours may elect to travel through the Fallsview Boulevard and Murray Street intersection following the widening.

ARCADIS FINAL REPORT

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

- At the Stanley Avenue and Dunn Street intersection, the critical eastbound left-turn movement during both peak hours can be alleviated by accommodating additional eastbound left-turn movements at the Fallsview Boulevard and Dunn Street intersection.
- At the Stanley Avenue and Dixon Street / Main Street intersection, the critical southbound left-turn movement during both peak hours can be alleviated by accommodating additional southbound left-turn movements at the Allendale Avenue and Dixon Street intersection following the Allendale Avenue widening.
- At the Fallsview Boulevard and Main Street / Portage Road intersection, the critical northbound through movement during the summer long weekend peak hour can be alleviated following the widening of Fallsview Boulevard.

As further mitigative solutions, additional turning movement capacity (such as dual left-turn lanes or split phase operation) can be considered at intersections – particularly those already identified in the TMP for short and longer-term improvements – as most of the critical operations identified in **Exhibit 5-1** pertain to left-turn movements.

Note that if the proposed signal timing plan changes that were identified in this section were applied to the 2033 Future Background Conditions scenario, traffic operations at the study area intersections would be as presented in **Exhibit 5-2**. Full Highway Capacity Manual analysis for the 2033 Future Background Mitigated Conditions scenario is presented in **Appendix F**.

Exhibit 5-2: 2033 Future Background Conditions Traffic Operations – Signalized Intersections – Mitigated

		ntersecti	on		Critical Movement						
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue Length (m)	Storage Capacity (m)		
			T	ypical Summe	er Weel	kend					
				EBL	D	36.8	0.81	67.4	50		
				EBR	В	18.3	0.11	11.6	-		
Fallsview	С	04	0.7	WBT	В	18.0	0.07	8.9	-		
Boulevard and Dunn Street	C	21	0.7	NBL	В	11.1	0.46	16.1	-		
Dann Guroot				NBT	Α	8.4	0.19	20.0	-		
				SBT	С	21.7	0.66	85.2	-		
				EBL	D	42.9	0.64	31.8	15		
		71	1.5	EBT	D	35.8	0.64	73.8	-		
Stanley	E			WBL	Е	72.8	0.89	63.6	25		
				WBT	D	40.4	0.74	84.3	-		
Avenue and Murray Street				NBL	Е	65.6	0.98	75.5	35		
Mariay Stroot				NBT	В	18.2	0.87	164.5	-		
				SBL	F	361.9	1.71	208.3	55		
				SBT	В	12.2	0.53	83.3	-		
				EBL	С	23.7	0.31	21.1	30		
				EBT	D	39.4	0.83	100.7	-		
				WBL	F	83.6	0.98	64.8	35		
Fallsview				WBT	С	31.4	0.60	87.9	-		
Boulevard and	С	33	0.8	WBR	С	25.2	0.12	15.0	-		
Murray Street				NBL	В	17.5	0.36	24.5	10		
				NBT	С	26.6	0.52	63.9	-		
				SBL	С	20.3	0.58	31.6	65		
				SBT	С	25.4	0.46	63.5	-		
				EBL	F	225.5	1.36	120.2	75		
				EBT	D	39.2	0.81	131.1	-		
				WBL	D	36.7	0.63	35.9	25		
Stanley				WBT	С	31.2	0.64	94.6	-		
Avenue and	D	48	1.1	WBR	С	23.5	0.04	8.4	25		
Dunn Street				NBL	F	114.5	1.08	96.2	25		
				NBT	С	25.4	0.69	108.7	-		
				SBL	С	22.1	0.44	24.1	40		
				SBT	С	24.2	0.54	118.5	-		

	I	ntersecti	on			Critica	l Movem	ent	
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue Length (m)	Storage Capacity (m)
				EBL	С	34.6	0.63	51.2	-
				EBT	С	29.4	0.49	56.4	-
				WBL	В	19.2	0.42	34.0	25
Fallsview				WBT	В	19.2	0.36	52.6	-
Boulevard and Main Street /	С	24	0.6	WBR	В	18.2	0.25	16.5	-
Portage Road				NBL	С	20.8	0.11	12.2	20
				NBT	С	32.6	0.72	119.9	-
				SBL	В	16.5	0.29	17.4	-
				SBT	В	18.4	0.44	68.5	-
				EBL	В	12.9	0.15	14.7	-
Portage Road			0.3	EBR	В	12.8	0.14	10.5	-
and Fallsview		14		NBL	В	13.9	0.41	34.8	-
Casino Rear				NBT	Α	9.8	0.02	4.4	-
Access				SBT	В	10.6	0.14	16.8	-
				SBR	В	14.8	0.50	18.5	-
Fallerdam	A			WBT	С	21.7	0.19	11.5	-
Fallsview Boulevard and		9.6	0.4	WBR	С	21.1	0.08	11.8	-
Hilton Hotel				NBL	В	10.8	0.07	4.6	20
Access /	А	9.0		NBT	В	12.9	0.46	37.1	-
Fallsview Casino Access				SBL	Α	5.6	0.38	13.8	25
Casillo Access				SBT	Α	5.9	0.42	32.4	-
				EBT	D	36.8	0.28	19.4	-
				WBT	D	47.7	0.70	46.2	-
Stanley				WBR	D	37.4	0.36	30.8	-
Avenue and Dixon Street /	С	22	0.7	NBL	В	12.2	0.22	3.1	65
Main Street				NBT	С	25.3	0.73	115.8	-
				SBL	С	31.1	0.71	73.3	140
				SBT	Α	9.4	0.61	72.5	-
				WBL	D	38.5	0.11	11.2	55
				WBR	F	190.4	1.27	156.1	-
Allendale				NBLTR	D	48.6	0.59	55.1	-
Avenue and Main Street and Murray Street	F	101	0.7	SBLTR	D	36.9	0.15	17.7	-
			0.7	SEL	Е	76.5	0.88	91.3	30
				SETR	Е	65.7	0.75	89.6	-
				NWLTR	D	37.8	0.14	18.0	-

		ntersecti	on			Critica	l Movem	ent	
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue Length (m)	Storage Capacity (m)
				Summer Long	Week	end			
				EBL	D	37.1	0.82	67.6	50
				EBR	В	18.3	0.11	11.6	-
Fallsview Boulevard and	С	22	0.7	WBT	В	18.0	0.07	8.9	-
Dunn Street	C	22	0.7	NBL	В	11.2	0.47	16.2	-
				NBT	Α	8.4	0.19	20.2	-
				SBT	С	22.0	0.67	86.9	-
				EBL	D	35.4	0.54	27.7	15
			1.4	EBT	D	38.8	0.73	87.2	-
				WBL	F	102.3	0.99	70.6	25
Stanley Avenue and Murray Street	E	59		WBT	D	40.4	0.75	95.5	-
				NBL	F	156.8	1.25	78.7	35
				NBT	В	19.3	0.89	148.3	-
				SBL	F	262.3	1.48	162.3	55
				SBT	В	15.7	0.66	103.3	-
				EBL	С	23.7	0.29	21.2	30
				EBT	D	38.8	0.81	90.0	-
				WBL	D	35.6	0.73	34.8	35
Fallsview				WBT	С	30.4	0.55	72.2	-
Boulevard and	С	29	0.7	WBR	С	25.4	0.12	14.8	-
Murray Street				NBL	В	16.8	0.32	22.4	10
				NBT	С	25.3	0.46	51.9	-
				SBL	В	18.7	0.55	32.2	65
				SBT	С	24.7	0.44	57.1	-
				EBL	F	428.0	1.82	134.3	75
				EBT	D	50.6	0.90	145.8	-
				WBL	D	51.9	0.73	39.5	25
Stanley				WBT	D	37.4	0.77	118.5	-
Avenue and	Е	78	1.6	WBR	С	23.5	0.05	9.3	25
Dunn Street				NBL	F	327.3	1.60	84.2	25
			-	NBT	С	27.9	0.76	113.0	-
				SBL	С	34.6	0.70	45.1	40
				SBT	С	27.3	0.68	142.7	-

		ntersecti	on			Critica	l Movem	ent	
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95 th Percentile Queue Length (m)	Storage Capacity (m)
				EBL	Е	73.4	0.96	101.3	-
				EBT	С	28.8	0.50	59.2	-
				WBL	В	19.2	0.48	35.9	25
Fallsview				WBT	В	19.3	0.39	56.1	-
Boulevard and Main Street /	D	37	0.9	WBR	С	20.3	0.47	47.6	-
Portage Road				NBL	С	21.4	0.07	8.5	20
				NBT	Е	61.3	0.97	176.5	-
				SBL	С	20.9	0.36	13.5	-
				SBT	С	20.5	0.42	61.3	-
	1 2 1 10			EBL	В	14.4	0.20	18.5	-
Portage Road			0.6	EBR	В	14.3	0.18	12.4	-
and Fallsview		В 19		NBL	D	35.5	0.89	105.5	-
Casino Rear				NBT	В	10.3	0.15	17.6	-
Access				SBT	В	10.6	0.19	21.4	-
				SBR	В	11.7	0.29	13.9	-
				WBT	С	21.7	0.19	11.8	-
Fallsview Boulevard and				WBR	С	21.1	0.08	11.8	-
Hilton Hotel		0.0	0.4	NBL	В	10.8	0.08	4.6	20
Access /	Α	9.6	0.4	NBT	В	13.0	0.47	37.6	-
Fallsview Casino Access				SBL	Α	5.6	0.38	13.9	25
Casino Access				SBT	Α	5.9	0.42	32.8	-
				EBT	D	36.8	0.29	19.9	-
				WBT	D	47.9	0.71	46.2	-
Stanley				WBR	D	37.5	0.38	32.0	-
Avenue and Dixon Street /	С	22	0.7	NBL	В	12.4	0.23	2.6	65
Main Street				NBT	С	24.4	0.75	109.1	-
				SBL	С	30.9	0.71	74.8	140
				SBT	В	10.4	0.62	84.2	-
				WBL	D	37.5	0.11	11.0	55
				WBR	F	181.6	1.25	153.5	-
Allendale Avenue and Main Street and Murray Street				NBLTR	D	47.5	0.59	54.8	-
	F	96	0.7	SBLTR	D	35.9	0.14	17.2	-
			0.7	SEL	Е	73.0	0.87	90.0	30
				SETR	Е	55.2	0.75	88.4	-
			NWLTR	D	36.8	0.14	17.6	-	

Note: Red font represents an intersection/lane/movement which exceeds critical operational thresholds.

5.2 Unsignalized Intersections

Based on anticipated instances of movements exceeding critical thresholds, mitigative measures were considered to improve operations at the study area unsignalized intersections. It must be noted that while *Niagara Region Guidelines for Transportation Impact Studies* (May 2012) indicates that LOS 'D' or worse is considered critical, levels of delay in this range are generally expected and tolerated by road users in urban areas. As a result, critical delay alone does not necessarily indicate that mitigation measures are required.

That being said, at the Fallsview Boulevard and Dixon Street / Fallsview Casino Access intersection, a traffic control signal could be considered. Although traffic control signals would not necessarily be expected to be warranted at this intersection based on the traffic volume criteria (due to low minor approach volume), they can still be considered in response to high delay from Dixon Street and/or to improve pedestrian connectivity in the study area. As "vehicles have right of way" signage is also currently posted at this intersection in existing conditions to inform pedestrians that there are no dedicated east-west crossings available there, this suggests that this intersection is located along a pedestrian desire line.

6 Traffic Analysis Summary

The proposed development is expected to generate up to 797 net new two-way automobile trips during the Saturday Peak Hour. Based on a comparison between 2033 Future Background Mitigated Conditions and 2033 Future Total Mitigated Conditions, the traffic generated by the proposed development contemplated in the Application is generally not anticipated to have a significant impact on traffic operations at study area intersections as traffic operations are similar for the majority of movements. While instances of movements exceeding critical thresholds are still expected to be present at various intersections, with signal timing plan changes and short and long-term improvement identified in the *City of Niagara Falls Transportation Master Plan* (October 2011) which are independent of the proposed development, the proposed development's impact on traffic operations within the study area can be reduced.

For unsignalized intersections, the Fallsview Boulevard and Dixon Street / Fallsview Casino Access, Dixon Street and Allendale Avenue / 6519 Stanley Avenue Access, and the Portage Road and Proposed Development Site Access intersections are all expected to experience operations which exceed delay critical thresholds under Future Total Conditions during both the typical summer weekend and summer long weekend peak hours. However, levels of delay in this range are generally expected and tolerated by road users in urban areas. As a result, critical delay alone does not necessarily indicate that mitigation measures are required. That being said, a traffic control signal could be considered at the Fallsview Boulevard and Dixon Street / Fallsview Casino Access intersection due to the combination of high delay, movements exceeding capacity limits, and a lack of a protected pedestrian crossing along pedestrian desire lines.

6.1 Sensitivity Analysis: Existing plus Site Traffic Conditions Analysis

Based on a review of 2023 Existing Conditions, 2033 Future Background Conditions, and 2033 Future Total Conditions, traffic volumes generated by planned background developments discussed in **Section 3.4** – as opposed to the proposed development itself – are expected to be a significant cause of critical operations in the future conditions scenario.

In order to understand the relative impacts of the background developments, **Exhibit 6-1** and **Exhibit 6-2** demonstrate signalized and unsignalized intersection operations, respectively, of a scenario with site traffic added to the 2023 Existing Conditions scenario. Full Highway Capacity Manual analysis for this sensitivity analysis scenario is presented in **Appendix J**.

Exhibit 6-1: 2023 Existing plus Site Traffic Conditions Traffic Operations - Signalized Intersections

		ntersectio	n			Critic	al Moveme	ent	
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)
		'	Тур	ical Summe	r Wee	ekend			
				EBL	С	27.2	0.60	33.5	50
Fallsview				EBR	С	20.2	0.04	3.6	-
Boulevard	В	15.3	0.20	WBT	С	20.4	0.07	7.5	-
and Dunn	ь	13.3	0.38	NBL	Α	6.1	0.09	7.2	-
Street				NBT	Α	6.5	0.13	16.3	-
				SBT	В	12.0	0.30	34.9	-
			0.82	EBL	D	46.3	0.71	42.1	15
				EBT	С	32.8	0.48	54.8	-
Stanley	С	C 20.8		WBL	С	31.4	0.32	24.2	25
Avenue and Murray Street				WBT	С	34.9	0.59	63.1	-
				NBL	В	17.5	0.39	20.0	35
				NBT	В	16.8	0.53	48.1	-
				SBL	С	24.0	0.84	60.4	55
				SBT	Α	9.9	0.36	51.3	-
				EBL	С	23.2	0.33	28.5	30
				EBT	С	33.3	0.59	61.7	-
				WBL	С	25.5	0.56	33.7	35
Fallsview				WBT	С	31.5	0.47	60.4	-
Boulevard and Murray	С	26.3	0.48	WBR	С	27.8	0.10	14.5	-
Street				NBL	В	16.5	0.28	21.4	10
				NBT	С	24.2	0.38	43.6	-
				SBL	В	16.7	0.39	26.1	65
				SBT	С	24.1	0.40	55.2	-
				EBL	С	32.2	0.35	30.7	75
				EBT	С	34.1	0.52	58.5	-
				WBL	С	31.3	0.24	17.9	25
Stanley				WBT	С	31.4	0.28	33.3	-
Avenue and	В	18.3	0.35	WBR	С	29.3	0.03	3.0	25
Dunn Street				NBL	В	12.7	0.19	20.0	25
				NBT	В	13.1	0.29	43.8	-
				SBL	Α	8.4	0.13	9.9	40
				SBT	Α	9.7	0.19	27.8	-

		ntersectio	n			Critic	al Moveme	ent	
Intersection	LOS	Delay		Movement	LOS			95th Percentile Queue Length (m)	Storage Capacity (m)
				EBL	С	32.3	0.58	43.6	-
				EBT	D	35.2	0.71	87.7	-
Fallsview				WBL	В	19.1	0.35	23.2	25
Boulevard				WBT	С	21.7	0.55	85.4	-
and Main Street /	С	23.8	0.55	WBR	В	17.8	0.22	15.6	-
Portage				NBL	С	20.6	0.07	10.4	20
Road				NBT	С	26.2	0.48	69.2	-
				SBL	В	15.4	0.26	20.7	-
				SBT	В	15.5	0.21	31.5	-
				EBL	В	15.0	0.14	12.5	-
Portage				EBR	В	14.7	0.09	8.4	-
Road and Fallsview Casino Rear	В	44.7	0.30	NBL	В	10.2	0.26	24.4	-
		B 11.7		NBT	Α	8.2	0.02	3.9	-
Access				SBT	Α	8.7	0.10	14.4	-
				SBR	В	11.6	0.41	17.1	-
Fallsview				WBT	С	20.5	0.17	9.8	-
Boulevard			0.34	WBR	С	20.0	0.08	10.5	-
and Hilton Hotel				NBL	Α	9.4	0.05	4.1	20
Access /	Α	8.7		NBT	В	10.8	0.34	28.0	-
Fallsview				SBL	Α	5.4	0.33	11.8	25
Casino Access				SBT	Α	5.6	0.35	24.6	-
				EBT	F	441.9	1.85	144.9	-
				WBT	F	117.9	1.11	145.6	-
Stanley				WBR	С	27.7	0.21	19.2	-
Avenue and Dixon Street	F	86.5	0.98	NBL	В	17.8	0.14	13.3	65
/ Main Street				NBT	С	23.1	0.31	50.2	-
				SBL	В	10.4	0.52	26.5	140
				SBT	В	13.0	0.43	38.6	-
				WBL	D	39.9	0.09	9.9	55
Allendale				WBR	F	87.6	0.93	99.3	-
Avenue and				NBLTR	D	54.8	0.72	76.8	-
Main Street and Murray	E	58.3	0.55	SBLTR	D	35.4	0.07	11.1	-
		58.3		SEL	D	42.9	0.43	40.8	30
Street				SETR	D	45.1	0.55	64.0	-
				NWLTR	D	35.9	0.11	15.3	-

		ntersectio	on .			Critic	al Moveme	ent	
Intersection	Los	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)
			Su	mmer Long	Weel	kend			
				EBL	С	27.3	0.61	33.6	50
Fallsview				EBR	С	20.2	0.04	3.6	-
Boulevard	В	15.3	0.20	WBT	С	20.4	0.07	7.5	-
and Dunn	Ь	15.3	0.38	NBL	Α	6.2	0.10	7.4	-
Street				NBT	Α	6.5	0.13	16.6	-
				SBT	В	12.1	0.31	35.7	-
			0.73	EBL	F	127.7	1.01	49.0	15
				EBT	D	41.3	0.68	63.5	-
Stanley		C 22.9		WBL	D	36.9	0.49	26.0	25
Avenue and	С			WBT	D	45.2	0.74	67.0	-
Murray Street				NBL	В	15.4	0.41	28.4	35
				NBT	В	12.2	0.45	39.0	-
				SBL	В	10.7	0.61	37.6	55
				SBT	Α	9.1	0.42	61.6	-
				EBL	С	23.4	0.32	28.8	30
				EBT	С	33.2	0.57	56.8	-
				WBL	С	24.1	0.41	26.5	35
Fallsview				WBT	С	31.3	0.40	48.0	-
Boulevard and Murray	С	25.5	0.45	WBR	С	28.4	0.10	14.3	-
Street				NBL	В	17.0	0.26	19.6	10
				NBT	С	23.3	0.33	34.5	-
				SBL	В	15.6	0.38	26.5	65
				SBT	С	22.5	0.37	49.6	-
				EBL	С	33.2	0.42	33.6	75
				EBT	D	35.8	0.58	61.9	-
				WBL	С	31.5	0.26	18.1	25
Stanley				WBT	С	32.4	0.38	42.1	-
Avenue and	В	19.3	0.40	WBR	С	29.1	0.03	4.1	25
Dunn Street				NBL	В	15.5	0.26	23.2	25
				NBT	В	15.1	0.33	45.7	-
			_	SBL	Α	9.8	0.23	15.9	40
				SBT	В	10.6	0.28	36.2	-

		ntersectio	n			Critic	al Moveme	ent	
Intersection	LOS	Delay	v/c Ratio	Movement	LOS	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Storage Capacity (m)
				EBL	Е	69.0	0.93	87.5	-
				EBT	D	36.0	0.75	102.1	-
Fallsview				WBL	В	18.8	0.41	25.5	25
Boulevard				WBT	С	22.0	0.60	92.3	-
and Main Street /	С	29.8	0.74	WBR	В	17.8	0.28	16.9	-
Portage				NBL	С	20.8	0.05	7.3	20
Road				NBT	С	33.8	0.71	103.0	-
				SBL	В	16.9	0.29	17.2	-
				SBT	В	16.0	0.17	24.0	-
				EBL	В	15.2	0.18	14.6	-
Portage				EBR	В	14.9	0.12	9.6	-
Road and Fallsview Casino Rear Access	Ъ	B 12.9	0.45	NBL	В	16.7	0.63	72.5	-
	В			NBT	Α	8.8	0.12	15.1	-
				SBT	Α	9.1	0.15	18.3	-
				SBR	Α	9.9	0.24	13.2	-
Fallsview	A	A 8.7	0.34	WBT	С	20.6	0.17	10.0	-
Boulevard				WBR	С	20.0	0.08	10.6	-
and Hilton Hotel				NBL	Α	9.4	0.05	4.1	20
Access /				NBT	В	10.8	0.34	28.3	-
Fallsview				SBL	Α	5.5	0.34	11.9	25
Casino Access				SBT	Α	5.6	0.35	24.8	-
				EBT	F	449.5	1.87	145.4	-
				WBT	F	117.9	1.11	145.6	-
Stanley				WBR	С	27.7	0.21	19.5	-
Avenue and Dixon Street	F	87.0	0.99	NBL	В	15.5	0.15	13.0	65
/ Main Street				NBT	С	23.0	0.32	49.0	-
				SBL	Α	9.9	0.52	25.1	140
				SBT	В	12.8	0.44	38.3	-
				WBL	D	38.9	0.09	9.8	55
Allendale				WBR	F	84.1	0.92	97.3	-
Avenue and				NBLTR	D	53.3	0.71	76.2	-
Main Street	Е	56.4	0.56	SBLTR	С	34.4	0.07	11.0	-
and Murray				SEL	D	41.8	0.43	40.2	30
Street				SETR	D	43.9	0.55	63.4	-
				NWLTR	С	34.9	0.10	14.9	-

Note: Red font represents an intersection/lane/movement which exceeds critical operational thresholds.

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

As shown in **Exhibit 4-5**, during the peak hour on a typical summer weekend for the sensitivity analysis scenario at the study area signalized intersections, the following critical operations are anticipated:

- At the Stanley Avenue and Dixon Street / Main Street intersection, the eastbound through and westbound through movements are expected to have critical v/c ratios of 1.85 and 0.91, respectively; and
- At the Allendale Avenue and Main Street and Murray Street intersection, the westbound right-turn movement is expected to have a critical v/c ratio of 0.93.

During the peak hour on a summer long weekend, the following critical operations are anticipated:

- At the Stanley Avenue and Murray Street intersection, the eastbound left-turn movement is expected to have a critical v/c ratio of 1.01;
- At the Stanley Avenue and Dixon Street / Main Street intersection, the eastbound through and westbound through movements are expected to have critical v/c ratios of 1.87 and 0.92, respectively; and
- At the Allendale Avenue and Main Street and Murray Street intersection, the westbound right-turn movement is expected to have a critical v/c ratio of 0.92.

Exhibit 6-2: 2023 Existing plus Site Traffic Conditions Traffic Operations - Unsignalized Intersections

Intersection	Intersection Delay (s)	Lane	Lane LOS	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Storage Capacity (m)	
		Typic	al Summe	r Weekend				
Fallsview		EBLTR	F	72.8	0.36	10.5	-	
Boulevard and	2.0	WBLTR	Α	0.0	0.00	0.0	-	
Dixon Street / Fallsview Casino	3.6	NBL	С	18.1	0.18	4.9	-	
Access		SBL	В	12.5	0.20	5.7	-	
Dixon Street and		WBLTR	Α	5.8	0.18	5.0	-	
Allendale Avenue /	12.7	NBLTR	С	16.3	0.53	23.8	-	
6519 Stanley Avenue Access		SBLTR	F	52.1	0.36	11.3	-	
Stanley Ave and		EBL	Α	0.0	0.00	0.0	-	
6519 Stanley	0.1	EBR	Α	0.0	0.00	0.0	-	
Avenue Access		NBL	Α	8.7	0.01	0.3	-	
Portage Road and		EBL	Α	9.0	0.28	8.7	-	
Proposed	4.5	SBL	Е	47.2	0.14	3.6	-	
Development Site Access		SBR	В	14.7	0.38	13.7	-	

Intersection	Intersection Delay (s)	Lane	Lane LOS	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Storage Capacity (m)			
		Sun	nmer Long	Weekend						
Fallsview		EBLTR	С	16.0	0.09	2.2	-			
Boulevard and	4.0	WBLTR	Α	0.0	0.00	0.0	-			
Dixon Street / Fallsview Casino	1.6	NBL	Α	8.6	0.06	1.4	-			
Access		SBL	Α	9.1	0.12	3.2	-			
Dixon Street and		WBLTR	Α	5.8	0.18	5.0	-			
Allendale Avenue /	12.9	NBLTR	С	16.4	0.53	23.9	-			
6519 Stanley Avenue Access		SBLTR	F	53.6	0.38	12.1	-			
Stanley Ave and		EBL	Α	0.0	0.00	0.0	-			
6519 Stanley	0.1	0.1	0.1	0.1	EBR	Α	0.0	0.00	0.0	-
Avenue Access		NBL	Α	8.7	0.01	0.3	-			
Portage Road and		EBL	Α	8.5	0.25	7.7	-			
Proposed Development Site	4.4	SBL	Е	38.0	0.11	2.9	-			
Access		SBR	В	13.5	0.35	12.1	-			

Note: Red font represents an intersection/lane/movement which exceeds critical operational thresholds.

As shown in **Exhibit 4-6**, during the peak hour on a typical summer weekend in the sensitivity analysis scenario at the study area unsignalized intersections, the following critical operations are anticipated:

- At the Fallsview Boulevard and Dixon Street / Fallsview Casino Access intersection, the eastbound left-turn, through, and right-turn lane is expected to have a critical lane LOS of 'F';
- At the Dixon Street and Allendale Avenue / 6519 Stanley Avenue Access intersection, the southbound left-turn, through, and right-turn lane is expected to have a critical lane LOS of 'F'; and
- At the Portage Road and Proposed Development Site Access intersection, the southbound left-turn lane is expected to have a critical lane LOS of 'E'.

During the peak hour on a summer long weekend, the following critical operations are anticipated:

- At the Dixon Street and Allendale Avenue / 6519 Stanley Avenue Access intersection, the southbound left-turn, through, and right-turn lane is expected to have a critical lane LOS of 'F'; and
- At the Portage Road and Proposed Development Site Access intersection, the southbound left-turn lane is expected to have a critical lane LOS of 'E'.

To demonstrate the general potential impacts of development site traffic to traffic operations within the study area in a scenario reflective of background

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

developments not proceeding to construction, comparisons of signalized and unsignalized intersection operations under 2023 Existing Conditions and Existing plus Site Traffic Conditions are presented in **Exhibit 6-3** and **Exhibit 6-4**, respectively.

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

Exhibit 6-3: Existing Conditions Signalized Intersection Traffic Operations Comparison

		Exi	sting Cond	itions	Exist	ing plus Sit Condition		Difference (Existing plus Site Traffic - Existing)		
Intersection	Movement	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)
				Typical Sum	nmer Week	end				
	EBL	26.9	0.58	32.1	27.1	0.60	33.3	0.2	0.02	1.2
	EBR	20.5	0.04	3.6	20.3	0.04	3.6	-0.2	0.00	0.0
Fallsview Boulevard and	WBT	20.7	0.07	7.6	20.4	0.07	7.5	-0.3	0.00	-0.1
Dunn Street	NBL	5.9	0.09	7.0	6.1	0.09	7.2	0.2	0.00	0.2
	NBT	6.3	0.13	15.9	6.4	0.13	16.2	0.1	0.00	0.3
	SBT	11.6	0.29	33.5	11.9	0.30	35.0	0.3	0.01	1.5
	EBL	32.3	0.37	21.5	40.5	0.64	35.2	8.2	0.27	13.7
	EBT	32.2	0.41	46.8	32.8	0.48	54.8	0.6	0.07	8.0
	WBL	31.1	0.29	23.8	31.4	0.32	24.2	0.3	0.03	0.4
Stanley Avenue	WBT	34.7	0.57	61.4	34.9	0.58	62.8	0.2	0.01	1.4
and Murray Street	NBL	16.4	0.31	33.7	16.2	0.37	18.8	-0.2	0.06	-14.9
	NBT	15.9	0.41	71.2	15.2	0.49	45.6	-0.7	0.08	-25.6
	SBL	13.9	0.71	47.8	19.4	0.79	52.5	5.5	0.08	4.7
	SBT	9.0	0.26	35.9	9.7	0.34	47.8	0.7	0.08	11.9
	EBL	24.4	0.12	12.1	23.1	0.27	24.2	-1.3	0.15	12.1
	EBT	32.6	0.57	61.2	33.3	0.59	61.6	0.7	0.02	0.4
	WBL	23.1	0.53	33.2	25.3	0.55	33.7	2.2	0.02	0.5
Fallsview	WBT	27.2	0.38	58.8	31.2	0.46	60.4	4.0	0.08	1.6
Boulevard and	WBR	24.3	0.10	14.3	27.6	0.10	14.5	3.3	0.00	0.2
Murray Street	NBL	16.8	0.22	20.4	16.3	0.27	21.1	-0.5	0.05	0.7
	NBT	24.0	0.32	34.5	23.9	0.36	41.3	-0.1	0.04	6.8
	SBL	17.0	0.37	25.7	16.6	0.38	26.1	-0.4	0.01	0.4
	SBT	22.9	0.27	36.7	23.5	0.37	50.2	0.6	0.10	13.5

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS

Prepared for Hennepin Fallsview Inc.

		Exi	sting Cond	litions	Exist	ing plus Sit Condition		Difference (Existing plus Site Traffic - Existing)			
Intersection	Movement	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	
	EBL	32.2	0.35	30.7	32.2	0.35	30.7	0.0	0.00	0.0	
	EBT	34.1	0.52	58.5	34.1	0.52	58.5	0.0	0.00	0.0	
	WBL	30.9	0.21	15.9	31.2	0.23	17.5	0.3	0.02	1.6	
Otania A	WBT	31.4	0.28	33.3	31.4	0.28	33.3	0.0	0.00	0.0	
Stanley Avenue and Dunn Street	WBR	29.3	0.03	3.0	29.3	0.03	3.0	0.0	0.00	0.0	
and Bann Greek	NBL	12.7	0.18	19.9	12.7	0.18	20.0	0.0	0.00	0.1	
	NBT	13.0	0.28	41.8	13.1	0.29	43.4	0.1	0.01	1.6	
	SBL	11.5	0.13	15.2	8.9	0.13	10.9	-2.6	0.00	-4.3	
	SBT	14.4	0.19	43.6	10.4	0.19	31.8	-4.0	0.00	-11.8	
	EBL	28.4	0.47	41.0	30.1	0.54	42.9	1.7	0.07	1.9	
	EBT	25.8	0.27	32.5	30.7	0.61	74.6	4.9	0.34	42.1	
	WBL	18.3	0.24	22.1	19.3	0.34	23.0	1.0	0.10	0.9	
Fallsview	WBT	18.9	0.27	37.7	21.4	0.50	72.1	2.5	0.23	34.4	
Boulevard and Main Street /	WBR	18.2	0.19	14.8	18.4	0.21	15.3	0.2	0.02	0.5	
Portage Road	NBL	18.4	0.07	10.4	19.2	0.07	10.4	0.8	0.00	0.0	
	NBT	23.0	0.43	66.9	24.2	0.45	68.6	1.2	0.02	1.7	
	SBL	13.1	0.12	12.1	14.0	0.21	18.2	0.9	0.09	6.1	
	SBT	14.0	0.20	30.8	14.4	0.20	31.5	0.4	0.00	0.7	
	EBL	15.0	0.14	12.5	15.0	0.14	12.5	0.0	0.00	0.0	
	EBR	14.5	0.05	6.6	14.6	0.08	7.9	0.1	0.03	1.3	
Portage Road and	NBL	9.2	0.15	14.9	9.9	0.23	21.8	0.7	0.08	6.9	
Fallsview Casino Rear Access	NBT	8.2	0.02	3.9	8.2	0.02	3.9	0.0	0.00	0.0	
	SBT	8.7	0.10	14.4	8.7	0.10	14.4	0.0	0.00	0.0	
	SBR	11.6	0.41	17.1	11.6	0.41	17.1	0.0	0.00	0.0	

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

		Exi	sting Cond	litions	Existi	ing plus Sit Condition			ce (Existing	
Intersection	Movement	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)
	WBT	20.4	0.15	9.3	20.5	0.16	9.6	0.1	0.01	0.3
Fallsview	WBR	19.9	0.07	9.6	20.0	0.07	10.6	0.1	0.00	1.0
Boulevard and Hilton Hotel Access	NBL	9.3	0.04	4.0	9.3	0.05	4.1	0.0	0.01	0.1
/ Fallsview Casino	NBT	10.5	0.31	25.0	10.7	0.33	27.3	0.2	0.02	2.3
Access	SBL	5.4	0.31	11.0	5.4	0.32	11.4	0.0	0.01	0.4
	SBT	5.2	0.25	16.7	5.5	0.32	22.5	0.3	0.07	5.8
	EBT	38.8	0.18	14.3	94.0	1.00	93.3	55.2	0.82	79.0
	WBT	46.7	0.63	36.7	59.3	0.90	112.4	12.6	0.27	75.7
Stanley Avenue	WBR	38.7	0.18	20.3	27.6	0.20	19.0	-11.1	0.02	-1.3
and Dixon Street /	NBL	5.9	0.09	8.5	17.5	0.14	13.2	11.6	0.05	4.7
Main Street	NBT	10.4	0.22	43.4	22.8	0.31	50.1	12.4	0.09	6.7
	SBL	4.2	0.34	16.0	10.1	0.50	25.8	5.9	0.16	9.8
	SBT	6.0	0.26	31.0	12.9	0.41	37.7	6.9	0.15	6.7
	WBL	40.1	0.10	9.9	39.9	0.09	9.9	-0.2	-0.01	0.0
	WBR	87.6	0.93	99.3	87.6	0.93	99.3	0.0	0.00	0.0
Allendale Avenue	NBLTR	43.6	0.46	44.5	53.1	0.69	72.0	9.5	0.23	27.5
and Main Street	SBLTR	35.4	0.07	11.1	35.1	0.07	11.1	-0.3	0.00	0.0
and Murray Street	SEL	57.4	0.74	75.7	42.9	0.43	40.8	-14.5	-0.31	-34.9
	SETR	40.8	0.37	39.7	45.1	0.55	64.0	4.3	0.18	24.3
	NWLTR	35.9	0.11	15.3	35.9	0.11	15.3	0.0	0.00	0.0
				Summer L	ong Weeke	nd				
	EBL	27.0	0.59	32.3	27.3	0.60	33.5	0.3	0.01	1.2
	EBR	20.5	0.04	3.7	20.3	0.04	3.7	-0.2	0.00	0.0
Fallsview Boulevard and	WBT	20.7	0.07	7.6	20.4	0.07	7.5	-0.3	0.00	-0.1
Dunn Street	NBL	6.0	0.09	7.1	6.1	0.09	7.3	0.1	0.00	0.2
	NBT	6.3	0.13	16.1	6.4	0.13	16.4	0.1	0.00	0.3
	SBT	11.7	0.29	34.0	12.0	0.30	35.5	0.3	0.01	1.5

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS

Prepared for Hennepin Fallsview Inc.

		Exi	sting Cond	litions	Exist	ing plus Sit Condition		Difference (Existing plus Site Traffic - Existing)			
Intersection	Movement	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	
	EBL	42.7	0.57	22.1	107.8	0.94	43.6	65.1	0.37	21.5	
	EBT	39.6	0.62	54.6	42.5	0.69	63.5	2.9	0.07	8.9	
	WBL	36.9	0.45	25.3	37.7	0.51	26.1	0.8	0.06	0.8	
Stanley Avenue	WBT	46.9	0.75	64.7	46.4	0.75	66.1	-0.5	0.00	1.4	
and Murray Street	NBL	12.9	0.32	33.6	14.0	0.38	32.5	1.1	0.06	-1.1	
	NBT	10.4	0.33	60.1	10.7	0.41	36.5	0.3	0.08	-23.6	
	SBL	8.0	0.50	35.8	9.5	0.57	36.9	1.5	0.07	1.1	
	SBT	7.8	0.32	43.4	8.7	0.39	57.0	0.9	0.07	13.6	
	EBL	24.7	0.13	12.2	23.2	0.27	24.4	-1.5	0.14	12.2	
	EBT	32.5	0.54	55.8	33.2	0.57	56.4	0.7	0.03	0.6	
	WBL	21.8	0.38	25.9	23.9	0.41	26.5	2.1	0.03	0.6	
Fallsview	WBT	27.1	0.33	46.8	31.0	0.40	48.0	3.9	0.07	1.2	
Boulevard and	WBR	24.9	0.10	14.1	28.2	0.10	14.3	3.3	0.00	0.2	
Murray Street	NBL	17.4	0.22	18.6	16.9	0.24	19.3	-0.5	0.02	0.7	
	NBT	23.4	0.29	29.6	23.2	0.32	33.2	-0.2	0.03	3.6	
	SBL	15.8	0.36	26.1	15.5	0.37	26.5	-0.3	0.01	0.4	
	SBT	21.2	0.23	30.8	22.0	0.33	44.8	0.8	0.10	14.0	
	EBL	33.2	0.42	33.6	33.2	0.42	33.6	0.0	0.00	0.0	
	EBT	35.8	0.58	61.9	35.8	0.58	61.9	0.0	0.00	0.0	
	WBL	31.1	0.23	16.1	31.5	0.26	17.8	0.4	0.03	1.7	
Ota da A	WBT	32.4	0.38	42.1	32.4	0.38	42.1	0.0	0.00	0.0	
Stanley Avenue	WBR	29.1	0.03	4.1	29.1	0.03	4.1	0.0	0.00	0.0	
and Dunn Street	NBL	15.4	0.25	23.0	15.5	0.25	23.1	0.1	0.00	0.1	
	NBT	14.9	0.31	43.5	15.0	0.33	45.2	0.1	0.02	1.7	
	SBL	12.4	0.22	23.7	10.5	0.23	17.3	-1.9	0.01	-6.4	
	SBT	16.1	0.27	56.3	11.3	0.28	41.1	-4.8	0.01	-15.2	

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS

Prepared for Hennepin Fallsview Inc.

		Exi	sting Cond	litions	Exist	ing plus Sit Condition		Difference (Existing plus Site Traffic - Existing)			
Intersection	Movement	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	
	EBL	38.7	0.76	74.2	62.2	0.90	84.9	23.5	0.14	10.7	
	EBT	24.2	0.30	33.8	32.2	0.66	79.6	8.0	0.36	45.8	
	WBL	17.0	0.28	23.4	18.2	0.37	25.4	1.2	0.09	2.0	
Fallsview	WBT	17.7	0.30	39.8	20.6	0.53	78.1	2.9	0.23	38.3	
Boulevard and Main Street /	WBR	17.3	0.25	15.7	17.7	0.28	16.6	0.4	0.03	0.9	
Portage Road	NBL	17.5	0.04	7.1	20.3	0.05	7.3	2.8	0.01	0.2	
ŭ	NBT	26.8	0.63	94.4	32.6	0.69	101.9	5.8	0.06	7.5	
	SBL	14.2	0.11	8.4	16.2	0.24	14.7	2.0	0.13	6.3	
	SBT	14.4	0.16	23.1	15.7	0.17	24.0	1.3	0.01	0.9	
	EBL	15.2	0.18	14.6	15.2	0.18	14.6	0.0	0.00	0.0	
	EBR	14.7	0.09	8.1	14.8	0.11	9.3	0.1	0.02	1.2	
Portage Road and Fallsview Casino	NBL	13.9	0.51	48.0	15.9	0.60	67.6	2.0	0.09	19.6	
Rear Access	NBT	8.8	0.12	15.1	8.8	0.12	15.1	0.0	0.00	0.0	
110017100000	SBT	9.1	0.15	18.3	9.1	0.15	18.3	0.0	0.00	0.0	
	SBR	9.9	0.24	13.2	9.9	0.24	13.2	0.0	0.00	0.0	
	WBT	20.4	0.16	9.5	20.5	0.17	9.8	0.1	0.01	0.3	
Fallsview	WBR	19.9	0.07	9.7	20.0	0.07	10.5	0.1	0.00	0.8	
Boulevard and	NBL	9.3	0.04	4.0	9.4	0.05	4.1	0.1	0.01	0.1	
Hilton Hotel Access / Fallsview Casino	NBT	10.5	0.31	25.2	10.7	0.34	27.5	0.2	0.03	2.3	
Access	SBL	5.4	0.31	11.1	5.4	0.32	11.6	0.0	0.01	0.5	
	SBT	5.2	0.26	16.8	5.5	0.33	22.6	0.3	0.07	5.8	
	EBT	38.9	0.19	14.6	96.9	1.01	93.5	58.0	0.82	78.9	
	WBT	46.7	0.63	36.7	59.3	0.90	112.4	12.6	0.27	75.7	
Stanley Avenue	WBR	38.8	0.18	20.5	27.6	0.21	19.2	-11.2	0.03	-1.3	
and Dixon Street /	NBL	4.0	0.09	5.9	15.5	0.14	12.9	11.5	0.05	7.0	
Main Street	NBT	10.2	0.22	42.4	22.8	0.31	48.8	12.6	0.09	6.4	
	SBL	3.9	0.34	16.0	9.5	0.50	24.3	5.6	0.16	8.3	
	SBT	6.3	0.27	28.7	12.8	0.42	37.5	6.5	0.15	8.8	

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS

Prepared for Hennepin Fallsview Inc.

		Existing Conditions			Exist	ing plus Sit Condition		Difference (Existing plus Site Traffic - Existing)			
Intersection	Movement	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	
	WBL	39.1	0.09	9.9	38.9	0.09	9.8	-0.2	0.00	-0.1	
	WBR	84.1	0.92	97.3	84.1	0.92	97.3	0.0	0.00	0.0	
Allendale Avenue	NBLTR	42.5	0.46	44.5	51.6	0.69	69.6	9.1	0.23	25.1	
and Main Street	SBLTR	34.4	0.07	11.0	34.4	0.07	11.0	0.0	0.00	0.0	
and Murray Street	SEL	55.9	0.73	75.0	41.8	0.43	40.2	-14.1	-0.30	-34.8	
	SETR	39.7	0.37	39.2	43.9	0.55	63.4	4.2	0.18	24.2	
	NWLTR	34.9	0.10	14.9	34.9	0.10	14.9	0.0	0.00	0.0	

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

Exhibit 6-4: Existing Conditions Unsignalized Intersection Traffic Operations Comparison

		Ex	tisting Con	ditions	Existing	g Condition Traffic	s plus Site	Difference (Existing plus Site Traffic - Existing)			
Intersection	Lane	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	
		•		Typical S	ummer Wee	ekend					
Fallsview	EBLTR	56.8	0.3	8.5	72.8	0.36	10.5	16.0	0.06	2.0	
Boulevard and Dixon Street /	WBLTR	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.00	0.0	
Fallsview	NBL	16.0	0.2	4.1	18.1	0.18	4.9	2.1	0.03	8.0	
Casino Access	SBL	12.1	0.2	5.2	12.5	0.20	5.7	0.4	0.01	0.5	
Dixon Street	EBLTR	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.00	0.0	
and Allendale Avenue / 6519	WBLTR	0.0	0.0	0.0	5.8	0.18	5.0	5.8	0.18	5.0	
Stanley Avenue	NBLTR	0.0	0.4	0.0	16.3	0.53	23.8	16.3	0.14	23.8	
Access	SBLTR	9.0	0.1	1.1	52.1	0.36	11.3	43.1	0.31	10.2	
Stanley Ave	EBL	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.00	0.0	
and 6519	EBR	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.00	0.0	
Stanley Avenue Access	NBL	0.0	0.0	0.0	8.7	0.01	0.3	8.7	0.01	0.3	
Portage Road	EBL	0.0	0.0	0.0	9.0	0.28	8.7	9.0	0.28	8.7	
and Proposed	SBL	0.0	0.0	0.0	47.2	0.14	3.6	47.2	0.14	3.6	
Development Site Access	SBR	0.0	0.0	0.0	14.7	0.38	13.7	14.7	0.38	13.7	
				Summer	Long Week	kend					
Fallsview	EBLTR	14.4	0.08	1.9	16.0	0.09	2.2	1.6	0.01	0.3	
Boulevard and	WBLTR	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0	
Dixon Street / Fallsview	NBL	8.1	0.05	1.2	8.6	0.06	1.4	0.5	0.01	0.2	
Casino Access	SBL	8.9	0.11	2.9	9.1	0.12	3.2	0.2	0.01	0.3	
Dixon Street	EBLTR	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0	
and Allendale	WBLTR	0.0	0.00	0.0	5.8	0.18	5.0	5.8	0.18	5.0	
Avenue / 6519 Stanley Avenue	NBLTR	0.0	0.00	0.0	16.4	0.53	23.9	16.4	0.53	23.9	
Access	SBLTR	9.1	0.05	1.2	53.6	0.38	12.1	44.5	0.33	10.9	

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

		Existing Conditions			Existing	g Condition Traffic	s plus Site	Difference (Existing plus Site Traffic - Existing)		
Intersection	Lane	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)
Stanley Ave	EBL	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0
and 6519	EBR	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0
Stanley Avenue Access	NBL	0.0	0.00	0.0	8.7	0.01	0.3	8.7	0.01	0.3
Portage Road	EBL	0.0	0.00	0.0	8.5	0.25	7.7	8.5	0.25	7.7
and Proposed	SBL	0.0	0.00	0.0	38.0	0.11	2.9	38.0	0.11	2.9
Development Site Access	SBR	0.0	0.00	0.0	13.5	0.35	12.1	13.5	0.35	12.1

February 12, 2024 81 Overall, when comparing the 2023 Existing Conditions scenario with the Existing plus Site Traffic Conditions sensitivity analysis scenario, only the Stanley Avenue and Murray Street and Stanley Avenue and Dixon Street / Main Street intersections exhibit additional critical operations (specifically, the eastbound left-turn movement during the summer long weekend peak hour for the Stanley Avenue and Murray Street intersection), the eastbound through and westbound through movements during both peak hours for the Stanley Avenue and Dixon Street / Main Street intersection, and the westbound right-turn movement during both peak hours for the Allendale Avenue and Main Street and Murray Street intersection. With respect to unsignalized intersections, the only additional critical movement expected is the southbound left-turn movement at the Portage Road and Proposed Development Site Access intersection for both peak hours.

Based on the analysis presented in **Exhibit 6-1** to **Exhibit 6-4**, the following conclusions can be made:

- The impact of the background developments is significantly more pronounced than the proposed development itself, as evident by the fact that only a few movements are estimated to exceed capacity by 1.67 (v/c ratio of 0.18), 0.48 (v/c ratio of 0.63) during the summer typical weekend peak hour, and 0.40 (v/c ratio of 0.57), 0.20 (v/c ratio of 0.76), 1.70 (v/c ratio of 0.19), and 0.50 (v/c ratio of 0.63) during the summer long weekend peak hour in the Existing plus Site Traffic Conditions Scenario. While this specific instance is expected to be addressable through signal timing adjustments, this indicates that broadly speaking mitigative measures are primarily required due to the impact of others, rather than the proposed development itself; and
- As one or more planned background developments mentioned in Section 3.4 may not actually proceed to construction, conditions described in Section 4.3 and Section 5 may not actually occur. This indicates that the future conditions analyses presented in their respective sections are conservative, and overall future operations may be better than reported in this study.

6.2 Comparison Between 2033 Mitigated Future Total and Future Background Conditions

To demonstrate the general potential impacts of development site traffic to traffic operations within the study area in future conditions, comparisons of signalized (mitigated conditions) and unsignalized intersection operations under 2033 Future Background Conditions and 2033 Future Total Conditions are presented in **Exhibit 6-5** and **Exhibit 6-6**, respectively.

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

Exhibit 6-5: 2033 Signalized Intersection Traffic Operations Comparison

			Future Bac ditions - M		2033 F	uture Tota Mitiga	l Conditions - ted	Difference (Total - Background)		
Intersection	Movement	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)
		,		Typical S	Summer We	eekend				
	EBL	36.8	0.81	67.4	39.0	0.84	70.8	2.2	0.03	3.4
	EBR	18.3	0.11	11.6	18.1	0.11	11.6	-0.2	0.00	0.0
Fallsview Boulevard and	WBT	18	0.07	8.9	17.8	0.07	8.9	-0.2	0.00	0.0
Dunn Street	NBL	11.1	0.46	16.1	11.5	0.48	16.1	0.4	0.02	0.0
	NBT	8.4	0.19	20	8.5	0.19	20.0	0.1	0.00	0.0
	SBT	21.7	0.66	85.2	22.4	0.68	87.7	0.7	0.02	2.5
	EBL	42.9	0.64	31.8	130.3	1.04	59.9	87.4	0.40	28.1
	EBT	35.8	0.64	73.8	37.2	0.69	84.1	1.4	0.05	10.3
_	WBL	72.8	0.89	63.6	96.7	0.97	68.3	23.9	0.08	4.7
Stanley Avenue and Murray	WBT	40.4	0.74	84.3	39.4	0.73	86.5	-1.0	-0.01	2.2
Street	NBL	65.6	0.98	75.5	168.3	1.29	70.8	102.7	0.31	-4.7
	NBT	18.2	0.87	164.5	32.6	1.00	182.6	14.4	0.13	18.1
	SBL	361.9	1.71	208.3	380.5	1.75	213.5	18.6	0.04	5.2
	SBT	12.2	0.53	83.3	14.3	0.63	107.2	2.1	0.10	23.9
	EBL	23.7	0.31	21.1	27.1	0.59	37.3	3.4	0.28	16.2
	EBT	39.4	0.83	100.7	41.0	0.85	102.3	1.6	0.02	1.6
	WBL	83.6	0.98	64.8	87.9	0.99	63.7	4.3	0.01	-1.1
Fallsview	WBT	31.4	0.6	87.9	33.8	0.65	88.9	2.4	0.05	1.0
Boulevard and	WBR	25.2	0.12	15	26.3	0.12	15.2	1.1	0.00	0.2
Murray Street	NBL	17.5	0.36	24.5	18.3	0.46	25.6	0.8	0.10	1.1
	NBT	26.6	0.52	63.9	27.1	0.56	71.1	0.5	0.04	7.2
	SBL	20.3	0.58	31.6	21.4	0.61	32.0	1.1	0.03	0.4
	SBT	25.4	0.46	63.5	27.5	0.59	84.5	2.1	0.13	21.0

February 12, 2024

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

			Future Bac ditions - Mi		2033 F	uture Tota Mitigat	l Conditions - ted	Difference (Total - Background)			
Intersection	Movement	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	
	EBL	225.5	1.36	120.2	225.5	1.36	120.2	0.0	0.00	0.0	
	EBT	39.2	0.81	131.1	39.2	0.81	131.1	0.0	0.00	0.0	
	WBL	36.7	0.63	35.9	41.5	0.68	39.9	4.8	0.05	4.0	
O(WBT	31.2	0.64	94.6	31.2	0.64	94.6	0.0	0.00	0.0	
Stanley Avenue and Dunn Street	WBR	23.5	0.04	8.4	23.5	0.04	8.4	0.0	0.00	0.0	
and Bann Olicci	NBL	114.5	1.08	96.2	123.7	1.11	97.1	9.2	0.03	0.9	
	NBT	25.4	0.69	108.7	25.9	0.71	112.3	0.5	0.02	3.6	
	SBL	22.1	0.44	24.1	16.0	0.46	13.2	-6.1	0.02	-10.9	
	SBT	24.2	0.54	118.5	18.7	0.55	108.2	-5.5	0.01	-10.3	
	EBL	34.6	0.63	51.2	51.3	0.81	65.7	16.7	0.18	14.5	
	EBT	29.4	0.49	56.4	50.7	0.89	130.4	21.3	0.40	74.0	
	WBL	19.2	0.42	34	28.4	0.69	35.5	9.2	0.27	1.5	
Fallsview	WBT	19.2	0.36	52.6	24.6	0.65	105.4	5.4	0.29	52.8	
Boulevard and Main Street /	WBR	18.2	0.25	16.5	18.9	0.28	17.2	0.7	0.03	0.7	
Portage Road	NBL	20.8	0.11	12.2	23.3	0.11	12.2	2.5	0.00	0.0	
_	NBT	32.6	0.72	119.9	39.1	0.78	124.2	6.5	0.06	4.3	
	SBL	16.5	0.29	17.4	19.0	0.47	26.2	2.5	0.18	8.8	
	SBT	18.4	0.44	68.5	19.3	0.44	69.5	0.9	0.00	1.0	
	EBL	12.9	0.15	14.7	12.7	0.15	14.7	-0.2	0.00	0.0	
Portage Road	EBR	12.8	0.14	10.5	12.9	0.17	11.6	0.1	0.03	1.1	
and Fallsview	NBL	13.9	0.41	34.8	16.2	0.54	47.2	2.3	0.13	12.4	
Casino Rear	NBT	9.8	0.02	4.4	9.8	0.02	4.4	0.0	0.00	0.0	
Access	SBT	10.6	0.14	16.8	10.6	0.14	16.8	0.0	0.00	0.0	
	SBR	14.8	0.5	18.5	14.8	0.50	18.5	0.0	0.00	0.0	

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

		2033 Future Background Conditions - Mitigated			2033 F	uture Tota Mitigat	Conditions -	Difference (Total - Background)			
Intersection	Movement	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	
Fallsview	WBT	21.7	0.19	11.5	22.1	0.20	12.4	0.4	0.01	0.9	
Boulevard and	WBR	21.1	0.08	11.8	21.4	0.09	12.4	0.3	0.01	0.6	
Hilton Hotel	NBL	10.8	0.07	4.6	10.9	0.09	4.8	0.1	0.02	0.2	
Access /	NBT	12.9	0.46	37.1	13.1	0.49	40.5	0.2	0.03	3.4	
Fallsview Casino Access	SBL	5.6	0.38	13.8	5.7	0.41	14.7	0.1	0.03	0.9	
7.00000	SBT	5.9	0.42	32.4	6.4	0.50	43.1	0.5	0.08	10.7	
	EBT	36.8	0.28	19.4	663.5	2.35	161.1	626.7	2.07	141.7	
	WBT	47.7	0.7	46.2	158.5	1.22	164.1	110.8	0.52	117.9	
Stanley Avenue	WBR	37.4	0.36	30.8	29.1	0.42	42.9	-8.3	0.06	12.1	
and Dixon Street	NBL	12.2	0.22	3.1	13.9	0.39	5.1	1.7	0.17	2.0	
/ Main Street	NBT	25.3	0.73	115.8	31.7	0.83	116.1	6.4	0.10	0.3	
	SBL	31.1	0.71	73.3	167.6	1.24	129.1	136.5	0.53	55.8	
	SBT	9.4	0.61	72.5	21.4	0.87	166.7	12.0	0.26	94.2	
	WBL	38.5	0.11	11.2	38.5	0.11	11.2	0.0	0.00	0.0	
	WBR	190.4	1.27	156.1	190.4	1.27	156.1	0.0	0.00	0.0	
Allendale Avenue	NBLTR	48.6	0.59	55.1	68.8	0.85	96.6	20.2	0.26	41.5	
and Main Street and Murray	SBLTR	36.9	0.15	17.7	37.2	0.16	17.8	0.3	0.01	0.1	
Street	SEL	76.5	0.88	91.3	76.5	0.88	91.3	0.0	0.00	0.0	
	SETR	65.7	0.75	89.6	56.7	0.75	89.6	-9.0	0.00	0.0	
	NWLTR	37.8	0.14	18	37.9	0.14	18.2	0.1	0.00	0.2	
				Summe	r Long We	ekend					
	EBL	37.1	0.82	67.6	39.0	0.83	70.0	1.9	0.01	2.4	
	EBR	18.3	0.11	11.6	18.2	0.11	11.6	-0.1	0.00	0.0	
Fallsview Boulevard and	WBT	18	0.07	8.9	17.9	0.07	8.9	-0.1	0.00	0.0	
Dunn Street	NBL	11.2	0.47	16.2	11.5	0.48	16.2	0.3	0.01	0.0	
	NBT	8.4	0.19	20.2	8.4	0.19	20.2	0.0	0.00	0.0	
	SBT	22	0.67	86.9	22.5	0.69	88.9	0.5	0.02	2.0	

February 12, 2024

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

		2033 Future Background Conditions - Mitigated			2033 F	uture Tota Mitigat	l Conditions - ted	Difference (Total - Background)			
Intersection	Movement	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	
	EBL	35.4	0.54	27.7	64.2	0.82	51.6	28.8	0.28	23.9	
	EBT	38.8	0.73	87.2	41.2	0.78	106.4	2.4	0.05	19.2	
_	WBL	102.3	0.99	70.6	135.0	1.09	74.7	32.7	0.10	4.1	
Stanley Avenue and Murray	WBT	40.4	0.75	95.5	39.4	0.74	98.5	-1.0	-0.01	3.0	
Street	NBL	156.8	1.25	78.7	366.6	1.74	77.1	209.8	0.49	-1.6	
	NBT	19.3	0.89	148.3	31.9	0.99	167.0	12.6	0.10	18.7	
	SBL	262.3	1.48	162.3	275.8	1.51	165.9	13.5	0.03	3.6	
	SBT	15.7	0.66	103.3	18.5	0.75	126.5	2.8	0.09	23.2	
	EBL	23.7	0.29	21.2	24.6	0.49	33.5	0.9	0.20	12.3	
	EBT	38.8	0.81	90	40.4	0.84	91.2	1.6	0.03	1.2	
	WBL	35.6	0.73	34.8	40.2	0.76	36.1	4.6	0.03	1.3	
Fallsview	WBT	30.4	0.55	72.2	32.6	0.59	73.2	2.2	0.04	1.0	
Boulevard and	WBR	25.4	0.12	14.8	26.7	0.12	15.0	1.3	0.00	0.2	
Murray Street	NBL	16.8	0.32	22.4	17.1	0.38	23.1	0.3	0.06	0.7	
	NBT	25.3	0.46	51.9	25.6	0.50	58.1	0.3	0.04	6.2	
	SBL	18.7	0.55	32.2	19.2	0.57	32.6	0.5	0.02	0.4	
	SBT	24.7	0.44	57.1	26.1	0.55	72.8	1.4	0.11	15.7	
	EBL	428	1.82	134.3	428.0	1.82	134.3	0.0	0.00	0.0	
	EBT	50.6	0.9	145.8	50.6	0.90	145.8	0.0	0.00	0.0	
	WBL	51.9	0.73	39.5	60.3	0.79	43.2	8.4	0.06	3.7	
	WBT	37.4	0.77	118.5	37.4	0.77	118.5	0.0	0.00	0.0	
Stanley Avenue and Dunn Street	WBR	23.5	0.05	9.3	23.5	0.05	9.3	0.0	0.00	0.0	
and Dunin Stieet	NBL	327.3	1.6	84.2	342.1	1.63	85.4	14.8	0.03	1.2	
	NBT	27.9	0.76	113	28.4	0.77	115.6	0.5	0.01	2.6	
	SBL	34.6	0.7	45.1	26.1	0.72	23.3	-8.5	0.02	-21.8	
	SBT	27.3	0.68	142.7	22.0	0.69	132.6	-5.3	0.01	-10.1	

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

		2033 Future Background Conditions - Mitigated			2033 F	uture Total Mitigat	l Conditions - ted	Difference (Total - Background)			
Intersection	Movement	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	
	EBL	73.4	0.96	101.3	127.2	1.12	109.7	53.8	0.16	8.4	
	EBT	28.8	0.5	59.2	44.5	0.85	123.0	15.7	0.35	63.8	
	WBL	19.2	0.48	35.9	27.2	0.70	36.8	8.0	0.22	0.9	
Fallsview	WBT	19.3	0.39	56.1	23.2	0.62	96.8	3.9	0.23	40.7	
Boulevard and Main Street /	WBR	20.3	0.47	47.6	21.1	0.53	57.3	0.8	0.06	9.7	
Portage Road	NBL	21.4	0.07	8.5	21.4	0.07	8.5	0.0	0.00	0.0	
	NBT	61.3	0.97	176.5	64.6	0.98	179.7	3.3	0.01	3.2	
	SBL	20.9	0.36	13.5	24.1	0.55	18.7	3.2	0.19	5.2	
	SBT	20.5	0.42	61.3	20.6	0.43	62.2	0.1	0.01	0.9	
	EBL	14.4	0.2	18.5	14.4	0.20	18.5	0.0	0.00	0.0	
Portage Road	EBR	14.3	0.18	12.4	14.5	0.21	13.2	0.2	0.03	0.8	
and Fallsview	NBL	35.5	0.89	105.5	53.0	0.99	120.5	17.5	0.10	15.0	
Casino Rear	NBT	10.3	0.15	17.6	10.3	0.15	17.6	0.0	0.00	0.0	
Access	SBT	10.6	0.19	21.4	10.6	0.19	21.4	0.0	0.00	0.0	
	SBR	11.7	0.29	13.9	11.7	0.29	13.9	0.0	0.00	0.0	
Fallerdann	WBT	21.7	0.19	11.8	22.1	0.21	12.5	0.4	0.02	0.7	
Fallsview Boulevard and	WBR	21.1	0.08	11.8	21.4	0.09	12.2	0.3	0.01	0.4	
Hilton Hotel	NBL	10.8	0.08	4.6	10.8	0.08	4.7	0.0	0.00	0.1	
Access /	NBT	13	0.47	37.6	13.1	0.49	40.2	0.1	0.02	2.6	
Fallsview Casino Access	SBL	5.6	0.38	13.9	5.7	0.40	14.5	0.1	0.02	0.6	
Access	SBT	5.9	0.42	32.8	6.3	0.49	40.6	0.4	0.07	7.8	
	EBT	36.8	0.29	19.9	180.8	1.25	111.0	144.0	0.96	91.1	
	WBT	47.9	0.71	46.2	86.6	1.02	131.8	38.7	0.31	85.6	
Stanley Avenue	WBR	37.5	0.38	32	28.9	0.40	40.5	-8.6	0.02	8.5	
and Dixon Street	NBL	12.4	0.23	2.6	13.5	0.39	4.2	1.1	0.16	1.6	
/ Main Street	NBT	24.4	0.75	109.1	29.4	0.83	109.2	5.0	0.08	0.1	
	SBL	30.9	0.71	74.8	154.6	1.22	117.9	123.7	0.51	43.1	
	SBT	10.4	0.62	84.2	22.2	0.85	122.6	11.8	0.23	38.4	

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

	Movement	2033 Future Background Conditions - Mitigated			2033 F	uture Tota Mitigat	l Conditions - ted	Difference (Total - Background)			
Intersection		Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	Delay (s)	v/c Ratio	95th Percentile Queue Length (m)	
	WBL	37.5	0.11	11	36.5	0.11	11.0	-1.0	0.00	0.0	
	WBR	181.6	1.25	153.5	181.6	1.25	153.5	0.0	0.00	0.0	
Allendale Avenue	NBLTR	47.5	0.59	54.8	66.9	0.85	95.6	19.4	0.26	40.8	
and Main Street and Murray	SBLTR	35.9	0.14	17.2	36.2	0.15	17.3	0.3	0.01	0.1	
Street	SEL	73	0.87	90	73.0	0.87	90.0	0.0	0.00	0.0	
	SETR	55.2	0.75	88.4	55.2	0.75	88.4	0.0	0.00	0.0	
	NWLTR	36.8	0.14	17.6	36.8	0.14	17.6	0.0	0.00	0.0	

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

Exhibit 6-6: 2033 Unsignalized Intersection Traffic Operations Comparison

			uture Ba Conditio	ckground ns	2033 Fu	ture Tota	al Conditions	Difference (Total-Background)				
Intersection	Lane	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue (m)	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)		
Typical Summer Weekend												
Fallsview Boulevard	EBLTR	801.1	1.82	36.7	1099.2	2.30	39.2	298.1	0.48	2.5		
and Dixon Street /	WBLTR	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0		
Fallsview Casino	NBL	20.7	0.27	8.2	22.4	0.29	9.0	1.7	0.02	0.8		
Access	SBL	15.7	0.36	12.4	16.4	0.38	13.5	0.7	0.02	1.1		
Dixon Street and	EBLTR	0.5	0.00	0.0	0.5	0.00	0.0	0.0	0.00	0.0		
Allendale Avenue /	WBLTR	0.0	0.00	0.0	4.7	0.13	3.5	4.7	0.13	3.5		
6519 Stanley Avenue	NBLTR	0.0	0.39	0.0	13.6	0.39	14.0	13.6	0.00	14.0		
Access	SBLTR	9.4	0.06	1.5	29.3	0.27	7.9	19.9	0.21	6.4		
Stanley Ave and	EBL	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0		
6519 Stanley Avenue	EBR	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0		
Access	NBL	0.0	0.00	0.0	11.4	0.01	0.3	11.4	0.01	0.3		
Portage Road and	EBL	0.0	0.00	0.0	8.6	0.26	8.1	8.6	0.26	8.1		
Proposed Development Site	SBL	0.0	0.00	0.0	63.2	0.14	3.5	63.2	0.14	3.5		
Access	SBR	0.0	0.00	0.0	16.2	0.35	12.0	16.2	0.35	12.0		
				Summer L	ong Week	end						
Fallsview Boulevard	EBLTR	25.5	0.18	4.8	27.1	0.19	5.2	1.6	0.01	0.4		
and Dixon Street /	WBLTR	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0		
Fallsview Casino	NBL	8.9	0.09	2.1	9.1	0.09	2.3	0.2	0.00	0.2		
Access	SBL	10.3	0.22	6.3	10.5	0.23	6.8	0.2	0.01	0.5		
Dixon Street and	EBLTR	0.5	0.00	0.0	0.5	0.00	0.0	0.0	0.00	0.0		
Allendale Avenue /	WBLTR	0.0	0.00	0.0	4.6	0.13	3.5	4.6	0.13	3.5		
6519 Stanley Avenue	NBLTR	0.0	0.39	0.0	13.7	0.39	14.0	13.7	0.00	14.0		
Access	SBLTR	9.4	0.06	1.5	29.6	0.27	8.1	20.2	0.21	6.6		

TRANSPORTATION IMPACT STUDY - 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS

Prepared for Hennepin Fallsview Inc.

		2033 Future Background Conditions			2033 Fu	ture Tota	al Conditions	Difference (Total-Background)			
Intersection	Lane	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue (m)	Lane Delay (s)	Lane v/c Ratio	Lane 95th Percentile Queue Length (m)	
Stanley Ave and	EBL	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0	
6519 Stanley Avenue	EBR	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	0.0	
Access	NBL	0.0	0.00	0.0	11.4	0.01	0.3	11.4	0.01	0.3	
Portage Road and	EBL	0.0	0.00	0.0	7.9	0.24	6.9	7.9	0.24	6.9	
Proposed Development Site Access	SBL	0.0	0.00	0.0	48.2	0.11	2.7	48.2	0.11	2.7	
	SBR	0.0	0.00	0.0	14.7	0.32	10.4	14.7	0.32	10.4	

February 12, 2024

7 Parking Analysis

The purpose of the parking study is to determine if the proposed parking supply is appropriate to accommodate anticipated demand from the proposed development.

Hotel guest parking will be accommodated, primarily, off-site in a structured parking facility located at 6519 Stanley Avenue on the southwest corner of the Stanley Avenue and Dixon Street intersection. The Application contemplates a structured parking facility with capacity for approximately 1,047 vehicles, with vehicle access via Stanley Avenue and Dixon Street. It is our understanding that 912 of the off-site parking spaces will be dedicated to hotel guests, with the remainder available to the general public. The conceptual site plan for the structured parking facility also includes a terminal that will accommodate hotel guest check-in, luggage transfer/storage, a guest waiting area for a dedicated shuttle service, and ancillary services.

In addition, on-site parking at the 6546 Fallsview Boulevard site will also be provided through both an underground parking facility and through ground floor surface parking spaces. This on-site parking will include a total of 273 parking spaces where the majority of those would be provided in the underground parking facility and only 10 of them will be surface "temporary car spaces" on the ground floor. The proposed development therefore contemplates a total of 1,320 parking spaces.

7.1 Parking Demand Review

The property is presently governed by the City of Niagara Falls Zoning By-Law 79-200 (ZBL). However, there are justifications to assume a parking space requirement that is less than what is stipulated in the ZBL for the residential and Vacation Rental Units (VRUs) uses.

While the automobile has traditionally been the primary mode of transportation for those visiting and residing in Niagara Falls, the proposed development site is located within proximity to several Niagara Falls Transit bus routes, which primarily provide access to/from the Main Street and Ferry Street transit hub. The closest transit stops to the development are located directly adjacent to the proposed development site along Fallsview Boulevard. It should be noted that the existing Niagara Region Transit, Niagara Falls Transit, St. Catharines Transit, Welland Transit and Fort Erie Transit systems are in the process of amalgamation. As a result, service changes are expected in the coming years as part of the integration process. In addition, the WEGO visitor transit system provides tourist-oriented transit service to major attractions and destinations within Niagara Falls, and reciprocal transfer privileges with Niagara Falls Transit are available. Finally, intercity operators connecting the Greater Toronto Area to the city and to the Fallsview Casino Resort (such as GO Transit and Flixbus) are also available. These alternative modes of transportation are gaining in popularity, as evident by heavy GO Transit ridership during summer weekend service, and suggest that an increasing proportion of residents and visitors will live in and explore Niagara without a private automobile.

With respect to the ZBL requirement of 1.40 parking spaces for each residential dwelling unit, it should be mentioned that the 5566-5592 Robinson Street and 6158 Allendale Avenue developments were approved at a residential parking ratio of 0.74 parking spaces per dwelling unit. As this development is within close proximity of the proposed development (within the same location context in the City), and both developments are for mixed-use buildings with both residential and non-residential uses, it is expected that residential uses at 6546 Fallsview Boulevard will generate parking demand in line with the approved 0.74 spaces per unit ratio.

In addition, with respect to the requirement of 2.0 parking spaces per Vacation Rental Unit (VRU), it is our understanding that the VRU will be physically similar to residential units (i.e., not a vacation / entertaining home, large family cottage, or similar use commonly rented on popular vacation platforms), and will accommodate a similar number of individuals when compared to residential units. And, given the longer-term nature of the occupants – when compared to the hotel use – a higher likelihood of occupant mode of access being comparable to a residential occupant exists. Therefore, given this functional similarity, it is expected that VRU parking demand will occur in line with anticipated residential demand rates.

With respect to hotel and ancillary uses, as well as gaming space and ancillary uses, parking demand is expected to remain in line with ZBL requirements.

Based on the anticipated parking demand rates, the minimum vehicular parking space amount operationally required would be as shown in **Exhibit 7-1**.

Exhibit 7-1: Minimum Vehicular Parking Spaces Operationally Required

Land Use	ZBL Parking Rat	Parking Demand Estimate	Proposed Intensity	Required Parking Spaces					
Hotel	1.0 parking space for each 1.25 bedrooms	1.0 parking space for each 1.25 bedrooms	1,140 hotel bedrooms	912					
High-Rise Residential	1.40 parking spaces for each residential dwelling unit	0.74 parking spaces for each residential dwelling unit and/or	126 residential dwelling units and/or VRUs ⁵	93					
Vacation Rental Units (VRU)	2.0 parking spaces for each VRU	VRU							
Gaming Space	1.0 parking space per 75 m ² of floor area	1.0 parking space per 75 m ² of floor area	2,648.3 m ²	35					
		Total							
	Total Parking Requirement								
	1,320								
	Operationa	l Surplus/Deficiency		280					

As shown in **Exhibit 7-1**, the parking space amount operationally required for the proposed development is shown to be approximately 1,040. Based on a parking supply of 1,320 spaces, an operational parking space surplus of approximately 280 parking spaces is anticipated. When compared to a ZBL parking requirement of 1,124 to 1,199 parking spaces, subject to the residential / VRU mix, an operation requirement of 1,040 is a notable – but not significantly large – reduction in required parking supply.

In addition, it should be noted that some hotel/gaming guests may elect to park elsewhere (e.g. at Fallsview Casino Resort) if a pre-existing discount entitlement is present. This may lead to an even larger parking space surplus.

7.2 Transportation Demand Management Considerations

Transportation Demand Management (TDM) refers to policies, design features, and incentives which encourage sustainable transportation choices. TDM can reduce the intensity of peak hour trips by encouraging deferred travel, can reduce general automobile trips by encouraging the use of non-automobile transportation modes, and can reduce the demand for parking by reducing the need to own and operate a personal vehicle.

As mentioned in **Section 2.3**, the proposed development is well connected to the City of Niagara Falls cycling network and is located in close proximity to the Niagara Parkway trail system along the Niagara River. As such, consideration could be given to facilitating bicycle tourism by providing bicycle rental options for guests as well as associated secure bicycle parking. These measures can

⁵ It is not certain at this time how many of the 126 units will be residential dwelling units, and how many will be VRUs. However, the amount of parking spaces required would not change based on the ratio of residential dwelling units to VRUs as the parking rate for both uses are shown to be the same.

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

encourage guests to utilize sustainable transportation options – rather than the automobile – to explore the broader Niagara region.

TRANSPORTATION IMPACT STUDY -6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

8 Vehicle Swept Path Analysis

Vehicle swept path analysis was completed using AutoTURN to confirm that the passenger shuttle, waste collection, and delivery vehicles can enter and exit both the hotel and the parking facility sites in a forward motion.

This analysis is presented in **Appendix K**.

9 Conclusions and Recommendations

This section summarizes the key findings of this Transportation Impact Study (TIS).

9.1 TIS Findings

The proposed development is expected to generate up to 797 net new two-way automobile trips during the Saturday Peak Hour. Based on a comparison between 2033 Future Background Mitigated Conditions and 2033 Future Total Mitigated Conditions, the traffic generated by the proposed development is generally not anticipated to have a significant impact on traffic operations at study area intersections as traffic operations are similar for the majority of movements. While instances of movements exceeding critical thresholds are expected to be present at various intersections during peak seasons/times, such impacts could be reduced with signal timing plan changes. Additionally, the implementation of certain short and long-term improvements identified in the *City of Niagara Falls Transportation Master Plan* (October 2011) could serve to further reduce impacts.

For unsignalized intersections, the Fallsview Boulevard and Dixon Street / Fallsview Casino Access, Dixon Street and Allendale Avenue / 6519 Stanley Avenue Access, and the Portage Road and Proposed Development Site Access intersections are all expected to experience operations which exceed delay critical thresholds under Future Total Conditions during the typical summer weekend peak hours. The Dixon Street and Allendale Avenue / 6519 Stanley Avenue Access, and the Portage Road and Proposed Development Site Access intersections are all expected to experience operations which exceed delay critical thresholds under Future Total Conditions during the summer long weekend peak hours. However, levels of delay in this range are generally expected and tolerated by road users in urban areas. As a result, critical delay alone does not necessarily indicate that mitigation measures are required. That being said, a traffic control signal could be considered at the Fallsview Boulevard and Dixon Street / Fallsview Casino Access intersection due to the combination of high delay, movements exceeding capacity limits, and a lack of a protected pedestrian crossing along pedestrian desire lines.

For both signalized and unsignalized intersections within the study area, a sensitivity analysis which isolated the impact of the proposed development on a standalone basis demonstrated that the background developments that were considered in this report are the main drivers of new critical operations when compared to the 2023 Existing Conditions scenario. The traffic impacts arising from the proposed development represent only an incremental change in the context of future conditions. As such, the need for mitigative measures to address instances of poor traffic operations described in this report are primarily attributable to the construction of background developments. Also, it should be noted that the described future conditions in this report may prove to be

conservative, as there is the possibility that some of the background developments do not proceed to construction.

9.2 Parking Analysis

The purpose of the parking study is to determine if the proposed parking supply is appropriate to accommodate anticipated demand from the proposed development.

Hotel guest parking will be accommodated, primarily, off-site in a structured parking facility located at 6519 Stanley Avenue on the southwest corner of the Stanley Avenue and Dixon Street intersection. The Application contemplates a structured parking facility with capacity for approximately 1,047 vehicles, with vehicle access via Stanley Avenue and Dixon Street. It is our understanding that 912 of the off-site parking spaces will be dedicated to hotel guests, with the remainder available to the general public. The conceptual site plan for the structured parking facility also includes a terminal that will accommodate hotel guest check-in, luggage transfer/storage, a guest waiting area for a dedicated shuttle service, and ancillary services.

In addition, on-site parking at the 6546 Fallsview Boulevard site will also be provided through both an underground parking facility and through ground floor surface parking spaces. This on-site parking will include a total of 273 parking spaces where the majority of those would be provided in the underground parking facility and only 10 of them will be surface "temporary car spaces" on the ground floor. The proposed development therefore contemplates a total of 1,320 parking spaces.

The property is presently governed by the City of Niagara Falls Zoning By-Law 79-200 (ZBL). However, there are justifications to assume a parking space requirement that is less than what is stipulated in the ZBL for the residential and Vacation Rental Units (VRUs) uses.

With respect to the ZBL requirement of 1.40 parking spaces for each residential dwelling unit, it should be mentioned that the 5566-5592 Robinson Street and 6158 Allendale Avenue developments were approved at a residential parking ratio of 0.74 parking spaces per dwelling unit. As this development is within close proximity of the proposed development (within the same location context in the City), and both developments are for mixed-use buildings with both residential and non-residential uses, it is expected that residential uses at 6546 Fallsview Boulevard will generate parking demand in line with the approved 0.74 spaces per unit ratio.

In addition, with respect to the requirement of 2.0 parking spaces per Vacation Rental Unit (VRU), it is our understanding that the VRU will be physically similar to residential units (i.e., not a vacation / entertaining home, large family cottage, or similar use commonly rented on popular vacation platforms), and will accommodate a similar number of individuals when compared to residential units. And, given the longer-term nature of the occupants – when compared to

TRANSPORTATION IMPACT STUDY – 6546 FALLSVIEW BOULEVARD, NIAGARA FALLS Prepared for Hennepin Fallsview Inc.

the hotel use – a higher likelihood of occupant mode of access being comparable to a residential occupant is more likely. Therefore, given this functional similarity, it is expected that VRU parking demand will occur in line with anticipated residential demand rates.

With respect to hotel and ancillary uses, as well as gaming space and ancillary uses, parking demand is expected to remain in line with ZBL requirements.

Based on the anticipated parking demand rates, the minimum vehicular parking space amount operationally required is expected to be approximately 1,040. Based on a parking supply of 1,320 spaces, a parking space surplus of approximately 280 parking spaces is anticipated.

In addition, it should be noted that some hotel/gaming guests may elect to park elsewhere too (e.g. at Fallsview Casino Resort) if a pre-existing discount entitlement is present. This may lead to an even larger parking space surplus.

As mentioned in **Section 2.3**, the proposed development is well connected to the City of Niagara Falls cycling network and is located in close proximity to the Niagara Parkway trail system along the Niagara River. As such, consideration could be given to facilitating bicycle tourism by providing bicycle rental options for guests as well as associated secure bicycle parking. These measures can encourage guests to utilize sustainable transportation options – rather than the automobile – to explore the broader Niagara region.

9.3 Vehicle Swept Path Analysis

Vehicle swept path analysis was completed using AutoTURN to confirm that the passenger shuttle, waste collection, and delivery vehicles can enter and exit both the hotel and the parking facility sites in a forward motion.

Appendix A

Scope of Investigation

IBI GROUP

7th Floor - 55 St. Clair Avenue West Toronto ON M4V 2Y7 Canada tel 416 596 1930 fax 416 596 0644 ibigroup.com

December 16, 2022

Mr. Mathew Bilodeau Manager of Transportation Engineering City of Niagara Falls

8208 Heartland Forest Road Niagara Falls, ON L2H 0L7

Dear Mr. Bilodeau:

SCOPE OF WORK FOR TRANSPORTATION IMPACT STUDY FOR PROPOSED HOTEL DEVELOPMENT AT 6546 FALLSVIEW BOULEVARD AND PROPOSED PARKING FACILITY AT 6519 STANLEY AVENUE, NIAGARA FALLS, ONTARIO

This letter provides our proposed scope of work for a proposed hotel development located at 6546 Fallsview Boulevard in the City of Niagara Falls. The development would be located on the northeast corner of the Fallsview Boulevard & Portage Road / Main Street intersection, and, and would consist of a hotel development with approximately 1,140 rooms. Primary access to the site would be via Portage Road. Existing uses on the property are proposed to be removed. Related to the proposed hotel, a parking facility would be located at 6519 Stanley Avenue in the City of Niagara Falls. This facility would be located on the southwest corner of the Stanley Avenue & Dixon Street intersection, would provide capacity for approximately 1,070 vehicles, with vehicle access via Stanley Avenue and via Dixon Street. Given the interrelated nature of these facilities, it is envisioned that both the proposed hotel and proposed parking facility will be the subject of a single transportation impact study report.

While changes to site plan and site statistics may occur as the development progresses through the approval process, we anticipate that transportation impacts will be consistent with the concept described above. Nevertheless, our submission will reflect the most up-to-date information available.

Work Plan – Transportation Impact Study

The tasks that will be completed for the transportation impact study are as follows:

Analysis Time Periods and Intersections: Based on the proposed development's land uses and size, we plan to analyze the development peak hours which will occur during the summer typical Saturday peak period (5:00 p.m. to 1:00 a.m.) and the summer long-weekend Saturday peak period (5:00 p.m. to 1:00 a.m.).

The following intersections will be included in this analysis:

- 1. Stanley Avenue & Murray Street (signalized);
- 2. Stanley Avenue & Main Street / Dixon Street (signalized);
- 3. Stanley Avenue & Proposed Parking Facility Access (unsignalized);
- 4. Stanley Avenue & Dunn Street (signalized);

ARCADIS IBI GROUP 2

Mr. Mathew Bilodeau - December 16, 2022

- 5. Fallsview Boulevard & Murray Street (signalized);
- Fallsview Boulevard & Fallsview Casino Resort Access / Hilton Niagara Falls/Fallsview Hotel & Suites Access (unsignalized);
- 7. Fallsview Boulevard & Dixon Street / Fallsview Casino Resort Garage (unsignalized);
- 8. Fallsview Boulevard & Main Street / Portage Road (signalized);
- 9. Portage Road & Proposed Hotel Site Access (unsignalized); and
- Portage Road & Fallsview Casino Resort Rear Access (signalized);
- Dixon Street & Proposed Parking Facility Access (unsignalized).
- 2. 2023 Existing Conditions: The 2023 existing traffic operations will be analyzed using the software program Synchro (version 11) for the summer typical Saturday peak period and the summer long-weekend Saturday peak period, for the intersections listed above. Given the impact of the Coronavirus disease (COVID-19) outbreak, we propose to utilize traffic counts collected in 2018 / 2019 (utilized in the Niagara Events Centre transportation study) and apply appropriate growth factors to estimate "normal" 2023 conditions.
- 3. Background Traffic Conditions: The background traffic volumes will be determined for the study area intersections for a horizon year which coincides with 10 years after the publication date of the transportation study. We will identify an applicable background traffic growth rate and other area developments which may introduce traffic into the study area, based on a review of historical data, City records, and any applicable municipal transportation plans. Any future road network or intersection changes proposed by the City or Region, or outlined in a capital works program, will be taken into consideration.
 - The background traffic analysis will identify and determine the impacts of the adjacent developments and background growth without the proposed site traffic.
- 4. Site Traffic Generation and Trip Distribution: The trip generation for the proposed development will be based on the information presented in the Institute of Transportation Engineers (ITE) publication, Trip Generation Manual, 11th Edition. A review of the modal split will also be undertaken to account for the trips being made by non-auto modes of travel. A discussion on trips bound for the proposed hotel, bound for the proposed parking facility, and trips between these facilities, will be presented, as appropriate.
 - The trip distribution for the proposed hotel and proposed parking facility, as well as trips between these two locations, will be based on a review of existing travel patterns and the available road network. The forecast site traffic for the proposed development will be added to the road network based on the trip distribution, and assigned to the network based on logical travel routes and available traffic capacity.
- 5. Total Traffic Conditions: The estimated site traffic volumes will be combined with the background traffic volumes to determine the total traffic volumes for the study area intersections.
 - Intersection operations analysis will be undertaken for the summer typical Saturday peak period and the summer long-weekend Saturday peak period. Any necessary road improvements required to accommodate total traffic volumes will be identified.

ARCADIS IBI GROUP 3

Mr. Mathew Bilodeau - December 16, 2022

These improvements may include additional turning lanes, storage length modifications, or traffic control measures.

If you have any questions regarding the proposed scope of work for the 6546 Fallsview Boulevard and 6519 Stanley Avenue developments, please do not hesitate to contact me.

Yours truly,

ARCADIS IBI GROUP

Andrae Griffith, B.Urpl, OCAD

Transportation Operations & Safety Analyst

anton Talles

416 596 1930 ext 61450

andrae.griffith@ibigroup.com

Appendix B

Turning Movements Counts

Ontario Traffic Inc. **Afternoon Peak Diagram Specified Period One Hour Peak From:** 17:00:00 From: 17:00:00 To: 20:00:00 To: 18:00:00 Weather conditions: Municipality: Niagara Falls Site #: 1911200001 Intersection: Person(s) who counted: Stanley Ave & Main St-Dixon St TFR File #: Count date: 13-Apr-19 ** Signalized Intersection ** Major Road: Stanley Ave runs N/S North Leg Total: 1166 Heavys 0 9 13 Heavys 15 East Leg Total: 535 Trucks 3 59 North Entering: 629 40 16 Trucks 56 East Entering: 302 136 North Peds: Cars 22 375 160 557 Cars 466 East Peds: 48 \mathbb{Z} Totals 25 Peds Cross: Peds Cross: ⋈ 419 185 Totals 537 Stanley Ave Totals Trucks Heavys Totals Heavys Trucks Cars Cars 15 87 102 186 16 213 37 2 0 39 28 0 50 Dixon St 251 11 Heavys Trucks Cars Totals Main St 0 2 14 16 0 Trucks Heavys Totals 19 20 0 1 Cars 201 41 233 Stanley Ave \mathbb{X} Peds Cross: 327 Peds Cross: \bowtie Cars 422 Cars 28 266 33 West Peds: 71 Trucks 63 Trucks 10 5 53 South Peds: 49 38 2 6 West Entering: 44 Heavys 4 Heavys 0 4 South Entering: 386 West Leg Total: 146 Totals 38 South Leg Total: 875 Totals 489 **Comments**

Ontario Traffic Inc.

Total Count Diagram

Municipality: Niagara Falls

Site #: 1911200001

Intersection: Stanley Ave & Main St-Dixon St

TFR File #:

North Leg Total: 3285

North Entering: 1677

North Peds:

Peds Cross:

Peds Cross:

West Peds:

West Entering: 117

West Leg Total: 314

Count date: 13-Apr-19

Weather conditions:

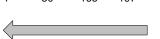
Person(s) who counted:

** Signalized Intersection **

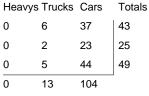
317

⋈

Heavys 0 25 34 Trucks 5 181 112 64 Cars 38 982 442 1462


Totals 43 1103 531 Major Road: Stanley Ave runs N/S

Trucks 161 Cars 1411 Totals 1608


Heavys 36

East Leg Total: 1535 East Entering: 884 East Peds: 115 \mathbb{X} Peds Cross:

Heavys Trucks Cars Totals 30 166 197

Dixon St

 \mathbb{X}

290

Cars 1089 Trucks 177 Heavys 9 Totals 1275

Stanley Ave

Stanley Ave

Trucks Heavys Totals Cars 596 56 28 680 69 11 1 81 63 60 0 123 728 127 29

Main St

919 Cars 59 778 82 Trucks 14 11 124 99 Heavys 0 2 10 8 Totals 73

Trucks Heavys Totals Cars 547 77 27 651

> Peds Cross: \bowtie South Peds: 91 South Entering: 1053 South Leg Total: 2328

Comments

Ontario Traffic Inc. Traffic Count Summary

18:00:00 185	Intersection:	Stanley	Ave & N	∕lain St-⊡	Dixon St	Count E	^{Date:} 13-Apr-19)	Munio	cipality: Nia	agara Fa	alls		
Hour Ending Left Thru Right Grand Peds Approaches Ending Left Thru Right Grand Peds Total Total Peds Total Total Peds Total Total Peds Total Peds Total Peds Total Peds Total Peds Total Total Peds Total Total Peds To														
Ending	Hour	Include	es Cars, T	rucks, & H		Total	North/South	اما	.	Include	es Cars, T	rucks, & H	_	Total
18:00:00 200 380 6 586 98 914 9:00:00 13 289 26 328 16 19:00:00 146 304 12 462 83 801 20:00:00 22 288 29 339 26 328 16 20:00:00 146 304 12 462 83 801 20:00:00 22 288 29 339 26 328 16 328	Ending	Left	Thru	Right	Total	Peds	Approaches	Endir	ng	Left	Thru	Right		Peds
19:00:00 200 380 6 586 98 914 19:00:00 13 289 26 328 16														0
Totals: 531														49
Totals: 531 1103 43 1677 317 2730 73 885 95 1053 91 East Approach Totals														
Hour Ending	20:00:00	146	304	12	462	83	801	20:00	1:00	22	288	29	339	26
Hour Ending														
Hour Ending Left Thru	Totals:	East	Appro	ach Tota	als	317	2730			West	t Appro	ach Tota	als	91
Totals: 123	Hour	Include	es Cars, I	rucks, & H		Total	East/West	المال	.	Include	es Cars, I	rucks, & H		Total
Totals: 123	Ending	Left	Thru	Right	Total	Peds	Approaches	Endir	ng	Left	Thru	Right	Total	Peds
Totals: 123 81 680 884 115 1001 43 25 49 117 290 20 20 20 20 20 20 2														0
Totals: 123 81 680 884 115 1001 43 25 49 117 290 20:00:00 17:00 18:00 19:00 20:00														
Totals: 123 81 680 884 115 1001 43 25 49 117 290 Calculated Values for Traffic Crossing Major Street Hours Ending: 0:00 0:00 0:00 0:00 17:00 18:00 19:00 20:00														
Calculated Values for Traffic Crossing Major Street Hours Ending: 0:00 0:00 0:00 0:00 17:00 18:00 19:00 20:00	20:00:00	36	20	236	292	33	333	20:00	::00	17	9	15	41	104
Hours Ending: 0:00 0:00 0:00 17:00 18:00 19:00 20:00	Totals:	123	81									49	117	290
				Calc	ulated V	alues f	or Traffic Cr	ossing	g Ma	ajor Stre	eet			
Crossing Values: 0 0 0 0 0 0 290 183 182								17						
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Crossing	Values:	0	0	0	0			0	290	183	182		

		Passeng	ger Cars -	North Ap	oproach			Tru	cks - Nor	th Appro	ach			Hea	ıvys - Nor	th Appro	ach		Pedes	trians
Interval	Le	ft	Thi	ru	Rig	ıht	Le	ft	Th	ru	Rig	ht	Le	ft	Th	ru	Rig	ht	North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
17:00:00	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15:00	30	30	97	97	4	4	2	2	6	6		0	2	2	2	2	0	0	35	35
17:30:00	81	51	186	89	12	8	6	4	17	11		2	3	1	2	0	0	0	73	38
17:45:00	118	37	281	95	19	7	11	5		11	2	0		3	4	2	0	0	118	45
18:00:00	160	42	375	94	22	3	16	5		12	3	1		3	4	0	0	0	136	18
18:15:00	203	43	466	91	22	0	24	8		10		0		1	6	2	0	0	155	19
18:30:00	241	38	535	69	22	0	33	9		15	4	1		0		0	0	0	190	35
18:45:00	285	44	617	82	24	2	38	5		12		0		3		1	0	0	204	14
19:00:00	326	41	704	87	27	3	45	7		11		0		1	7	0	0	0	234	30
19:15:00	373	47	763	59	30	3	51	6		6		1		4	7	0	0	0	262	28
19:30:00	396	23	835	72	32	2	55	4		7		0		0		1	0	0	288	26
19:45:00	420	24	909	74	35	3	58	3		4		0		5		0	0	0	306	18
20:00:00	442	22	982	73	38	3	64	6		7		0		2		1	0	0	317	11
20:15:00	442	0		0	38	0	64	0		0		0		0		0	0	0		0
20:16:24	442	0	982	0	38	0	64	0	112	0	5	0	25	0	9	0	0	0	317	0

		Passen	ger Cars -	East Ap	proach			Tru	ıcks - Eas	st Appro	ach			Hea	avys - Eas	st Approa	ach		Pedes	trians
Interval	Le	ft	Thi	ru	Rig	ıht	Le	ft	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	ht	East (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
17:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15:00	7	7	11	11	37	37	3	3	0	0	4	4	0	0	0	0	8	8	17	17
17:30:00	17	10		9	81	44	9	6	1	1	8	4		0	0	0	9	1	30	
17:45:00	24	7	32	12	135	54	18	9		0		2		0	0	0	9	0	42	
18:00:00	28	4	37	5	186	51	22	4	2	1	16	6		0	0	0	11	2	48	6
18:15:00	31	3	42	5	221	35	27	5		0	-	4		0	0	0	14	3	59	11
18:30:00	37	6	48	6	271	50	32	5		1	24	4		0	0	0	14	0	63	4
18:45:00	41	4	52	4	324	53 62	35 40	3		2		6		0	1	1	22	8	72	9
19:00:00 19:15:00	47 50	6 3	54 60	2 6	386 434	48	40	5 8		1	34 43	9		0	1	0	24 24	2	82 87	10
19:30:00	55	5	61	1	481	47	50	2		3		4		0	1	0	26	2	95	5 8
19:45:00	57	2		4	539	58	56	6				3		0	1	0	28	2	111	16
20:00:00	63	6	69	4	596	57	60	4		0		6		0	1	0	28	0	115	4
20:15:00	63	0	69	0	596	0	60	0		0		0		0	1	0	28	0		0
20:16:24	63	0	69	0	596	0	60	0		0		0		0	1	0		0	115	0

Interval Time 17:00:00 17:15:00 17:30:00 17:45:00 18:00:00 18:15:00 18:30:00 18:45:00	Cum 0 0 0 8 0 15		Th Cum	ru Incr	Rig	ht	Le													
17:00:00 17:15:00 17:30:00 17:45:00 18:00:00 18:15:00	0 0 0 8 0 15	0		Incr				π	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	ht	South	Cross
17:15:00 17:30:00 17:45:00 18:00:00 18:15:00 18:30:00	0 8 0 15				Cum	Incr	Cum	Incr												
17:30:00 17:45:00 18:00:00 18:15:00 18:30:00	0 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
17:45:00 18:00:00 18:15:00 18:30:00		O	68	68	7	7	2	2		9	0	0		0	0	0	0	0	13	13
18:00:00 18:15:00 18:30:00	0 22	7	127	59	11	4	3	1	15	6		1	0	0	2	2	0	0	29	16
18:15:00 18:30:00		7	209	82	24	13	7	4		10		3	0	0	3	1	0	0	40	11
18:30:00		6		57	33	9	10	3		13		1		0		1	2	2	49	ξ
		2		65	41	8	10	0		10		2		0		1	2	0	58	9 9
18:45:00				65	47	6	12	2		6		1		0		0	2	0	61	
		5		70	51	4	12	0		4	8	0		0		1	2	0	65	
19:00:00		1		61	56	5	13	1		6		0		0		0	2	0	65	C
19:15:00		10		58	69	13	13	0		10		3		0		1	2	0	68	
19:30:00		4		60	76	7	13	0		10		0	1	0		0	2	0	75	
19:45:00		5		68	81	5	13	0		8		0		0		1	2	0	82	
20:00:00		2		65	82	1	14	1	99	7	11	0		0		0	2	0	91	9
20:15:00		0		0	82	0	14	0		0		0		0		0	2	0	91	
20:16:24	4 59	0	778	0	82	0	14	0	99	0	11	0	0	0	8	0	2	0	91	C

		Passen	ger Cars ·	· West Ap	proach			Tru	ıcks - We	st Appro	ach			Hea	avys - We	st Appro	ach		Pedes	trians
Interval	Le	ft	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	ght	Le	ft	Th	ru	Rig	jht	West	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
17:00:00		0	0	0	0	0	0	0	0			0	0	0	0	0	0	0		0
17:15:00		6	1	1	4	4	0	0				0		0		0	0	0	11	11
17:30:00		4	3			9	0	0				1		0		0	0	0		16
17:45:00		2		3		5	0	0		0				0		0	0	0		26
18:00:00		2		2	19 21	1	2	2		0		0		0		0	0	0		18 34
18:15:00 18:30:00		2		0 2		2	2	0	0	0	2			0		0	0	0		31
18:45:00		2		1	28	6		1	2	<u>'</u> 1				0		0	0	0		20
19:00:00	22	2		3	30	2	4	0				1	0	0		0	0	0		30
19:15:00		6		1	33	3	4	0				0		0		0	0	0		38
19:30:00		3		4	38	5	4	0						0		0	0	0		30 38 28
19:45:00		4	22			5	5	1	2				_	0		0	0	0		13
20:00:00	37	2		1	44	1	6	1						0		0	0	0		25
20:15:00	37	0	23	0	44	0	6	0	2	0	5	0	0	0	0	0	0	0	290	0
20:16:24	37	0		0	44	0	6	0			5	0	0	0	0	0	0	0	290	0

Ontario Traffic Inc. **Afternoon Peak Diagram Specified Period One Hour Peak** From: 17:00:00 From: 17:00:00 To: 20:00:00 To: 18:00:00 Weather conditions: Municipality: Niagara Falls Site #: 1911200002 Intersection: Person(s) who counted: Fallsview Blvd & Fallsview Casino / TFR File #: Count date: 13-Apr-19 ** Non-Signalized Intersection ** Major Road: Fallsview Blvd runs W/E North Leg Total: 887 Heavys 0 0 Heavys 4 East Leg Total: 302 Trucks 9 4 37 North Entering: 531 24 Trucks 17 East Entering: 107 North Peds: 339 Cars 66 294 130 490 Cars 335 East Peds: 487 \mathbb{Z} Totals 75 Peds Cross: 322 134 Totals 356 Peds Cross: ⋈ Fallsview Casino Access-Hilton Hotel Access Heavys Trucks Cars Trucks Heavys Totals Totals Cars 78 87 0 78 0 0 28 26 Hilton Hotel Access 103 Heavys Trucks Cars Totals Fallsview Casino Access 0 0 0 0 0 0 Trucks Heavys Totals 0 0 0 0 Cars 185 195 Fallsview Casino Access-Hilton Hotel Access \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 320 Cars 11 259 55 325 West Peds: 319 Trucks 25 Trucks 0 15 5 20 South Peds: 172 Heavys 5 5 West Entering: 0 Heavys 0 4 1 South Entering: 350 West Leg Total: 87 Totals 11 South Leg Total: 700 Totals 350 **Comments**

Total Count Diagram

Municipality: Niagara Falls

Site #: 1911200002

Intersection: Fallsview Blvd & Fallsview Casino /

TFR File #: 1

North Leg Total: 2623

North Entering: 1622

North Peds:

Peds Cross:

Count date: 13-Apr-19

Weather conditions:

Person(s) who counted:

** Non-Signalized Intersection **

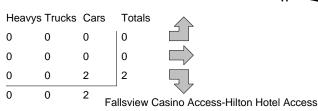
Heavys 0 12 0 12
Trucks 14 77 15 106
Cars 200 892 412 1504

Cars 200 892 412
Totals 214 981 427

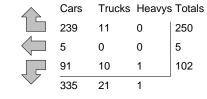
Major Road: Fallsview Blvd runs W/E

Heavys 10
Trucks 54
Cars 937
Totals 1001

Fallsview Casino Access-Hilton Hotel Access


Heavys Trucks Cars Totals
0 18 230 248

1058


⋈

Hilton Hotel Access

W E

Fallsview Casino Access

Cars Trucks Heavys Totals
551 30 1 582

Peds Cross:

West Peds: 1064

West Entering: 2

West Leg Total: 250

 Cars
 985

 Trucks
 87

 Heavys
 13

 Totals
 1085

 Cars
 25
 698
 139
 862

 Trucks
 4
 43
 15
 62

 Heavys
 0
 10
 1
 11

 Totals
 29
 751
 155

Peds Cross:
South Peds: 529

South Entering: 935

South Leg Total: 2020

Comments

Ontario Traffic Inc. Traffic Count Summary

19:00:00 135 344 71 550 290 845 19:00:00 8 243 44 2	
Hour Ending Left Thru Right Grand Total Total Peds Total Approaches Hour Ending Left Thru Right Grand Total Total Peds 17:00:00 0	Peds 0 (50 172 95 174
Ending Left Thru Right Total Peds Approaches Ending Left Thru Right Total 17:00:00 0 0 0 0 0 17:00:00 0<	Peds 0 (50 172 95 174
18:00:00 134 322 75 531 339 881 18:00:00 11 278 61 3 19:00:00 135 344 71 550 290 845 19:00:00 8 243 44 2	50 172 95 174
19:00:00 135 344 71 550 290 845 19:00:00 8 243 44 2	95 174
20:00:00 158 315 68 541 429 831 20:00:00 10 230 50 2	90 18.
East Approach Totals West Approach Totals	35 529
Includes Cars, Trucks, & Heavys Hour Grand Total Fast/West Total Hour Grand Grand Total Formation Fast/West Total Formation Fast/West Formation Fo	
Hour Sending Left Thru Right Total Peds Approaches Ending Left Thru Right Total Total Feds Approaches Ending Left Thru Right Total	d Total Peds
17:00:00 0 0 0 0 0 0 0 0	0 0
18:00:00 28 1 78 107 487 107 18:00:00 0 0 0 10:00:00 0 0 0 0 0 0 0 0	0 319
19:00:00	1 300 1 445
20:00:00 40 1 90 131 609 132 20:00:00 0 0 1	1 445
Totals: 102 5 250 357 1663 359 0 0 2	2 1064
Calculated Values for Traffic Crossing Major Street	
Hours Ending: 0:00 0:00 0:00 17:00 18:00 19:00 20:00	
Crossing Values: 0 0 0 0 0 1273 1354 1537	

Cum		Thr																	
			u	Rig	ht	Le	ft	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	lht	North	Cross
0	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
	0	0	0	0	0	0	0	0	0		0	0	0		0	0	0	0	0
30	30	84	84	16	16	1	1	6	6		2		0		2	0	0	81	81
									4						1				99
															0				76
															1				83 50
															1				50
															1				63 76
											•				2				101
															1				106
											1				2		_		110
											0	_					0		120
											1	0				0	0	1058	93
412	0	892	0	200	0	15	0	77	0	14	0	0	0	12	0	0	0	1058	0
412	0	892	0	200	0	15	0				0	0	0	12	0	0	0	1058	0
	72 101 130 167 201 229 259 292 334 370 412	72 42 101 29 130 29 167 37 201 34 229 28 259 30 292 33 334 42 370 36 412 42 412 0	72 42 157 101 29 236 130 29 294 167 37 371 201 34 445 229 28 528 259 30 602 292 33 669 334 42 738 370 36 819 412 42 892 412 0 892	72 42 157 73 101 29 236 79 130 29 294 58 167 37 371 77 201 34 445 74 229 28 528 83 259 30 602 74 292 33 669 67 334 42 738 69 370 36 819 81 412 42 892 73 412 0 892 0	72 42 157 73 30 101 29 236 79 44 130 29 294 58 66 167 37 371 77 82 201 34 445 74 96 229 28 528 83 115 259 30 602 74 134 292 33 669 67 150 334 42 738 69 166 370 36 819 81 182 412 42 892 73 200 412 0 892 0 200	72 42 157 73 30 14 101 29 236 79 44 14 130 29 294 58 66 22 167 37 371 77 82 16 201 34 445 74 96 14 229 28 528 83 115 19 259 30 602 74 134 19 292 33 669 67 150 16 334 42 738 69 166 16 370 36 819 81 182 16 412 42 892 73 200 18 412 0 892 0 200 0	72 42 157 73 30 14 1 101 29 236 79 44 14 2 130 29 294 58 66 22 4 167 37 371 77 82 16 7 201 34 445 74 96 14 7 229 28 528 83 115 19 8 259 30 602 74 134 19 10 292 33 669 67 150 16 12 334 42 738 69 166 16 13 370 36 819 81 182 16 13 412 42 892 73 200 18 15 412 0 892 0 200 0 15	72 42 157 73 30 14 1 0 101 29 236 79 44 14 2 1 130 29 294 58 66 22 4 2 167 37 371 77 82 16 7 3 201 34 445 74 96 14 7 0 229 28 528 83 115 19 8 1 259 30 602 74 134 19 10 2 292 33 669 67 150 16 12 2 334 42 738 69 166 16 13 1 370 36 819 81 182 16 13 0 412 42 892 73 200 18 15 2 412 0 892<	72 42 157 73 30 14 1 0 10 101 29 236 79 44 14 2 1 16 130 29 294 58 66 22 4 2 24 167 37 371 77 82 16 7 3 32 201 34 445 74 96 14 7 0 41 229 28 528 83 115 19 8 1 48 259 30 602 74 134 19 10 2 55 292 33 669 67 150 16 12 2 60 334 42 738 69 166 16 13 1 65 370 36 819 81 182 16 13 0 72 412 42 </td <td>72 42 157 73 30 14 1 0 10 44 101 29 236 79 44 14 2 1 16 6 130 29 294 58 66 22 4 2 24 8 167 37 371 77 82 16 7 3 32 8 201 34 445 74 96 14 7 0 41 9 229 28 528 83 115 19 8 1 48 7 259 30 602 74 134 19 10 2 55 7 292 33 669 67 150 16 12 2 60 5 334 42 738 69 166 16 13 1 65 5 370 36 819</td> <td>72 42 157 73 30 14 1 0 10 4 6 101 29 236 79 44 14 2 1 16 6 7 130 29 294 58 66 22 4 2 24 8 9 167 37 371 77 82 16 7 3 32 8 9 201 34 445 74 96 14 7 0 41 9 10 229 28 528 83 115 19 8 1 48 7 11 259 30 602 74 134 19 10 2 55 7 12 292 33 669 67 150 16 12 2 60 5 12 334 42 738 69 166 16</td> <td>72 42 157 73 30 14 1 0 10 4 6 4 101 29 236 79 44 14 2 1 16 6 7 1 130 29 294 58 66 22 4 2 24 8 9 2 167 37 371 77 82 16 7 3 32 8 9 0 201 34 445 74 96 14 7 0 41 9 10 1 229 28 528 83 115 19 8 1 48 7 11 1 259 30 602 74 134 19 10 2 55 7 12 1 292 33 669 67 150 16 12 2 60 5 12 0<td>72 42 157 73 30 14 1 0 10 4 6 4 0 101 29 236 79 44 14 2 1 16 6 7 1 0 130 29 294 58 66 22 4 2 24 8 9 2 0 167 37 371 77 82 16 7 3 32 8 9 0 0 201 34 445 74 96 14 7 0 41 9 10 1 0 229 28 528 83 115 19 8 1 48 7 11 1 0 259 30 602 74 134 19 10 2 55 7 12 1 0 292 33 669 67 150</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 101 29 236 79 44 14 2 1 16 6 7 1 0 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 167 37 371 77 82 16 7 3 32 8 9 0 0 0 201 34 445 74 96 14 7 0 41 9 10 1 0 0 229 28 528 83 115 19 8 1 48 7 11 1 0 0 259 30 602 74 134 19 10 2 55 7 12 1 0 <t< td=""><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 229 28 528 83 115 19 8 1 48 7 11 1 0 0 7 259 30 602 74 134 19 10</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 229 28 528 83 115 19 8 1 48 7 11 1 0 0 7 1 259 30</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 229 28 528 83 115 19 8 1 48 7 11 1 0 0</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 0 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 0 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 0 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 0 229 28 528 83 115 19 8 1 48</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 0 180 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 0 256 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 0 339 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 0 389 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 0 452 229 28 528 83</td></t<></td></td>	72 42 157 73 30 14 1 0 10 44 101 29 236 79 44 14 2 1 16 6 130 29 294 58 66 22 4 2 24 8 167 37 371 77 82 16 7 3 32 8 201 34 445 74 96 14 7 0 41 9 229 28 528 83 115 19 8 1 48 7 259 30 602 74 134 19 10 2 55 7 292 33 669 67 150 16 12 2 60 5 334 42 738 69 166 16 13 1 65 5 370 36 819	72 42 157 73 30 14 1 0 10 4 6 101 29 236 79 44 14 2 1 16 6 7 130 29 294 58 66 22 4 2 24 8 9 167 37 371 77 82 16 7 3 32 8 9 201 34 445 74 96 14 7 0 41 9 10 229 28 528 83 115 19 8 1 48 7 11 259 30 602 74 134 19 10 2 55 7 12 292 33 669 67 150 16 12 2 60 5 12 334 42 738 69 166 16	72 42 157 73 30 14 1 0 10 4 6 4 101 29 236 79 44 14 2 1 16 6 7 1 130 29 294 58 66 22 4 2 24 8 9 2 167 37 371 77 82 16 7 3 32 8 9 0 201 34 445 74 96 14 7 0 41 9 10 1 229 28 528 83 115 19 8 1 48 7 11 1 259 30 602 74 134 19 10 2 55 7 12 1 292 33 669 67 150 16 12 2 60 5 12 0 <td>72 42 157 73 30 14 1 0 10 4 6 4 0 101 29 236 79 44 14 2 1 16 6 7 1 0 130 29 294 58 66 22 4 2 24 8 9 2 0 167 37 371 77 82 16 7 3 32 8 9 0 0 201 34 445 74 96 14 7 0 41 9 10 1 0 229 28 528 83 115 19 8 1 48 7 11 1 0 259 30 602 74 134 19 10 2 55 7 12 1 0 292 33 669 67 150</td> <td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 101 29 236 79 44 14 2 1 16 6 7 1 0 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 167 37 371 77 82 16 7 3 32 8 9 0 0 0 201 34 445 74 96 14 7 0 41 9 10 1 0 0 229 28 528 83 115 19 8 1 48 7 11 1 0 0 259 30 602 74 134 19 10 2 55 7 12 1 0 <t< td=""><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 229 28 528 83 115 19 8 1 48 7 11 1 0 0 7 259 30 602 74 134 19 10</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 229 28 528 83 115 19 8 1 48 7 11 1 0 0 7 1 259 30</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 229 28 528 83 115 19 8 1 48 7 11 1 0 0</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 0 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 0 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 0 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 0 229 28 528 83 115 19 8 1 48</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 0 180 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 0 256 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 0 339 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 0 389 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 0 452 229 28 528 83</td></t<></td>	72 42 157 73 30 14 1 0 10 4 6 4 0 101 29 236 79 44 14 2 1 16 6 7 1 0 130 29 294 58 66 22 4 2 24 8 9 2 0 167 37 371 77 82 16 7 3 32 8 9 0 0 201 34 445 74 96 14 7 0 41 9 10 1 0 229 28 528 83 115 19 8 1 48 7 11 1 0 259 30 602 74 134 19 10 2 55 7 12 1 0 292 33 669 67 150	72 42 157 73 30 14 1 0 10 4 6 4 0 0 101 29 236 79 44 14 2 1 16 6 7 1 0 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 167 37 371 77 82 16 7 3 32 8 9 0 0 0 201 34 445 74 96 14 7 0 41 9 10 1 0 0 229 28 528 83 115 19 8 1 48 7 11 1 0 0 259 30 602 74 134 19 10 2 55 7 12 1 0 <t< td=""><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 229 28 528 83 115 19 8 1 48 7 11 1 0 0 7 259 30 602 74 134 19 10</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 229 28 528 83 115 19 8 1 48 7 11 1 0 0 7 1 259 30</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 229 28 528 83 115 19 8 1 48 7 11 1 0 0</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 0 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 0 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 0 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 0 229 28 528 83 115 19 8 1 48</td><td>72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 0 180 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 0 256 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 0 339 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 0 389 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 0 452 229 28 528 83</td></t<>	72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 229 28 528 83 115 19 8 1 48 7 11 1 0 0 7 259 30 602 74 134 19 10	72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 229 28 528 83 115 19 8 1 48 7 11 1 0 0 7 1 259 30	72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 229 28 528 83 115 19 8 1 48 7 11 1 0 0	72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 0 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 0 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 0 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 0 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 0 229 28 528 83 115 19 8 1 48	72 42 157 73 30 14 1 0 10 4 6 4 0 0 3 1 0 0 180 101 29 236 79 44 14 2 1 16 6 7 1 0 0 3 0 0 0 256 130 29 294 58 66 22 4 2 24 8 9 2 0 0 4 1 0 0 339 167 37 371 77 82 16 7 3 32 8 9 0 0 0 5 1 0 0 389 201 34 445 74 96 14 7 0 41 9 10 1 0 0 6 1 0 0 452 229 28 528 83

		Passen	ger Cars	- East Ap	proach			Tru	ucks - Eas	st Appro	ach			He	avys - Eas	st Approa	ach		Pedes	trians
Interval	Le	ft	Th	ru	Rig	ht	Le	ft	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	ht	East 0	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
17:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
17:15:00		6	0	0	15	15	0	0	0	0	0	0	0	0	0	0	0	0	142	142
17:30:00		7	0	0	43	28	0	0	0	0	1	1	0	0	0	0	0	0	264	122
17:45:00		6		0		12	0	0				0	1	0		0		0	369	105
18:00:00		7	1	1	76	21	1	1	0			1	<u> </u>	1	0	0		0	487	118
18:15:00		11	1	0	96	20	1	0				1	<u> </u>	0		0		0	628	141
18:30:00		7	-	0	117	21	2	1	0			0		0		0		0	792	164
18:45:00		8		1	130	13	2	0				2		0		0		0	919	127
19:00:00 19:15:00		5 7		2 0	152 171	22 19	7	2				3 1		0		0		0	1054	135 154
19:15:00		9	4	0	171	21	9	2				0		0		0		0	1208 1393	185
19:45:00		9		1	213	21	9	0				1		0		0		0	1538	145
20:00:00		9		0	239	26	10	1	0			<u>'</u> 1		0		0		0	1663	125
20:15:00		0		0	239	0	10	0				0		0		0		0	1663	120
20:17:35		0				0	10	0				0		0		0		0	1663	

T T		ı asseng	jei Cais -	South A	pproach			Tru	cks - Sou	th Appro	oach			Hea	vys - Sou	th Appro	ach		Pedes	trians
Interval	Le	ft	Thi	ru	Rig	ht	Le	ft	Th	ru	Rig	ght	Le	ft	Th	ru	Rig	lht	South	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
17:00:00		0	0	0	0	0	0	0		0		0	0	0		0	0	0	0	0
17:15:00		5	70	70	18	18	0	0		2		1		0		2	0	0	34	34
17:30:00		2	131	61	33	15	0	0		5		0		0		1	0	0	75	41
17:45:00		0	209	78	47	14	0	0		4	2	1		0		1	0	0	134	59
18:00:00		4	259	50	55	8	0	0		4	5	3		0		0	1	1	172	38
18:15:00		2	322	63 56	67 78	12 11	0	0		3		3 1		0		1	1	0	208	36
18:30:00 18:45:00	16	2	378	53	84		1	1	22 24	2	9	0		0		1	1 1	0	265 304	38 36 57 39
19:00:00		1	431 485	53 54	92	6 8	2	0		5		3		0		0	<u>1</u>	0	346	39
19:00:00		1	549	64	104	12	3	1		3		2		0		2	1	0	383	37
19:30:00	22	4	604	55	115	11	4	<u>.</u>	35	4		1		0		0	1	0	439	42 37 56
19:45:00		2	653	49	128	13	4	0		3		0	_	0		0	1	0	484	45
20:00:00	25	1	698	45	139	11	4	0		5		0		0		1	1	0	529	45
20:15:00	25	0	698	0	139	0	4	0		0		0		0		0	1	0		0
20:17:35		0	698	0	139	0	4	0		0		0		0		0	1	0	529	0

		Passen	ger Cars -	West Ap	proach			Tru	ıcks - We	st Appro	ach			Hea	ıvys - Wes	st Appro	ach		Pedes	trians
Interval	Lei	ft	Thi	ru	Rig	ht	Le	ft	Th	ru	Rig	ght	Le	ft	Thi	ru	Rig	ht	West (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
17:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73	73
17:30:00	0	0	0	0	0	0	0	0			1	0		0	0	0		0	144	71
17:45:00	0	0	-	0	0	0		0		0	1	0		0	0	0		0	238	94
18:00:00	0	0	0	0	0	0	0	0		0		0		0	0	0		0	319	81
18:15:00	0	0		0	0	0		0		0		0		0	0	0		0	380	61
18:30:00	0	0		0	0	0		0		0		0		0	0	0		0	457	77 70
18:45:00 19:00:00	0	0		0	0	0	0	0		0		0		0	0	0		0	536 619	79 83
19:00:00	0	0		0	2	1	0	0		0		0		0	0	0		0		103
19:30:00	0	0		0	2	0		0				0		0	0	0		0	844	122
19:45:00	0	0		0	2	0		0		0		0		0	0	0		0	961	117
20:00:00	0	0	-	0	2	0		0				0	1	0	0	0		0		103
20:15:00	0	0		0		0		0				0		0	0	0		0	1064	0
20:17:35	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0

Ontario Traffic Inc. **Afternoon Peak Diagram Specified Period One Hour Peak** From: 17:30:00 From: 17:00:00 To: 20:00:00 To: 18:30:00 Weather conditions: Municipality: Niagara Falls Site #: 1911200003 Intersection: Person(s) who counted: Fallsview Blvd & Fallsview Casino / TFR File #: Count date: 13-Apr-19 ** Non-Signalized Intersection ** Major Road: Fallsview Blvd runs N/S North Leg Total: 684 Heavys 2 0 Heavys 4 East Leg Total: 208 Trucks 9 33 North Entering: 357 14 10 Trucks 26 East Entering: North Peds: 30 Cars 57 182 81 320 Cars 297 East Peds: 559 \mathbb{Z} Peds Cross: Totals 68 198 91 Totals 327 Peds Cross: ⋈ Fallsview Blvd Totals Trucks Heavys Totals Heavys Trucks Cars Cars 33 80 115 0 0 0 0 0 0 Dixon St Heavys Trucks Cars Totals Fallsview Casino Access 0 5 11 16 0 5 Trucks Heavys Totals 0 1 4 Cars 19 187 21 0 208 Fallsview Blvd \mathbb{X} Peds Cross: 411 Peds Cross: \bowtie Cars 186 Cars 23 286 102 West Peds: 275 Trucks 15 Trucks 24 56 South Peds: 30 21 11 Heavys 2 Heavys 0 4 South Entering: 471 West Entering: 25 0 West Leg Total: 140 Totals 203 Totals 47 South Leg Total: 674 113 **Comments**

Total Count Diagram

Municipality: Niagara Falls

Site #: 1911200003

Intersection: Fallsview Blvd & Fallsview Casino /

TFR File #:

North Leg Total: 2026

North Entering: 1088

North Peds:

Peds Cross:

Count date: 13-Apr-19

Weather conditions:

Person(s) who counted:

** Non-Signalized Intersection **

Heavys 4 0

13 87 Trucks 27 40 20 Cars 190 554 244 988 Totals 221 603 264

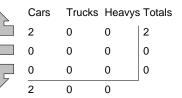
Major Road: Fallsview Blvd runs N/S

Heavys 11 Trucks 64 Cars 863

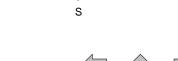
Totals 938

East Leg Total: 593 East Entering: East Peds: 1814 \mathbb{X} Peds Cross:

Totals Heavys Trucks Cars 86 264 355


95

⋈


Fallsview Blvd

Heavys Trucks Cars Totals 0 7 28 35 0 12 12 5 18 23 0 12 58

Dixon St

			_ /
			ν
Cars	Trucks	Heavys Tota	als

47

Fallsview Casino Access

544

 \mathbb{X} Peds Cross: West Peds: 744 West Entering: 70 West Leg Total: 425

Cars 572 Trucks 45 Heavys 9 Totals 626

Fallsview Blvd

Cars 74 833 288 1195 Trucks 59 27 143 57 12 Heavys 1 11 0 Totals 134 315

Peds Cross: \bowtie South Peds: 79 South Entering: 1350 South Leg Total: 1976

591

Comments

Ontario Traffic Inc. Traffic Count Summary Municipality: Nia Municipality: Nia

Intersection:	Fallsviev	w Blvd 8	& Fallsvi	ew Casir	10 Count E	^{Date:} 13-Apr-19)	Munic	^{cipality:} Nia	agara Fa	alls		
	Nortl	n Appro	ach Tot	als					South	1 Appro	ach Tot	als	
Hour	Include	es Cars, T	rucks, & H	eavys Grand	Total	North/South Total	Hou	.	Include	es Cars, T	rucks, & H	eavys Grand	Total
Ending	Left	Thru	Right	Total	Peds	Approaches	Endin	ng	Left	Thru	Right	Total	Peds
17:00:00 18:00:00 19:00:00 20:00:00	0 85 90 89	0 193 211 199	76	0 350 377 361	0 36 22 37	822 819	17:00 18:00 19:00 20:00	:00:	0 42 49 43	0 335 279 287	0 95 114 106	0 472 442 436	0 26 35 18
Totals:	264 Fas t	603	221 ach Tota	1088	95	2438			134 West	901 Appro	315 ach Tot a	1350]	79
	Include	es Cars, T	rucks, & H	eavys		Fast/Mast			Include	es Cars, T	rucks, & H	eavys	
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	East/West Total Approaches	Hour Endin	r na	Left	Thru	Right	Grand Total	Total Peds
17:00:00 18:00:00 19:00:00 20:00:00	0000	0 0 0	0 1 1 0	0 1 1 0	0 538 588 688	21 29	17:00 18:00 19:00 20:00	:00:	0 12 17 6	0435	0 4 8 11	0 20 28 22	0 227 215 302
Totals:	0	0	Calc			72 or Traffic Cr	_	_	-		23	70	744
Hours En Crossing		0:00		0:00	0:00		17	00:	18:00 78	19:00 77	20:00 66		
Ciossing	vaiues.		0	<u> </u>				<u> </u>	10				

		Passenç	ger Cars -	North A	proach			Tru	icks - Nor	th Appro	ach			Hea	ıvys - Nor	th Appro	ach		Pedes	trians
Interval	Lef	ft	Thr	·u	Rig	ht	Le	ft	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	ht	North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
17:00:00	0	0		0	0	0	0	0	0	0		0		0	0	0	0	0	0	0
17:15:00	25	25	43	43	23	23	0	0	3	3	3	3	0	0	2	2	0	0	18	18
17:30:00	44	19		48	34	11	1	1	5	2		1	0	0		0	1	1	20	2
17:45:00	59	15	144	53	52	18	4	3		3	4	0		0		0		0	30	10
18:00:00	79	20	178	34	63	11	6	2		4	-	3		0		1	2	1	36	6
18:15:00	105	26	223	45	79	16	7	1		5		2		0		0		1	42	6 8 6 2 12 9
18:30:00	125	20	273	50	91	12	11	4		2		4		0		1	3	0	50	8
18:45:00	149	24	320	47	107	16	13	2		3		2		0		1	3	0	56	6
19:00:00	160	11	371	51	127	20	15	2		4		3		0		2	3	0	58	2
19:15:00	175	15	421	50	137	10	18	3		2		3		0		1	3	0	70	12
19:30:00	198	23	465	44	150	13	18	0		6			0	0		1	4	1	79	9
19:45:00	220	22	513	48	172	22	19	1		3		3		0		0		0	92	13
20:00:00	244	24	554	41	190	18		1		3		2		0		0		0	95	3
20:15:00 20:17:47	244 244	0	554 554	0	190 190	0	20 20	0		0		0		0		0		0	95 95	0
20.17.47	2-1-1		004		100		20		40					0				0	30	

| Passenger Cars - East Approach Left Thru Right | | | | | | | Tr
 | ucks - Eas | st Approa
 | ach |
 |
 | Hea | avys - Eas
 | st Approa | ach | | Pedes | trians
 |
|---|--|-------------------|---|--|---|---
--
--|--|---|---
--

--
---|---
---|--|---|--
---|
| Le | ft | Th | ru | Rig | ht | Le | ft
 | Th | ru
 | Rig | ght
 | Le
 | ft | Thi
 | ru | Rig | ht | East C | cross
 |
| Cum | Incr | Cum | Incr | Cum | Incr | Cum | Incr
 | Cum | Incr
 | Cum | Incr
 | Cum
 | Incr | Cum
 | Incr | Cum | Incr | Cum | Incr
 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
 | 0 | 0
 | 0 | 0
 | 0
 | 0 | 0
 | 0 | 0 | 0 | 0 | 0
 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
 | 0 | 0
 | 0 | 0
 | 0
 | 0 | 0
 | 0 | 0 | 0 | 134 | 134
 |
| 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0
 | |
 | 1 |
 |
 | 0 |
 | 0 | | 0 | 267 | 133
 |
| | | | 0 | 1 | | |
 | |
 | 1 |
 |
 | |
 | | | 0 | | 151
 |
| | | | | | | |
 | |
 | |
 |
 | |
 | | | | | 120
 |
| | | | - | | | |
 | |
 | |
 |
 | |
 | | | | | 125
 |
| | | | | | | |
 | |
 | |
 |
 | |
 | | | | | 163
 |
| | | | - | | - | |
 | 1 |
 | |
 |
 | |
 | | | | | 144
156
 |
| | | | - | | | |
 | |
 | |
 |
 | |
 | | | | | 207
 |
| | | | | | | |
 | |
 | |
 |
 | |
 | | | | | 192
 |
| | | _ | - | | | |
 | |
 | |
 |
 | |
 | | | | | 141
 |
| | | | - | | | |
 | |
 | |
 | 1
 | |
 | | | | | 148
 |
| | | | | | | |
 | |
 | |
 |
 | |
 | | | 0 | | 0
 |
| 0 | 0 | 0 | 0 | | 0 | 0 | 0
 | 0 | 0
 | 0 | 0
 | 0
 | 0 | 0
 | | | 0 | | 0
 |
| | | | | | | |
 | |
 | |
 |
 | |
 | | | | |
 |
| | Cum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Left Cum Incr | Left Thr Cum Incr Cum 0 0 0 | Left Thru Cum Incr 0 0 0 < | Left Thru Rig Cum Incr Cum Incr Cum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 | Left Thru Right Cum Incr Cum Incr Cum Incr 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0< | Left Thru Right Le Cum Incr Cum Incr Cum Incr Cum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 <td< td=""><td>Left Thru Right Left Cum Incr Cum Incr Cum Incr Cum Incr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 0 0 0</td><td>Left Thru Right Left Th Cum Incr Cum Incr Cum Incr Cum Incr Cum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0</td><td>Left Thru Right Left Thru Cum Incr Cum Incr</td><td>Left Thru Right Left Thru Right Cum Incr Cum <th< td=""><td>Left Thru Right Left Thru Right Cum Incr Cum <th< td=""><td>Left Thru Right Left Thru Right Le Cum Incr Cum Incr</td><td>Left Thru Right Left Thru Right Left Cum Incr <t< td=""><td>Left Thru Right Left Thru Right Left Thru Cum Incr Cum <t< td=""><td>Left Thru Right Left Thru Right Left Thru Right Left Thru Cum Incr Cum Incr</td><td>Left Thru Right Left Thru Right Left Thru Right Left Thru Right Cum Incr Cum</td><td>Left Thru Right Left Thru Right Left</td><td>Left Thru Right Left Thru Right Left Thru Right East C Cum Incr Cum</td></t<></td></t<></td></th<></td></th<></td></td<> | Left Thru Right Left Cum Incr Cum Incr Cum Incr Cum Incr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 0 0 0 | Left Thru Right Left Th Cum Incr Cum Incr Cum Incr Cum Incr Cum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | Left Thru Right Left Thru Cum Incr Cum Incr | Left Thru Right Left Thru Right Cum Incr Cum <th< td=""><td>Left Thru Right Left Thru Right Cum Incr Cum <th< td=""><td>Left Thru Right Left Thru Right Le Cum Incr Cum Incr</td><td>Left Thru Right Left Thru Right Left Cum Incr <t< td=""><td>Left Thru Right Left Thru Right Left Thru Cum Incr Cum <t< td=""><td>Left Thru Right Left Thru Right Left Thru Right Left Thru Cum Incr Cum Incr</td><td>Left Thru Right Left Thru Right Left Thru Right Left Thru Right Cum Incr Cum</td><td>Left Thru Right Left Thru Right Left</td><td>Left Thru Right Left Thru Right Left Thru Right East C Cum Incr Cum</td></t<></td></t<></td></th<></td></th<> | Left Thru Right Left Thru Right Cum Incr Cum <th< td=""><td>Left Thru Right Left Thru Right Le Cum Incr Cum Incr</td><td>Left Thru Right Left Thru Right Left Cum Incr <t< td=""><td>Left Thru Right Left Thru Right Left Thru Cum Incr Cum <t< td=""><td>Left Thru Right Left Thru Right Left Thru Right Left Thru Cum Incr Cum Incr</td><td>Left Thru Right Left Thru Right Left Thru Right Left Thru Right Cum Incr Cum</td><td>Left Thru Right Left Thru Right Left</td><td>Left Thru Right Left Thru Right Left Thru Right East C Cum Incr Cum</td></t<></td></t<></td></th<> | Left Thru Right Left Thru Right Le Cum Incr Cum Incr | Left Thru Right Left Thru Right Left Cum Incr Cum Incr <t< td=""><td>Left Thru Right Left Thru Right Left Thru Cum Incr Cum <t< td=""><td>Left Thru Right Left Thru Right Left Thru Right Left Thru Cum Incr Cum Incr</td><td>Left Thru Right Left Thru Right Left Thru Right Left Thru Right Cum Incr Cum</td><td>Left Thru Right Left Thru Right Left</td><td>Left Thru Right Left Thru Right Left Thru Right East C Cum Incr Cum</td></t<></td></t<> | Left Thru Right Left Thru Right Left Thru Cum Incr Cum <t< td=""><td>Left Thru Right Left Thru Right Left Thru Right Left Thru Cum Incr Cum Incr</td><td>Left Thru Right Left Thru Right Left Thru Right Left Thru Right Cum Incr Cum</td><td>Left Thru Right Left Thru Right Left</td><td>Left Thru Right Left Thru Right Left Thru Right East C Cum Incr Cum</td></t<> | Left Thru Right Left Thru Right Left Thru Right Left Thru Cum Incr Cum Incr | Left Thru Right Left Thru Right Left Thru Right Left Thru Right Cum Incr Cum | Left Thru Right Left | Left Thru Right Left Thru Right Left Thru Right East C Cum Incr Cum |

Cum 0 5 12 20 22 25 35 43 49 52 59	1 Incr 0 5 7 8 2 3 10 8 6 6 3	Cum 0 92 163 252 312 384 449 507 568	nu lncr 0 92 71 89 60 72 65 58	39 61 85 119 141	0 19 20 22 24 34	5 9 15 20	0 5 4 6	3 8	nu Incr 0 3 5	2	ht		Incr 0		Incr 0		ht Incr	South Cum	Incr 0
0 5 12 20 22 25 35 43 49 52	0 5 7 8 2 3 10 8	0 92 163 252 312 384 449 507	0 92 71 89 60 72 65	0 19 39 61 85 119	0 19 20 22 24 34	0 5 9 15 20	0 5 4 6	0 3 8	0	0 2	0	0	0	0	0	0	0	0	0
5 12 20 22 25 35 43 49 52	5 7 8 2 3 10 8	92 163 252 312 384 449 507	92 71 89 60 72 65	19 39 61 85 119	19 20 22 24 34	5 9 15 20	5 4 6	3 8	3	2									
12 20 22 25 35 43 49 52	7 8 2 3 10 8	163 252 312 384 449 507	71 89 60 72 65	39 61 85 119 141	20 22 24 34	9 15 20	4 6	8			2	0	_	0	_	^	Λ	_	
20 22 25 35 43 49 52 59	8 2 3 10 8 6	252 312 384 449 507	89 60 72 65	61 85 119 141	22 24 34	15 20	6		5	_		0	0	2	2	0	U	5	5
22 25 35 43 49 52 59	2 3 10 8 6	312 384 449 507	60 72 65	85 119 141	24 34	20		13			4	0	0	3	1	0	0	14	9
25 35 43 49 52 59	3 10 8 6	384 449 507	72 65	119 141	34	20			5		3		0		1	0	0	20	9 6 6 7
35 43 49 52 59	10 8 6	449 507	65	141			5		5		1	0	0		1	0	0	26	6
43 49 52 59	8 6	507				27	7	25	7		3		0		1	0	0	33	
49 52 59	6		58		22	33	6		4		4		0		1	0	0	44	11
52 59		568		164	23	38	5		3		2		1	8	1	0	0	55	11
59	3		61	189	25	41	3		6		1		0		0	0	0	61	6
		645	77	217	28	45	4	43	5		3		0		2	0	0	63	6 2 12
	7	719	74		24	52	7	49	6		1	1	0		0	0	0	75	12
65	6	779	60 54	265 288	24	56	4	52	3		2		0		0	0	0	78	3
74	9	833			23	59	3		5		1		0		1	0	0		1 0
																			0
	74 74	74 0	74 0 833	74 0 833 0	74 0 833 0 288	74 0 833 0 288 0	74 0 833 0 288 0 59	74 0 833 0 288 0 59 0	74 0 833 0 288 0 59 0 57	74 0 833 0 288 0 59 0 57 0	74 0 833 0 288 0 59 0 57 0 27	74 0 833 0 288 0 59 0 57 0 27 0	74 0 833 0 288 0 59 0 57 0 27 0 1	74 0 833 0 288 0 59 0 57 0 27 0 1 0	74 0 833 0 288 0 59 0 57 0 27 0 1 0 11	74 0 833 0 288 0 59 0 57 0 27 0 1 0 11 0	74 0 833 0 288 0 59 0 57 0 27 0 1 0 11 0 0	74 0 833 0 288 0 59 0 57 0 27 0 1 0 11 0 0 0	74 0 833 0 288 0 59 0 57 0 27 0 1 0 11 0 0 0 79

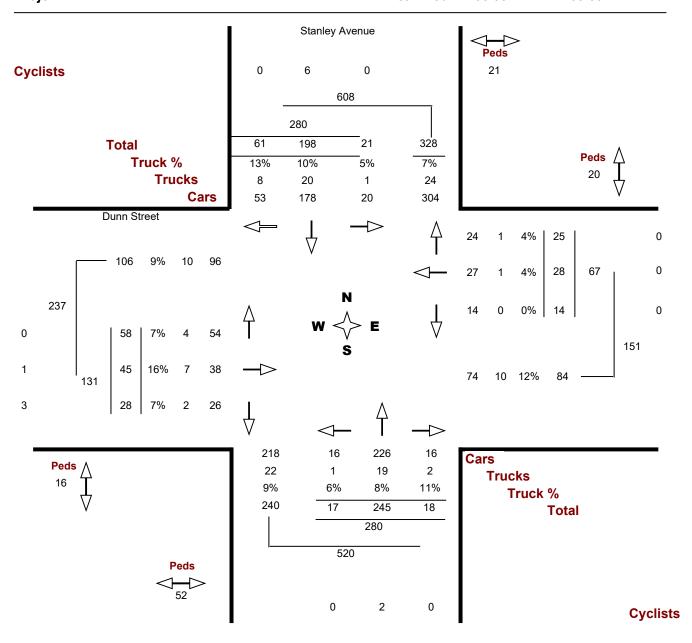
	Passenger Cars - West Approach							Tru	ıcks - We	st Appro	ach			Hea	avys - We	st Appro	ach		Pedes	trians
Interval	Lei	ft	Thi	·u	Rig	ht	Le	ft	Th	ru	Rig	ght	Le	ft	Th	ru	Rig	ht	West (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
17:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15:00	2	2	3	3	3	3	0	0	0	0	0	0	0	0	0	0	0	0	19	19
17:30:00	7	5	3	0	3	0	0	0				1	0	0		0	0	0	62	43
17:45:00	8	1	4	1	3	0	0	0	1	0		0		0		0	0	0	161	99
18:00:00	10	2		0	3	0	2	2		0		0		0		0	0	0	227	66
18:15:00	15	5		2	5	2	2	0		0				0		0	0	0		52
18:30:00	18	3		1	7	2	5	3		0				0		0	0	0	337	58
18:45:00	19	1	7	0	9	2	5	0						0		0	0	0		39
19:00:00	22	3		0	9	0	7	2		0				0		0	0	0	442	66
19:15:00	23	1	9	2	15	6		0		0				0		0	0	0	511	69
19:30:00	23	0		3	16	1	7	0				1		0		0	0	0	585	74
19:45:00	25	2		0	17	1	7 7	0		0		0		0		0	0	0	650	65
20:00:00	28	3		0	18 18	1		0	1				_	0		0	0	0		94
20:15:00 20:17:47	28 28	0		0		0	7	0						0		0		0	744 744	0

Turning Movements Report - AM Period

GeoID.....

01581

- 09:00 AM


Count Time. 07:00 AM

Location...... Dunn Street @ Stanley Avenue

Municipality. NIAGARA FALLS Count Date. Thursday, 11 August, 2022

Traffic Cont.

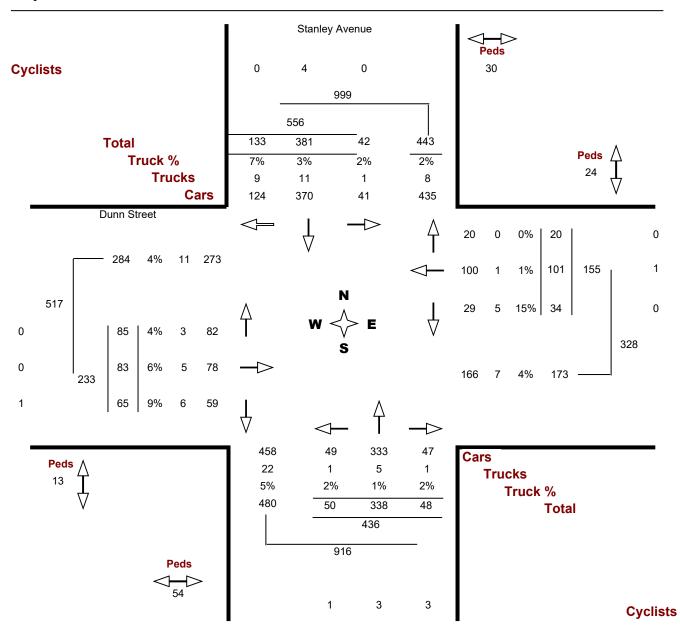
Major Dir..... North south Peak Hour.. 08:00 AM — 09:00 AM

Turning Movements Report - PM Period

Location...... Dunn Street @ Stanley Avenue

Municipality. NIAGARA FALLS

Traffic Cont.

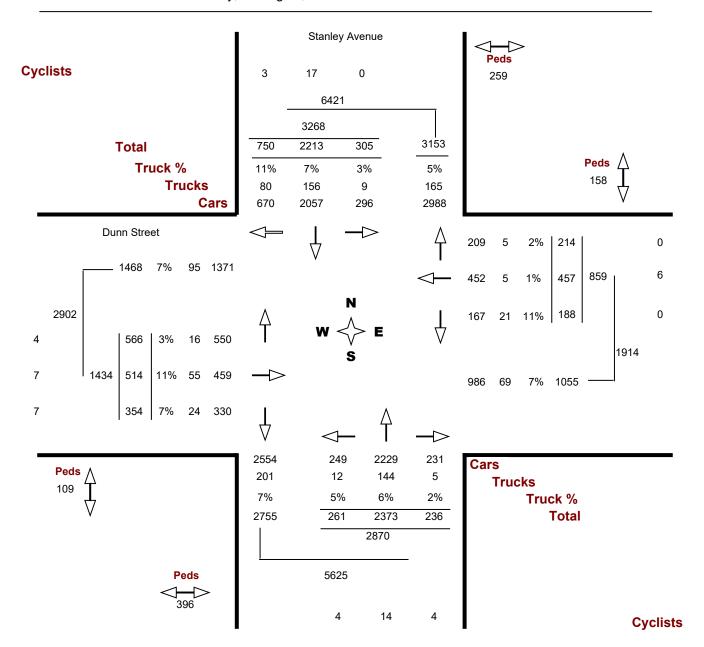

Major Dir..... North south

GeoID...... 01581

Count Date. Thursday, 11 August, 2022

Count Time. 03:00 PM — 06:00 PM

Peak Hour.. 04:30 PM — 05:30 PM


Turning Movement Count Report Full Study

Location...... Dunn Street @ Stanley Avenue

Municipality...... NIAGARA FALLS

GeoID...... 01581

Count Date...... Thursday, 11 August, 2022

Turning Movement Count - Details Report (15 min)

Location...... Dunn Street @ Stanley Avenue

Municipality..... NIAGARA FALLS

Count Date...... Thursday, August 11, 2022

					, ,		, -													
					Sta	nley Av	enue								Duni	n Stree	t			
		١	lorth A	pproacl	า			South	Approa	ach		1	East Ap	proach			Wes	t Appro	oach	
Time Period L	Τ	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT
07:00 07:15 4	4	38	9	0	51	5	43	2	0	50	0	9	4	0	13	12	5	5	0	22
07:15 07:30 1	1	37	17	0	55	7	34	3	0	44	3	7	1	0	11	10	8	5	0	23
07:30 07:45	3	38	10	0	51	12	43	4	0	59	2	9	3	0	14	17	13	6	0	36
07:45 08:00 1	1	44	20	0	65	5	45	2	0	52	3	7	5	0	15	18	13	12	0	43
Hourly Total 9	9	157	56	0	222	29	165	11	0	205	8	32	13	0	53	57	39	28	0	124
08:00 08:15	1	45	13	0	59	8	44	4	0	56	4	4	2	0	10	17	9	4	0	30
08:15 08:30 3	3	60	12	0	75	4	70	5	0	79	1	5	3	0	9	17	10	9	0	36
08:30 08:45 1	0	48	17	0	75	1	66	6	0	73	5	11	10	0	26	10	15	8	0	33
08:45 09:00 7	7	45	19	0	71	4	65	3	0	72	4	8	10	0	22	14	11	7	0	32
Hourly Total 2	1	198	61	0	280	17	245	18	0	280	14	28	25	0	67	58	45	28	0	131
11:00 11:15 1	2	95	20	0	127	3	69	10	0	82	4	14	14	0	32	22	17	13	0	52
11:15 11:30 1	4	81	18	0	113	5	76	5	0	86	5	13	9	0	27	15	17	12	0	44
11:30 11:45 1	1	61	25	0	97	5	75	8	0	88	5	14	3	0	22	13	18	8	0	39
11:45 12:00 1	2	67	17	0	96	7	60	4	0	71	7	10	21	0	38	23	17	15	0	55
Hourly Total 4	9	304	80	0	433	20	280	27	0	327	21	51	47	0	119	73	69	48	0	190
12:00 12:15 1	0	59	19	0	88	13	72	6	0	91	7	13	6	0	26	14	17	14	0	45
12:15 12:30 1	5	78	26	0	119	5	91	5	0	101	10	16	10	0	36	14	17	6	0	37
12:30 12:45 6	3	56	20	0	82	7	69	8	0	84	12	11	9	0	32	11	15	15	0	41
12:45 13:00 7	7	72	20	0	99	7	63	6	0	76	4	8	3	0	15	25	14	14	0	53
Hourly Total 3	8	265	85	0	388	32	295	25	0	352	33	48	28	0	109	64	63	49	0	176
13:00 13:15 1	2	58	22	0	92	9	83	14	0	106	4	4	10	0	18	14	19	10	0	43
13:15 13:30 9	9	70	15	0	94	14	89	4	0	107	3	13	5	0	21	15	19	10	0	44
13:30 13:45 1	3	83	20	0	116	5	90	5	0	100	3	10	7	0	20	27	9	10	0	46
13:45 14:00 1	6	64	23	0	103	8	81	5	0	94	5	20	7	0	32	16	26	7	0	49
Hourly Total 5	0	275	80	0	405	36	343	28	0	407	15	47	29	0	91	72	73	37	0	182
15:00 15:15 1	2	70	38	0	120	5	87	8	0	100	8	24	6	0	38	18	23	16	0	57
15:15 15:30 1	5	80	30	0	125	13	68	12	0	93	10	10	12	0	32	27	22	8	0	57
15:30 15:45 1	6	91	36	0	143	10	102	14	0	126	8	17	3	0	28	17	26	12	0	55
15:45 16:00 1	5	70	33	0	118	10	96	11	0	117	8	20	5	0	33	14	20	8	0	42
Hourly Total 5	8	311	137	0	506	38	353	45	0	436	34	71	26	0	131	76	91	44	0	211
16:00 16:15 1	0	100	30	0	140	10	92	10	0	112	6	24	6	0	36	15	10	8	0	33

Friday, January 27, 2023 Page 1 of 2

Stanley Avenue Dunn Street

		1	North A	pproacl	h			South	Approa	ach			East Ap	oproach			Wes	t Appro	oach	
Time Period	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT
16:15 16:30	9	90	27	0	126	12	89	10	0	111	13	23	6	0	42	20	13	22	0	55
16:30 16:45	14	93	29	0	136	18	89	6	0	113	6	26	8	0	40	23	17	15	0	55
16:45 17:00	13	88	31	0	132	11	76	10	0	97	10	23	2	0	35	22	28	20	0	70
Hourly Total	46	371	117	0	534	51	346	36	0	433	35	96	22	0	153	80	68	65	0	213
17:00 17:15	7	98	38	0	143	12	95	16	0	123	5	27	3	0	35	24	14	13	0	51
17:15 17:30	8	102	35	0	145	9	78	16	0	103	13	25	7	0	45	16	24	17	0	57
17:30 17:45	10	67	34	0	111	9	76	12	0	97	3	18	11	0	32	28	11	18	0	57
17:45 18:00	9	65	27	0	101	8	97	2	0	107	7	14	3	0	24	18	17	7	0	42
Hourly Total	34	332	134	0	500	38	346	46	0	430	28	84	24	0	136	86	66	55	0	207
Grand Total	305	2213	750	0	3268	261	2373	236	0	2870	188	457	214	0	859	566	514	354	0	1434
Truck %	3%	7%	11%	0%	7%	5%	6%	2%	0%	6%	11%	1%	2%	0%	4%	3%	11%	7%	0%	7%

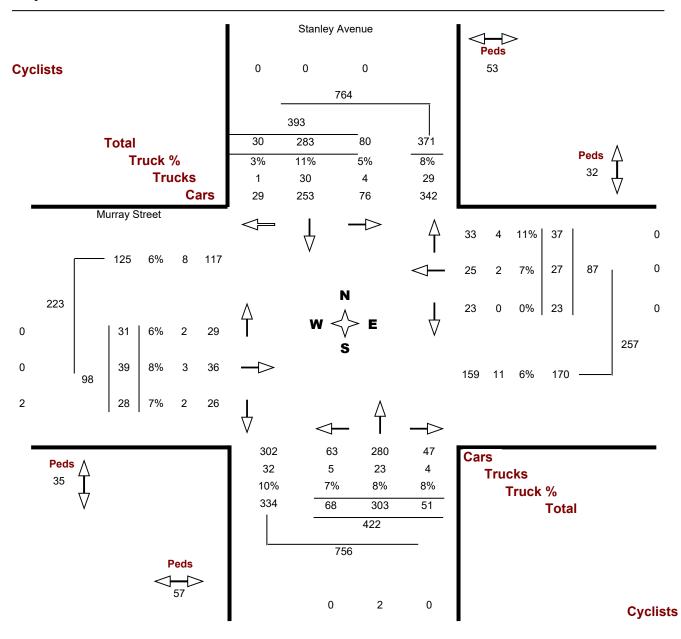
Friday, January 27, 2023 Page 2 of 2

Turning Movements Report - AM Period

Location...... Murray Street @ Stanley Avenue

Municipality. NIAGARA FALLS

Traffic Cont.


Major Dir..... North south

GeoID...... 01587

Count Date. Thursday, 11 August, 2022

Count Time. 07:00 AM — 09:00 AM

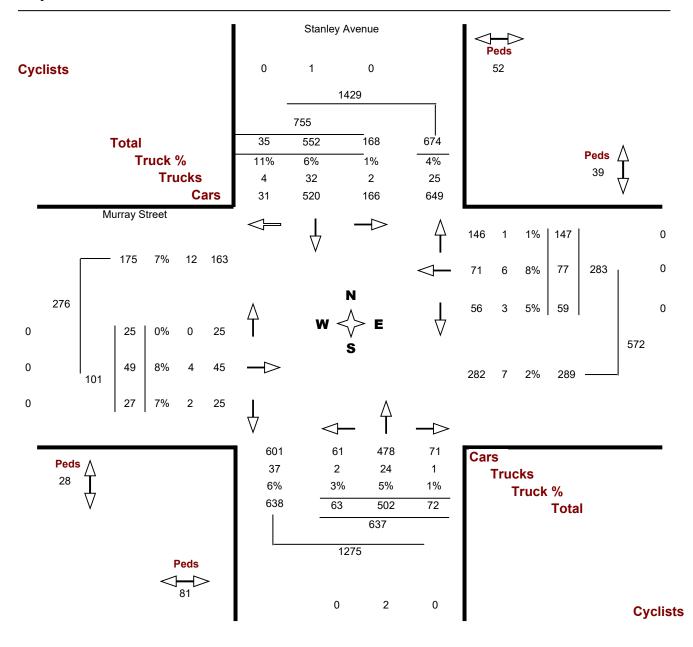
Peak Hour.. 08:00 AM — 09:00 AM

Turning Movements Report - PM Period

Location...... Murray Street @ Stanley Avenue

Municipality. NIAGARA FALLS

Traffic Cont.

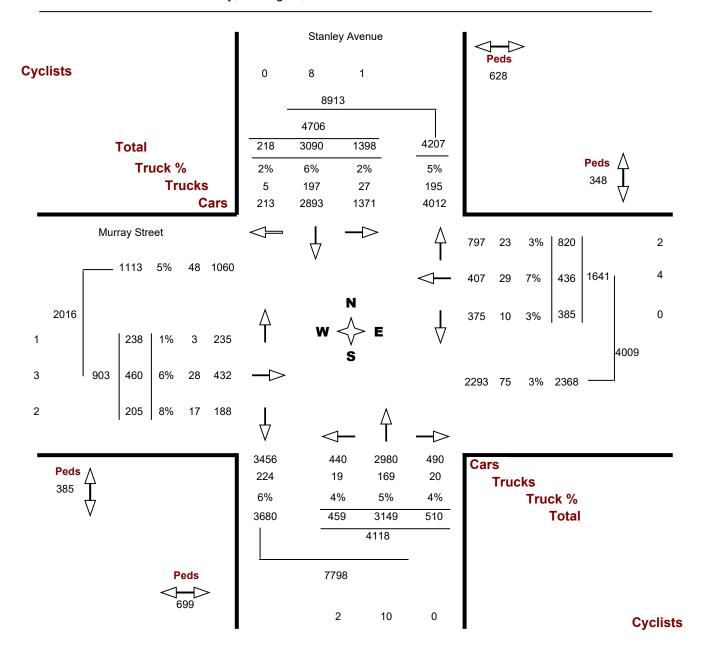

Major Dir..... North south

GeoID...... 01587

Count Date. Thursday, 11 August, 2022

Count Time. 03:00 PM — 06:00 PM

Peak Hour.. 03:45 PM — 04:45 PM


Turning Movement Count Report Full Study

Location...... Murray Street @ Stanley Avenue

Municipality...... NIAGARA FALLS

GeoID...... 01587

Count Date...... Thursday, 11 August, 2022

Turning Movement Count - Details Report (15 min)

Location...... Murray Street @ Stanley Avenue

Municipality..... NIAGARA FALLS

Count Date...... Thursday, August 11, 2022

					Sta	nley Av	enue								Murra	ay Stree	et			
		1	North A	pproacl	า			South	Approa	ach		1	East Ap	proach			Wes	t Appro	oach	
Time Period L	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT
07:00 07:15	7	54	7	0	68	9	50	5	0	64	1	3	6	0	10	3	5	6	0	14
07:15 07:30	15	47	6	0	68	12	47	12	0	71	4	3	2	0	9	4	6	6	0	16
07:30 07:45	13	43	8	0	64	12	59	7	0	78	6	7	3	0	16	8	9	6	0	23
07:45 08:00	18	66	3	0	87	16	62	6	0	84	5	7	8	0	20	8	12	14	0	34
Hourly Total 5	53	210	24	0	287	49	218	30	0	297	16	20	19	0	55	23	32	32	0	87
08:00 08:15	11	65	6	0	82	13	64	11	0	88	3	5	5	0	13	7	4	7	0	18
08:15 08:30 2	20	72	9	0	101	13	80	10	0	103	4	5	7	0	16	9	11	8	0	28
08:30 08:45 2	20	59	12	0	91	20	79	15	0	114	9	8	10	0	27	7	14	4	0	25
08:45 09:00 2	29	87	3	0	119	22	80	15	0	117	7	9	15	0	31	8	10	9	0	27
Hourly Total 8	80	283	30	0	393	68	303	51	0	422	23	27	37	0	87	31	39	28	0	98
11:00 11:15 4	46	102	3	0	151	17	107	17	0	141	11	11	28	0	50	12	22	13	0	47
11:15 11:30 5	52	98	13	0	163	8	105	26	0	139	17	22	31	0	70	11	20	5	0	36
11:30 11:45 4	47	83	9	0	139	12	99	18	0	129	10	16	12	0	38	13	19	4	0	36
11:45 12:00 6	61	95	7	0	163	15	107	15	0	137	6	14	23	0	43	10	24	4	0	38
Hourly Total 2	206	378	32	0	616	52	418	76	0	546	44	63	94	0	201	46	85	26	0	157
12:00 12:15 6	61	78	6	0	145	8	99	12	0	119	12	12	37	0	61	15	16	7	0	38
12:15 12:30 6	64	102	9	0	175	14	110	26	0	150	8	16	27	0	51	6	12	3	0	21
12:30 12:45	44	80	9	0	133	13	117	7	0	137	13	16	26	0	55	11	17	9	0	37
12:45 13:00 4	48	85	5	0	138	18	93	21	0	132	8	16	23	0	47	8	14	5	0	27
Hourly Total 2	217	345	29	0	591	53	419	66	0	538	41	60	113	0	214	40	59	24	0	123
13:00 13:15 6	63	94	4	0	161	14	93	17	0	124	8	5	23	0	36	8	25	9	0	42
13:15 13:30 6	60	95	4	0	159	13	93	15	0	121	13	8	41	0	62	5	19	3	0	27
13:30 13:45 6	63	96	6	0	165	13	112	30	0	155	15	14	32	0	61	4	18	7	0	29
13:45 14:00 5	58	98	6	0	162	19	99	24	0	142	13	11	35	0	59	8	18	4	0	30
Hourly Total 2	244	383	20	0	647	59	397	86	0	542	49	38	131	0	218	25	80	23	0	128
15:00 15:15 6	63	105	5	0	173	16	116	17	0	149	22	21	26	0	69	4	9	8	0	21
15:15 15:30 5	50	111	4	0	165	9	96	19	0	124	11	11	37	0	59	9	16	8	0	33
15:30 15:45 6	62	117	8	0	187	20	113	17	0	150	19	19	35	0	73	5	14	5	0	24
15:45 16:00 4	42	135	9	0	186	16	129	18	0	163	9	10	38	0	57	6	11	8	0	25
Hourly Total 2	217	468	26	0	711	61	454	71	0	586	61	61	136	0	258	24	50	29	0	103
16:00 16:15	32	130	9	0	171	16	109	18	0	143	16	26	36	0	78	9	8	7	0	24

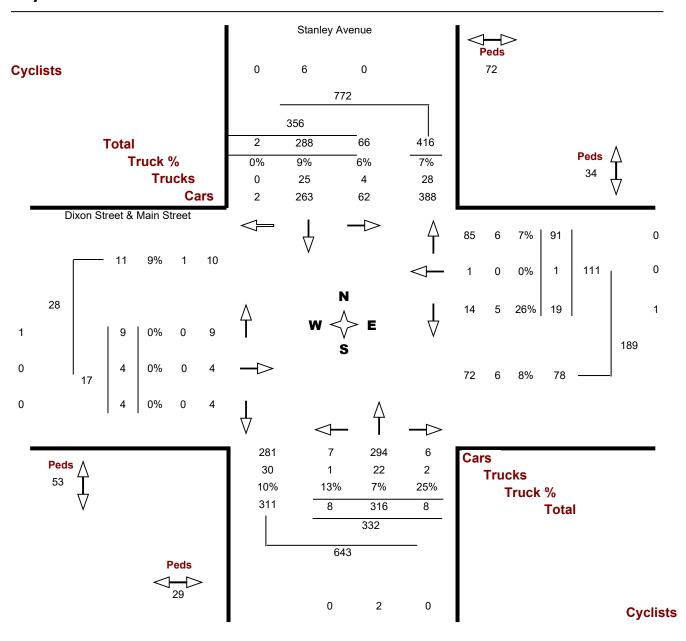
Friday, January 27, 2023 Page 1 of 2

Stanley Avenue

Murray Street

		1	North A	pproacl	h			South	Approa	ach		1	East Ap	proach			Wes	t Appro	oach	
Time Period	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT
16:15 16:30	50	147	9	0	206	16	126	16	0	158	19	10	36	0	65	4	12	5	0	21
16:30 16:45	44	140	8	0	192	15	138	20	0	173	15	31	37	0	83	6	18	7	0	31
16:45 17:00	53	132	4	0	189	12	115	11	0	138	22	18	31	0	71	5	12	6	0	23
Hourly Total	179	549	30	0	758	59	488	65	0	612	72	85	140	0	297	24	50	25	0	99
17:00 17:15	44	123	8	0	175	11	115	17	0	143	19	18	37	0	74	8	14	5	0	27
17:15 17:30	55	129	3	0	187	17	98	17	0	132	25	24	37	0	86	8	13	2	0	23
17:30 17:45	57	119	12	0	188	14	117	17	0	148	22	15	44	0	81	3	16	5	0	24
17:45 18:00	46	103	4	0	153	16	122	14	0	152	13	25	32	0	70	6	22	6	0	34
Hourly Total	202	474	27	0	703	58	452	65	0	575	79	82	150	0	311	25	65	18	0	108
Grand Total	1398	3090	218	0	4706	459	3149	510	0	4118	385	436	820	0	1641	238	460	205	0	903
Truck %	2%	6%	2%	0%	5%	4%	5%	4%	0%	5%	3%	7%	3%	0%	4%	1%	6%	8%	0%	5%

Friday, January 27, 2023 Page 2 of 2

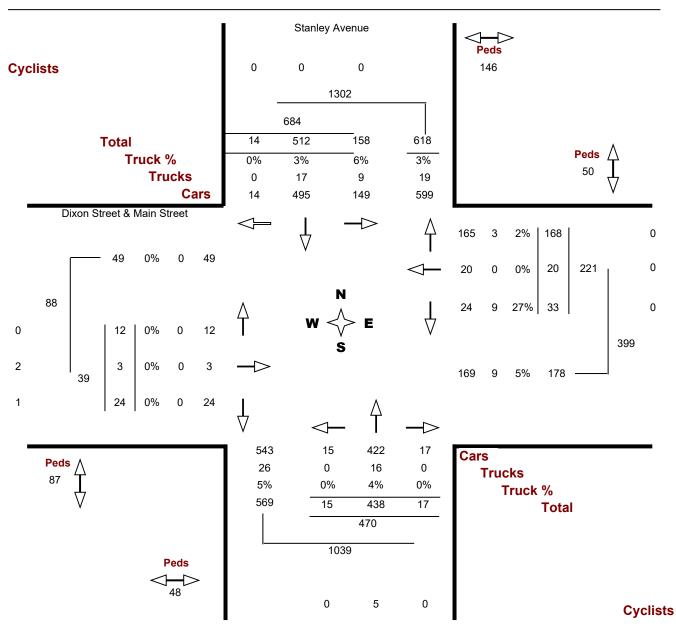

Turning Movements Report - AM Period

Location...... Dixon Street & Main Street @ Stanley Avenue GeolD...... 01584

Municipality. NIAGARA FALLS Count Date. Thursday, 11 August, 2022

Traffic Cont. Count Time. 07:00 AM — 09:00 AM

Major Dir..... North south Peak Hour.. 08:00 AM — 09:00 AM

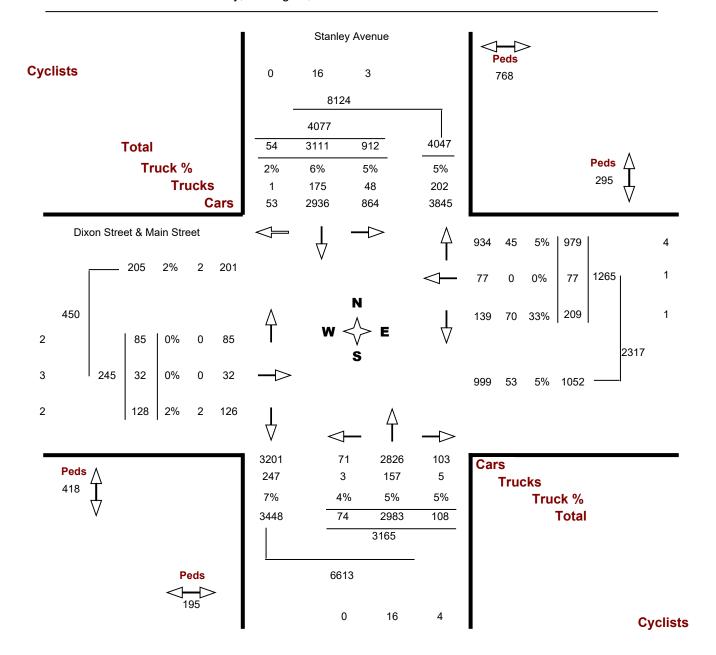

Turning Movements Report - PM Period

Location...... Dixon Street & Main Street @ Stanley Avenue GeolD...... 01584

Municipality. NIAGARA FALLS Count Date. Thursday, 11 August, 2022

Traffic Cont. Count Time. 03:00 PM — 06:00 PM

Major Dir..... North south Peak Hour.. 04:15 PM — 05:15 PM


Turning Movement Count Report Full Study

Location...... Dixon Street & Main Street @ Stanley Avenue

Municipality...... NIAGARA FALLS

GeoID...... 01584

Count Date...... Thursday, 11 August, 2022

Turning Movement Count - Details Report (15 min)

Location...... Dixon Street & Main Street @ Stanley Avenue

Municipality..... NIAGARA FALLS

Count Date...... Thursday, August 11, 2022

Stanley Avenue

Dixon Street & Main Street

							01140	0 "						5,70	000	c or iniai	04/			
I=: 5 · · · I				pproac					Approa					proach				t Appro		
Time Period	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	
07:00 07:15	12	55	0	0	67	1	56	0	0	57	4	0	15	0	19	0	0	0	0	0
07:15 07:30	5	52	1	0	58	0	50	0	0	50	5	0	17	0	22	0	0	1	0	1
07:30 07:45	14	49	1	0	64	2	59	0	0	61	3	0	23	0	26	4	0	2	0	6
07:45 08:00	16	77	0	0	93	0	64	1	0	65	3	0	16	0	19	2	0	1	0	3
Hourly Total	47	233	2	0	282	3	229	1	0	233	15	0	71	0	86	6	0	4	0	10
08:00 08:15	20	56	1	0	77	1	58	3	0	62	2	0	20	0	22	1	3	1	0	5
08:15 08:30	15	77	0	0	92	5	79	1	0	85	7	0	25	0	32	1	0	1	0	2
08:30 08:45	16	76	1	0	93	1	86	2	0	89	4	1	25	0	30	6	1	1	0	8
08:45 09:00	15	79	0	0	94	1	93	2	0	96	6	0	21	0	27	1	0	1	0	2
Hourly Total	66	288	2	0	356	8	316	8	0	332	19	1	91	0	111	9	4	4	0	17
11:00 11:15	34	118	2	0	154	2	92	9	0	103	12	1	40	0	53	6	2	4	0	12
11:15 11:30	30	112	0	0	142	1	107	4	0	112	6	2	32	0	40	1	3	4	0	8
11:30 11:45	25	84	1	0	110	2	83	7	0	92	9	2	29	0	40	4	1	9	0	14
11:45 12:00	34	82	3	0	119	1	104	4	0	109	4	0	38	0	42	6	3	8	0	17
Hourly Total	123	396	6	0	525	6	386	24	0	416	31	5	139	0	175	17	9	25	0	51
12:00 12:15	30	78	3	0	111	6	85	6	0	97	5	1	35	0	41	6	1	3	0	10
12:15 12:30	25	108	3	0	136	2	108	6	0	116	8	4	26	0	38	2	2	2	0	6
12:30 12:45	37	72	3	0	112	0	84	2	0	86	7	4	36	0	47	5	2	4	0	11
12:45 13:00	26	93	3	0	122	2	94	5	0	101	8	2	35	0	45	3	0	3	0	6
Hourly Total	118	351	12	0	481	10	371	19	0	400	28	11	132	0	171	16	5	12	0	33
13:00 13:15	28	87	3	0	118	0	91	5	0	96	6	5	27	0	38	5	1	4	0	10
13:15 13:30	32	90	1	0	123	4	100	4	0	108	4	4	24	0	32	0	2	0	0	2
13:30 13:45	28	109	1	0	138	6	114	4	0	124	7	2	27	0	36	3	0	4	0	7
13:45 14:00	28	101	0	0	129	1	104	5	0	110	6	3	25	0	34	2	1	2	0	5
Hourly Total	116	387	5	0	508	11	409	18	0	438	23	14	103	0	140	10	4	10	0	24
15:00 15:15	28	111	0	0	139	0	98	2	0	100	6	1	31	0	38	1	1	5	0	7
15:15 15:30	32	112	2	0	146	2	103	1	0	106	10	4	30	0	44	1	0	7	0	8
15:30 15:45	32	136	3	0	171	6	114	4	0	124	6	5	32	0	43	1	1	8	0	10
15:45 16:00	36	118	0	0	154	2	103	3	0	108	6	1	38	0	45	0	2	4	0	6
Hourly Total	128	477	5	0	610	10	418	10	0	438	28	11	131	0	170	3	4	24	0	31
16:00 16:15	43	130	4	0	177	1	111	1	0	113	7	7	39	0	53	0	0	4	0	4

Friday, January 27, 2023

Stanley Avenue

Dixon Street & Main Street

	North Approach							South	Appro	ach		ı	East Ap	proach			Wes	t Appro	oach	
Time Period	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT	LT	TH	RT	U-Turn	TOT
16:15 16:30	49	120	2	0	171	1	113	5	0	119	6	3	39	0	48	3	1	6	0	10
16:30 16:45	38	137	4	0	179	2	119	1	0	122	8	5	46	0	59	3	0	4	0	7
16:45 17:00	39	126	3	0	168	8	93	4	0	105	9	6	33	0	48	2	0	2	0	4
Hourly Total	169	513	13	0	695	12	436	11	0	459	30	21	157	0	208	8	1	16	0	25
17:00 17:15	32	129	5	0	166	4	113	7	0	124	10	6	50	0	66	4	2	12	0	18
17:15 17:30	34	135	2	0	171	1	85	6	0	92	8	5	34	0	47	5	2	11	0	18
17:30 17:45	44	103	0	0	147	5	113	1	0	119	9	1	37	0	47	3	1	3	0	7
17:45 18:00	35	99	2	0	136	4	107	3	0	114	8	2	34	0	44	4	0	7	0	11
Hourly Total	145	466	9	0	620	14	418	17	0	449	35	14	155	0	204	16	5	33	0	54
Grand Total	912	3111	54	0	4077	74	2983	108	0	3165	209	77	979	0	1265	85	32	128	0	245
Truck %	5%	6%	2%	0%	5%	4%	5%	5%	0%	5%	33%	0%	5%	0%	9%	0%	0%	2%	0%	1%

Friday, January 27, 2023 Page 2 of 2

Fallsview Blvd @ Main St **Afternoon Peak Diagram Specified Period One Hour Peak** From: 18:30:00 From: 17:00:00 To: 23:59:00 To: 19:30:00 Weather conditions: Municipality: Niagara Falls Clear/Dry Site #: 000000015 Intersection: Main St & Fallsview Blvd Person(s) who counted: Cam TFR File #: 15 Count date: 1-Jul-2018 ** Signalized Intersection ** Major Road: Main St runs W/E North Leg Total: 920 Cyclists 0 1 Cyclists 0 East Leg Total: 744 7 North Entering: 132 Trucks 2 2 Trucks 7 East Entering: 3 591 North Peds: East Peds: 339 Cars 21 79 24 124 Cars 781 917 \mathbb{X} Totals 788 Peds Cross: Totals 23 82 27 Peds Cross: ⋈ Fallsview Blvd Totals Trucks Cyclists Totals Cyclists Trucks Cars Cars 13 199 212 310 2 0 312 174 163 11 0 103 2 0 105 Main St 576 Cyclists Trucks Cars Totals Portage Rd 0 195 195 5 74 79 0 65 65 Trucks Cyclists Totals 0 Cars 5 334 145 6 153 Fallsview Blvd \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 247 Cars 15 276 47 338 West Peds: 358 Trucks 5 Trucks 0 0 5 South Peds: 389 5 West Entering: 339 Cyclists 0 Cyclists 0 0 South Entering: 343 0 West Leg Total: 551 Totals 252 Totals 15 South Leg Total: 595 **Comments**

Fallsview Blvd @ Main St

Total Count Diagram

Municipality: Niagara Falls Site #: 000000015

Intersection: Main St & Fallsview Blvd

TFR File #: 15

Count date: 1-Jul-2018 Weather conditions:

Clear/Dry

Person(s) who counted:

Cam

Fallsview Blvd

** Signalized Intersection **

North Entering: 1669 North Peds: 2361

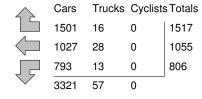
North Leg Total: 5685

Peds Cross: \bowtie

Cyclists	1	0	1	2
Trucks	2	19	6	27
Cars	236	1041	363	1640
Totals	239	1060	370	

0 370

Cyclists 4 Trucks 58 Cars 3954 Totals 4016


Major Road: Main St runs W/E

East Leg Total: 4657 East Entering: 3378 East Peds: 5462 \mathbb{Z} Peds Cross:

Cyclists Trucks Cars Totals 38 1396 1436

Cyclists Trucks Cars Totals 0 1083 1084 578 603 491 495 3 1

Cars

1242

24 2152 \mathbb{X} Peds Cross: 2408

West Peds: West Entering: 2182 West Leg Total: 3618

Cars 2325 Trucks 33 Cyclists 3 Totals 2361

Fallsview Blvd

Cars 133 1370 301 1804 Trucks 8 41 4 53 6 Cyclists 1 Totals 142 1415

Peds Cross: \bowtie South Peds: 2662 South Entering: 1863

South Leg Total: 4224

Trucks Cyclists Totals

1279

Comments

Fallsview Blvd @ Murray St **Afternoon Peak Diagram Specified Period One Hour Peak From:** 17:30:00 From: 17:00:00 To: 23:59:00 To: 18:30:00 Municipality: Niagara Falls Weather conditions: Clear/Dry Site #: 000000014 Intersection: Fallsview Blvd & Murray St Person(s) who counted: Cam TFR File #: 14 Count date: 1-Jul-2018 ** Signalized Intersection ** Major Road: Fallsview Blvd runs N/S North Leg Total: 734 Cyclists 0 1 Cyclists 1 East Leg Total: 994 0 3 East Entering: North Entering: 379 Trucks 0 3 Trucks 9 367 North Peds: East Peds: 621 Cars 39 211 125 375 Cars 345 1049 \mathbb{X} Peds Cross: Totals 39 214 Totals 355 Peds Cross: ⋈ 126 Fallsview Blvd Totals Trucks Cyclists Totals Cyclists Trucks Cars Cars 2 268 270 0 121 145 0 146 98 0 100 360 Murray St Cyclists Trucks Cars Totals Murray St 0 39 39 293 293 Trucks Cyclists Totals 123 124 0 1 Cars 455 625 627 Fallsview Blvd \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 432 Cars 84 189 207 480 West Peds: 488 Trucks 6 Trucks 1 5 0 6 South Peds: 460 West Entering: 456 Cyclists 0 Cyclists 0 2 1 South Entering: 488 West Leg Total: 726 Totals 85 South Leg Total: 926 Totals 438 208 **Comments**

Fallsview Blvd @ Murray St

Total Count Diagram

Municipality: Niagara Falls Site #: 000000014

Intersection: Fallsview Blvd & Murray St

Totals

TFR File #: 14

Count date: 1-Jul-2018 Weather conditions:

Clear/Dry

Person(s) who counted:

Major Road: Fallsview Blvd runs N/S

Cam

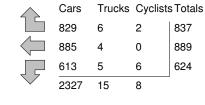
Fallsview Blvd

** Signalized Intersection **

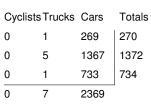
North Leg Total: 4876 North Entering: 2683 North Peds: 9092 Peds Cross: \bowtie

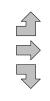
Cyclists Trucks Cars

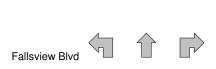
Cyclists	0	0	1	1
Trucks	1	17	2	20
Cars	538	1469	655	2662
Totals	539	1486	658	



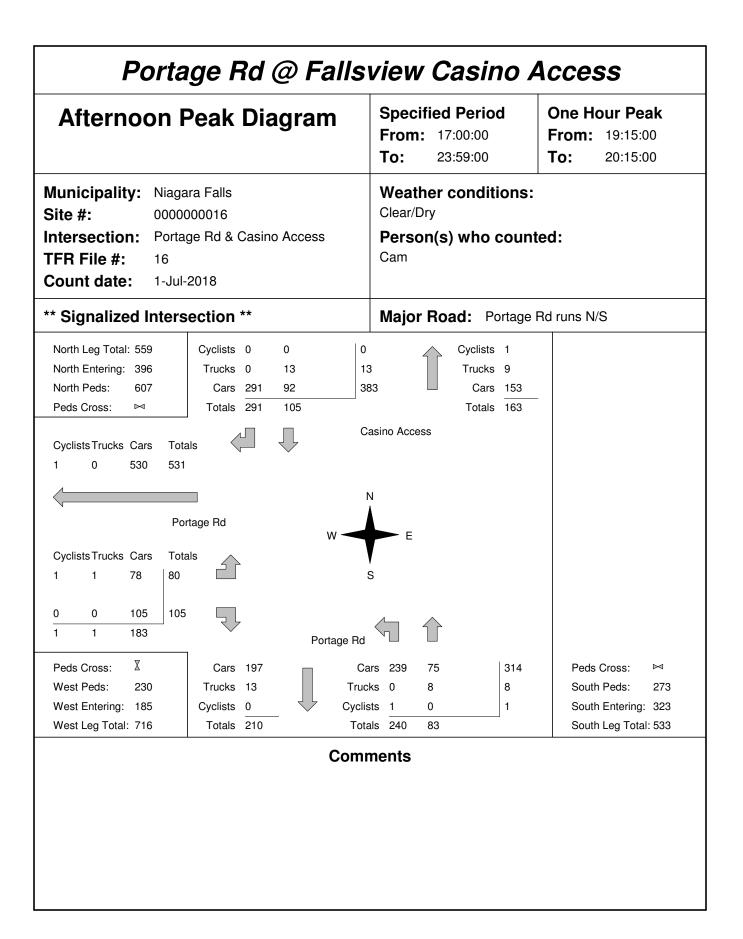
East Leg Total: 5307 East Entering: 2350 East Peds: 13432 Peds Cross:







Murray St


Cars	Trucks	Cyclists	Totals
2942	13	2	2957

Peds Cross:	X
West Peds:	3339
West Entering:	2376
West Leg Total:	4501

Cars	2815
Trucks	23
Cyclists	6
Totals	2844

	Cars	693	1067	920	2680
	Trucks	4	18	6	28
1	Cyclists	0	1	1	2
	Totals	697	1086	927	

Peds Cross: M South Peds: 9162 South Entering: 2710 South Leg Total: 5554

Portage Rd @ Fallsview Casino Access

Total Count Diagram

Municipality: Niagara Falls

Site #: 0000000016

Intersection: Portage Rd & Casino Access

TFR File #: 16

Count date: 1-Jul-2018

Weather conditions:

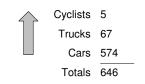
Clear/Dry

Person(s) who counted:

Cam

** Signalized Intersection **

on ** Major Road: Portage Rd runs N/S


Casino Access

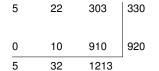
 Cyclists
 3
 0
 3

 Trucks
 25
 41
 66

 Cars
 1659
 1305
 2964

 Totals
 1687
 1346

1606


52

2

Cyclists Trucks Cars Totals
5 32 2994 3031

Cyclists Trucks Cars

Totals

Peds Cross:

West Peds: 1729

West Entering: 1250

West Leg Total: 4281

Cars 2215
Trucks 51
Cyclists 0
Totals 2266

Cars 1335 271
Trucks 7 45
Cyclists 2 0
Totals 1344 316

Peds Cross:
South Peds: 1553
South Entering: 1660
South Leg Total: 3926

Stanley Ave @ Dunn St **Afternoon Peak Diagram Specified Period One Hour Peak** From: 18:30:00 From: 17:00:00 To: 23:59:00 To: 19:30:00 Weather conditions: Municipality: Niagara Falls Clear/Dry Site #: 000000005 Intersection: Stanley Ave & Dunn St Person(s) who counted: Cam TFR File #: Count date: 1-Jul-2018 ** Signalized Intersection ** Major Road: Stanley Ave runs N/S North Leg Total: 1068 Cyclists 0 1 Cyclists 0 East Leg Total: 535 12 East Entering: North Entering: 571 Trucks 8 3 1 Trucks 3 209 North Peds: 346 East Peds: 90 Cars 116 96 558 Cars 494 52 \mathbb{Z} Peds Cross: Totals 124 Totals 497 Peds Cross: 349 98 Stanley Ave Totals Trucks Cyclists Totals Cyclists Trucks Cars Cars 12 324 337 0 40 128 1 132 36 0 37 Dunn St 204 Cyclists Trucks Cars Totals Dunn St 2 92 94 148 152 50 53 Trucks Cyclists Totals 0 3 Cars 290 320 326 Stanley Ave \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 432 Cars 80 362 76 518 West Peds: 40 Trucks 7 Trucks 1 0 2 South Peds: 145 1 West Entering: 299 Cyclists 0 Cyclists 0 0 0 South Entering: 520 West Leg Total: 636 Totals 81 South Leg Total: 959 Totals 439 **Comments**

Stanley Ave @ Dunn St

Total Count Diagram

Municipality: Niagara Falls Site #: 000000005

Intersection: Stanley Ave & Dunn St

TFR File #:

Count date: 1-Jul-2018 Weather conditions:

Clear/Dry

Person(s) who counted:

Cam

Stanley Ave

** Signalized Intersection **

North Leg Total: 7576 North Entering: 4186 North Peds: 1397

Peds Cross: \bowtie

Cyclists	2	5	2	9
Trucks	45	18	4	67
Cars	1082	2549	479	411
Totals	1129	2572	485	_

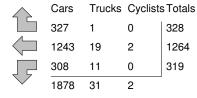
0

Cyclists 5 Trucks 22 Cars 3363 Totals 3390

Major Road: Stanley Ave runs N/S

East Leg Total: 3711 East Entering: 1911 East Peds: 307 \mathbb{X} Peds Cross:

Cyclists Trucks Cars Totals 71 2998 3074



Dunn St

Cyclists	Trucks	Cars	Totals
1	8	629	638
1	43	792	836
3	15	377	395
5	66	1798	

Trucks Cyclists Totals Cars

1749

Dunn St

 \mathbb{X} Peds Cross: West Peds: 640 West Entering: 1869 West Leg Total: 4943

Cars 3234 Trucks 44 Cyclists 8 Totals 3286

Stanley Ave

3558 Cars 673 2407 478 Trucks 7 1 21 13 5 Cyclists 1 Totals 681 2424

Peds Cross: \bowtie South Peds: 1252 South Entering: 3584

South Leg Total: 6870

1800

Stanley Ave @ Murray St **Afternoon Peak Diagram Specified Period One Hour Peak From:** 17:30:00 From: 17:00:00 To: 23:59:00 To: 18:30:00 Weather conditions: Municipality: Niagara Falls Clear/Dry Site #: 000000002 Stanley Ave & Murray St Person(s) who counted: Intersection: Cam TFR File #: Count date: 1-Jul-2018 ** Signalized Intersection ** Major Road: Stanley Ave runs N/S North Leg Total: 1405 Cyclists 0 0 0 Cyclists 0 East Leg Total: 790 4 North Entering: 802 Trucks 0 4 0 Trucks 7 East Entering: 322 North Peds: East Peds: 543 Cars 98 467 233 798 Cars 596 43 \mathbb{X} Totals 603 Peds Cross: Totals 98 471 233 Peds Cross: ⋈ Stanley Ave Totals Trucks Cyclists Totals Cyclists Trucks Cars Cars 2 281 283 163 0 164 92 0 92 66 0 66 321 0 Murray St Cyclists Trucks Cars Totals Murray St 0 50 50 1 153 155 25 26 Trucks Cyclists Totals 0 1 Cars 228 465 468 Stanley Ave \mathbb{X} Peds Cross: Cars 558 553 Peds Cross: \bowtie Cars 91 383 79 West Peds: 112 Trucks 5 Trucks 2 1 9 South Peds: 187 6 West Entering: 231 Cyclists 0 Cyclists 0 0 0 South Entering: 562 West Leg Total: 514 Totals 93 South Leg Total: 1125 Totals 563 **Comments**

Stanley Ave @ Murray St

Total Count Diagram

Municipality: Niagara Falls Site #: 000000002

Intersection: Stanley Ave & Murray St

TFR File #:

Count date: 1-Jul-2018 Weather conditions:

Clear/Dry

Person(s) who counted:

Cam

Stanley Ave

** Signalized Intersection **

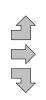
North Leg Total: 8648 North Entering: 5114 North Peds: 6499

Peds Cross: \bowtie

Cyclists	1	0	0	1
Trucks	1	32	0	33
Cars	868	3029	1183	5080

Totals 870 3061 1183 Cyclists 5 Trucks 34 Cars 3495 Totals 3534

Major Road: Stanley Ave runs N/S


East Leg Total: 4638 East Entering: 2301 East Peds: 448 \mathbb{Z} Peds Cross:

Cyclists Trucks Cars Totals 10 2170 2184

Murray St

Cyclis	sts Trucks	Cars	Totals
0	1	394	395
3	3	394749227	755
0	4	227	231
3	8	1370	_

Trucks Cyclists Totals Cars 1062 0 1066 811 0 813 417 2 422 2290

Murray St

Trucks Cyclists Totals Cars 2329 2337

 \mathbb{X} Peds Cross: West Peds: 1873 West Entering: 1381 West Leg Total: 3565

Cars 3673 Trucks 39 Cyclists 2 Totals 3714

Cars 491 2039 397 2927 Trucks 7 2 38 29 Cyclists 3 0 8 Totals 501 2073

Peds Cross: \bowtie South Peds: 3274 South Entering: 2973 South Leg Total: 6687

Fallsview Blvd @ Main St **Afternoon Peak Diagram Specified Period One Hour Peak** From: 17:30:00 From: 17:00:00 To: 23:59:00 To: 18:30:00 Weather conditions: Municipality: Niagara Falls Clear/Dry Site #: 000000015 Intersection: Main St & Fallsview Blvd Person(s) who counted: Cam TFR File #: 15 Count date: 7-Jul-2018 ** Signalized Intersection ** Major Road: Main St runs W/E North Leg Total: 776 Cyclists 0 0 0 Cyclists 2 East Leg Total: 679 9 North Entering: 194 Trucks 1 2 East Entering: Trucks 12 511 North Peds: East Peds: 208 Cars 24 115 46 185 Cars 568 623 \mathbb{Z} Totals 582 Peds Cross: Totals 25 121 48 Peds Cross: ⋈ Fallsview Blvd Totals Trucks Cyclists Totals Cyclists Trucks Cars Cars 204 211 255 0 0 255 156 5 0 161 90 0 95 Main St 501 Cyclists Trucks Cars Totals Portage Rd 0 124 124 1 70 75 55 55 Trucks Cyclists Totals 0 0 Cars 2 249 159 168 Fallsview Blvd \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 260 Cars 24 189 43 256 West Peds: 217 Trucks 11 Trucks 1 12 1 14 South Peds: 190 West Entering: 254 Cyclists 0 Cyclists 0 2 3 South Entering: 273 1 West Leg Total: 465 Totals 271 Totals 25 South Leg Total: 544 **Comments**

Fallsview Blvd @ Main St

Total Count Diagram

Municipality: Niagara Falls Site #: 000000015

Intersection: Main St & Fallsview Blvd

TFR File #: 15

Count date: 7-Jul-2018 Weather conditions:

Clear/Dry

Person(s) who counted:

Cam

** Signalized Intersection **

North Leg Total: 5401 North Entering: 1615

North Peds: 1624 Peds Cross: \bowtie

Cyclists 0 0 Trucks 1 34 12 Cars 202 998 364 Totals 203 1036 376

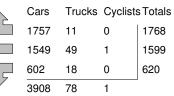
47 1564

Fallsview Blvd

Cyclists 7 Trucks 111 Cars 3668

Totals 3786

Major Road: Main St runs W/E


East Leg Total: 5117 East Entering: 3987 East Peds: 4921 \mathbb{Z} Peds Cross:

Cyclists Trucks Cars Totals 57 1910 1969

Portage Rd

Cyclists Trucks Cars Totals 0 6 672 678 43 428 474 0 352 355 3 1452

Cars	Trucks	Cyclists	Totals
1065	58	7	1130

 \mathbb{X} Peds Cross: 1913 West Peds: West Entering: 1507 West Leg Total: 3476

Cars 1952 Trucks 55 Cyclists 4 Totals 2011

Fallsview Blvd

Cars 159 1239 273 1671 Trucks 7 3 104 94 7 4 12 Cyclists 1 Totals 167 1340

Peds Cross: M South Peds: 1779 South Entering: 1787 South Leg Total: 3798

Fallsview Blvd @ Murray St **Afternoon Peak Diagram Specified Period One Hour Peak** From: 17:00:00 **From:** 18:00:00 To: 23:59:00 To: 19:00:00 Municipality: Niagara Falls Weather conditions: Clear/Dry Site #: 000000014 Intersection: Fallsview Blvd & Murray St Person(s) who counted: Cam TFR File #: 14 Count date: 7-Jul-2018 ** Signalized Intersection ** Major Road: Fallsview Blvd runs N/S North Leg Total: 824 Cyclists 0 0 0 Cyclists 3 East Leg Total: 1124 7 Trucks 3 1 Trucks 5 East Entering: North Entering: 422 3 449 North Peds: 380 East Peds: Cars 23 268 124 415 Cars 394 858 \mathbb{Z} Peds Cross: Totals 26 271 Totals 402 Peds Cross: ⋈ 125 Fallsview Blvd Totals Cyclists Trucks Cars Trucks Cyclists Totals Cars 8 303 311 125 2 0 127 185 0 189 129 0 133 439 Murray St Cyclists Trucks Cars Totals Murray St 38 39 1 2 308 310 195 195 Trucks Cyclists Totals 0 0 Cars 0 541 667 675 Fallsview Blvd \mathbb{X} Peds Cross: Cars 592 Peds Cross: \bowtie Cars 95 231 235 561 West Peds: 279 Trucks 7 Trucks 1 2 5 8 South Peds: 351 West Entering: 544 Cyclists 0 Cyclists 0 0 3 South Entering: 572 3 West Leg Total: 855 Totals 96 South Leg Total: 1171 Totals 599 240 **Comments**

Fallsview Blvd @ Murray St

Total Count Diagram

Municipality: Niagara Falls Site #: 000000014

Intersection: Fallsview Blvd & Murray St

TFR File #: 14

Count date: 7-Jul-2018 Weather conditions:

Clear/Dry

Person(s) who counted:

Cam

** Signalized Intersection **

North Entering: 2768 North Peds: 3648

North Leg Total: 5636

Peds Cross: \bowtie

Cars	271	1748	699	271
Trucks	20	22	2	44
Cyclists	1	5	0	6

1775

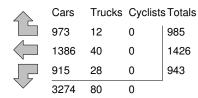
8 701

Cyclists 7 Trucks 33 Cars 2828 Totals 2868

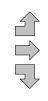
Major Road: Fallsview Blvd runs N/S

East Leg Total: 7279 East Entering: 3354 East Peds: 7907 \mathbb{Z} Peds Cross:

Cyclists Trucks Cars Totals 66 2334 2401

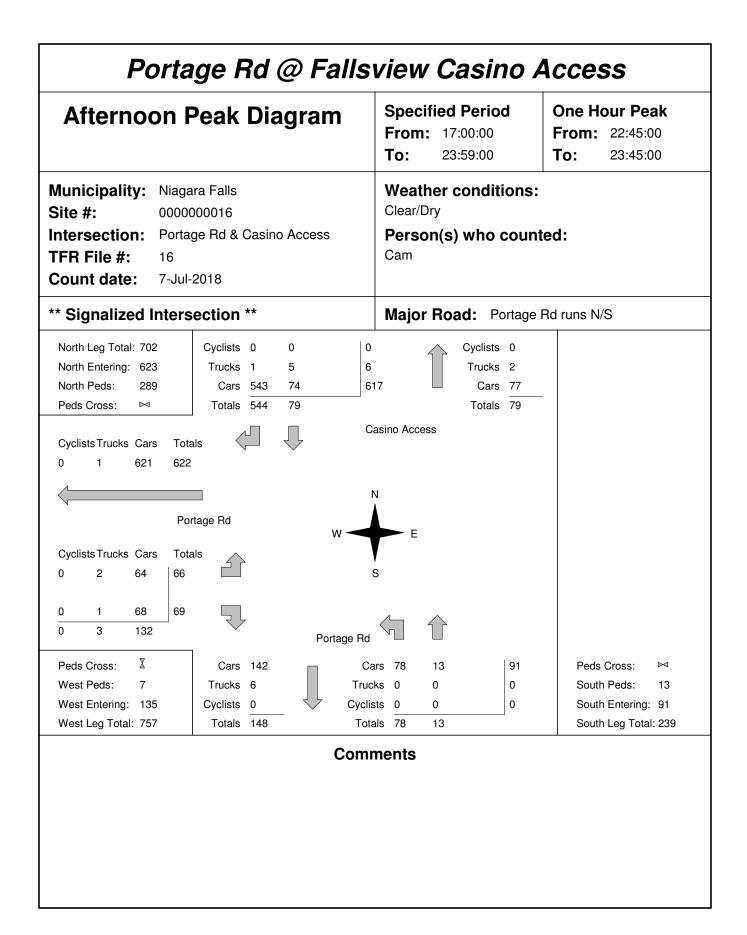

Murray St

Totals 292


Fallsview Blvd

Murray St

Cyclists Trucks Cars Totals 5 299 304 23 1947 1970 7 1345 1352 0 3591


Cars	Trucks	Cyclists	Totals
3875	50	0	3925

 \mathbb{X} Peds Cross: 2120 West Peds: West Entering: 3626 West Leg Total: 6027

Cars 4008 Trucks 57 Cyclists 5 Totals 4070

Cars 677 1556 1229 3462 47 Trucks 6 25 16 Cyclists 0 7 0 7 Totals 683 1254

Peds Cross: M South Peds: 2612 South Entering: 3516 South Leg Total: 7586

Portage Rd @ Fallsview Casino Access

Total Count Diagram

Municipality: Niagara Falls

Site #: 0000000016

Intersection: Portage Rd & Casino Access

TFR File #: 16

Count date: 7-Jul-2018

Weather conditions:

Clear/Dry

Person(s) who counted:

Cam

** Signalized Intersection **

Major Road: Portage Rd runs N/S

5 North Leg Total: 3638 Cyclists 5 Cyclists 4 79 North Entering: 2957 Trucks 42 37 Trucks 66 North Peds: 3699 Cars 2529 344 2873 Cars 611 Peds Cross: \bowtie Totals 2576 Totals 681 381 Casino Access

Cyclists Trucks Cars Totals
5 47 3493 3545

Portage Rd

Cyclists Trucks Cars Totals
4 46 425 | 475

 4
 11
 580
 595

 8
 57
 1005

Peds Cross:

West Peds: 29

West Entering: 1070

West Leg Total: 4615

 Cars
 924

 Trucks
 48

 Cyclists
 4

 Totals
 976

 Cars
 964
 186
 1150

 Trucks
 5
 20
 25

 Cyclists
 0
 0
 0

 Totals
 969
 206

Peds Cross:
South Peds: 553

South Entering: 1175

South Leg Total: 2151

Stanley Ave @ Dunn St **Afternoon Peak Diagram Specified Period One Hour Peak From:** 17:00:00 From: 17:00:00 To: 23:59:00 To: 18:00:00 Weather conditions: Municipality: Niagara Falls Clear/Dry Site #: 000000005 Intersection: Stanley Ave & Dunn St Person(s) who counted: Cam TFR File #: Count date: 7-Jul-2018 ** Signalized Intersection ** Major Road: Stanley Ave runs N/S North Leg Total: 924 Cyclists 1 2 0 3 Cyclists 0 East Leg Total: 454 North Entering: 423 2 22 East Entering: Trucks 15 Trucks 15 176 North Peds: East Peds: 51 Cars 87 256 55 398 Cars 486 26 \mathbb{X} Totals 103 Peds Cross: 263 57 Totals 501 Peds Cross: Stanley Ave Totals Trucks Cyclists Totals Cyclists Trucks Cars Cars 20 261 283 0 36 97 1 103 0 37 34 Dunn St 166 Cyclists Trucks Cars Totals Dunn St 6 82 88 15 138 153 44 Trucks Cyclists Totals 0 0 Cars 17 0 264 261 278 Stanley Ave \mathbb{X} Peds Cross: Cars 334 514 Peds Cross: \bowtie Cars 77 369 68 West Peds: 36 Trucks 8 Trucks 0 0 8 South Peds: 131 8 West Entering: 285 Cyclists 2 Cyclists 0 0 0 South Entering: 522 West Leg Total: 568 Totals 77 South Leg Total: 866 Totals 344 **Comments**

Stanley Ave @ Dunn St

Total Count Diagram

Municipality: Niagara Falls Site #: 000000005

Intersection: Stanley Ave & Dunn St

TFR File #:

Count date: 7-Jul-2018 Weather conditions:

Clear/Dry

Person(s) who counted:

Cam

** Signalized Intersection **

North Entering: 3064 North Peds: 299

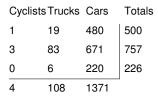
North Leg Total: 6098

Peds Cross: ⋈ Cyclists 1 0 5 Trucks 97 28 13 Cars 700 1877 344 Totals 798 1909 357

138 2921

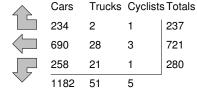
Stanley Ave

Cyclists 4 Trucks 44 Cars 2986 Totals 3034


Major Road: Stanley Ave runs N/S

East Leg Total: 2733 East Entering: 1238 East Peds: 201 \mathbb{Z} Peds Cross:

Cyclists Trucks Cars Totals 128 1732 1864



Dunn St

Dunn St

Stanley Ave

Cars	Trucks	Cyclists	Totals
1394	98	3	1495

 \mathbb{X} Peds Cross: West Peds: 272 West Entering: 1483 West Leg Total: 3347

Cars 2355 Trucks 55 Cyclists 5 Totals 2415

2993 Cars 342 2272 379 Trucks 3 23 2 28 Cyclists 0 0 2 Totals 345

Peds Cross: M South Peds: 817 South Entering: 3023 South Leg Total: 5438

Stanley Ave @ Murray St **Afternoon Peak Diagram Specified Period One Hour Peak From:** 17:30:00 From: 17:00:00 To: 23:59:00 To: 18:30:00 Weather conditions: Municipality: Niagara Falls Clear/Dry Site #: 000000002 Stanley Ave & Murray St Person(s) who counted: Intersection: Cam TFR File #: Count date: 7-Jul-2018 ** Signalized Intersection ** Major Road: Stanley Ave runs N/S North Leg Total: 1489 Cyclists 0 0 2 Cyclists 1 East Leg Total: 850 4 13 North Entering: 794 Trucks 0 Trucks 19 East Entering: 323 North Peds: East Peds: 316 Cars 45 428 306 779 Cars 675 59 \mathbb{X} Totals 695 Peds Cross: Totals 45 439 Peds Cross: ⋈ 310 Stanley Ave Totals Trucks Cyclists Totals Cyclists Trucks Cars Cars 5 223 228 164 0 173 85 0 86 62 0 64 311 12 0 Murray St Cyclists Trucks Cars Totals Murray St 0 52 52 130 130 4 22 26 Trucks Cyclists Totals 0 Cars 523 0 204 527 Stanley Ave \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 512 Cars 93 459 87 639 West Peds: 73 Trucks 15 Trucks 4 10 0 14 South Peds: 107 West Entering: 208 Cyclists 2 Cyclists 0 0 1 South Entering: 654 West Leg Total: 436 Totals 97 South Leg Total: 1183 Totals 529 **Comments**

Stanley Ave @ Murray St

Total Count Diagram

Municipality: Niagara Falls Site #: 000000002

Intersection: Stanley Ave & Murray St

TFR File #:

Count date: 7-Jul-2018 Weather conditions:

Clear/Dry

Person(s) who counted:

Cam

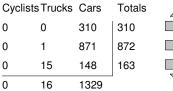
** Signalized Intersection **

North Leg Total: 10363 North Entering: 5201 North Peds: 2556

Peds Cross: ⋈

12 Cyclists 6 0 92 Trucks 0 63 29 Cars 455 2675 1967 5097

Totals 461 2744 1996 Major Road: Stanley Ave runs N/S Cyclists 4


> Trucks 110 Cars 5048 Totals 5162

East Leg Total: 6019 East Entering: 2623 East Peds: 380 \mathbb{Z} Peds Cross:

Cyclists Trucks Cars Totals 28 1952 1987

Murray St

 \mathbb{X} Peds Cross: 1032 West Peds: West Entering: 1345 West Leg Total: 3332

Stanley Ave Cars 3237 Trucks 84 Cyclists 7

Totals 3328

Stanley Ave

Trucks Cyclists Totals Cars 1367 49 0 1416 786 774 11 1 414 1 421 2555 2

Murray St

Cars 723 3371 522 4616 Trucks 17 5 83 61 Cyclists 0 5 1 Totals 740 3436

Trucks Cyclists Totals Cars 3360 35 3396

> Peds Cross: \bowtie South Peds: 1267 South Entering: 4704 South Leg Total: 8032

Fallsview Blvd @ Dunn St Mid-day Peak Diagram **Specified Period One Hour Peak** From: 10:30:00 From: 10:00:00 To: 14:00:00 To: 11:30:00 Municipality: Niagara Falls Weather conditions: Clear/Dry Site #: 000000045 Intersection: Fallsview Blvd & Dunn St Person(s) who counted: Cam TFR File #: Count date: 10-Jul-2019 ** Signalized Intersection ** Major Road: Fallsview Blvd runs N/S North Leg Total: 401 Cyclists 0 0 0 Cyclists 1 East Leg Total: 24 North Entering: 130 Trucks 14 16 East Entering: 2 0 Trucks 31 North Peds: East Peds: 89 Cars 45 69 0 114 Cars 239 222 \mathbb{Z} Totals 271 Peds Cross: Totals 59 71 0 Peds Cross: ⋈ Fallsview Blvd Totals Trucks Cyclists Totals Cyclists Trucks Cars Cars 16 97 113 0 16 0 0 8 0 0 Dunn St 23 Cyclists Trucks Cars Totals Parking Exit 117 121 0 32 33 Trucks Cyclists Totals 0 1 Cars 0 0 149 0 Fallsview Blvd \mathbb{X} Peds Cross: 151 Peds Cross: \bowtie Cars 101 Cars 44 107 West Peds: 81 Trucks 3 Trucks 2 27 0 29 South Peds: 99 West Entering: 154 Cyclists 0 Cyclists 0 0 South Entering: 180 0 West Leg Total: 267 Totals 46 South Leg Total: 284 Totals 104 **Comments**

Fallsview Blvd @ Dunn St **Afternoon Peak Diagram Specified Period One Hour Peak From:** 17:00:00 From: 15:00:00 To: 19:00:00 To: 18:00:00 Weather conditions: Municipality: Niagara Falls Clear/Dry Site #: 000000045 Intersection: Fallsview Blvd & Dunn St Person(s) who counted: Cam TFR File #: Count date: 10-Jul-2019 ** Signalized Intersection ** Major Road: Fallsview Blvd runs N/S North Leg Total: 427 Cyclists 1 0 2 Cyclists 2 East Leg Total: 25 North Entering: 203 Trucks 8 11 Trucks 15 East Entering: 0 25 North Peds: East Peds: 146 Cars 109 81 0 190 Cars 207 214 \mathbb{X} Totals 118 Totals 224 Peds Cross: 0 Peds Cross: \bowtie 85 Fallsview Blvd Totals Trucks Cyclists Totals Cyclists Trucks Cars Cars 10 162 173 0 0 16 0 0 16 0 0 0 Dunn St 25 0 Cyclists Trucks Cars Totals Parking Exit 2 118 121 0 44 Trucks Cyclists Totals 0 0 44 Cars 0 0 162 0 Fallsview Blvd \mathbb{X} Peds Cross: Cars 125 117 Peds Cross: \bowtie Cars 37 0 West Peds: 117 Trucks 3 Trucks 2 14 0 16 South Peds: 99 0 West Entering: 165 Cyclists 0 South Entering: 133 Cyclists 1 0 West Leg Total: 338 Totals 39 South Leg Total: 262 Totals 129 **Comments**

Fallsview Blvd @ Dunn St

Total Count Diagram

Municipality: Niagara Falls Site #: 000000045

Intersection: Fallsview Blvd & Dunn St

TFR File #:

Count date: 10-Jul-2019 Weather conditions:

Clear/Dry

Person(s) who counted:

Cam

Fallsview Blvd

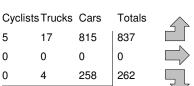
** Signalized Intersection **

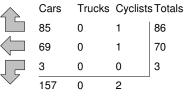
North Leg Total: 3119 North Entering: 1303 North Peds: 742 Peds Cross: \bowtie

14 Cyclists 7 0 90 Trucks 76 14 0 Cars 604 595 0 1199 Totals 687 0 616

Cyclists 16 Trucks 175 Cars 1625 Totals 1816

Major Road: Fallsview Blvd runs N/S


East Leg Total: 159 East Entering: 159 East Peds: 1484 \mathbb{X} Peds Cross:


Cyclists Trucks Cars Totals 87 937 1033

1073

Dunn St

Fallsview Blvd

arking Exit	
	\rightarrow

Cars 0

 \mathbb{X} Peds Cross: West Peds: 665 West Entering: 1099 West Leg Total: 2132

17

4

0

Cars 856 Trucks 18 Cyclists 7 Totals 881

989 Cars 264 725 Trucks 11 158 0 169 Cyclists 1 11 10 Totals 276

Peds Cross: \bowtie South Peds: 755 South Entering: 1169 South Leg Total: 2050

Trucks Cyclists Totals

0

0

Fallsview Blvd @ Main St / Portage Rd **Specified Period One Hour Peak** Mid-day Peak Diagram From: 10:00:00 **From:** 11:15:00 To: 14:00:00 To: 12:15:00 Municipality: Niagara Falls Weather conditions: Clear/Dry Site #: 000000047 Intersection: Fallsview Blvd & Main St Person(s) who counted: Cam TFR File #: Count date: 10-Jul-2019 ** Signalized Intersection ** Major Road: Fallsview Blvd runs N/S North Leg Total: 545 Cyclists 0 1 Cyclists 4 East Leg Total: 556 Trucks 0 13 North Entering: 171 3 10 Trucks 19 East Entering: 382 East Peds: North Peds: 73 Cars 13 83 61 157 Cars 351 390 \mathbb{Z} Peds Cross: Totals 13 72 Totals 374 Peds Cross: 86 Fallsview Blvd Totals Cyclists Trucks Cars Trucks Cyclists Totals Cars 8 155 163 179 5 0 184 116 6 0 122 65 0 76 11 Main St 360 0 Cyclists Trucks Cars Totals Portage Rd 0 36 37 9 49 58 29 29 Trucks Cyclists Totals 0 0 Cars 114 153 20 174 Fallsview Blvd \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 177 Cars 26 136 43 205 West Peds: 34 Trucks 14 Trucks 2 14 1 17 South Peds: 34 West Entering: 124 Cyclists 0 Cyclists 0 3 South Entering: 225 3 0 West Leg Total: 287 Totals 28 South Leg Total: 416 Totals 191 **Comments**

Fallsview Blvd @ Main St / Portage Rd **Specified Period One Hour Peak Afternoon Peak Diagram** From: 15:00:00 **From:** 16:45:00 To: 19:00:00 To: 17:45:00 Weather conditions: Municipality: Niagara Falls Clear/Dry Site #: 000000047 Intersection: Fallsview Blvd & Main St Person(s) who counted: Cam TFR File #: Count date: 10-Jul-2019 ** Signalized Intersection ** Major Road: Fallsview Blvd runs N/S North Leg Total: 540 Cyclists 0 2 3 Cyclists 3 East Leg Total: 675 7 5 13 North Entering: 164 Trucks 1 Trucks 16 East Entering: 493 North Peds: 70 Cars 10 94 44 148 Cars 357 East Peds: 428 \mathbb{Z} Peds Cross: Totals 11 102 51 Totals 376 Peds Cross: ⋈ Fallsview Blvd Totals Cyclists Trucks Cars Cars Trucks Cyclists Totals 13 235 250 184 0 185 205 10 2 217 90 0 91 Main St 479 12 2 Cyclists Trucks Cars Totals Portage Rd 0 51 51 1 98 105 36 37 Trucks Cyclists Totals 0 1 Cars 185 167 12 3 182 Fallsview Blvd \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 220 Cars 20 122 25 167 West Peds: 71 Trucks 9 Trucks 2 15 1 18 South Peds: 83 West Entering: 193 Cyclists 0 3 Cyclists 1 3 0 South Entering: 188 West Leg Total: 443 Totals 22 South Leg Total: 418 Totals 230 **Comments**

Fallsview Blvd @ Main St / Portage Rd

Total Count Diagram

Municipality: Niagara Falls Site #: 0000000047

Intersection: Fallsview Blvd & Main St

TFR File #: 9

Count date: 10-Jul-2019

Weather conditions:

Clear/Dry

Person(s) who counted:

Cam

** Signalized Intersection **

North Leg Total: 4147

North Entering: 1283 North Peds: 522 Peds Cross: ⋈

 Cyclists
 2
 8
 7

 Trucks
 4
 38
 60

 Cars
 94
 722
 348

 Totals
 100
 768
 415

17 102 1164

Fallsview Blvd

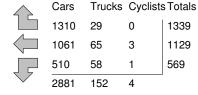
Cyclists 13

Trucks 138

Cars 2713

Totals 2864

Major Road: Fallsview Blvd runs N/S


Cyclists Trucks Cars Totals
5 85 1311 1401

Main St

Portage Rd

 Cyclists Trucks
 Cars
 Totals

 1
 5
 353
 359

 4
 43
 457
 504

 1
 1
 260
 262

 6
 49
 1070

Cars	Trucks	Cyclists	Totals
1040	115	14	1169

Peds Cross:

West Peds: 421

West Entering: 1125

West Leg Total: 2526

 Cars
 1492

 Trucks
 97

 Cyclists
 10

 Totals
 1599

 Cars
 156
 1050
 235
 1441

 Trucks
 16
 104
 12
 132

 Cyclists
 0
 12
 3
 15

 Totals
 172
 1166
 250

Peds Cross:
South Peds: 493
South Entering: 1588
South Leg Total: 3187

Appendix C

Signal Timing Plans

Signal Code: DNNFLL

Intersection: DUNN ST. & FALLSVIEW BLVD.

Municipality: niagarafalls

Owner: city

Last Modified: 2019-04-04 3:12:31 PM

Timing Parameters	NBD ADV. FALLSVIEW BLVD.	NBD & SBD THRU FALLSVIEW BLVD.	EBD DUNN ST. & WBD TGIF DRIVEWAY	n/a	n/a	n/a	
Min Green	7	20	10	0	0	0	
Walk	0	8	7	0	0	0	
Ped Clearance	0	16	13	0	0	0	
Vehicle Ext.	4	4	4	0	0	0	
Max Green	7	25	20	0	0	0	
Yellow	3	4.1	4.1	0	0	0	
All Red	0	2	2.1	0	0	0	
				Off	set		
	Minimum Cycle		42.3	()		
	Pedestrian Cyclo	e	56.3				
	Maximum Cycle	2	67.3	()		
	Operation FA						
Installed On:	called On: 2006-02-24						
Count Date:	Count Date:/						
FA = Fully Actuated SA = Semi Actuated FT = Fixed Time							
Copyright 2001 © Regional Niagara							

Signal Code: MANMRR

Intersection: MAIN ST./MURRAY ST. & ALLANDALE DR.

Municipality: niagarafalls

Owner: City

Last Modified: 2021-11-26 8:36:48 AM

Timing Parameters	NBD & SBD MAIN	WBD MURRAY	NBD & SBD ALLANDALE	EXC PED	n/a	n/a
Min Green	10	8	8	0	0	0
Walk	0	0	0	7	0	0
Ped Clearance	0	0	0	14	0	0
Vehicle Ext.	5	5	3	0	0	0
Max Green	25	20	25	0	0	0
Yellow	4.1	4.1	4.1	0	0	0
All Red	2.7	2.7	2.7	0	0	0
				Of	fset	
İ	Minimum Cycle	•	90.4		0	
P	edestrian Cycl	e	21			
ľ	Maximum Cycle	e	90.4		0	
	Operation		FT			
Installed On:	Installed On: 2014-12-16					
Count Date://						
FA = Fully Actuated SA = Semi Actuated FT = Fixed Time						
	Copyright 2001 © Regional Niagara					

Signal Code: 0201	Signal Code: 020102					
Intersection: RR2	0(Ferry St.) & RR	102 (Stanley Ave	e.)			
Municipality: niag	arafalls					
Owner: Region						
Last Modified: 8/1	L/2018 12:10:30	PM				
Timing BD & WBD ADVANCE FERRY ST. EBD & WBD ADVANCE STANLEY AVE. NBD & SBD NBD & SBD THRU FERRY STANLEY AVE.						
Min Green	6	8	6	8	0	0
Walk	0	10	0	10	0	0
Ped Clearance	0	17	0	17	0	0
Vehicle Ext.	2.5	2.2	2.5	2.2	0	0
Max Green	12	40	10	29	0	0
Yellow	3	4.1	3	4.1	0	0
All Red	0	2.4	0	2.4	0	0

	Offset	
Minimum Cycle	29	0
Pedestrian Cycle	67	
Maximum Cycle	110	6
Operation	FA	

Installed On: 12/10/2015 **Count Date:** 8/10/2015

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Signal Code: 102D	Signal Code: 102DNN						
Intersection: RR10	Intersection: RR102 (STANLEY AVE.) & DUNN ST.						
Municipality: niaga	arafalls						
Owner: region							
Last Modified: 8/1	/2018 12:20:26	PM					
Timing SBD ADV STANLEY AVE. NBD & SBD THRU STANLEY AVE. NBD & WBD THRU DUNN ST. n/a n/a n/a n/a							
Min Green	6	10	8	0	0	0	
Walk	0	9	10	0	0	0	
Ped Clearance	0	15	17	0	0	0	
Vehicle Ext.	2.7	2.5	2.5	0	0	0	
Max Green	Max Green 10 35 30 0 0 0						
Yellow 3 4 4 0 0 0							
All Red	0	3	3	0	0	0	

	Offset	
Minimum Cycle	32	0
Pedestrian Cycle	65	
Maximum Cycle	100	34
Operation	FA	

Installed On: 7/29/2014 **Count Date:** 10/21/2016

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Signal Code: 102H	Signal Code: 102H40						
Intersection: RR1	02 (STANLEY AVE	.) & HIGHWAY 4	20				
Municipality: niag	arafalls						
Owner: mto							
Last Modified: 8/1	/2018 12:07:01	PM					
Timing PROTECTED PROTECTED LEFT HWY 420 LEFT HWY 420 LEFT HWY 420 LEFT HWY 420 ROTE CTED LEFT HWY 420 LEFT HWY 420 ROTE CTED LEFT HWY 420							
Min Green	5	5	20	10	10	0	
Walk	0	0	15	12	15	0	
Ped Clearance	0	0	28	25	25	0	
Vehicle Ext.	2.5	2	4	3	3	0	
Max Green	Max Green 19 17 30 15 28 0						
Yellow 3 3 5 5 0							
All Red	2	2	2	2	2	0	

	Offset	
Minimum Cycle	44	0
Pedestrian Cycle	97	
Maximum Cycle	118	0
Operation	FA	

Installed On: 6/2/2017 **Count Date:** 12/9/2016

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Signal Code: 102M	Signal Code: 102MRR					
Intersection: RR1	02(Stanley Ave.)	& Murray St.				
Municipality: niag	arafalls					
Owner: region						
Last Modified: 8/1	/2018 12:18:30	PM				
Timing Parameters	SBD ADVANCE STANLEY AVE.	NBD & SBD THRU STANLEY AVE.	EBD & WBD THRU MURRAY ST.	n/a	n/a	n/a
Min Green	6	8	8	0	0	0
Walk	0	10	10	0	0	0
Ped Clearance	0	16	18	0	0	0
Vehicle Ext.	2.3	2.5	2.3	0	0	0
Max Green	15	40	28	0	0	0
Yellow	3	4	4	0	0	0
All Red	0	3	3	0	0	0

	Offset	
Minimum Cycle	30	0
Pedestrian Cycle	68	
Maximum Cycle	100	96
Operation	FA	

Installed On: 7/29/2014 **Count Date:** 8/17/2015

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Signal Code: 102F						
Intersection: RR1	02 (STANLEY AVE	.) & ROBINSON S	ST.			
Municipality: niag	arafalls					
Owner: region						
Last Modified: 8/1	L/2018 12:13:20	PM				
Timing Parameters	NBD & SBD THRU STANLEY AVE.	EBD & WBD THRU ROBINSON ST.	n/a	n/a	n/a	n/a
Min Green	8	8	0	0	0	0
Walk	8	8	0	0	0	0
Ped Clearance	13	13	0	0	0	0
Vehicle Ext.	2.2	2.1	0	0	0	0
Max Green	35	20	0	0	0	0
Yellow	4	4	0	0	0	0
All Red	3	3	0	0	0	0

	Offset	
Minimum Cycle	30	0
Pedestrian Cycle	56	
Maximum Cycle	100	29
Operation	FA	

Installed On: 2/23/2017 **Count Date:** 6/14/2018

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Signal Code: 420MCD						
Intersection: RR 4	20 (Falls Avenue) & MacDonald A	venue			
Municipality: niag	arafalls					
Owner: region						
Last Modified: 6/1	/2015 11:33:16	AM				
Timing Parameters	EBD & WBD ADVANCE FALLS AVE.	EBD & WBD THRU FALLS AVE.	NBD & SBD THRU MacDONALD AVE.	n/a	n/a	n/a
Min Green	6	10	10	0	0	0
Walk	0	10	12	0	0	0
Ped Clearance	0	16	21	0	0	0
Vehicle Ext.	2.5	5	5	0	0	0
Max Green	12	45	25	0	0	0
Yellow	3	4.1	4.1	0	0	0
All Red	0	2.2	3.2	0	0	0

	Offset	
Minimum Cycle	33.6	0
Pedestrian Cycle	72.6	
Maximum Cycle	98.6	0
Operation	FA	

Installed On: 4/15/2009 **Count Date:** --/--/----

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Signal Code: 49W102						
Intersection: RR4	9 (Marineland Pk	wy) & RR102 (St	anley Ave. W.)			
Municipality: niag	arafalls					
Owner: Region						
Last Modified: 7/3	31/2018 3:23:48	PM				
Timing Parameters	EBD ADVANCE MARINELAND PKWY	EBD & WBD THRU MARINELAND PKWY	NBD THRU THUNDERING WATERS ENT. (SPLIT)	SBD THRU STANLEY AVE. (SPLIT)	n/a	n/a
Min Green	6	8	8	8	0	0
Walk	0	12	11	11	0	0
Ped Clearance	0	20	19	19	0	0
Vehicle Ext.	2.3	2.5	4	4	0	0
Max Green	12	35	20	30	0	0
Yellow	3	4.1	4.1	4.1	0	0
All Red	0	3.1	3.1	3.1	0	0

	Offset	
Minimum Cycle	30.4	0
Pedestrian Cycle	76.4	
Maximum Cycle	121.6	0
Operation	FA	

Installed On: 8/6/2009 **Count Date:** 7/24/2013

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Signal Code: BND	Signal Code: BNDVCT					
Intersection: BEN	DER STREET & VI	CTORIA STREET				
Municipality: niag	arafalls					
Owner: city						
Last Modified: 7/3	31/2018 2:37:05	PM				
Timing Parameters	SBD ADVANCE VICTORIA AVE.	NBD & SBD THRU VICTORIA AVE.	WBD THRU BENDER ST.	n/a		
Min Green	6	8	8	0	0	0
Walk	0	10	8	0	0	0
Ped Clearance	0	14	12	0	0	0
Vehicle Ext.	3	3.5	2.5	0	0	0
Max Green	25	35	30	0	0	0
Yellow	3	4.1	4.1	0	0	0
All Red	0	2.2	2.2	0	0	0

	Offset	
Minimum Cycle	28.6	0
Pedestrian Cycle	50.3	
Maximum Cycle	105.6	0
Operation	FA	

Installed On:

1/28/2013

Count Date: --/--/----

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Signal Code: CLFF						
Intersection: CLI	TON HILL & FALL	S AVE.				
Municipality: niag	arafalls					
Owner: City						
Last Modified: 5/2	29/2018 10:53:47	' AM				
Timing Parameters	EBD & WBD THRU CLIFTON	NBD & SBD THRU FALLS	n/a	n/a	n/a	n/a
Min Green	31	29	0	0	0	0
Walk	15	13	0	0	0	0
Ped Clearance	16	16	0	0	0	0
Vehicle Ext.	0	0	0	0	0	0
Max Green	31	29	0	0	0	0
Yellow	4.1	4.1	0	0	0	0
All Red	2.2	2.2	0	0	0	0

	Offset	
Minimum Cycle	72.6	0
Pedestrian Cycle	72.6	
Maximum Cycle	72.6	0
Operation	FT	

Installed On: 5/15/2018 **Count Date:** 10/6/2012

FA = **Fully Actuated**

SA = Semi Actuated

FT = Fixed Time

Signal Code: CLFRVR								
Intersection: CLIFTON HILL & RIVER RD.								
Municipality: niagarafalls								
Owner: NPC								
Last Modified: 7/31/2018 1:48:00 PM								
Timing Parameters	NBD ADVANCE RIVER RD.	NBD & SBD THRU RIVER RD.	EBD THRU CLIFTON HILL	n/a	n/a	n/a		
Min Green	6	8	8	0	0	0		
Walk	0	12	12	0	0	0		
Ped Clearance	0	21	21	0	0	0		
Vehicle Ext.	2.4	0	0	0	0	0		
Max Green	14	33	33	0	0	0		
Yellow	3	4.1	4.1	0	0	0		
All Red	0	2.7	2.9	0	0	0		

	Offset	
Minimum Cycle	29.8	0
Pedestrian Cycle	79.8	
Maximum Cycle	96.8	0
Operation	FT	

Installed On: 6/29/2011 **Count Date:** 10/8/2014

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Signal Code: CLFVCT											
Intersection: CLIFTON HILL & VICTORIA AVE.											
Municipality: niagarafalls											
Owner: City											
Last Modified: 8/1	/2018 11:59:49	AM									
Timing Parameters	SBD ADVANCE VICTORIA AVE.	NBD & SBD THRU VICTORIA AVE.	WBD ADVANCE CLIFTON HILL	EBD THRU CENTRE ST./WBD CLIFTON HILL	n/a	n/a					
Min Green	6	10	6	10	0	0					
Walk	0	10	0	10	0	0					
Ped Clearance	0	16	0	16	0	0					
Vehicle Ext.	3	3	3	3	0	0					
Max Green	15	35	15	30	0	0					
Yellow	3	4.1	3	4.1	0	0					
All Red	0	2.7	0	2.9	0	0					

	Offset		
Minimum Cycle	33.8	0	
Pedestrian Cycle	65.8		
Maximum Cycle	114.8	0	
Operation	FA		

Installed On:

6/22/2018 **Count Date:**

--/--/----

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Signal Code: CSNPRT										
Intersection: CASINO ENT. & PORTAGE RD.										
Municipality: niaga	arafalls									
Owner: city										
Last Modified: 8/2	0/2018 4:10:24	PM								
Timing Parameters	EBD PORTAGE RD.	RD. CASINO n/a n/a DRIVEWAY		n/a	n/a					
Min Green	10	10	0	0	0	0				
Walk	10	0	0	0	0	0				
Ped Clearance	15	0	0	0	0	0				
Vehicle Ext.	4	0	0	0	0	0				
Max Green	25	25	0	0	0	0				
Yellow	4.1	4.1	0	0	0	0				
All Red	2	2	0	0	0	0				

	Offset		
Minimum Cycle	32.2	0	
Pedestrian Cycle	32.2		
Maximum Cycle	93.3	0	
Operation	FA		

Installed On: 4/16/2015 **Count Date:**

--/--/----

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Signal Code: ELLF	RR								
Intersection: ELLE	N/CLARK & FERI	RY ST.							
Municipality: niaga	arafalls								
Owner: City									
Last Modified: 3/29/2017 9:07:34 AM									
Timing Parameters	EBD & WBD FERRY	NBD & SBD ELLEN/CLARK	n/a	n/a	n/a	n/a			
Min Green	8	8	0	0	0	0			
Walk	8	7	0	0	0	0			
Ped Clearance	13	10	0	0	0	0			
Vehicle Ext.	2.1	2.1	0	0	0	0			
Max Green	54	26	0	0	0	0			
Yellow	4.1	4.1	0	0	0	0			
All Red	2.1	2	0	0	0	0			

	Offset	
Minimum Cycle	28.3	0
Pedestrian Cycle	50.3	
Maximum Cycle	92.3	0
Operation	FA	

Installed On: 11/19/1988 **Count Date:**

--/--/----

FA = **Fully Actuated**

SA = Semi Actuated

FT = Fixed Time

Signal Code: FLLMAN											
Intersection: FALLSVIEW & MAIN ST.											
Municipality: niagarafalls											
Owner: City											
Last Modified: 7/3	31/2018 1:55:19	PM									
Timing Parameters	SBD ADVANCE FALLSVIEW	NBD & SBD THRU FALLSVIEW	WBD ADVANCE MAIN ST.	EBD & WBD THRU MAIN ST.	n/a	n/a					
Min Green	7	20	7	10	0	0					
Walk	0	10	0	10	0	0					
Ped Clearance	0	17	0	17	0	0					
Vehicle Ext.	4	4	4	4	0	0					
Max Green	10	30	10	25	0	0					
Yellow	3	4.1	3	4.1	0	0					
All Red	0	2.4	0	2.4	0	0					

	Offset		
Minimum Cycle	43	0	
Pedestrian Cycle	67		
Maximum Cycle	94	0	
Operation	FA		

Installed On: 7/12/1990 **Count Date:** 2/24/2006

FA = **Fully Actuated**

SA = Semi Actuated

FT = Fixed Time

Signal Code: FLLM	IRR					
Intersection: FALI	LSVIEW & MURRA	AY ST				
Municipality: niag	arafalls					
Owner: city						
Last Modified: 11,	/22/2016 10:46:	52 AM				
Timing Parameters	NBD & SBD ADVANCE FALLSVIEW	NBD & SBD THRU FALLSVIEW	EBD & WBD ADVANCE MURRAY ST.	EBD & WBD THRU MURRAY ST.	n/a	n/a
Min Green	7	20	7	20	0	0
Walk	0	13	0	10	0	0
Ped Clearance	0	23	0	17	0	0
Vehicle Ext.	2.5	2.2	2.5	2.2	0	0
Max Green	10	30	10	25	0	0
Yellow	3	4.1	3	4.1	0	0
All Red	0	2.5	0	2.2	0	0

	Offset		
Minimum Cycle	52.9	0	
Pedestrian Cycle	75.9		
Maximum Cycle	93.9	0	
Operation	FA		

Installed On: 12/2/2001

Count Date:

--/--/----

FA = Fully Actuated

SA = Semi Actuated

FT = Fixed Time

Appendix D

2023 Existing Conditions Synchro Reports

	•	•	•	1	†	ţ
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	ሻ	7	4	ሻ	†	†
Traffic Volume (vph)	153	56	21	50	120	108
Future Volume (vph)	153	56	21	50	120	108
Lane Group Flow (vph)	166	61	36	54	130	280
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	7.0	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.58	0.15	0.10	0.08	0.13	0.33
Control Delay	31.1	2.6	13.9	6.1	7.6	9.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.4
Total Delay	31.1	2.6	13.9	6.1	7.6	9.8
Queue Length 50th (m)	18.7	0.0	2.3	2.1	6.3	12.0
Queue Length 95th (m)	32.1	3.6	7.6	7.0	15.9	33.5
Internal Link Dist (m)			8.0		230.0	55.6
Turn Bay Length (m)	50.0					
Base Capacity (vph)	380	509	501	669	1030	853
Starvation Cap Reductn	0	0	0	0	0	215
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.44	0.12	0.07	0.08	0.13	0.44
		···-	J.J.	2.20	50	4

Cycle Length: 67.3 Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

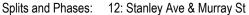
Natural Cycle: 70

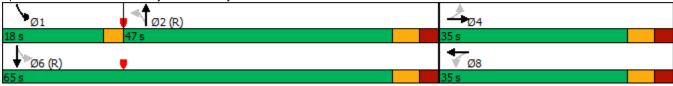
Control Type: Actuated-Coordinated

Splits and Phases: 3: Fallsview Blvd & Embassy Suites

02-09-2023 Synchro Report TTW_Hennepin_2023-01-09-v0.1.syn Page 1

	٠	→	•	•	←	•	•	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲		7		4		,	†		¥	†	
Traffic Volume (vph)	153	0	56	0	21	12	50	120	0	0	108	150
Future Volume (vph)	153	0	56	0	21	12	50	120	0	0	108	150
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.91	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1579	
Flt Permitted	0.73		1.00		1.00		0.53	1.00			1.00	
Satd. Flow (perm)	1270		1471		1646		919	1731			1579	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	166	0	61	0	23	13	54	130	0	0	117	163
RTOR Reduction (vph)	0	0	47	0	10	0	0	0	0	0	62	0
Lane Group Flow (vph)	166	0	14	0	26	0	54	130	0	0	218	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases					8		5	2			6	
Permitted Phases	4		4	8			2			6		
Actuated Green, G (s)	15.1		15.1		15.1		39.9	39.9			32.1	
Effective Green, g (s)	15.1		15.1		15.1		39.9	39.9			32.1	
Actuated g/C Ratio	0.22		0.22		0.22		0.59	0.59			0.48	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	284		330		369		596	1026			753	
v/s Ratio Prot					0.02		0.01	c0.08			c0.14	
v/s Ratio Perm	c0.13		0.01				0.05					
v/c Ratio	0.58		0.04		0.07		0.09	0.13			0.29	
Uniform Delay, d1	23.3		20.4		20.6		5.9	6.0			10.7	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	3.6		0.1		0.1		0.1	0.3			1.0	
Delay (s)	26.9		20.5		20.7		5.9	6.3			11.6	
Level of Service	С		С		С		Α	Α			В	
Approach Delay (s)		25.2			20.7			6.2			11.6	
Approach LOS		С			С			Α			В	
Intersection Summary												
HCM 2000 Control Delay			14.9	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.36									
Actuated Cycle Length (s)			67.3		um of lost				15.3			
Intersection Capacity Utiliza	ation		62.7%	IC	U Level	of Service	•		В			
Analysis Period (min)			15									
c Critical Lane Group												


	•	-	•	•	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	f)	ሻ	f)	ሻ	↑ ↑	ሻ	↑ ↑	
Traffic Volume (vph)	57	144	71	95	107	518	342	482	
Future Volume (vph)	57	144	71	95	107	518	342	482	
Lane Group Flow (vph)	62	189	77	311	116	667	372	578	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	33.0	33.0	10.0	33.0	
Total Split (s)	35.0	35.0	35.0	35.0	47.0	47.0	18.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	47.0%	47.0%	18.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	0.38	0.42	0.29	0.64	0.31	0.41	0.67	0.27	
Control Delay	36.3	31.8	31.7	27.9	19.5	16.9	15.1	9.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	36.3	31.8	31.7	28.0	19.5	16.9	15.1	9.7	
Queue Length 50th (m)	9.5	27.7	11.6	34.3	16.7	51.3	31.8	26.5	
Queue Length 95th (m)	21.5	46.8	23.8	61.4	33.7	71.2	47.8	35.9	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	191	520	309	546	372	1608	576	2180	
Starvation Cap Reductn	0	0	0	3	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.32	0.36	0.25	0.57	0.31	0.41	0.65	0.27	


Cycle Length: 100 Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

02-09-2023 Synchro Report TTW_Hennepin_2023-01-09-v0.1.syn Page 3


	۶	→	*	•	←	4	1	†	/	>	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	f)		Ť	f)		7	ħβ		ħ	ħβ	
Traffic Volume (vph)	57	144	29	71	95	191	107	518	96	342	482	50
Future Volume (vph)	57	144	29	71	95	191	107	518	96	342	482	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.97		1.00	0.90		1.00	0.98		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1831		1785	1690		1785	3486		1785	3520	
Flt Permitted	0.36	1.00		0.59	1.00		0.43	1.00		0.32	1.00	
Satd. Flow (perm)	684	1831		1107	1690		816	3486		607	3520	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	62	157	32	77	103	208	116	563	104	372	524	54
RTOR Reduction (vph)	0	8	0	0	76	0	0	14	0	0	7	0
Lane Group Flow (vph)	62	181	0	77	235	0	116	653	0	372	571	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	24.3	24.3		24.3	24.3		45.7	45.7		61.7	61.7	
Effective Green, g (s)	24.3	24.3		24.3	24.3		45.7	45.7		61.7	61.7	
Actuated g/C Ratio	0.24	0.24		0.24	0.24		0.46	0.46		0.62	0.62	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.3	2.3		2.3	2.3		2.5	2.5		2.3	2.5	
Lane Grp Cap (vph)	166	444		269	410		372	1593		527	2171	
v/s Ratio Prot		0.10			c0.14			0.19		c0.09	0.16	
v/s Ratio Perm	0.09			0.07			0.14			c0.34		
v/c Ratio	0.37	0.41		0.29	0.57		0.31	0.41		0.71	0.26	
Uniform Delay, d1	31.5	31.8		30.8	33.3		17.2	18.1		10.1	8.8	
Progression Factor	1.00	1.00		1.00	1.00		0.83	0.83		1.00	1.00	
Incremental Delay, d2	0.8	0.4		0.3	1.4		2.1	0.8		3.8	0.3	
Delay (s)	32.3	32.2		31.1	34.7		16.4	15.9		13.9	9.0	
Level of Service	С	С		С	С		В	В		В	Α	
Approach Delay (s)		32.2			34.0			16.0			10.9	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			18.6	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capaci	ity ratio		0.69									
Actuated Cycle Length (s)			100.0		um of lost	٠,			17.0			
Intersection Capacity Utilizati	on		80.6%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

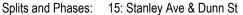
	•	-	•	←	•	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	ħβ	ሻ	†	7	ሻ	∱ }	ሻ	↑ ↑	
Traffic Volume (vph)	43	342	147	209	140	106	257	138	299	
Future Volume (vph)	43	342	147	209	140	106	257	138	299	
Lane Group Flow (vph)	47	606	160	227	152	115	567	150	357	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	5.5	20.0	7.0	20.0	20.0	5.5	20.0	7.0	20.0	
Minimum Split (s)	10.0	33.3	10.0	33.3	33.3	10.0	42.6	10.0	42.6	
Total Split (s)	13.0	33.3	13.0	33.3	33.3	13.0	42.6	13.0	42.6	
Total Split (%)	12.8%	32.7%	12.8%	32.7%	32.7%	12.8%	41.8%	12.8%	41.8%	
Yellow Time (s)	3.0	4.1	3.0	4.1	4.1	3.0	4.1	3.0	4.1	
All-Red Time (s)	0.0	2.2	0.0	2.2	2.2	0.0	2.5	0.0	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.3	3.0	6.3	6.3	3.0	6.6	3.0	6.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	Max	None	Max	
v/c Ratio	0.10	0.63	0.51	0.38	0.25	0.21	0.41	0.34	0.27	
Control Delay	18.1	28.5	24.6	30.1	5.9	13.7	12.5	15.2	22.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	18.1	28.5	24.6	30.1	5.9	13.7	12.5	15.2	22.5	
Queue Length 50th (m)	5.4	43.2	19.5	35.9	0.0	11.2	20.4	15.0	25.0	
Queue Length 95th (m)	12.1	61.2	33.2	58.8	14.3	20.4	34.5	25.7	36.7	
Internal Link Dist (m)		39.6		70.0			112.9		294.7	
Turn Bay Length (m)	30.0		35.0			10.0		65.0		
Base Capacity (vph)	517	1015	323	598	612	583	1383	453	1312	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.09	0.60	0.50	0.38	0.25	0.20	0.41	0.33	0.27	

Cycle Length: 101.9 Actuated Cycle Length: 99.1 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

Splits and Phases: 13: Fallsview Blvd & Murray St

	٠	→	•	•	-	•	•	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	†	7	ň	∱ }		ሻ	∱ }	
Traffic Volume (vph)	43	342	215	147	209	140	106	257	265	138	299	29
Future Volume (vph)	43	342	215	147	209	140	106	257	265	138	299	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.92		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3363		1785	1879	1597	1785	3298		1785	3522	
Flt Permitted	0.62	1.00		0.24	1.00	1.00	0.54	1.00		0.36	1.00	
Satd. Flow (perm)	1159	3363		460	1879	1597	1005	3298		673	3522	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	47	372	234	160	227	152	115	279	288	150	325	32
RTOR Reduction (vph)	0	97	0	0	0	104	0	183	0	0	7	0
Lane Group Flow (vph)	47	509	0	160	227	48	115	384	0	150	350	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	31.4	26.8		39.2	31.6	31.6	44.6	36.1		45.8	36.7	
Effective Green, g (s)	31.4	26.8		39.2	31.6	31.6	44.6	36.1		45.8	36.7	
Actuated g/C Ratio	0.31	0.27		0.39	0.32	0.32	0.44	0.36		0.46	0.37	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	391	898		303	591	503	512	1187		408	1288	
v/s Ratio Prot	0.01	0.15		c0.05	0.12		0.02	0.12		c0.03	0.10	
v/s Ratio Perm	0.03			c0.16		0.03	0.08			c0.13		
v/c Ratio	0.12	0.57		0.53	0.38	0.10	0.22	0.32		0.37	0.27	
Uniform Delay, d1	24.3	31.7		21.4	26.8	24.3	16.5	23.3		16.4	22.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.1	8.0		1.7	0.4	0.1	0.2	0.7		0.6	0.5	
Delay (s)	24.4	32.6		23.1	27.2	24.3	16.8	24.0		17.0	22.9	
Level of Service	С	C		С	C	С	В	C		В	C	
Approach Delay (s)		32.0			25.2			22.8			21.2	
Approach LOS		С			С			С			С	
Intersection Summary							•					
HCM 2000 Control Delay			25.5	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	icity ratio		0.46						40.0			
Actuated Cycle Length (s)			100.3		um of los				18.9			
Intersection Capacity Utiliza	ation		66.5%	IC	U Level	of Service	9		С			
Analysis Period (min)			15									
c Critical Lane Group												


	•	→	•	←	•	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	₽	ሻ	↑	7	ሻ	∱ ∱	ሻ	∱ î≽	
Traffic Volume (vph)	97	169	41	113	40	85	416	63	288	
Future Volume (vph)	97	169	41	113	40	85	416	63	288	
Lane Group Flow (vph)	105	237	45	123	43	92	534	68	436	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4		8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0	
Total Split (s)	37.0	37.0	37.0	37.0	37.0	50.0	50.0	13.0	63.0	
Total Split (%)	37.0%	37.0%	37.0%	37.0%	37.0%	50.0%	50.0%	13.0%	63.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag						Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	0.35	0.54	0.20	0.28	0.10	0.18	0.28	0.12	0.20	
Control Delay	33.6	34.9	31.0	31.3	2.5	15.5	13.7	11.3	12.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	33.6	34.9	31.0	31.3	2.5	15.5	13.7	11.3	12.4	
Queue Length 50th (m)	16.2	35.9	6.7	18.6	0.0	9.6	29.5	3.9	30.1	
Queue Length 95th (m)	30.7	58.5	15.9	33.3	3.0	19.9	41.8	15.2	43.6	
Internal Link Dist (m)		213.7		94.8			227.1		103.4	
Turn Bay Length (m)	75.0		25.0		25.0	25.0		40.0		
Base Capacity (vph)	382	555	277	563	532	509	1905	619	2164	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.43	0.16	0.22	0.08	0.18	0.28	0.11	0.20	

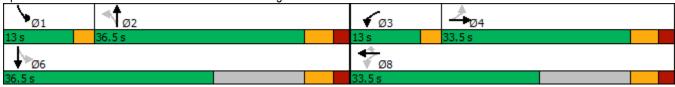
Cycle Length: 100 Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

02-09-2023 Synchro Report TTW_Hennepin_2023-01-09-v0.1.syn Page 7


	۶	→	*	•	←	4	4	†	~	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ţ	4î		ň	†	7	7	∱ ∱		ħ	∱ ∱	
Traffic Volume (vph)	97	169	49	41	113	40	85	416	75	63	288	113
Future Volume (vph)	97	169	49	41	113	40	85	416	75	63	288	113
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.97		1.00	1.00	0.85	1.00	0.98		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1816		1785	1879	1597	1785	3488		1785	3419	
Flt Permitted	0.68	1.00		0.49	1.00	1.00	0.50	1.00		0.42	1.00	
Satd. Flow (perm)	1274	1816		927	1879	1597	937	3488		783	3419	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	105	184	53	45	123	43	92	452	82	68	313	123
RTOR Reduction (vph)	0	11	0	0	0	33	0	12	0	0	36	0
Lane Group Flow (vph)	105	226	0	45	123	10	92	522	0	68	400	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	23.7	23.7		23.7	23.7	23.7	53.7	53.7		62.3	62.3	
Effective Green, g (s)	23.7	23.7		23.7	23.7	23.7	53.7	53.7		62.3	62.3	
Actuated g/C Ratio	0.24	0.24		0.24	0.24	0.24	0.54	0.54		0.62	0.62	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.5	2.5		2.5	2.5	2.5	2.5	2.5		2.7	2.5	
Lane Grp Cap (vph)	301	430		219	445	378	503	1873		543	2130	
v/s Ratio Prot		c0.12			0.07			c0.15		0.01	c0.12	
v/s Ratio Perm	0.08			0.05		0.01	0.10			0.07		
v/c Ratio	0.35	0.52		0.21	0.28	0.03	0.18	0.28		0.13	0.19	
Uniform Delay, d1	31.7	33.2		30.6	31.1	29.3	11.9	12.6		7.5	8.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.52	1.76	
Incremental Delay, d2	0.5	0.9		0.3	0.2	0.0	0.8	0.4		0.1	0.2	
Delay (s)	32.2	34.1		30.9	31.4	29.3	12.7	13.0		11.5	14.4	
Level of Service	С	C		С	С	С	В	В		В	В	
Approach Delay (s)		33.5			30.9			12.9			14.0	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			19.7	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacit	ty ratio		0.34									
Actuated Cycle Length (s)			100.0		um of lost	٠,			17.0			
Intersection Capacity Utilization	on		61.8%	IC	U Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	•	1	†	/	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	J.	f)	¥	†	7	¥	ĵ»	¥	f)	
Traffic Volume (vph)	137	82	105	178	282	28	222	53	134	
Future Volume (vph)	137	82	105	178	282	28	222	53	134	
Lane Group Flow (vph)	149	155	114	193	307	30	294	58	176	
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	
Total Split (s)	33.5	33.5	13.0	33.5	33.5	36.5	36.5	13.0	36.5	
Total Split (%)	34.9%	34.9%	13.5%	34.9%	34.9%	38.0%	38.0%	13.5%	38.0%	
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	
Lead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Max	Max	None	Max	
v/c Ratio	0.47	0.31	0.21	0.27	0.39	0.07	0.43	0.11	0.20	
Control Delay	33.3	21.9	16.1	19.1	3.8	23.6	26.3	13.9	15.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	
Total Delay	33.3	21.9	16.1	19.1	3.8	23.6	28.6	13.9	15.4	
Queue Length 50th (m)	22.0	16.0	11.5	21.8	0.0	3.8	41.0	5.5	17.6	
Queue Length 95th (m)	41.0	32.5	22.1	37.7	14.8	10.4	66.9	12.1	30.8	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	395	608	541	921	939	446	679	551	971	
Starvation Cap Reductn	0	0	0	0	0	0	255	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.38	0.25	0.21	0.21	0.33	0.07	0.69	0.11	0.18	

Cycle Length: 96 Actuated Cycle Length: 86 Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Synchro Report 02-09-2023 Page 9

	۶	→	•	•	+	•	1	†	<i>></i>	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ŋ	f)		, J	†	7	, N	f)		, J	f)	
Traffic Volume (vph)	137	82	61	105	178	282	28	222	49	53	134	28
Future Volume (vph)	137	82	61	105	178	282	28	222	49	53	134	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.97		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1759		1785	1879	1597	1785	1828		1785	1831	
Flt Permitted	0.64	1.00		0.58	1.00	1.00	0.65	1.00		0.46	1.00	
Satd. Flow (perm)	1195	1759		1095	1879	1597	1214	1828		860	1831	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	149	89	66	114	193	307	30	241	53	58	146	30
RTOR Reduction (vph)	0	29	0	0	0	190	0	8	0	0	7	0
Lane Group Flow (vph)	149	126	0	114	193	117	30	286	0	58	169	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	23.0	23.0		33.1	33.1	33.1	31.6	31.6		40.9	40.9	
Effective Green, g (s)	23.0	23.0		33.1	33.1	33.1	31.6	31.6		40.9	40.9	
Actuated g/C Ratio	0.26	0.26		0.38	0.38	0.38	0.36	0.36		0.47	0.47	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)	315	465		472	714	607	440	663		471	860	
v/s Ratio Prot		0.07		0.02	c0.10			c0.16		0.01	c0.09	
v/s Ratio Perm	c0.12			0.07		0.07	0.02			0.05		
v/c Ratio	0.47	0.27		0.24	0.27	0.19	0.07	0.43		0.12	0.20	
Uniform Delay, d1	26.9	25.4		17.9	18.6	18.0	18.1	20.9		12.9	13.5	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.5	0.4		0.4	0.3	0.2	0.3	2.0		0.2	0.5	
Delay (s)	28.4	25.8		18.3	18.9	18.2	18.4	23.0		13.1	14.0	
Level of Service	С	C		В	В	В	В	C		В	В	
Approach Delay (s)		27.1			18.4			22.5			13.8	
Approach LOS		С			В			С			В	
Intersection Summary												
HCM 2000 Control Delay			20.4	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.41									
Actuated Cycle Length (s)			87.0		um of los				19.0			
Intersection Capacity Utiliza	ation		72.7%	IC	CU Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	†	†	7
Traffic Volume (vph)	73	76	86	14	87	601
Future Volume (vph)	73	76	86	14	87	601
Lane Group Flow (vph)	79	83	93	15	95	653
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4			2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	31.1	31.1	31.1	31.1
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.12	0.13	0.14	0.02	0.10	0.57
Control Delay	12.3	3.9	12.9	11.4	12.2	3.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.3	3.9	12.9	11.4	12.2	3.6
Queue Length 50th (m)	5.5	0.0	6.6	1.0	6.6	0.0
Queue Length 95th (m)	12.5	6.6	14.9	3.9	14.4	17.1
Internal Link Dist (m)	9.1			121.3	66.9	
Turn Bay Length (m)						
Base Capacity (vph)	767	734	680	980	980	1145
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.11	0.14	0.02	0.10	0.57
Internation Occurrence						

Cycle Length: 62.2 Actuated Cycle Length: 59 Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Splits and Phases: 17: Portage Rd & Fallsview Casino Rear Driveway

02-09-2023 TTW_Hennepin_2023-01-09-v0.1.syn Page 11

	•	•	4	†	ļ	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻ	7	ሻ		^	7			
Traffic Volume (vph)	73	76	86	14	87	601			
Future Volume (vph)	73	76	86	14	87	601			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)	1785	1597	1785	1879	1879	1597			
Flt Permitted	0.95	1.00	0.70	1.00	1.00	1.00			
Satd. Flow (perm)	1785	1597	1307	1879	1879	1597			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	79	83	93	15	95	653			
RTOR Reduction (vph)	0	57	0	0	0	337			
Lane Group Flow (vph)	79	26	93	15	95	316			
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%			
Turn Type	Prot	Perm	Perm	NA	NA	Perm			
Protected Phases	4			2	6				
Permitted Phases		4	2			6			
Actuated Green, G (s)	19.0	19.0	29.2	29.2	29.2	29.2			
Effective Green, g (s)	19.0	19.0	29.2	29.2	29.2	29.2			
Actuated g/C Ratio	0.31	0.31	0.48	0.48	0.48	0.48			
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1			
Vehicle Extension (s)	4.0	4.0	0.2	0.2	0.2	0.2			
Lane Grp Cap (vph)	561	502	631	908	908	772			
v/s Ratio Prot	c0.04			0.01	0.05				
v/s Ratio Perm		0.02	0.07			c0.20			
v/c Ratio	0.14	0.05	0.15	0.02	0.10	0.41			
Uniform Delay, d1	14.8	14.4	8.7	8.1	8.5	10.0			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.2	0.1	0.5	0.0	0.2	1.6			
Delay (s)	15.0	14.5	9.2	8.2	8.7	11.6			
Level of Service	В	В	Α	Α	Α	В			
Approach Delay (s)	14.7			9.0	11.3				
Approach LOS	В			Α	В				
Intersection Summary									
HCM 2000 Control Delay	<u> </u>		11.6	H	CM 2000	Level of Servi	ce	В	
HCM 2000 Volume to Capa	acity ratio		0.30						
Actuated Cycle Length (s)			60.4	Sı	um of lost	time (s)		12.2	
Intersection Capacity Utiliza	ation		55.7%	IC	U Level	of Service		В	
Analysis Period (min)			15						
c Critical Lane Group									

	•	•	•	†	ļ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^	† }	
Traffic Volume (veh/h)	0	129	0	615	598	33
Future Volume (Veh/h)	0	129	0	615	598	33
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	140	0	668	650	36
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				55	191	
pX, platoon unblocked	0.97	0.95	0.95		101	
vC, conflicting volume	1002	343	686			
vC1, stage 1 conf vol	1002	010	000			
vC2, stage 2 conf vol						
vCu, unblocked vol	719	201	562			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)	0.0	0.0				
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	82	100			
cM capacity (veh/h)	358	772	968			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	140	334	334	433	253	
Volume Left	0	0	0	0	0	
Volume Right	140	0	0	0	36	
cSH	772	1700	1700	1700	1700	
Volume to Capacity	0.18	0.20	0.20	0.25	0.15	
Queue Length 95th (m)	5.0	0.0	0.0	0.0	0.0	
Control Delay (s)	10.7	0.0	0.0	0.0	0.0	
Lane LOS	В					
Approach Delay (s)	10.7	0.0		0.0		
Approach LOS	В					
Intersection Summary						
Average Delay			1.0			
Intersection Capacity Utiliz	ation		34.4%	IC	U Level c	of Service
Analysis Period (min)			15			

	۶	→	•	•	←	4	1	†	<i>></i>	\	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ β		7	∱ β	
Traffic Volume (veh/h)	18	4	5	0	0	0	55	363	133	107	232	78
Future Volume (Veh/h)	18	4	5	0	0	0	55	363	133	107	232	78
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	20	4	5	0	0	0	60	395	145	116	252	85
Pedestrians		559			275			30			30	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		49			24			3			3	
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)								139			114	
pX, platoon unblocked												
vC, conflicting volume	1433	2020	758	1258	1990	575	896			815		
vC1, stage 1 conf vol	1086	1086		862	862							
vC2, stage 2 conf vol	348	935		395	1128							
vCu, unblocked vol	1433	2020	758	1258	1990	575	896			815		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	6.5	5.5		6.5	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	78	95	97	100	100	100	85			81		
cM capacity (veh/h)	92	78	174	178	54	344	388			622		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	29	0	60	263	277	116	168	169				
Volume Left	20	0	60	0	0	116	0	0				
Volume Right	5	0	0	0	145	0	0	85				
cSH	98	1700	388	1700	1700	622	1700	1700				
Volume to Capacity	0.30	0.00	0.15	0.15	0.16	0.19	0.10	0.10				
Queue Length 95th (m)	8.5	0.0	4.1	0.0	0.0	5.2	0.0	0.0				
Control Delay (s)	56.8	0.0	16.0	0.0	0.0	12.1	0.0	0.0				
Lane LOS	F	Α	C	0.0	0.0	В	0.0	0.0				
Approach Delay (s)	56.8	0.0	1.6			3.1						
Approach LOS	50.0 F	Α	1.0			0.1						
Intersection Summary												
Average Delay			3.7									
Intersection Capacity Utilizat	tion		33.5%	ıc	יון אים יי	of Service			Α			
Analysis Period (min)	uon		15	IC.	O LEVEL	DI GELVICE			Α			
Analysis Feliou (IIIIII)			13									

	←	*	4	†	/	ţ
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	र्स	7	ሻ	đβ	ሻ	↑ ↑
Traffic Volume (vph)	1	92	13	324	158	376
Future Volume (vph)	1	92	13	324	158	376
Lane Group Flow (vph)	35	100	14	428	172	506
Turn Type	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases	8			2	1	6
Permitted Phases		8	2		6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?				- 3		
Recall Mode	None	None	None	None	None	None
v/c Ratio	0.10	0.25	0.04	0.27	0.25	0.24
Control Delay	20.6	7.0	12.7	12.0	4.8	5.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.6	7.0	12.7	12.0	4.8	5.3
Queue Length 50th (m)	3.0	0.0	0.9	14.7	5.6	10.4
Queue Length 95th (m)	9.3	9.6	4.0	25.0	11.0	16.7
Internal Link Dist (m)	32.2	- 5.0		90.4	0	112.9
Turn Bay Length (m)	VL		20.0	00.1	25.0	
Base Capacity (vph)	711	693	505	2020	723	2604
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0.14	0.03	0.21	0.24	0.19
TOGGOOD WOTALLO	0.00	V. 1-T	0.00	V. <u>~</u> 1	V. <u>~</u> T	0.10

Cycle Length: 77.1

Actuated Cycle Length: 50.4

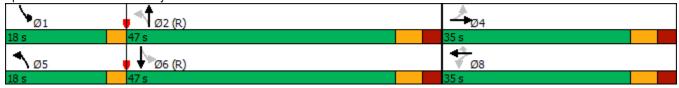
Natural Cycle: 75

Control Type: Actuated-Uncoordinated

Synchro Report 02-09-2023 TTW_Hennepin_2023-01-09-v0.1.syn Page 16

	۶	→	•	•	←	4	1	†	<i>></i>	\	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	ሻ	∱ ∱		ሻ	∱ ∱	
Traffic Volume (vph)	0	0	0	31	1	92	13	324	70	158	376	89
Future Volume (vph)	0	0	0	31	1	92	13	324	70	158	376	89
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Lane Util. Factor					1.00	1.00	1.00	0.95		1.00	0.95	
Frt					1.00	0.85	1.00	0.97		1.00	0.97	
Flt Protected					0.95	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)					1650	1471	1644	3200		1644	3194	
Flt Permitted					0.95	1.00	0.47	1.00		0.44	1.00	
Satd. Flow (perm)					1650	1471	806	3200		764	3194	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	34	1	100	14	352	76	172	409	97
RTOR Reduction (vph)	0	0	0	0	0	86	0	23	0	0	25	0
Lane Group Flow (vph)	0	0	0	0	35	14	14	405	0	172	481	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type				Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases					8			2		1	6	
Permitted Phases				8		8	2			6		
Actuated Green, G (s)					7.2	7.2	21.7	21.7		31.2	31.2	
Effective Green, g (s)					7.2	7.2	21.7	21.7		31.2	31.2	
Actuated g/C Ratio					0.14	0.14	0.41	0.41		0.59	0.59	
Clearance Time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Vehicle Extension (s)					4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)					226	201	333	1322		562	1898	
v/s Ratio Prot								0.13		c0.04	0.15	
v/s Ratio Perm					0.02	0.01	0.02			c0.14		
v/c Ratio					0.15	0.07	0.04	0.31		0.31	0.25	
Uniform Delay, d1					20.0	19.7	9.2	10.3		4.9	5.1	
Progression Factor					1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2					0.4	0.2	0.1	0.2		0.4	0.1	
Delay (s)					20.4	19.9	9.3	10.5		5.4	5.2	
Level of Service					С	В	Α	В		Α	Α	
Approach Delay (s)		0.0			20.0			10.5			5.2	
Approach LOS		Α			С			В			Α	
Intersection Summary												
HCM 2000 Control Delay			8.7	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	ratio		0.30									
Actuated Cycle Length (s)			52.5		um of los				17.1			
Intersection Capacity Utilization	1		59.6%	IC	CU Level	of Service)		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	*	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations		4		र्स	7	ሻ	∱ ∱	ሻ	∱ ∱	
Traffic Volume (vph)	18	10	60	47	238	44	359	208	490	
Future Volume (vph)	18	10	60	47	238	44	359	208	490	
Lane Group Flow (vph)	0	44	0	116	259	48	438	226	565	
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4		8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0	
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0	
Total Split (s)	35.0	35.0	35.0	35.0	35.0	18.0	47.0	18.0	47.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	35.0%	18.0%	47.0%	18.0%	47.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0	
Lead/Lag						Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max	
v/c Ratio		0.23		0.63	0.62	0.08	0.22	0.32	0.26	
Control Delay		30.9		55.2	11.6	3.8	11.4	4.6	6.6	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		30.9		55.2	11.6	3.8	11.4	4.6	6.6	
Queue Length 50th (m)		5.4		21.7	0.0	1.6	26.6	8.1	16.5	
Queue Length 95th (m)		14.3		36.7	20.3	8.5	43.4	16.0	31.0	
Internal Link Dist (m)		100.0		3.9			71.5		31.5	
Turn Bay Length (m)						65.0		140.0		
Base Capacity (vph)		382		388	598	715	1975	752	2192	
Starvation Cap Reductn		0		0	0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	0	
Reduced v/c Ratio		0.12		0.30	0.43	0.07	0.22	0.30	0.26	


Cycle Length: 100 Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

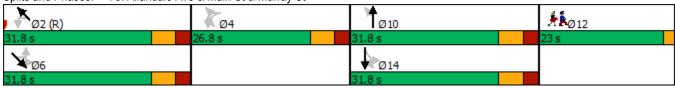
Control Type: Actuated-Coordinated

Splits and Phases: 76: Stanley Ave & Dixon St

	۶	→	•	•	+	•	1	†	~	\	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ની	7	ሻ	∱ î≽		ሻ	∱ ∱	
Traffic Volume (vph)	18	10	12	60	47	238	44	359	44	208	490	29
Future Volume (vph)	18	10	12	60	47	238	44	359	44	208	490	29
ldeal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.96			1.00	0.85	1.00	0.98		1.00	0.99	
Flt Protected		0.98			0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1625			1683	1471	1644	3234		1644	3260	
Flt Permitted		0.80			0.80	1.00	0.44	1.00		0.47	1.00	
Satd. Flow (perm)		1335			1387	1471	761	3234		821	3260	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	20	11	13	65	51	259	48	390	48	226	533	32
RTOR Reduction (vph)	0	11	0	0	0	225	0	6	0	0	2	0
Lane Group Flow (vph)	0	33	0	0	116	34	48	432	0	226	563	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		13.3			13.3	13.3	64.6	60.9		72.7	66.0	
Effective Green, g (s)		13.3			13.3	13.3	64.6	60.9		72.7	66.0	
Actuated g/C Ratio		0.13			0.13	0.13	0.65	0.61		0.73	0.66	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		177			184	195	524	1969		669	2151	
v/s Ratio Prot							0.00	0.13		c0.03	0.17	
v/s Ratio Perm		0.02			c0.08	0.02	0.06			c0.22		
v/c Ratio		0.18			0.63	0.18	0.09	0.22		0.34	0.26	
Uniform Delay, d1		38.5			41.0	38.5	6.5	8.8		4.4	7.0	
Progression Factor		1.00			1.00	1.00	0.91	1.16		0.91	0.81	
Incremental Delay, d2		0.3			5.6	0.3	0.0	0.3		0.2	0.3	
Delay (s)		38.8			46.7	38.7	5.9	10.4		4.2	6.0	
Level of Service		D			D	D	Α	В		Α	Α	
Approach Delay (s)		38.8			41.2			10.0			5.5	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			15.5	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.40									
Actuated Cycle Length (s)			100.0		um of lost				17.0			
Intersection Capacity Utilization	on		52.5%	IC	CU Level	of Service	е		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	~	•	*_	ኘ	†	>	Ļ	ļ	•	\	\mathbf{x}	*
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWT
Lane Configurations		Ä	7		4			4		ă	f)	4
Traffic Volume (vph)	13	4	179	84	26	4	4	14	23	163	1	12
Future Volume (vph)	13	4	179	84	26	4	4	14	23	163	1	12
Lane Group Flow (vph)	0	18	237	0	132	0	0	24	0	202	118	36
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	NA
Protected Phases					10			14			6	2
Permitted Phases	4	4	4	10		14	14		6	6		
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	26.8	26.8	26.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8
Total Split (%)	23.6%	23.6%	23.6%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	6.8
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.10	0.93		0.46			0.07		0.74	0.37	0.11
Control Delay		40.8	88.6		44.4			34.7		58.5	41.5	36.4
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Delay		40.8	88.6		44.4			34.7		58.5	41.5	36.4
Queue Length 50th (m)		3.4	52.3		25.6			4.1		42.0	22.4	6.4
Queue Length 95th (m)		9.9	#99.3		44.5			11.1		#75.7	39.7	15.3
Internal Link Dist (m)		102.7			229.8			295.5			298.1	208.5
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		188	254		287			338		274	318	341
Starvation Cap Reductn		0	0		0			0		0	0	0
Spillback Cap Reductn		0	0		0			0		0	0	0
Storage Cap Reductn		0	0		0			0		0	0	0
Reduced v/c Ratio		0.10	0.93		0.46			0.07		0.74	0.37	0.11

Cycle Length: 113.4 Actuated Cycle Length: 113.4


Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 90 Control Type: Pretimed

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 78: Allandale Ave & Main St & Murray St

Synchro Report 02-09-2023 Page 20

Lane Group	Ø12
LaneConfigurations	
Traffic Volume (vph)	
Future Volume (vph)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	12
Permitted Phases	
Minimum Split (s)	23.0
Total Split (s)	23.0
Total Split (%)	20%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	
into coolon cuminary	

	~	•	*_	•	ሻ	†	/	r*	/	Ļ	ţ	¥J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		Ä	Ž.			4					4	
Traffic Volume (vph)	13	4	179	39	84	26	8	4	4	4	14	1
Future Volume (vph)	13	4	179	39	84	26	8	4	4	4	14	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.99					0.99	
Flt Protected		0.95	1.00			0.97					0.98	
Satd. Flow (prot)		1612	1442			1618					1659	
Flt Permitted		0.63	1.00			0.78					0.91	
Satd. Flow (perm)		1071	1442			1304					1529	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	14	4	195	42	91	28	9	4	4	4	15	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	18	237	0	0	132	0	0	0	0	23	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		20.0	20.0			25.0					25.0	
Effective Green, g (s)		20.0	20.0			25.0					25.0	
Actuated g/C Ratio		0.18	0.18			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		188	254			287					337	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.16			c0.10					0.02	
v/c Ratio		0.10	0.93			0.46					0.07	
Uniform Delay, d1		39.1	46.0			38.3					35.0	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.0	41.5			5.2					0.4	
Delay (s)		40.1	87.6			43.6					35.4	
Level of Service		D	F			D					D	
Approach Delay (s)		84.2				43.6					35.4	
Approach LOS		F				D					D	
Intersection Summary												
HCM 2000 Control Delay			59.7	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capac	city ratio		0.53									
Actuated Cycle Length (s)			113.4		um of lost				22.4			
Intersection Capacity Utilizat	tion		63.1%	IC	CU Level of	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\	\mathbf{x}	>	×	*	4
Movement	SEL2	SEL	SET	SER	NWT	NWR	NWR2
Lane Configurations		ă	f)		4		
Traffic Volume (vph)	23	163	1	108	12	9	12
Future Volume (vph)	23	163	1	108	12	9	12
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8		6.8		
Lane Util. Factor		1.00	1.00		1.00		
Frt		1.00	0.85		0.91		
Flt Protected		0.95	1.00		1.00		
Satd. Flow (prot)		1612	1444		1550		
Flt Permitted		0.73	1.00		1.00		
Satd. Flow (perm)		1245	1444		1550		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	25	177	1	117	13	10	13
RTOR Reduction (vph)	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	202	118	0	36	0	0
Turn Type	Perm	Perm	NA		NA		
Protected Phases			6		2		
Permitted Phases	6	6					
Actuated Green, G (s)		25.0	25.0		25.0		
Effective Green, g (s)		25.0	25.0		25.0		
Actuated g/C Ratio		0.22	0.22		0.22		
Clearance Time (s)		6.8	6.8		6.8		
Lane Grp Cap (vph)		274	318		341		
v/s Ratio Prot			0.08		0.02		
v/s Ratio Perm		c0.16					
v/c Ratio		0.74	0.37		0.11		
Uniform Delay, d1		41.1	37.5		35.3		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		16.2	3.3		0.6		
Delay (s)		57.4	40.8		35.9		
Level of Service		E	D		D		
Approach Delay (s)			51.3		35.9		
Approach LOS			D		D		
Intersection Summary							

	٠	→	•	•	←	•	1	†	~	-	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			44	
Traffic Volume (veh/h)	0	0	0	0	0	120	0	0	0	40	0	0
Future Volume (Veh/h)	0	0	0	0	0	120	0	0	0	40	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	0	130	0	0	0	43	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					124							
pX, platoon unblocked												
vC, conflicting volume	130			0			65	130	0	65	65	65
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	130			0			65	130	0	65	65	65
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)								0.0	0.2		0.0	0.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	100	95	100	100
cM capacity (veh/h)	1468			1636			934	764	1091	934	830	1005
		WD 4	ND 4				304	704	1031	304	000	1000
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	130	0	43								
Volume Left	0	0	0	43								
Volume Right	0	130	0	0								
cSH	1700	1636	1700	934								
Volume to Capacity	0.00	0.00	0.39	0.05								
Queue Length 95th (m)	0.0	0.0	0.0	1.1								
Control Delay (s)	0.0	0.0	0.0	9.0								
Lane LOS			Α	Α								
Approach Delay (s)	0.0	0.0	0.0	9.0								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			2.2									
Intersection Capacity Utiliza	ation		18.1%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	•	•	4	†	ļ
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	ሻ	7	4	ሻ	†	†
Traffic Volume (vph)	154	57	21	51	121	109
Future Volume (vph)	154	57	21	51	121	109
Lane Group Flow (vph)	167	62	36	55	132	283
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	5.5	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.59	0.15	0.10	0.08	0.13	0.34
Control Delay	31.2	2.7	13.9	6.1	7.6	9.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.4
Total Delay	31.2	2.7	13.9	6.1	7.6	9.9
Queue Length 50th (m)	18.9	0.0	2.3	2.2	6.4	12.2
Queue Length 95th (m)	32.3	3.7	7.6	7.1	16.1	34.0
Internal Link Dist (m)	02.0	0.1	8.0		230.0	55.6
Turn Bay Length (m)	50.0		0.0		200.0	00.0
Base Capacity (vph)	380	509	501	666	1030	852
Starvation Cap Reductn	0	0	0	0	0	215
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.44	0.12	0.07	0.08	0.13	0.44
reduced we read	U.7 1	0.12	0.01	0.00	0.10	U. T.

Cycle Length: 67.3

Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

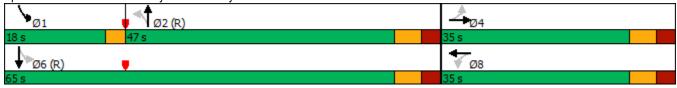
Splits and Phases: 3: Fallsview Blvd & Embassy Suites

 Synchro Report
 02-09-2023

 TTW_Hennepin_2023-01-09-v0.1.syn
 Page 1

	٠	→	•	•	←	•	•	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲		7		4		¥	†		¥	†	
Traffic Volume (vph)	154	0	57	0	21	12	51	121	0	0	109	152
Future Volume (vph)	154	0	57	0	21	12	51	121	0	0	109	152
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.91	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1579	
Flt Permitted	0.73		1.00		1.00		0.53	1.00			1.00	
Satd. Flow (perm)	1270		1471		1646		914	1731			1579	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	167	0	62	0	23	13	55	132	0	0	118	165
RTOR Reduction (vph)	0	0	48	0	10	0	0	0	0	0	62	0
Lane Group Flow (vph)	167	0	14	0	26	0	55	132	0	0	221	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases					8		5	2			6	
Permitted Phases	4		4	8			2			6		
Actuated Green, G (s)	15.1		15.1		15.1		39.9	39.9			32.1	
Effective Green, g (s)	15.1		15.1		15.1		39.9	39.9			32.1	
Actuated g/C Ratio	0.22		0.22		0.22		0.59	0.59			0.48	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	284		330		369		593	1026			753	
v/s Ratio Prot					0.02		0.01	c0.08			c0.14	
v/s Ratio Perm	c0.13		0.01				0.05					
v/c Ratio	0.59		0.04		0.07		0.09	0.13			0.29	
Uniform Delay, d1	23.3		20.4		20.6		5.9	6.0			10.7	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	3.7		0.1		0.1		0.1	0.3			1.0	
Delay (s)	27.0		20.5		20.7		6.0	6.3			11.7	
Level of Service	С		С		С		Α	Α			В	
Approach Delay (s)		25.2			20.7			6.2			11.7	
Approach LOS		С			С			Α			В	
Intersection Summary												
HCM 2000 Control Delay			15.0	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.36									
Actuated Cycle Length (s)			67.3		um of lost				15.3			
Intersection Capacity Utilization	ation		62.8%	IC	U Level	of Service	•		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	•	←	4	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	f)	ሻ	f)	ሻ	∱ ∱	ሻ	∱ ∱	
Traffic Volume (vph)	55	170	73	102	103	429	257	520	
Future Volume (vph)	55	170	73	102	103	429	257	520	
Lane Group Flow (vph)	60	217	79	308	112	562	279	682	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	24.0	24.0	10.0	28.0	
Total Split (s)	35.0	35.0	35.0	35.0	47.0	47.0	18.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	47.0%	47.0%	18.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?					J	•			
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	0.57	0.62	0.45	0.80	0.32	0.34	0.47	0.32	
Control Delay	55.1	41.9	41.6	41.5	15.9	11.1	9.3	8.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	55.1	41.9	41.6	41.5	15.9	11.1	9.3	8.2	
Queue Length 50th (m)	10.6	37.1	13.6	41.2	10.2	26.3	17.1	25.1	
Queue Length 95th (m)	22.1	54.6	25.3	64.7	33.6	60.1	35.8	43.4	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	147	480	242	502	347	1654	622	2122	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.41	0.45	0.33	0.61	0.32	0.34	0.45	0.32	

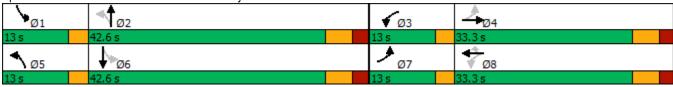

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Splits and Phases: 12: Stanley Ave & Murray St


	٦	→	•	•	←	•	1	†	<i>></i>	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ»		7	1>		ሻ	∱ β		ሻ	∱ ⊅	
Traffic Volume (vph)	55	170	29	73	102	181	103	429	88	257	520	108
Future Volume (vph)	55	170	29	73	102	181	103	429	88	257	520	108
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.98		1.00	0.90		1.00	0.97		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1692		1644	1565		1644	3204		1644	3203	
Flt Permitted	0.30	1.00		0.50	1.00		0.39	1.00		0.40	1.00	
Satd. Flow (perm)	526	1692		867	1565		679	3204		685	3203	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	60	185	32	79	111	197	112	466	96	279	565	117
RTOR Reduction (vph)	0	7	0	0	71	0	0	14	0	0	14	0
Lane Group Flow (vph)	60	210	0	79	237	0	112	548	0	279	668	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	20.2	20.2		20.2	20.2		51.2	51.2		65.8	65.8	
Effective Green, g (s)	20.2	20.2		20.2	20.2		51.2	51.2		65.8	65.8	
Actuated g/C Ratio	0.20	0.20		0.20	0.20		0.51	0.51		0.66	0.66	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	106	341		175	316		347	1640		561	2107	
v/s Ratio Prot		0.12			c0.15			0.17		c0.06	0.21	
v/s Ratio Perm	0.11			0.09			0.16			c0.27		
v/c Ratio	0.57	0.62		0.45	0.75		0.32	0.33		0.50	0.32	
Uniform Delay, d1	36.0	36.4		35.0	37.5		14.3	14.4		7.3	7.4	
Progression Factor	1.00	1.00		1.00	1.00		0.74	0.69		1.00	1.00	
Incremental Delay, d2	6.8	3.3		1.8	9.4		2.4	0.5		0.7	0.4	
Delay (s)	42.7	39.6		36.9	46.9		12.9	10.4		8.0	7.8	
Level of Service	D	D		D	D		В	В		Α	Α	
Approach Delay (s)		40.3			44.9			10.8			7.8	
Approach LOS		D			D			В			Α	
Intersection Summary												
HCM 2000 Control Delay			18.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.57									
Actuated Cycle Length (s)			100.0		um of lost				17.0			
Intersection Capacity Utiliza	tion		76.8%	IC	CU Level of	of Service)		D			
Analysis Period (min)			15									
c Critical Lane Group												

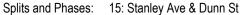
	•	-	•	•	•	1	†	-	ļ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	ሻ	ħβ	ሻ	†	7	ሻ	↑ ↑	ሻ	↑ ↑
Traffic Volume (vph)	43	323	110	161	134	94	214	138	236
Future Volume (vph)	43	323	110	161	134	94	214	138	236
Lane Group Flow (vph)	47	500	120	175	146	102	482	150	304
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA
Protected Phases	7	4	3	8		5	2	1	6
Permitted Phases	4		8		8	2		6	
Detector Phase	7	4	3	8	8	5	2	1	6
Switch Phase									
Minimum Initial (s)	5.5	20.0	7.0	20.0	20.0	5.5	20.0	7.0	20.0
Minimum Split (s)	10.0	33.3	10.0	33.3	33.3	10.0	42.6	10.0	42.6
Total Split (s)	13.0	33.3	13.0	33.3	33.3	13.0	42.6	13.0	42.6
Total Split (%)	12.8%	32.7%	12.8%	32.7%	32.7%	12.8%	41.8%	12.8%	41.8%
Yellow Time (s)	3.0	4.1	3.0	4.1	4.1	3.0	4.1	3.0	4.1
All-Red Time (s)	0.0	2.2	0.0	2.2	2.2	0.0	2.5	0.0	2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	3.0	6.3	3.0	6.3	6.3	3.0	6.6	3.0	6.6
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	None	Max	None	Max
v/c Ratio	0.11	0.58	0.37	0.32	0.26	0.19	0.38	0.34	0.24
Control Delay	18.2	31.0	21.7	29.6	6.2	13.6	12.1	15.2	20.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.2	31.0	21.7	29.6	6.2	13.6	12.1	15.2	20.7
Queue Length 50th (m)	5.4	39.3	14.4	27.2	0.0	10.0	16.8	15.1	20.0
Queue Length 95th (m)	12.2	55.8	25.9	46.8	14.1	18.6	29.6	26.1	30.8
Internal Link Dist (m)		39.6		70.0			112.9		294.7
Turn Bay Length (m)	30.0		35.0			10.0		65.0	
Base Capacity (vph)	493	906	336	545	563	560	1267	450	1278
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.55	0.36	0.32	0.26	0.18	0.38	0.33	0.24

Cycle Length: 101.9 Actuated Cycle Length: 98.8 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

Splits and Phases: 13: Fallsview Blvd & Murray St

	۶	→	•	•	←	•	4	†	<i>></i>	>	Ţ	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ ∱		Ť	†	7	Ť	∱ ∱		Ť	∱ ∱	
Traffic Volume (vph)	43	323	137	110	161	134	94	214	229	138	236	43
Future Volume (vph)	43	323	137	110	161	134	94	214	229	138	236	43
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.96		1.00	1.00	0.85	1.00	0.92		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	3141		1644	1731	1471	1644	3033		1644	3212	
Flt Permitted	0.65	1.00		0.32	1.00	1.00	0.57	1.00		0.40	1.00	
Satd. Flow (perm)	1119	3141		556	1731	1471	980	3033		696	3212	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	47	351	149	120	175	146	102	233	249	150	257	47
RTOR Reduction (vph)	0	46	0	0	0	101	0	158	0	0	14	0
Lane Group Flow (vph)	47	454	0	120	175	45	102	324	0	150	290	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4	00.7		8	04.4	8	2	00.7		6	00.0	
Actuated Green, G (s)	31.4	26.7		38.8	31.1	31.1	43.7	36.7		48.1	38.9	
Effective Green, g (s)	31.4	26.7		38.8	31.1	31.1	43.7	36.7		48.1	38.9	
Actuated g/C Ratio	0.31	0.27		0.39	0.31	0.31	0.43	0.36		0.48	0.39	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	373	833		312	535	454	471	1106		419	1242	
v/s Ratio Prot v/s Ratio Perm	0.01 0.03	c0.14		c0.03 0.11	0.10	0.03	0.02 0.08	0.11		c0.03 c0.14	0.09	
v/s Ratio Perm	0.03	0.54		0.11	0.33	0.03	0.06	0.29		0.36	0.23	
Uniform Delay, d1	24.5	31.7		21.0	26.7	24.8	17.2	22.7		15.3	20.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.7		0.8	0.4	0.1	0.2	0.7		0.5	0.4	
Delay (s)	24.7	32.5		21.8	27.1	24.9	17.4	23.4		15.8	21.2	
Level of Service	24.7 C	02.5 C		Z1.0	C C	Z4.3	В	23.4 C		15.0 B	C C	
Approach Delay (s)		31.8		J	24.9	J		22.3			19.5	
Approach LOS		C			C			C			В	
Intersection Summary												
HCM 2000 Control Delay			24.8	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.43									
Actuated Cycle Length (s)			100.6		um of lost	٠,			18.9			
Intersection Capacity Utiliza	ation		65.7%	IC	U Level	of Service	9		С			
Analysis Period (min)			15									
c Critical Lane Group												


	۶	-	•	←	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	f)	ሻ	†	7	ሻ	↑ ↑	ሻ	↑ ↑	
Traffic Volume (vph)	104	168	41	145	44	89	401	107	385	
Future Volume (vph)	104	168	41	145	44	89	401	107	385	
Lane Group Flow (vph)	113	247	45	158	48	97	527	116	567	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4		8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0	
Total Split (s)	37.0	37.0	37.0	37.0	37.0	50.0	50.0	13.0	63.0	
Total Split (%)	37.0%	37.0%	37.0%	37.0%	37.0%	50.0%	50.0%	13.0%	63.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag						Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	0.42	0.60	0.23	0.38	0.12	0.25	0.32	0.21	0.28	
Control Delay	36.0	36.8	31.8	33.5	3.3	18.1	15.3	12.0	15.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	36.0	36.8	31.8	33.5	3.3	18.1	15.3	12.0	15.0	
Queue Length 50th (m)	17.8	37.8	6.7	24.6	0.0	10.9	30.2	11.5	41.2	
Queue Length 95th (m)	33.6	61.9	16.1	42.1	4.1	23.0	43.5	23.7	56.3	
Internal Link Dist (m)		213.7		94.8			227.1		103.4	
Turn Bay Length (m)	75.0		25.0		25.0	25.0		40.0		
Base Capacity (vph)	336	511	247	519	494	386	1643	565	1991	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.34	0.48	0.18	0.30	0.10	0.25	0.32	0.21	0.28	

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

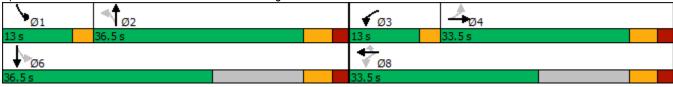
Control Type: Actuated-Coordinated

	۶	→	*	•	—	•	•	†	<i>></i>	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽		ሻ	†	7	ሻ	∱ ∱		ሻ	∱ ⊅	
Traffic Volume (vph)	104	168	59	41	145	44	89	401	84	107	385	137
Future Volume (vph)	104	168	59	41	145	44	89	401	84	107	385	137
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.96		1.00	1.00	0.85	1.00	0.97		1.00	0.96	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1663		1644	1731	1471	1644	3203		1644	3158	
FIt Permitted	0.65	1.00		0.48	1.00	1.00	0.44	1.00		0.41	1.00	
Satd. Flow (perm)	1122	1663		826	1731	1471	760	3203		717	3158	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	113	183	64	45	158	48	97	436	91	116	418	149
RTOR Reduction (vph)	0	14	0	0	0	36	0	15	0	0	31	0
Lane Group Flow (vph)	113	233	0	45	158	12	97	512	0	116	536	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		_	8	_		2		1	6	
Permitted Phases	4	212		8	212	8	2			6		
Actuated Green, G (s)	24.0	24.0		24.0	24.0	24.0	50.8	50.8		62.0	62.0	
Effective Green, g (s)	24.0	24.0		24.0	24.0	24.0	50.8	50.8		62.0	62.0	
Actuated g/C Ratio	0.24	0.24		0.24	0.24	0.24	0.51	0.51		0.62	0.62	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	269	399		198	415	353	386	1627		520	1957	
v/s Ratio Prot		c0.14			0.09			c0.16		0.02	c0.17	
v/s Ratio Perm	0.10	0.50		0.05	0.00	0.01	0.13	0.04		0.12	0.07	
v/c Ratio	0.42	0.58		0.23	0.38	0.03	0.25	0.31		0.22	0.27	
Uniform Delay, d1	32.1	33.6		30.5	31.8	29.1	13.9	14.4		7.9	8.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.54	1.82	
Incremental Delay, d2	1.1	2.2		0.6	0.6	0.0	1.6	0.5		0.2	0.3	
Delay (s)	33.2	35.8		31.1	32.4	29.1	15.4	14.9		12.4	16.1	
Level of Service	С	D		С	C	С	В	B		В	B	
Approach LOC		35.0			31.5			15.0			15.5	
Approach LOS		С			С			В			В	
Intersection Summary									_			
HCM 2000 Control Delay			21.1	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.39									
Actuated Cycle Length (s)			100.0		um of los				17.0			
Intersection Capacity Utilizat	ion		68.1%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	←	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	•
Lane Configurations	ሻ	ĵ»	ሻ	†	7	ሻ	∱	ሻ	f)	,
Traffic Volume (vph)	215	82	116	192	344	17	310	32	94	
Future Volume (vph)	215	82	116	192	344	17	310	32	94	ļ
Lane Group Flow (vph)	234	167	126	209	374	18	394	35	132	<u>, </u>
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	<u>)</u>
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6)
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0)
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	;
Total Split (s)	33.5	33.5	13.0	33.5	33.5	36.5	36.5	13.0	36.5	j
Total Split (%)	34.9%	34.9%	13.5%	34.9%	34.9%	38.0%	38.0%	13.5%	38.0%)
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0)
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	;
Lead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?		Ū				J	J			
Recall Mode	None	None	None	None	None	Max	Max	None	Max	(
v/c Ratio	0.75	0.34	0.25	0.30	0.46	0.04	0.62	0.09	0.18	j
Control Delay	45.6	20.5	15.4	18.4	4.0	22.3	29.7	14.1	14.7	•
Queue Delay	0.0	0.0	0.0	0.0	0.2	0.0	8.0	0.0	0.0)
Total Delay	45.6	20.5	15.4	18.4	4.1	22.3	37.7	14.1	14.7	•
Queue Length 50th (m)	37.6	16.5	12.5	23.6	0.0	2.2	59.8	3.3	11.8	}
Queue Length 95th (m)	#74.2	33.8	23.4	39.8	15.7	7.1	94.4	8.4	23.1	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	365	572	521	863	921	435	638	423	906	j
Starvation Cap Reductn	0	0	0	0	116	0	201	0	0)
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0)
Storage Cap Reductn	0	0	0	0	0	0	0	0	0)
Reduced v/c Ratio	0.64	0.29	0.24	0.24	0.46	0.04	0.90	0.08	0.15	;

Cycle Length: 96

Actuated Cycle Length: 83.3


Natural Cycle: 90

Control Type: Actuated-Uncoordinated

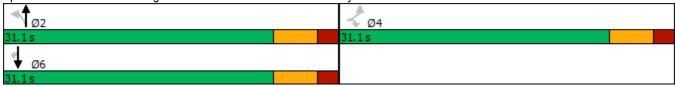
95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 16: Fallsview Blvd & Main St/Portage Rd

Synchro Report 02-09-2023 TTW_Hennepin_2023-01-09-v0.1.syn Page 9

	۶	→	•	•	-	•	1	†	<i>></i>	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	f)		J.	†	7	, N	f)		,	f)	
Traffic Volume (vph)	215	82	72	116	192	344	17	310	52	32	94	28
Future Volume (vph)	215	82	72	116	192	344	17	310	52	32	94	28
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.93		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1609		1644	1731	1471	1644	1693		1644	1672	
Flt Permitted	0.63	1.00		0.58	1.00	1.00	0.67	1.00		0.35	1.00	
Satd. Flow (perm)	1085	1609		1002	1731	1471	1164	1693		606	1672	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	234	89	78	126	209	374	18	337	57	35	102	30
RTOR Reduction (vph)	0	33	0	0	0	225	0	6	0	0	11	0
Lane Group Flow (vph)	234	134	0	126	209	149	18	388	0	35	121	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	24.0	24.0		33.9	33.9	33.9	31.2	31.2		38.1	38.1	
Effective Green, g (s)	24.0	24.0		33.9	33.9	33.9	31.2	31.2		38.1	38.1	
Actuated g/C Ratio	0.28	0.28		0.40	0.40	0.40	0.37	0.37		0.45	0.45	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	306	454		451	690	586	427	621		319	749	
v/s Ratio Prot		0.08		0.02	c0.12			c0.23		0.01	c0.07	
v/s Ratio Perm	c0.22			0.09		0.10	0.02			0.04		
v/c Ratio	0.76	0.30		0.28	0.30	0.25	0.04	0.63		0.11	0.16	
Uniform Delay, d1	27.9	23.9		16.7	17.5	17.1	17.3	22.1		14.0	13.9	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	10.8	0.4		0.3	0.2	0.2	0.2	4.7		0.2	0.5	
Delay (s)	38.7	24.2		17.0	17.7	17.3	17.5	26.8		14.2	14.4	
Level of Service	D	C		В	B	В	В	C		В	В	
Approach Delay (s)		32.7			17.4			26.4			14.4	
Approach LOS		С			В			С			В	
Intersection Summary									_			
HCM 2000 Control Delay			22.9	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	icity ratio		0.62									
Actuated Cycle Length (s)			85.0		um of los				19.0			
Intersection Capacity Utiliza	ation		73.4%	IC	CU Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												


17: Portage	R 48	Fallsview	Casino	Rear	Driveway
II. FUILAGE	iva α	i alisview	Casilio	ı vcaı	Dilveway

	•	•	1	†	Ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	7		†	7
Traffic Volume (vph)	87	116	264	92	116	321
Future Volume (vph)	87	116	264	92	116	321
Lane Group Flow (vph)	95	126	287	100	126	349
Turn Type	Perm	Perm	Perm	NA	NA	Perm
Protected Phases				2	6	
Permitted Phases	4	4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	31.1	31.1	31.1	31.1
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.16	0.20	0.47	0.11	0.14	0.37
Control Delay	12.7	3.7	17.6	12.4	12.7	3.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.7	3.7	17.6	12.4	12.7	3.1
Queue Length 50th (m)	6.6	0.0	25.1	7.0	9.0	0.0
Queue Length 95th (m)	14.6	8.1	48.0	15.1	18.3	13.2
Internal Link Dist (m)	9.1			121.3	66.9	
Turn Bay Length (m)						
Base Capacity (vph)	706	704	610	902	902	933
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.18	0.47	0.11	0.14	0.37
	5.70	50	.	.	-	v.v.

Cycle Length: 62.2 Actuated Cycle Length: 59 Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Splits and Phases: 17: Portage Rd & Fallsview Casino Rear Driveway

Synchro Report 02-09-2023 TTW_Hennepin_2023-01-09-v0.1.syn Page 11

	۶	•	4	†	ļ	✓		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	*	7	ሻ	†	†	*		
Traffic Volume (vph)	87	116	264	92	116	321		
Future Volume (vph)	87	116	264	92	116	321		
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750		
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1644	1471	1644	1731	1731	1471		
Flt Permitted	0.95	1.00	0.68	1.00	1.00	1.00		
Satd. Flow (perm)	1644	1471	1170	1731	1731	1471		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	95	126	287	100	126	349		
RTOR Reduction (vph)	0	86	0	0	0	180		
Lane Group Flow (vph)	95	40	287	100	126	169		
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%		
Turn Type	Perm	Perm	Perm	NA	NA	Perm		
Protected Phases				2	6			
Permitted Phases	4	4	2			6		
Actuated Green, G (s)	19.0	19.0	29.2	29.2	29.2	29.2		
Effective Green, g (s)	19.0	19.0	29.2	29.2	29.2	29.2		
Actuated g/C Ratio	0.31	0.31	0.48	0.48	0.48	0.48		
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	517	462	565	836	836	711		
v/s Ratio Prot	• • •			0.06	0.07			
v/s Ratio Perm	c0.06	0.03	c0.25			0.11		
v/c Ratio	0.18	0.09	0.51	0.12	0.15	0.24		
Uniform Delay, d1	15.1	14.6	10.7	8.6	8.7	9.1		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.2	0.1	3.2	0.3	0.4	0.8		
Delay (s)	15.2	14.7	13.9	8.8	9.1	9.9		
Level of Service	В	В	В	Α	Α	Α		
Approach Delay (s)	14.9			12.6	9.7			
Approach LOS	В			В	Α			
Intersection Summary								
HCM 2000 Control Delay			11.8	H	CM 2000	Level of Service	e	В
HCM 2000 Volume to Capa	city ratio		0.38					
Actuated Cycle Length (s)	•		60.4	Sı	ım of lost	time (s)	12	2.2
Intersection Capacity Utiliza	ition		47.6%			of Service		Α
Analysis Period (min)			15					
c Critical Lane Group								

	٠	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		† †	† }	
Traffic Volume (veh/h)	0	130	0	623	605	33
Future Volume (Veh/h)	0	130	0	623	605	33
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	141	0	677	658	36
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				55	191	
pX, platoon unblocked	0.97	0.95	0.95			
vC, conflicting volume	1014	347	694			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	747	221	585			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	81	100			
cM capacity (veh/h)	343	753	955			
				CD 4	CD 0	
Direction, Lane #	EB 1 141	NB 1	NB 2	SB 1	SB 2	
Volume Total		338	338	439	255	
Volume Left	0	0	0	0	0	
Volume Right	141	0	0	0	36	
cSH	753	1700	1700	1700	1700	
Volume to Capacity	0.19	0.20	0.20	0.26	0.15	
Queue Length 95th (m)	5.2	0.0	0.0	0.0	0.0	
Control Delay (s)	10.9	0.0	0.0	0.0	0.0	
Lane LOS	В					
Approach Delay (s)	10.9	0.0		0.0		
Approach LOS	В					
Intersection Summary						
Average Delay			1.0			
Intersection Capacity Utiliz	ation		34.7%	IC	CU Level c	f Service
Analysis Period (min)			15			

	۶	→	•	•	-	•	1	†	/	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ተ ኈ		7	∱ ∱	
Traffic Volume (veh/h)	19	4	6	0	0	0	56	366	134	108	234	79
Future Volume (Veh/h)	19	4	6	0	0	0	56	366	134	108	234	79
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	21	4	7	0	0	0	61	398	146	117	254	86
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)								139			114	
pX, platoon unblocked												
vC, conflicting volume	852	1197	170	963	1167	272	340			544		
vC1, stage 1 conf vol	531	531		593	593							
vC2, stage 2 conf vol	321	666		370	574							
vCu, unblocked vol	852	1197	170	963	1167	272	340			544		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	6.5	5.5	0.0	6.5	5.5	0.0						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	95	99	99	100	100	100	95			89		
cM capacity (veh/h)	384	289	851	360	328	732	1230			1035		
								00.0		1000		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	32	0	61	265	279	117	169	171				
Volume Left	21	0	61	0	0	117	0	0				
Volume Right	7	0	0	0	146	0	0	86				
cSH	417	1700	1230	1700	1700	1035	1700	1700				
Volume to Capacity	0.08	0.00	0.05	0.16	0.16	0.11	0.10	0.10				
Queue Length 95th (m)	1.9	0.0	1.2	0.0	0.0	2.9	0.0	0.0				
Control Delay (s)	14.4	0.0	8.1	0.0	0.0	8.9	0.0	0.0				
Lane LOS	В	Α	Α			Α						
Approach Delay (s)	14.4	0.0	8.0			2.3						
Approach LOS	В	Α										
Intersection Summary												
Average Delay			1.8									
Intersection Capacity Utilizat	tion		35.5%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
, , ,												

	•	•	1	†	-	↓
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	र्स	7	ሻ	∱ }	ሻ	↑ ↑
Traffic Volume (vph)	1	93	13	327	160	379
Future Volume (vph)	1	93	13	327	160	379
Lane Group Flow (vph)	36	101	14	432	174	510
Turn Type	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases	8			2	1	6
Permitted Phases		8	2		6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4
Lead/Lag	• • • • • • • • • • • • • • • • • • • •		Lag	Lag	Lead	
Lead-Lag Optimize?			9	9		
Recall Mode	None	None	None	None	None	None
v/c Ratio	0.10	0.25	0.04	0.28	0.25	0.24
Control Delay	20.6	7.1	12.7	12.1	4.8	5.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.6	7.1	12.7	12.1	4.8	5.3
Queue Length 50th (m)	3.1	0.0	0.9	14.8	5.7	10.5
Queue Length 95th (m)	9.5	9.7	4.0	25.2	11.1	16.8
Internal Link Dist (m)	32.2	0.1	7.0	90.4		112.9
Turn Bay Length (m)	02.2		20.0	30.4	25.0	112.0
Base Capacity (vph)	711	693	503	2020	721	2604
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0.15	0.03	0.21	0.24	0.20
NEGUCEU V/C NAUC	0.00	0.13	0.03	0.21	0.24	0.20

Cycle Length: 77.1

Actuated Cycle Length: 50.4

Natural Cycle: 75

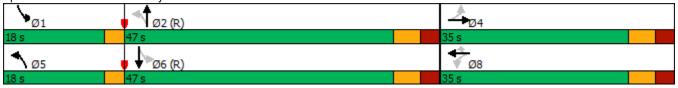
Control Type: Actuated-Uncoordinated

73: Fallsview Blvd & Hilton Lot/Fallsview Lot Splits and Phases:

02-09-2023 TTW_Hennepin_2023-01-09-v0.1.syn Page 16

	۶	→	*	•	←	•	1	†	<i>></i>	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	7	ħβ		7	∱ β	
Traffic Volume (vph)	0	0	0	32	1	93	13	327	71	160	379	90
Future Volume (vph)	0	0	0	32	1	93	13	327	71	160	379	90
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Lane Util. Factor					1.00	1.00	1.00	0.95		1.00	0.95	
Frt					1.00	0.85	1.00	0.97		1.00	0.97	
Flt Protected					0.95	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)					1650	1471	1644	3200		1644	3193	
Flt Permitted					0.95	1.00	0.46	1.00		0.44	1.00	
Satd. Flow (perm)					1650	1471	803	3200		761	3193	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	35	1	101	14	355	77	174	412	98
RTOR Reduction (vph)	0	0	0	0	0	87	0	23	0	0	25	0
Lane Group Flow (vph)	0	0	0	0	36	14	14	409	0	174	485	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type				Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases					8			2		1	6	
Permitted Phases				8	7.0	8	2	04.7		6	04.0	
Actuated Green, G (s)					7.2	7.2	21.7	21.7		31.2	31.2	
Effective Green, g (s)					7.2	7.2	21.7	21.7		31.2	31.2	
Actuated g/C Ratio					0.14	0.14	0.41	0.41		0.59	0.59	
Clearance Time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Vehicle Extension (s)					4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)					226	201	331	1322		561	1897	
v/s Ratio Prot					0.00	0.04	0.00	0.13		c0.04	0.15	
v/s Ratio Perm					0.02 0.16	0.01 0.07	0.02	0.24		c0.15	0.00	
v/c Ratio					20.0	19.7	0.04 9.2	0.31 10.4		0.31 4.9	0.26 5.1	
Uniform Delay, d1					1.00	1.00	1.00	1.00		1.00	1.00	
Progression Factor Incremental Delay, d2					0.5	0.2	0.1	0.2		0.4	0.1	
Delay (s)					20.4	19.9	9.3	10.5		5.4	5.2	
Level of Service					20.4 C	19.9 B	9.5 A	10.5 B		3.4 A	3.2 A	
Approach Delay (s)		0.0			20.1	D		10.5			5.2	
Approach LOS		Α			C			В			A	
Intersection Summary												
HCM 2000 Control Delay			8.7	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capacity	ratio		0.30									
Actuated Cycle Length (s)			52.5		um of lost				17.1			
Intersection Capacity Utilization	1		59.6%	IC	U Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	*	4	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations		4		ર્ન	7	J.	↑ ↑	J.	↑ ↑	
Traffic Volume (vph)	19	10	60	47	241	45	363	210	495	
Future Volume (vph)	19	10	60	47	241	45	363	210	495	
Lane Group Flow (vph)	0	45	0	116	262	49	444	228	571	
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4		8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0	
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0	
Total Split (s)	35.0	35.0	35.0	35.0	35.0	18.0	47.0	18.0	47.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	35.0%	18.0%	47.0%	18.0%	47.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0	
Lead/Lag						Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max	
v/c Ratio		0.24		0.63	0.62	0.08	0.23	0.33	0.27	
Control Delay		31.2		55.2	11.6	2.8	11.1	4.4	6.9	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		31.2		55.2	11.6	2.8	11.1	4.4	6.9	
Queue Length 50th (m)		5.6		21.7	0.0	0.6	26.2	8.1	16.5	
Queue Length 95th (m)		14.6		36.7	20.5	5.9	42.4	16.0	28.7	
Internal Link Dist (m)		100.0		3.9			71.5		31.5	
Turn Bay Length (m)						65.0		140.0		
Base Capacity (vph)		380		388	600	712	1971	750	2131	
Starvation Cap Reductn		0		0	0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	0	
Reduced v/c Ratio		0.12		0.30	0.44	0.07	0.23	0.30	0.27	


Cycle Length: 100 Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

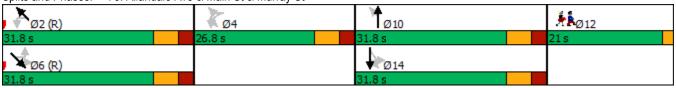
Control Type: Actuated-Coordinated

Splits and Phases: 76: Stanley Ave & Dixon St

	۶	→	•	•	—	•	1	†	<i>></i>	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ની	7	ሻ	∱ î≽		7	∱ ∱	
Traffic Volume (vph)	19	10	12	60	47	241	45	363	45	210	495	30
Future Volume (vph)	19	10	12	60	47	241	45	363	45	210	495	30
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.96			1.00	0.85	1.00	0.98		1.00	0.99	
Flt Protected		0.98			0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1625			1683	1471	1644	3234		1644	3260	
Flt Permitted		0.80			0.80	1.00	0.44	1.00		0.47	1.00	
Satd. Flow (perm)		1326			1386	1471	757	3234		816	3260	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	21	11	13	65	51	262	49	395	49	228	538	33
RTOR Reduction (vph)	0	11	0	0	0	227	0	6	0	0	2	0
Lane Group Flow (vph)	0	34	0	0	116	35	49	438	0	228	569	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		13.3			13.3	13.3	65.7	60.8		72.7	64.8	
Effective Green, g (s)		13.3			13.3	13.3	65.7	60.8		72.7	64.8	
Actuated g/C Ratio		0.13			0.13	0.13	0.66	0.61		0.73	0.65	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		176			184	195	540	1966		666	2112	
v/s Ratio Prot							0.00	0.14		c0.03	0.17	
v/s Ratio Perm		0.03			c0.08	0.02	0.06			c0.22		
v/c Ratio		0.19			0.63	0.18	0.09	0.22		0.34	0.27	
Uniform Delay, d1		38.6			41.0	38.5	6.1	8.9		4.4	7.5	
Progression Factor		1.00			1.00	1.00	0.65	1.12		0.85	0.79	
Incremental Delay, d2		0.3			5.6	0.3	0.0	0.3		0.2	0.3	
Delay (s)		38.9			46.7	38.8	4.0	10.2		3.9	6.3	
Level of Service		D			D	D	Α	В		Α	Α	
Approach Delay (s)		38.9			41.2			9.6			5.6	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			15.5	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.40									
Actuated Cycle Length (s)			100.0		um of los				17.0			
Intersection Capacity Utilization	on		52.8%	IC	CU Level	of Service	Э		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	~	•	*_	ኘ	†	>	Ļ	ļ	•	\	\mathbf{x}	×
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWT
Lane Configurations		Ä	Ž.		4			4		ă	£	4
Traffic Volume (vph)	13	4	180	86	26	4	4	14	24	165	1	12
Future Volume (vph)	13	4	180	86	26	4	4	14	24	165	1	12
Lane Group Flow (vph)	0	18	238	0	134	0	0	24	0	205	119	36
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	NA
Protected Phases					10			14			6	2
Permitted Phases	4	4	4	10		14	14		6	6		
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	26.8	26.8	26.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8
Total Split (%)	24.1%	24.1%	24.1%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	6.8
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.09	0.92		0.46			0.07		0.73	0.37	0.10
Control Delay		39.8	85.2		43.3			33.8		57.1	40.4	35.4
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Delay		39.8	85.2		43.3			33.8		57.1	40.4	35.4
Queue Length 50th (m)		3.3	51.4		25.4			4.0		41.7	22.0	6.3
Queue Length 95th (m)		9.9	#97.3		44.5			11.0		#75.0	39.2	14.9
Internal Link Dist (m)		102.7			229.8			295.5			298.1	208.5
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		191	258		292			344		279	324	348
Starvation Cap Reductn		0	0		0			0		0	0	0
Spillback Cap Reductn		0	0		0			0		0	0	0
Storage Cap Reductn		0	0		0			0		0	0	0
Reduced v/c Ratio		0.09	0.92		0.46			0.07		0.73	0.37	0.10

Cycle Length: 111.4 Actuated Cycle Length: 111.4


Offset: 0 (0%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 90 Control Type: Pretimed

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 78: Allandale Ave & Main St & Murray St

Synchro Report 02-09-2023 TTW_Hennepin_2023-01-09-v0.1.syn Page 20

Lane Group	Ø12		
LaneConfigurations		 	
Traffic Volume (vph)			
Future Volume (vph)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	12		
Permitted Phases			
Minimum Split (s)	21.0		
Total Split (s)	21.0		
Total Split (%)	19%		
Yellow Time (s)	2.0		
All-Red Time (s)	0.0		
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag			
Lead-Lag Optimize?			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			
interpolition cuminally			

	~	•	*_	•	ኘ	†	/	ſ*	>	Ļ	†	≱ J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		Ä	Ž.			4					4	
Traffic Volume (vph)	13	4	180	39	86	26	8	4	4	4	14	1
Future Volume (vph)	13	4	180	39	86	26	8	4	4	4	14	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.99					0.99	
Flt Protected		0.95	1.00			0.97					0.98	
Satd. Flow (prot)		1612	1442			1618					1659	
Flt Permitted		0.63	1.00			0.78					0.91	
Satd. Flow (perm)		1068	1442			1303					1529	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	14	4	196	42	93	28	9	4	4	4	15	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	18	238	0	0	134	0	0	0	0	23	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		20.0	20.0			25.0					25.0	
Effective Green, g (s)		20.0	20.0			25.0					25.0	
Actuated g/C Ratio		0.18	0.18			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		191	258			292					343	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.17			c0.10					0.02	
v/c Ratio		0.09	0.92			0.46					0.07	
Uniform Delay, d1		38.1	44.9			37.4					34.0	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.0	39.1			5.1					0.4	
Delay (s)		39.1	84.1			42.5					34.4	
Level of Service		D	F			D					С	
Approach Delay (s)		80.9				42.5					34.4	
Approach LOS		F				D					С	
Intersection Summary												
HCM 2000 Control Delay			57.7	Н	CM 2000	Level of S	Service		E			
HCM 2000 Volume to Capaci	ty ratio		0.54									
Actuated Cycle Length (s)			111.4		um of lost				22.4			
Intersection Capacity Utilization	on		63.7%	IC	CU Level of	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\	\mathbf{x}	>	×	*	4
Movement	SEL2	SEL	SET	SER	NWT	NWR	NWR2
Lane Configurations		ă	f)		4		
Traffic Volume (vph)	24	165	1	109	12	9	12
Future Volume (vph)	24	165	1	109	12	9	12
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8		6.8		
Lane Util. Factor		1.00	1.00		1.00		
Frt		1.00	0.85		0.91		
Flt Protected		0.95	1.00		1.00		
Satd. Flow (prot)		1612	1444		1550		
Flt Permitted		0.73	1.00		1.00		
Satd. Flow (perm)		1245	1444		1550		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	26	179	1	118	13	10	13
RTOR Reduction (vph)	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	205	119	0	36	0	0
Turn Type	Perm	Perm	NA		NA		
Protected Phases			6		2		
Permitted Phases	6	6					
Actuated Green, G (s)		25.0	25.0		25.0		
Effective Green, g (s)		25.0	25.0		25.0		
Actuated g/C Ratio		0.22	0.22		0.22		
Clearance Time (s)		6.8	6.8		6.8		
Lane Grp Cap (vph)		279	324		347		
v/s Ratio Prot			0.08		0.02		
v/s Ratio Perm		c0.16					
v/c Ratio		0.73	0.37		0.10		
Uniform Delay, d1		40.1	36.5		34.3		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		15.8	3.2		0.6		
Delay (s)		55.9	39.7		34.9		
Level of Service		Е	D		С		
Approach Delay (s)			50.0		34.9		
Approach LOS			D		С		
Intersection Summary							

	۶	→	•	•	←	•	•	†	<i>></i>	\	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	0	0	0	0	122	0	0	0	41	0	0
Future Volume (Veh/h)	0	0	0	0	0	122	0	0	0	41	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	0	133	0	0	0	45	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					124							
pX, platoon unblocked												
vC, conflicting volume	133			0			66	133	0	66	66	66
vC1, stage 1 conf vol				-								
vC2, stage 2 conf vol												
vCu, unblocked vol	133			0			66	133	0	66	66	66
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)									V			
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	100	95	100	100
cM capacity (veh/h)	1464			1636			932	761	1091	932	828	1003
		MD 4	ND 4				002	701	1001	002	020	1000
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	133	0	45								
Volume Left	0	0	0	45								
Volume Right	0	133	0	0								
cSH	1700	1636	1700	932								
Volume to Capacity	0.00	0.00	0.39	0.05								
Queue Length 95th (m)	0.0	0.0	0.0	1.2								
Control Delay (s)	0.0	0.0	0.0	9.1								
Lane LOS			Α	Α								
Approach Delay (s)	0.0	0.0	0.0	9.1								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			2.3									
Intersection Capacity Utilization	on		18.2%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
,												

Appendix E

2033 Future Background Conditions Synchro Reports

	•	•	←	4	†	ļ
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	ሻ	7	4	ሻ		^
Traffic Volume (vph)	262	148	26	142	159	143
Future Volume (vph)	262	148	26	142	159	143
Lane Group Flow (vph)	285	161	44	154	173	545
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	7.0	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						_
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.81	0.31	0.09	0.41	0.19	0.71
Control Delay	42.8	5.3	13.0	10.3	9.2	17.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	1.9
Total Delay	42.8	5.3	13.0	10.3	9.2	19.4
Queue Length 50th (m)	31.2	0.0	2.4	8.8	11.2	36.3
Queue Length 95th (m)	#67.4	11.6	8.9	16.1	20.0	#85.2
Internal Link Dist (m)			8.0		230.0	55.6
Turn Bay Length (m)	50.0					
Base Capacity (vph)	378	555	506	379	939	772
Starvation Cap Reductn	0	0	0	0	0	107
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.75	0.29	0.09	0.41	0.18	0.82

Cycle Length: 67.3

Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Fallsview Blvd & Embassy Suites

Synchro Report
TTW_Hennepin_2023-01-09-v0.1.syn

	۶	→	•	•	←	•	4	†	<i>></i>	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň		7		44		7	†		ň	†	
Traffic Volume (vph)	262	0	148	0	26	15	142	159	0	0	143	359
Future Volume (vph)	262	0	148	0	26	15	142	159	0	0	143	359
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.89	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1545	
Flt Permitted	0.73		1.00		1.00		0.25	1.00			1.00	
Satd. Flow (perm)	1260		1471		1646		424	1731			1545	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	285	0	161	0	28	16	154	173	0	0	155	390
RTOR Reduction (vph)	0	0	116	0	12	0	0	0	0	0	127	0
Lane Group Flow (vph)	285	0	45	0	32	0	154	173	0	0	418	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases	. 0		. 0		8		5	2		. 0	6	
Permitted Phases	4		4	8			2	_		6		
Actuated Green, G (s)	18.7		18.7		18.7		36.3	36.3			27.4	
Effective Green, g (s)	18.7		18.7		18.7		36.3	36.3			27.4	
Actuated g/C Ratio	0.28		0.28		0.28		0.54	0.54			0.41	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	350		408		457		335	933			629	
v/s Ratio Prot	000		400		0.02		c0.04	0.10			c0.27	
v/s Ratio Perm	c0.23		0.03		0.02		0.21	0.10			00.21	
v/c Ratio	0.81		0.11		0.07		0.46	0.19			0.66	
Uniform Delay, d1	22.7		18.1		17.9		9.7	7.9			16.2	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	14.2		0.2		0.1		1.4	0.4			5.5	
Delay (s)	36.8		18.3		18.0		11.1	8.4			21.7	
Level of Service	D		В		В		В	A			C	
Approach Delay (s)		30.1			18.0			9.7			21.7	
Approach LOS		C			В			A			C	
Intersection Summary												
HCM 2000 Control Delay			21.4	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.70									
Actuated Cycle Length (s)			67.3	Sı	um of lost	time (s)			15.3			
Intersection Capacity Utiliza	ation		74.9%		U Level		9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	f)	ሻ	1>	ሻ	∱ }	7	∱ ∱	
Traffic Volume (vph)	69	178	147	122	186	1020	511	983	
Future Volume (vph)	69	178	147	122	186	1020	511	983	
Lane Group Flow (vph)	75	308	160	386	202	1335	555	1134	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	33.0	33.0	10.0	33.0	
Total Split (s)	35.0	35.0	35.0	35.0	47.0	47.0	18.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	47.0%	47.0%	18.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	0.64	0.66	0.89	0.78	1.00	0.89	1.59	0.53	
Control Delay	57.4	36.6	79.8	36.7	81.5	22.5	304.3	13.0	
Queue Delay	0.0	0.2	0.0	0.1	0.0	0.0	0.0	0.0	
Total Delay	57.4	36.9	79.8	36.8	81.5	22.5	304.3	13.0	
Queue Length 50th (m)	12.5	46.5	28.7	51.0	~44.1	82.3	~140.8	66.1	
Queue Length 95th (m)	#31.8	73.8	#63.6	84.3	m#77.9	#168.3	#204.6	83.3	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	131	518	200	543	201	1505	349	2154	
Starvation Cap Reductn	0	22	0	5	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.57	0.62	0.80	0.72	1.00	0.89	1.59	0.53	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

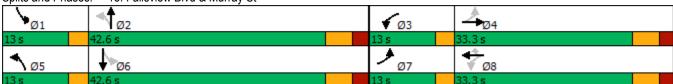
Splits and Phases: 12: Stanley Ave & Murray St

12: Gtarney / tvo a	a.ray									- 3		
	•	-	\rightarrow	•	←	•	1	†	/	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		¥	ĵ.		*	∱ }		*	∱ }	
Traffic Volume (vph)	69	178	106	147	122	233	186	1020	208	511	983	61
Future Volume (vph)	69	178	106	147	122	233	186	1020	208	511	983	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.94		1.00	0.90		1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1774		1785	1694		1785	3479		1785	3539	
Flt Permitted	0.25	1.00		0.38	1.00		0.25	1.00		0.09	1.00	
Satd. Flow (perm)	468	1774		716	1694		471	3479		164	3539	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	75	193	115	160	133	253	202	1109	226	555	1068	66
RTOR Reduction (vph)	0	22	0	0	71	0	0	16	0	0	4	0
Lane Group Flow (vph)	75	286	0	160	315	0	202	1319	0	555	1130	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		<u> </u>	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	25.2	25.2		25.2	25.2		42.8	42.8		60.8	60.8	
Effective Green, g (s)	25.2	25.2		25.2	25.2		42.8	42.8		60.8	60.8	
Actuated g/C Ratio	0.25	0.25		0.25	0.25		0.43	0.43		0.61	0.61	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.3	2.3		2.3	2.3		2.5	2.5		2.3	2.5	
Lane Grp Cap (vph)	117	447		180	426		201	1489		342	2151	
v/s Ratio Prot		0.16			0.19			0.38		c0.24	0.32	
v/s Ratio Perm	0.16			c0.22			0.43			c0.74		
v/c Ratio	0.64	0.64		0.89	0.74		1.00	0.89		1.62	0.53	
Uniform Delay, d1	33.4	33.3		36.1	34.4		28.6	26.3		30.8	11.3	
Progression Factor	1.00	1.00		1.00	1.00		0.55	0.54		1.00	1.00	
Incremental Delay, d2	9.5	2.5		36.7	6.0		58.2	6.7		293.4	0.9	
Delay (s)	42.9	35.8		72.8	40.4		73.9	20.8		324.1	12.2	
Level of Service	D	D		Е	D		Е	С		F	В	
Approach Delay (s)		37.2			49.9			27.8			114.7	
Approach LOS		D			D			С			F	
Intersection Summary												
HCM 2000 Control Delay			66.9	H	CM 2000	Level of	Service		Ε			
HCM 2000 Volume to Capa	acity ratio		1.45									
Actuated Cycle Length (s)			100.0	Sı	um of lost	time (s)			17.0			
Intersection Capacity Utiliza	ation		111.4%			of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	←	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	∱ }	ኻ		7	ሻ	† 1>	ች	↑ ↑	
Traffic Volume (vph)	88	523	179	319	173	129	386	170	521	
Future Volume (vph)	88	523	179	319	173	129	386	170	521	
Lane Group Flow (vph)	96	902	195	347	188	140	771	185	606	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	5.5	20.0	7.0	20.0	20.0	5.5	20.0	7.0	20.0	
Minimum Split (s)	10.0	33.3	10.0	33.3	33.3	10.0	42.6	10.0	42.6	
Total Split (s)	13.0	33.3	13.0	33.3	33.3	13.0	42.6	13.0	42.6	
Total Split (%)	12.8%	32.7%	12.8%	32.7%	32.7%	12.8%	41.8%	12.8%	41.8%	
Yellow Time (s)	3.0	4.1	3.0	4.1	4.1	3.0	4.1	3.0	4.1	
All-Red Time (s)	0.0	2.2	0.0	2.2	2.2	0.0	2.5	0.0	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.3	3.0	6.3	6.3	3.0	6.6	3.0	6.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	Max	None	Max	
v/c Ratio	0.26	0.93	0.77	0.62	0.31	0.34	0.58	0.54	0.47	
Control Delay	19.9	48.1	42.7	37.9	5.9	15.4	20.1	19.7	26.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	
Total Delay	19.9	48.1	42.7	37.9	5.9	15.4	20.4	19.7	26.2	
Queue Length 50th (m)	11.3	81.3	24.3	60.8	0.0	13.9	45.0	18.9	47.6	
Queue Length 95th (m)	21.3	#118.8	#56.2	92.8	15.9	24.1	63.7	31.2	64.0	
Internal Link Dist (m)		39.6		70.0			112.9		294.7	
Turn Bay Length (m)	30.0		35.0			10.0		65.0		
Base Capacity (vph)	392	986	254	556	605	430	1334	350	1285	
Starvation Cap Reductn	0	0	0	0	0	0	139	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.24	0.91	0.77	0.62	0.31	0.33	0.65	0.53	0.47	

Cycle Length: 101.9

Actuated Cycle Length: 100.8


Natural Cycle: 100

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

TO: I diloview Biva	S. Marie	.,										
	•	→	•	•	←	•	•	†	~	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ 1≽		7	+	7	, j	♦ ₽		7	↑ ↑	
Traffic Volume (vph)	88	523	307	179	319	173	129	386	323	170	521	37
Future Volume (vph)	88	523	307	179	319	173	129	386	323	170	521	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.93		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3372		1785	1879	1597	1785	3326		1785	3535	
Flt Permitted	0.39	1.00		0.13	1.00	1.00	0.34	1.00		0.23	1.00	
Satd. Flow (perm)	725	3372		252	1879	1597	642	3326		436	3535	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	96	568	334	195	347	188	140	420	351	185	566	40
RTOR Reduction (vph)	0	83	0	0	0	133	0	147	0	0	5	0
Lane Group Flow (vph)	96	819	0	195	347	55	140	624	0	185	601	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	34.4	27.2		39.6	29.8	29.8	45.0	36.0		46.0	36.5	
Effective Green, g (s)	34.4	27.2		39.6	29.8	29.8	45.0	36.0		46.0	36.5	
Actuated g/C Ratio	0.34	0.27		0.39	0.29	0.29	0.44	0.36		0.45	0.36	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	321	904		246	552	469	386	1180		324	1272	
v/s Ratio Prot	0.02	c0.24		c0.08	0.18		0.03	0.19		c0.05	0.17	
v/s Ratio Perm	0.08			0.23		0.03	0.13			c0.21		
v/c Ratio	0.30	0.91		0.79	0.63	0.12	0.36	0.53		0.57	0.47	
Uniform Delay, d1	23.8	35.9		24.3	31.0	26.2	17.3	26.0		18.0	25.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	12.4		15.9	2.2	0.1	0.6	1.7		2.4	1.3	
Delay (s)	24.3	48.3		40.2	33.3	26.3	17.9	27.7		20.4	26.3	
Level of Service	С	D		D	С	С	В	С		С	С	
Approach Delay (s)		46.0			33.3			26.2			24.9	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			33.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.71									
Actuated Cycle Length (s)			101.4	S	um of los	t time (s)			18.9			
Intersection Capacity Utiliza	ation		82.1%	IC	U Level	of Service	e		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	←	•	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	ą.	ሻ	†	7	ሻ	↑ ↑	ኻ	↑ ↑	
Traffic Volume (vph)	256	305	75	355	64	212	861	105	737	
Future Volume (vph)	256	305	75	355	64	212	861	105	737	
Lane Group Flow (vph)	278	480	82	386	70	230	1070	114	1038	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4		8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0	
Total Split (s)	37.0	37.0	37.0	37.0	37.0	50.0	50.0	13.0	63.0	
Total Split (%)	37.0%	37.0%	37.0%	37.0%	37.0%	50.0%	50.0%	13.0%	63.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag						Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	1.55	0.87	0.78	0.69	0.13	1.02	0.67	0.39	0.53	
Control Delay	302.9	49.3	79.1	38.2	6.1	94.9	24.1	16.2	21.5	
Queue Delay	0.0	0.0	0.0	3.4	0.0	0.0	0.0	0.0	0.0	
Total Delay	302.9	49.3	79.1	41.6	6.1	94.9	24.1	16.2	21.5	
Queue Length 50th (m)	~76.4	83.9	14.4	65.7	0.0	~44.7	82.0	13.2	99.6	
Queue Length 95th (m)	#125.5	#138.8	#41.0	97.7	8.7	#94.8	108.7	m23.0	118.2	
Internal Link Dist (m)		213.7		94.8			227.1		103.4	
Turn Bay Length (m)	75.0		25.0		25.0	25.0		40.0		
Base Capacity (vph)	179	553	105	563	532	226	1589	320	1959	
Starvation Cap Reductn	0	0	0	100	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.55	0.87	0.78	0.83	0.13	1.02	0.67	0.36	0.53	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

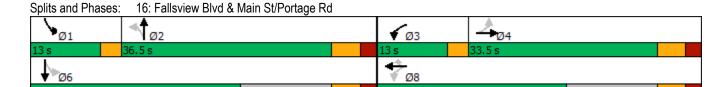
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 15: Stanley Ave & Dunn St

To: Gtariley 7 tv G & 1	Danin O											
	۶	→	•	•	←	•	1	†	/	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĵ.		*	†	7	ሻ	∱ }		ሻ	∱ }	
Traffic Volume (vph)	256	305	136	75	355	64	212	861	123	105	737	218
Future Volume (vph)	256	305	136	75	355	64	212	861	123	105	737	218
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1792		1785	1879	1597	1785	3503		1785	3448	
Flt Permitted	0.32	1.00		0.19	1.00	1.00	0.27	1.00		0.15	1.00	
Satd. Flow (perm)	598	1792		354	1879	1597	504	3503		283	3448	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	278	332	148	82	386	70	230	936	134	114	801	237
RTOR Reduction (vph)	0	16	0	0	0	49	0	11	0	0	28	0
Lane Group Flow (vph)	278	464	0	82	386	21	230	1059	0	114	1010	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	30.0	30.0		30.0	30.0	30.0	45.1	45.1		56.0	56.0	
Effective Green, g (s)	30.0	30.0		30.0	30.0	30.0	45.1	45.1		56.0	56.0	
Actuated g/C Ratio	0.30	0.30		0.30	0.30	0.30	0.45	0.45		0.56	0.56	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.5	2.5		2.5	2.5	2.5	2.5	2.5		2.7	2.5	
Lane Grp Cap (vph)	179	537		106	563	479	227	1579		277	1930	
v/s Ratio Prot		0.26			0.21			0.30		0.03	c0.29	
v/s Ratio Perm	c0.47			0.23		0.01	c0.46			0.20		
v/c Ratio	1.55	0.86		0.77	0.69	0.04	1.01	0.67		0.41	0.52	
Uniform Delay, d1	35.0	33.1		31.9	30.8	24.8	27.4	21.6		13.2	13.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.48	1.59	
Incremental Delay, d2	274.5	13.4		27.9	3.2	0.0	63.2	2.3		0.7	0.9	
Delay (s)	309.5	46.5		59.8	34.0	24.9	90.6	23.9		20.2	22.6	
Level of Service	F	D		Е	С	С	F	С		С	С	
Approach Delay (s)		142.9			36.7			35.7			22.3	
Approach LOS		F			D			D			С	
Intersection Summary												
HCM 2000 Control Delay			53.4	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		1.16									
Actuated Cycle Length (s)			100.0		um of lost				17.0			
Intersection Capacity Utiliza	ition		95.3%	IC	U Level	of Service	:		F			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	•	4	†	/	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	Ĭ	ĵ»	¥	†	7	J.	f)	¥	f)	
Traffic Volume (vph)	167	163	170	250	373	34	326	77	308	
Future Volume (vph)	167	163	170	250	373	34	326	77	308	
Lane Group Flow (vph)	182	257	185	272	405	37	455	84	372	
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	
Total Split (s)	33.5	33.5	13.0	33.5	33.5	36.5	36.5	13.0	36.5	
Total Split (%)	34.9%	34.9%	13.5%	34.9%	34.9%	38.0%	38.0%	13.5%	38.0%	
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	
Lead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Max	Max	None	Max	
v/c Ratio	0.63	0.53	0.40	0.36	0.46	0.11	0.72	0.23	0.45	
Control Delay	40.4	30.2	18.5	20.3	3.8	24.6	34.8	15.2	19.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	51.9	0.0	0.0	
Total Delay	40.4	30.2	18.5	20.3	3.8	24.6	86.7	15.2	19.5	
Queue Length 50th (m)	28.4	35.2	19.8	32.8	0.0	4.8	72.6	8.1	45.1	
Queue Length 95th (m)	51.2	58.9	34.0	52.6	16.5	12.2	#119.9	15.9	68.5	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	344	572	468	863	952	349	636	384	918	
Starvation Cap Reductn	0	0	0	0	0	0	220	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.53	0.45	0.40	0.32	0.43	0.11	1.09	0.22	0.41	

Cycle Length: 96


Actuated Cycle Length: 89.1

Natural Cycle: 90

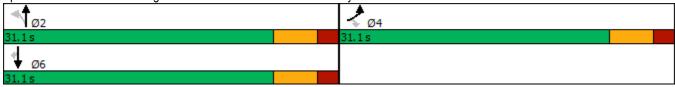
Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

02-09-2023 Synchro Report TTW_Hennepin_2023-01-09-v0.1.syn Page 9

	۶	→	•	•	←	4	•	†	~	/	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		7	†	7	7	ĵ.		7	f)	
Traffic Volume (vph)	167	163	74	170	250	373	34	326	93	77	308	34
Future Volume (vph)	167	163	74	170	250	373	34	326	93	77	308	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1791		1785	1879	1597	1785	1816		1785	1851	
Flt Permitted	0.59	1.00		0.43	1.00	1.00	0.54	1.00		0.26	1.00	
Satd. Flow (perm)	1112	1791		802	1879	1597	1015	1816		482	1851	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	182	177	80	185	272	405	37	354	101	84	335	37
RTOR Reduction (vph)	0	18	0	0	0	242	0	11	0	0	4	0
Lane Group Flow (vph)	182	239	0	185	272	163	37	444	0	84	368	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4	•		8	-	8	2	_		6	-	
Actuated Green, G (s)	23.2	23.2		36.0	36.0	36.0	30.7	30.7		40.6	40.6	
Effective Green, g (s)	23.2	23.2		36.0	36.0	36.0	30.7	30.7		40.6	40.6	
Actuated g/C Ratio	0.26	0.26		0.40	0.40	0.40	0.34	0.34		0.45	0.45	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)	287	463		429	754	641	347	622		318	838	
v/s Ratio Prot		0.13		c0.05	0.14			c0.24		0.02	c0.20	
v/s Ratio Perm	c0.16			0.13		0.10	0.04			0.10		
v/c Ratio	0.63	0.52		0.43	0.36	0.25	0.11	0.71		0.26	0.44	
Uniform Delay, d1	29.4	28.4		18.3	18.7	17.9	20.1	25.6		15.7	16.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.1	1.3		1.0	0.4	0.3	0.6	6.9		0.6	1.7	
Delay (s)	34.5	29.7		19.2	19.2	18.1	20.7	32.5		16.3	18.4	
Level of Service	С	С		В	В	В	С	С		В	В	
Approach Delay (s)		31.7			18.7			31.6			18.0	
Approach LOS		С			В			С			В	
Intersection Summary												
HCM 2000 Control Delay			23.9	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.63									
Actuated Cycle Length (s)			89.6		um of lost				19.0			
Intersection Capacity Utilizat	ion		79.0%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												


	ၨ	*	4	†	Ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	†	†	7
Traffic Volume (vph)	89	201	209	17	106	733
Future Volume (vph)	89	201	209	17	106	733
Lane Group Flow (vph)	97	218	227	18	115	797
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4			2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	31.1	31.1	31.1	31.1
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.15	0.30	0.41	0.02	0.14	0.70
Control Delay	12.6	3.4	16.1	11.4	12.5	5.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.6	3.4	16.1	11.4	12.5	5.1
Queue Length 50th (m)	6.8	0.0	18.1	1.2	8.1	0.0
Queue Length 95th (m)	14.7	10.5	34.8	4.4	16.8	18.5
Internal Link Dist (m)	9.1		00	121.3	66.9	
Turn Bay Length (m)	0.1			121.0	00.0	
Base Capacity (vph)	756	802	552	809	809	1141
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.27	0.41	0.02	0.14	0.70
	0.10	0.21	۱ ۲.۰	0.02	0.14	0.70
Intersection Summary						

Cycle Length: 62.2 Actuated Cycle Length: 59.5

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

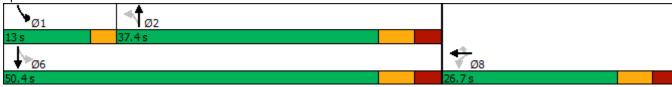
Splits and Phases: 17: Portage Rd & Fallsview Casino Rear Driveway

	۶	•	•	†	+	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	¥	7	¥	†	†	7			
Traffic Volume (vph)	89	201	209	17	106	733			
Future Volume (vph)	89	201	209	17	106	733			
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1			
_ane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)	1785	1597	1785	1879	1879	1597			
Flt Permitted	0.95	1.00	0.68	1.00	1.00	1.00			
Satd. Flow (perm)	1785	1597	1283	1879	1879	1597			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	97	218	227	18	115	797			
RTOR Reduction (vph)	0	139	0	0	0	454			
_ane Group Flow (vph)	97	79	227	18	115	343			
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%			
Turn Type	Prot	Perm	Perm	NA	NA	Perm			
Protected Phases	4			2	6				
Permitted Phases		4	2			6			
ctuated Green, G (s)	21.6	21.6	25.6	25.6	25.6	25.6			
Effective Green, g (s)	21.6	21.6	25.6	25.6	25.6	25.6			
Actuated g/C Ratio	0.36	0.36	0.43	0.43	0.43	0.43			
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1			
/ehicle Extension (s)	4.0	4.0	0.2	0.2	0.2	0.2			
ane Grp Cap (vph)	649	580	552	809	809	688			
/s Ratio Prot	c0.05			0.01	0.06				
/s Ratio Perm		0.05	0.18			c0.22			
ı/c Ratio	0.15	0.14	0.41	0.02	0.14	0.50			
Jniform Delay, d1	12.7	12.7	11.7	9.7	10.2	12.3			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
ncremental Delay, d2	0.1	0.1	2.3	0.1	0.4	2.6			
Delay (s)	12.9	12.8	13.9	9.8	10.6	14.8			
evel of Service	В	В	В	Α	В	В			
Approach Delay (s)	12.8			13.6	14.3				
Approach LOS	В			В	В				
Intersection Summary									
HCM 2000 Control Delay			13.9	H	CM 2000	Level of Service	e	В	
HCM 2000 Volume to Capac	city ratio		0.34						
Actuated Cycle Length (s)			59.4	Sı	um of lost	time (s)		12.2	
Intersection Capacity Utilizat	tion		67.1%			of Service		С	
Analysis Period (min)			15						
Critical Lane Group									

	•	•	•	†		4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^	↑ 1>	
Traffic Volume (veh/h)	0	164	0	1286	1255	40
Future Volume (Veh/h)	0	164	0	1286	1255	40
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	178	0	1398	1364	43
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				55	191	
pX, platoon unblocked	0.83	0.82	0.82			
vC, conflicting volume	2084	704	1407			
vC1, stage 1 conf vol	2001	701				
vC2, stage 2 conf vol						
vCu, unblocked vol	900	189	1050			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)	0.0	0.0				
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	74	100			
cM capacity (veh/h)	234	676	548			
				00.4	00.0	
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	178	699	699	909	498	
Volume Left	0	0	0	0	0	
Volume Right	178	0	0	0	43	
cSH	676	1700	1700	1700	1700	
Volume to Capacity	0.26	0.41	0.41	0.53	0.29	
Queue Length 95th (m)	8.0	0.0	0.0	0.0	0.0	
Control Delay (s)	12.2	0.0	0.0	0.0	0.0	
Lane LOS	В					
Approach Delay (s)	12.2	0.0		0.0		
Approach LOS	В					
Intersection Summary						
Average Delay			0.7			
Intersection Capacity Utiliza	ition		56.7%	IC	CU Level o	of Service
Analysis Period (min)			15			

	۶	→	•	•	←	•	•	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ተ ኈ		ሻ	ተ ኈ	
Traffic Volume (veh/h)	22	5	6	0	0	0	78	515	162	175	440	95
Future Volume (Veh/h)	22	5	6	0	0	0	78	515	162	175	440	95
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	24	5	7	0	0	0	85	560	176	190	478	103
Pedestrians		559			275			30			30	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		49			24			3			3	
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)								139			114	
pX, platoon unblocked												
vC, conflicting volume	1948	2650	880	1752	2613	673	1140			1011		
vC1, stage 1 conf vol	1468	1468		1093	1093							
vC2, stage 2 conf vol	480	1181		658	1520							
vCu, unblocked vol	1948	2650	880	1752	2613	673	1140			1011		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	6.5	5.5	<u> </u>	6.5	5.5	0.0						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	43	0	95	100	100	100	73			64		
cM capacity (veh/h)	42	4	145	89	4	297	314			525		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	36	0	85	373	363	190	319	262				
Volume Left	24	0	85	0	0	190	0	0				
	7	0	00	0	176	0	0	103				
Volume Right												
cSH	20	1700	314	1700	1700	525	1700	1700				
Volume to Capacity	1.82	0.00	0.27	0.22	0.21	0.36	0.19	0.15				
Queue Length 95th (m)	36.7	0.0	8.2	0.0	0.0	12.4	0.0	0.0				
Control Delay (s)	801.1	0.0	20.7	0.0	0.0	15.7	0.0	0.0				
Lane LOS	F	A	С			С						
Approach Delay (s)	801.1	0.0	2.1			3.9						
Approach LOS	F	Α										
Intersection Summary												
Average Delay			20.6									
Intersection Capacity Utiliza	ation		42.4%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	←	•	4	†	>	ţ
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	र्स	7	7	↑ ↑	7	↑ ↑
Traffic Volume (vph)	1	112	16	468	193	660
Future Volume (vph)	1	112	16	468	193	660
Lane Group Flow (vph)	42	122	17	601	210	834
Turn Type	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases	8			2	1	6
Permitted Phases		8	2		6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?						
Recall Mode	None	None	None	None	None	None
v/c Ratio	0.13	0.32	0.07	0.46	0.34	0.39
Control Delay	22.1	7.9	13.2	14.2	5.4	6.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.1	7.9	13.2	14.2	5.4	6.5
Queue Length 50th (m)	3.7	0.0	1.1	23.4	7.0	21.2
Queue Length 95th (m)	11.5	11.8	4.6	37.1	13.8	32.4
Internal Link Dist (m)	32.2	11.0	1.0	90.4	10.0	112.9
Turn Bay Length (m)	02.2		20.0	00.1	25.0	112.0
Base Capacity (vph)	632	639	359	1987	648	2566
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.19	0.05	0.30	0.32	0.33
Troductor v/o rratio	0.01	0.10	0.00	0.00	0.02	0.00


Cycle Length: 77.1

Actuated Cycle Length: 53.9

Natural Cycle: 75

Control Type: Actuated-Uncoordinated

Splits and Phases: 73: Fallsview Blvd & Hilton Lot/Fallsview Lot

	۶	→	•	•	←	4	•	†	~	\	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	*	∱ }		7	∱ ∱	
Traffic Volume (vph)	0	0	0	38	1	112	16	468	85	193	660	108
Future Volume (vph)	0	0	0	38	1	112	16	468	85	193	660	108
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Lane Util. Factor					1.00	1.00	1.00	0.95		1.00	0.95	
Frt					1.00	0.85	1.00	0.98		1.00	0.98	
Flt Protected					0.95	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)					1650	1471	1644	3213		1644	3219	
Flt Permitted					0.95	1.00	0.34	1.00		0.37	1.00	
Satd. Flow (perm)					1650	1471	585	3213		645	3219	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	41	1	122	17	509	92	210	717	117
RTOR Reduction (vph)	0	0	0	0	0	105	0	19	0	0	15	0
Lane Group Flow (vph)	0	0	0	0	42	17	17	582	0	210	819	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type				Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases					8			2		1	6	
Permitted Phases				8		8	2			6		
Actuated Green, G (s)					7.6	7.6	21.6	21.6		33.6	33.6	
Effective Green, g (s)					7.6	7.6	21.6	21.6		33.6	33.6	
Actuated g/C Ratio					0.14	0.14	0.39	0.39		0.61	0.61	
Clearance Time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Vehicle Extension (s)					4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)					226	202	228	1254		554	1955	
v/s Ratio Prot								0.18		0.06	c0.25	
v/s Ratio Perm					0.03	0.01	0.03			0.17		
v/c Ratio					0.19	0.08	0.07	0.46		0.38	0.42	
Uniform Delay, d1					21.1	20.8	10.6	12.5		5.0	5.7	
Progression Factor					1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2					0.5	0.2	0.2	0.4		0.6	0.2	
Delay (s)					21.7	21.1	10.8	12.9		5.6	5.9	
Level of Service					С	С	В	В		Α	Α	
Approach Delay (s)		0.0			21.2			12.9			5.8	
Approach LOS		Α			С			В			А	
Intersection Summary												
HCM 2000 Control Delay			9.6	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	ratio		0.41									
Actuated Cycle Length (s)			55.3		um of los				17.1			
Intersection Capacity Utilization	1		66.5%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	•	4	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations		4		र्स	7	ሻ	∱ β	7	∱ î≽	
Traffic Volume (vph)	34	14	87	59	318	54	934	304	1077	
Future Volume (vph)	34	14	87	59	318	54	934	304	1077	
ane Group Flow (vph)	0	68	0	159	346	59	1086	330	1224	
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4		8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0	
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0	
Total Split (s)	35.0	35.0	35.0	35.0	35.0	18.0	47.0	18.0	47.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	35.0%	18.0%	47.0%	18.0%	47.0%	
ellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0	
ost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0	
_ead/Lag						Lead	Lag	Lead	Lag	
_ead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max	
ı/c Ratio		0.33		0.70	0.67	0.19	0.72	0.71	0.61	
Control Delay		31.6		54.9	12.1	6.6	25.7	30.0	10.3	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		31.6		54.9	12.1	6.6	25.7	30.0	10.3	
Queue Length 50th (m)		9.1		29.5	3.8	3.4	97.4	35.3	50.5	
Queue Length 95th (m)		19.5		46.2	27.4	m3.0		m#71.3	72.0	
Internal Link Dist (m)		100.0		3.9			71.5		31.5	
Turn Bay Length (m)						65.0		140.0		
Base Capacity (vph)		338		376	644	445	1514	466	2016	
Starvation Cap Reductn		0		0	0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	0	
Reduced v/c Ratio		0.20		0.42	0.54	0.13	0.72	0.71	0.61	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 76: Stanley Ave & Dixon St

Synchro Report

02-09-2023

TTW_Hennepin_2023-01-09-v0.1.syn

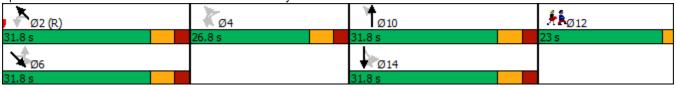
70: Starliey 7 tv & a L	2.7.0 0	•										
	•	→	•	•	←	•	4	†	~	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7	, j	∱ }		*	∱ }	
Traffic Volume (vph)	34	14	15	87	59	318	54	934	65	304	1077	49
Future Volume (vph)	34	14	15	87	59	318	54	934	65	304	1077	49
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.97			1.00	0.85	1.00	0.99		1.00	0.99	
Flt Protected		0.97			0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1631			1680	1471	1644	3256		1644	3267	
Flt Permitted		0.70			0.78	1.00	0.23	1.00		0.15	1.00	
Satd. Flow (perm)		1171			1346	1471	395	3256		262	3267	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	37	15	16	95	64	346	59	1015	71	330	1171	53
RTOR Reduction (vph)	0	12	0	0	0	269	0	5	0	0	2	0
Lane Group Flow (vph)	0	56	0	0	159	77	59	1081	0	330	1222	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		16.8			16.8	16.8	51.6	46.4		69.2	61.0	
Effective Green, g (s)		16.8			16.8	16.8	51.6	46.4		69.2	61.0	
Actuated g/C Ratio		0.17			0.17	0.17	0.52	0.46		0.69	0.61	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		196			226	247	268	1510		454	1992	
v/s Ratio Prot							0.01	0.33		c0.14	0.37	
v/s Ratio Perm		0.05			c0.12	0.05	0.10			c0.36		
v/c Ratio		0.28			0.70	0.31	0.22	0.72		0.73	0.61	
Uniform Delay, d1		36.3			39.3	36.5	12.1	21.5		16.6	12.2	
Progression Factor		1.00			1.00	1.00	0.86	1.04		1.66	0.66	
Incremental Delay, d2		0.5			8.5	0.4	0.1	1.6		4.7	1.3	
Delay (s)		36.8			47.7	37.0	10.6	23.9		32.2	9.3	
Level of Service		D			D	D	В	С		С	Α	
Approach Delay (s)		36.8			40.3			23.2			14.2	
Approach LOS		D			D			С			В	
Intersection Summary												
HCM 2000 Control Delay			21.9	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.74									
Actuated Cycle Length (s)			100.0		um of los				17.0			
Intersection Capacity Utiliza	tion		75.8%	IC	CU Level	of Service	е		D			
Analysis Period (min)			15									
c Critical Lane Group												

	~	•	*_	ሻ	†	>	Ļ	ļ	•	\	\mathbf{x}	*
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWT
Lane Configurations		ă	Ž.		4			4		ă	f)	4
Traffic Volume (vph)	16	5	274	103	32	7	16	17	1	203	206	15
Future Volume (vph)	16	5	274	103	32	7	16	17	1	203	206	15
Lane Group Flow (vph)	0	22	357	0	163	0	0	44	0	222	256	44
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	NA
Protected Phases					10			14			6	2
Permitted Phases	4	4	4	10		14	14		6	6		
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	26.8	26.8	26.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8
Total Split (%)	23.6%	23.6%	23.6%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	6.8
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.12	1.41		0.58			0.15		0.82	0.70	0.13
Control Delay		41.3	240.4		48.7			36.5		66.2	52.2	36.8
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Delay		41.3	240.4		48.7			36.5		66.2	52.2	36.8
Queue Length 50th (m)		4.1	~106.2		32.5			7.7		47.1	52.6	7.9
Queue Length 95th (m)		11.6	#162.6		54.8			17.6		#86.8	81.1	17.6
Internal Link Dist (m)		102.7			229.8			295.5			298.1	208.5
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		185	254		283			303		272	366	341
Starvation Cap Reductn		0	0		0			0		0	0	0
Spillback Cap Reductn		0	0		0			0		0	0	0
Storage Cap Reductn		0	0		0			0		0	0	0
Reduced v/c Ratio		0.12	1.41		0.58			0.15		0.82	0.70	0.13

Cycle Length: 113.4 Actuated Cycle Length: 113.4

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 100 Control Type: Pretimed


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 78: Allandale Ave & Main St & Murray St

 Synchro Report
 02-09-2023

 TTW_Hennepin_2023-01-09-v0.1.syn
 Page 20

Lane Group	Ø12	
LaneConfigurations		
Traffic Volume (vph)		
Future Volume (vph)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	12	
Permitted Phases		
Minimum Split (s)	23.0	
Total Split (s)	23.0	
Total Split (%)	20%	
Yellow Time (s)	2.0	
All-Red Time (s)	0.0	
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
microsoft outlinary		

	4	•	*_	•	ሻ	†	~	r*	>	Ļ	ţ	» J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		Ä	Ž.			4					4	
Traffic Volume (vph)	16	5	274	54	103	32	10	5	7	16	17	1
Future Volume (vph)	16	5	274	54	103	32	10	5	7	16	17	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.99					1.00	
Flt Protected		0.95	1.00			0.97					0.97	
Satd. Flow (prot)		1612	1442			1619					1645	
Flt Permitted		0.62	1.00			0.77					0.81	
Satd. Flow (perm)		1051	1442			1284					1372	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	5	298	59	112	35	11	5	8	17	18	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	22	357	0	0	163	0	0	0	0	43	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		20.0	20.0			25.0					25.0	
Effective Green, g (s)		20.0	20.0			25.0					25.0	
Actuated g/C Ratio		0.18	0.18			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		185	254			283					302	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.25			c0.13					0.03	
v/c Ratio		0.12	1.41			0.58					0.14	
Uniform Delay, d1		39.3	46.7			39.5					35.6	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.3	204.4			8.3					1.0	
Delay (s)		40.6	251.1			47.7					36.6	
Level of Service		D	F			D					D	
Approach Delay (s)		238.9				47.7					36.6	
Approach LOS		F				D					D	
Intersection Summary												
HCM 2000 Control Delay			116.5	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	ity ratio		0.69									
Actuated Cycle Length (s)			113.4		um of lost				22.4			
Intersection Capacity Utilizat	ion		69.9%	IC	CU Level of	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\	\mathbf{x}	>	×	*	4
Movement	SEL2	SEL	SET	SER	NWT	NWR	NWR2
Lane Configurations		ă	î,		4		
Traffic Volume (vph)	1	203	206	29	15	11	15
Future Volume (vph)	1	203	206	29	15	11	15
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8		6.8		
Lane Util. Factor		1.00	1.00		1.00		
Frt		1.00	0.98		0.91		
Flt Protected		0.95	1.00		1.00		
Satd. Flow (prot)		1612	1665		1551		
Flt Permitted		0.73	1.00		1.00		
Satd. Flow (perm)		1236	1665		1551		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	221	224	32	16	12	16
RTOR Reduction (vph)	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	222	256	0	44	0	0
Turn Type	Perm	Perm	NA		NA		
Protected Phases			6		2		
Permitted Phases	6	6					
Actuated Green, G (s)		25.0	25.0		25.0		
Effective Green, g (s)		25.0	25.0		25.0		
Actuated g/C Ratio		0.22	0.22		0.22		
Clearance Time (s)		6.8	6.8		6.8		
Lane Grp Cap (vph)		272	367		341		
v/s Ratio Prot			0.15		0.03		
v/s Ratio Perm		c0.18					
v/c Ratio		0.82	0.70		0.13		
Uniform Delay, d1		42.0	40.7		35.5		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		23.0	10.5		8.0		
Delay (s)		65.0	51.2		36.2		
Level of Service		Е	D		D		
Approach Delay (s)			57.6		36.2		
Approach LOS			Е		D		
Intersection Summary							

	۶	→	•	•	←	4	1	†	<i>></i>	/		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	1	14	0	0	16	146	0	0	0	49	0	1
Future Volume (Veh/h)	1	14	0	0	16	146	0	0	0	49	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	15	0	0	17	159	0	0	0	53	0	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					124							
pX, platoon unblocked												
vC, conflicting volume	176			15			114	193	15	114	114	96
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	176			15			114	193	15	114	114	96
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	100	94	100	100
cM capacity (veh/h)	1412			1616			866	705	1070	868	780	965
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	16	176	0	54								
Volume Left	1	0	0	53								
Volume Right	0	159	0	1								
cSH	1412	1616	1700	870								
Volume to Capacity	0.00	0.00	0.39	0.06								
Queue Length 95th (m)	0.0	0.0	0.0	1.5								
Control Delay (s)	0.5	0.0	0.0	9.4								
Lane LOS	Α		Α	Α								
Approach Delay (s)	0.5	0.0	0.0	9.4								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utilizat	ion		20.7%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	۶	•	4	†	ļ	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻ	7	ሻ	^	∱ }				
Traffic Volume (veh/h)	Ö	0	0	1052	1287	0			
Future Volume (Veh/h)	0	0	0	1052	1287	0			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	0	0	1143	1399	0			
Pedestrians									
ane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type				None	None				
Median storage veh)				110110	110110				
Jpstream signal (m)				127	95				
oX, platoon unblocked	0.88	0.77	0.77	121	30				
C, conflicting volume	1970	700	1399						
C1, stage 1 conf vol	1370	700	1000						
/C2, stage 2 conf vol									
Cu, unblocked vol	715	13	921						
C, single (s)	6.8	6.9	4.1						
C, 2 stage (s)	0.0	0.3	7.1						
F (s)	3.5	3.3	2.2						
o0 queue free %	100	100	100						
cM capacity (veh/h)	325	825	577						
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2		
/olume Total	0	0	0	572	572	933	466		
/olume Left	0	0	0	0	0	0	0		
/olume Right	0	0	0	0	0	0	0		
SH	1700	1700	1700	1700	1700	1700	1700		
/olume to Capacity	0.00	0.00	0.00	0.34	0.34	0.55	0.27		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
ane LOS	Α	Α							
Approach Delay (s)	0.0		0.0			0.0			
Approach LOS	Α								
ntersection Summary									
Average Delay			0.0						
ntersection Capacity Utiliza	ition		42.0%	IC	U Level	of Service		Α	
Analysis Period (min)			15						

	•	→	•	•	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4₽	∱ }		Ţ	7
Sign Control		Stop	Stop		Stop	
Traffic Volume (vph)	0	332	941	0	0	0
Future Volume (vph)	0	332	941	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	361	1023	0	0	0
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2
Volume Total (vph)	120	241	682	341	0	0
Volume Left (vph)	0	0	0	0	0	0
Volume Right (vph)	0	0	0	0	0	0
Hadj (s)	0.00	0.00	0.00	0.00	0.00	0.00
Departure Headway (s)	5.5	5.5	4.8	4.8	7.1	7.1
Degree Utilization, x	0.18	0.37	0.91	0.46	0.00	0.00
Capacity (veh/h)	643	641	682	734	487	487
Control Delay (s)	8.5	10.4	35.5	10.6	8.9	8.9
Approach Delay (s)	9.7		27.2		0.0	
Approach LOS	Α		D		Α	
Intersection Summary						
Delay			22.6			
Level of Service			С			
Intersection Capacity Utiliz	zation		31.6%	IC	U Level o	of Service
Analysis Period (min)			15			

	•	•	←	4	†	ļ
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	ሻ	7	4	ሻ	†	†
Traffic Volume (vph)	263	149	26	143	160	144
Future Volume (vph)	263	149	26	143	160	144
Lane Group Flow (vph)	286	162	44	155	174	549
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	5.5	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.82	0.31	0.09	0.41	0.19	0.72
Control Delay	43.2	5.2	13.0	10.4	9.2	17.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	2.1
Total Delay	43.2	5.2	13.0	10.4	9.2	19.9
Queue Length 50th (m)	31.6	0.0	2.4	8.7	11.1	37.0
Queue Length 95th (m)	#67.6	11.6	8.9	16.2	20.2	#86.9
Internal Link Dist (m)	1101.0	11.0	8.0	10.2	230.0	55.6
Turn Bay Length (m)	50.0		0.0		200.0	00.0
Base Capacity (vph)	377	554	504	376	939	771
Starvation Cap Reductn	0	0	0	0	0	110
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.76	0.29	0.09	0.41	0.19	0.83
Noduccu Wo Natio	0.10	0.20	0.00	0.71	0.10	0.00

Cycle Length: 67.3

Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Fallsview Blvd & Embassy Suites

	۶	→	*	•	←	4	1	†	~	/	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť		7		44		7	†		ň	^	
Traffic Volume (vph)	263	0	149	0	26	15	143	160	0	0	144	361
Future Volume (vph)	263	0	149	0	26	15	143	160	0	0	144	361
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.89	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1545	
Flt Permitted	0.73		1.00		1.00		0.24	1.00			1.00	
Satd. Flow (perm)	1260		1471		1646		418	1731			1545	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	286	0	162	0	28	16	155	174	0	0	157	392
RTOR Reduction (vph)	0	0	117	0	12	0	0	0	0	0	126	0
Lane Group Flow (vph)	286	0	45	0	32	0	155	174	0	0	423	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases					8		5	2			6	
Permitted Phases	4		4	8			2			6		
Actuated Green, G (s)	18.7		18.7		18.7		36.3	36.3			27.4	
Effective Green, g (s)	18.7		18.7		18.7		36.3	36.3			27.4	
Actuated g/C Ratio	0.28		0.28		0.28		0.54	0.54			0.41	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	350		408		457		332	933			629	
v/s Ratio Prot					0.02		c0.04	0.10			c0.27	
v/s Ratio Perm	c0.23		0.03				0.21					
v/c Ratio	0.82		0.11		0.07		0.47	0.19			0.67	
Uniform Delay, d1	22.7		18.1		17.9		9.8	7.9			16.3	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	14.4		0.2		0.1		1.4	0.4			5.7	
Delay (s)	37.1		18.3		18.0		11.2	8.4			22.0	
Level of Service	D	00.0	В		В		В	A			С	
Approach Delay (s)		30.3			18.0			9.7			22.0	
Approach LOS		С			В			Α			С	
Intersection Summary												
HCM 2000 Control Delay			21.6	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.70									
Actuated Cycle Length (s)			67.3		um of lost				15.3			
Intersection Capacity Utiliza	ation		75.2%	IC	U Level	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	ᄼ	→	•	←	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	ĵ.	7	f)	7	∱ }	7	∱ }	
Traffic Volume (vph)	67	209	149	130	182	912	407	1029	
Future Volume (vph)	67	209	149	130	182	912	407	1029	
Lane Group Flow (vph)	73	342	162	381	198	1206	442	1261	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	24.0	24.0	10.0	28.0	
Total Split (s)	35.0	35.0	35.0	35.0	47.0	47.0	18.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	47.0%	47.0%	18.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	0.54	0.73	0.99	0.78	1.28	0.91	1.38	0.66	
Control Delay	47.1	41.0	105.1	38.1	178.5	23.9	213.8	15.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	47.1	41.0	105.1	38.1	178.5	23.9	213.8	15.9	
Queue Length 50th (m)	11.9	55.5	30.8	53.1	~50.1	28.9	~99.7	80.8	
Queue Length 95th (m)	#27.7	87.2	#70.6	#95.5	m#81.6	#151.7	#158.9	103.3	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	140	478	169	500	155	1322	321	1908	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.52	0.72	0.96	0.76	1.28	0.91	1.38	0.66	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

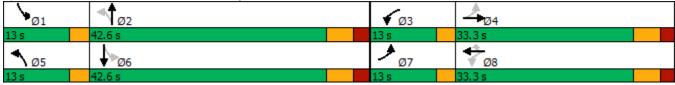
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 12: Stanley Ave & Murray St

	۶	→	*	•	←	•	1	†	<i>></i>	\	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽		ሻ	₽		7	ተ ኈ		ሻ	∱ ∱	
Traffic Volume (vph)	67	209	106	149	130	221	182	912	198	407	1029	132
Future Volume (vph)	67	209	106	149	130	221	182	912	198	407	1029	132
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	0.91		1.00	0.97		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1643		1644	1567		1644	3200		1644	3232	
Flt Permitted	0.29	1.00		0.35	1.00		0.22	1.00		0.09	1.00	
Satd. Flow (perm)	499	1643		605	1567		382	3200		158	3232	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	73	227	115	162	141	240	198	991	215	442	1118	143
RTOR Reduction (vph)	0	18	0	0	62	0	0	18	0	0	10	0
Lane Group Flow (vph)	73	324	0	162	319	0	198	1188	0	442	1251	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases	. 0	4		. 0	8		. 0	2		1	6	
Permitted Phases	4	•		8			2	_		6		
Actuated Green, G (s)	27.2	27.2		27.2	27.2		40.8	40.8		58.8	58.8	
Effective Green, g (s)	27.2	27.2		27.2	27.2		40.8	40.8		58.8	58.8	
Actuated g/C Ratio	0.27	0.27		0.27	0.27		0.41	0.41		0.59	0.59	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	135	446		164	426		155	1305		315	1900	
v/s Ratio Prot	100	0.20		10-1	0.20		100	0.37		c0.21	0.39	
v/s Ratio Perm	0.15	0.20		c0.27	0.20		0.52	0.01		c0.61	0.00	
v/c Ratio	0.54	0.73		0.99	0.75		1.28	0.91		1.40	0.66	
Uniform Delay, d1	31.1	33.0		36.2	33.3		29.6	27.9		30.1	13.8	
Progression Factor	1.00	1.00		1.00	1.00		0.53	0.51		1.00	1.00	
Incremental Delay, d2	4.4	5.8		66.0	7.1		156.3	8.5		199.5	1.8	
Delay (s)	35.4	38.8		102.3	40.4		172.0	22.7		229.6	15.7	
Level of Service	D	D		F	D		F	C		F	В	
Approach Delay (s)		38.2		•	58.8			43.8		'	71.2	
Approach LOS		D			E			D			E	
Intersection Summary												
HCM 2000 Control Delay			56.7	H	CM 2000	Level of	Service		Ε			
HCM 2000 Volume to Capac	ity ratio		1.31									
Actuated Cycle Length (s)			100.0	Sı	um of lost	time (s)			17.0			
Intersection Capacity Utilizati	on		108.4%			of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	•	•	4	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	↑ ↑	ሻ		7	ሻ	† }	ሻ	↑ ↑	
Traffic Volume (vph)	88	500	134	260	165	115	334	170	445	
Future Volume (vph)	88	500	134	260	165	115	334	170	445	
Lane Group Flow (vph)	96	773	146	283	179	125	666	185	543	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	5.5	20.0	7.0	20.0	20.0	5.5	20.0	7.0	20.0	
Minimum Split (s)	10.0	33.3	10.0	33.3	33.3	10.0	42.6	10.0	42.6	
Total Split (s)	13.0	33.3	13.0	33.3	33.3	13.0	42.6	13.0	42.6	
Total Split (%)	12.8%	32.7%	12.8%	32.7%	32.7%	12.8%	41.8%	12.8%	41.8%	
Yellow Time (s)	3.0	4.1	3.0	4.1	4.1	3.0	4.1	3.0	4.1	
All-Red Time (s)	0.0	2.2	0.0	2.2	2.2	0.0	2.5	0.0	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.3	3.0	6.3	6.3	3.0	6.6	3.0	6.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	Max	None	Max	
v/c Ratio	0.25	0.90	0.64	0.57	0.33	0.30	0.53	0.51	0.45	
Control Delay	19.9	47.6	32.7	36.9	6.3	14.9	18.0	18.7	25.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	19.9	47.6	32.7	36.9	6.3	14.9	18.0	18.7	25.3	
Queue Length 50th (m)	11.3	71.6	17.8	48.5	0.0	12.4	35.1	19.1	41.8	
Queue Length 95th (m)	21.5	#104.4	#33.1	76.2	15.6	22.1	52.2	31.7	57.5	
Internal Link Dist (m)		39.6		70.0			112.9		294.7	
Turn Bay Length (m)	30.0		35.0			10.0		65.0		
Base Capacity (vph)	406	896	237	497	550	434	1254	370	1199	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.24	0.86	0.62	0.57	0.33	0.29	0.53	0.50	0.45	


Cycle Length: 101.9 Actuated Cycle Length: 99.8 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

02-09-2023 Synchro Report TTW_Hennepin_2023-01-09-v0.1.syn Page 5

	•	→	•	•	+	•	1	†	~	\	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ î≽		ሻ	↑	7	7	∱ î≽		7	∱ β	
Traffic Volume (vph)	88	500	212	134	260	165	115	334	279	170	445	54
Future Volume (vph)	88	500	212	134	260	165	115	334	279	170	445	54
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.96		1.00	1.00	0.85	1.00	0.93		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	3141		1644	1731	1471	1644	3064		1644	3234	
Flt Permitted	0.48	1.00		0.14	1.00	1.00	0.39	1.00		0.29	1.00	
Satd. Flow (perm)	824	3141		245	1731	1471	676	3064		508	3234	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	96	543	230	146	283	179	125	363	303	185	484	59
RTOR Reduction (vph)	0	46	0	0	0	128	0	147	0	0	9	0
Lane Group Flow (vph)	96	727	0	146	283	51	125	519	0	185	534	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8	. 0	5	2		1	6	
Permitted Phases	4	•		8	Ū	8	2	_		6		
Actuated Green, G (s)	33.9	26.6		38.1	28.7	28.7	44.9	36.1		46.3	36.8	
Effective Green, g (s)	33.9	26.6		38.1	28.7	28.7	44.9	36.1		46.3	36.8	
Actuated g/C Ratio	0.34	0.26		0.38	0.29	0.29	0.45	0.36		0.46	0.37	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	337	831		223	494	420	386	1100		341	1184	
v/s Ratio Prot	0.02	c0.23		c0.06	0.16	720	0.03	0.17		c0.05	0.17	
v/s Ratio Perm	0.02	00.20		0.19	0.10	0.03	0.12	0.17		c0.20	0.17	
v/c Ratio	0.28	0.88		0.65	0.57	0.12	0.32	0.47		0.54	0.45	
Uniform Delay, d1	23.6	35.4		23.2	30.7	26.6	16.8	24.8		17.1	24.2	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	10.2		6.7	1.6	0.1	0.5	1.5		1.8	1.2	
Delay (s)	24.0	45.6		30.0	32.3	26.7	17.3	26.3		18.9	25.4	
Level of Service	C	70.0 D		C	C	C	В	C		В	C	
Approach Delay (s)		43.2		- U	30.1	- U		24.9			23.8	
Approach LOS		D			C			C			C	
Intersection Summary												
HCM 2000 Control Delay			31.0	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.67									
Actuated Cycle Length (s)	,		100.5	Sı	um of los	t time (s)			18.9			
Intersection Capacity Utiliza	ation		77.8%		U Level		Э		D			
Analysis Period (min)	-		15		, , , , ,							
c Critical Lane Group												

	ၨ	→	•	←	•	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	7	eî eî	7	†	7	7	∱ }	*	∱ ∱	
Traffic Volume (vph)	265	304	75	394	69	216	843	158	855	
Future Volume (vph)	265	304	75	394	69	216	843	158	855	
Lane Group Flow (vph)	288	491	82	428	75	235	1062	172	1197	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4		8			2	1	6	
Permitted Phases	4		8		8	2		6		
etector Phase	4	4	8	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0	
Total Split (s)	37.0	37.0	37.0	37.0	37.0	50.0	50.0	13.0	63.0	
otal Split (%)	37.0%	37.0%	37.0%	37.0%	37.0%	50.0%	50.0%	13.0%	63.0%	
ellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
II-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
_ead/Lag						Lag	Lag	Lead		
_ead-Lag Optimize?										
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	
/c Ratio	2.15	0.96	0.92	0.82	0.15	1.48	0.75	0.61	0.66	
Control Delay	563.7	65.3	114.5	47.5	6.9	273.0	27.2	23.3	24.5	
Queue Delay	0.0	0.0	0.0	7.6	0.0	0.0	0.0	0.0	0.0	
otal Delay	563.7	65.3	114.5	55.1	6.9	273.0	27.2	23.3	24.5	
Queue Length 50th (m)	~89.6	89.4	15.3	76.8	0.0	~63.5	87.7	20.6	116.5	
Queue Length 95th (m)	#139.0	#152.8	#44.3	#125.5	9.6	#108.9	113.0	38.6	140.6	
nternal Link Dist (m)		213.7		94.8			227.1		103.4	
urn Bay Length (m)	75.0		25.0		25.0	25.0		40.0		
Base Capacity (vph)	134	511	89	519	494	159	1420	291	1805	
Starvation Cap Reductn	0	0	0	62	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	2.15	0.96	0.92	0.94	0.15	1.48	0.75	0.59	0.66	

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 15: Stanley Ave & Dunn St

	۶	→	*	•	-	•	1	†	~	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		¥	†	7	¥	∱ }		,	♦ ₽	
Traffic Volume (vph)	265	304	148	75	394	69	216	843	134	158	855	247
Future Volume (vph)	265	304	148	75	394	69	216	843	134	158	855	247
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1645		1644	1731	1471	1644	3220		1644	3178	
Flt Permitted	0.26	1.00		0.17	1.00	1.00	0.21	1.00		0.15	1.00	
Satd. Flow (perm)	449	1645		300	1731	1471	366	3220		254	3178	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	288	330	161	82	428	75	235	916	146	172	929	268
RTOR Reduction (vph)	0	18	0	0	0	53	0	12	0	0	27	0
Lane Group Flow (vph)	288	474	0	82	428	23	235	1050	0	172	1170	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		_	8		_	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	30.0	30.0		30.0	30.0	30.0	43.8	43.8		56.0	56.0	
Effective Green, g (s)	30.0	30.0		30.0	30.0	30.0	43.8	43.8		56.0	56.0	
Actuated g/C Ratio	0.30	0.30		0.30	0.30	0.30	0.44	0.44		0.56	0.56	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	134	493		90	519	441	160	1410		270	1779	
v/s Ratio Prot	0.04	0.29		0.07	0.25	0.00	0.04	0.33		0.06	c0.37	
v/s Ratio Perm	c0.64	0.00		0.27	0.00	0.02	c0.64	0.74		0.30	0.00	
v/c Ratio	2.15	0.96		0.91	0.82	0.05	1.47	0.74		0.64	0.66	
Uniform Delay, d1	35.0	34.4		33.7	32.6	24.9	28.1	23.4		14.4	15.3	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.52	1.54	
Incremental Delay, d2	541.2	30.5		66.1	10.3	0.0	241.7	3.6		4.1	1.6	
Delay (s)	576.2	65.0		99.9 F	42.8	24.9	269.8	27.0		26.0 C	25.3 C	
Level of Service	F	E 254.0		Г	D	С	F	C 71.0		C		
Approach Delay (s) Approach LOS		254.0 F			48.5 D			71.0 E			25.4 C	
· ·		Г			U						C	
Intersection Summary			07.0		0110000	1						
HCM 2000 Control Delay	., .,		87.6	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	icity ratio		1.62	_		C / \			47.0			
Actuated Cycle Length (s)	· C· · ·		100.0		um of los				17.0			
Intersection Capacity Utiliza	ation		109.0%	IC	U Level	of Service)		Н			
Analysis Period (min)			15									
c Critical Lane Group												

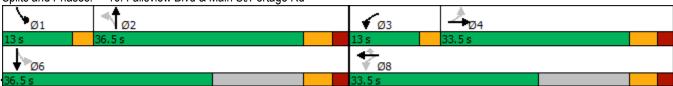
	•	-	•	•	•	1	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	f _a	ሻ	1	7	ሻ	1>	ሻ	f a	
Traffic Volume (vph)	262	163	183	267	448	21	433	51	260	
Future Volume (vph)	262	163	183	267	448	21	433	51	260	
Lane Group Flow (vph)	285	273	199	290	487	23	575	55	320	
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	
Total Split (s)	33.5	33.5	13.0	33.5	33.5	36.5	36.5	13.0	36.5	
Total Split (%)	34.9%	34.9%	13.5%	34.9%	34.9%	38.0%	38.0%	13.5%	38.0%	
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	
Lead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Max	Max	None	Max	
v/c Ratio	0.95	0.54	0.45	0.39	0.57	0.07	1.02	0.25	0.44	
Control Delay	76.8	29.6	18.7	20.1	7.4	23.4	75.4	16.5	20.3	
Queue Delay	0.0	0.0	0.0	0.7	0.5	0.0	31.0	0.0	0.0	
Total Delay	76.8	29.6	18.7	20.9	7.9	23.4	106.4	16.5	20.3	
Queue Length 50th (m)	50.6	36.9	20.9	34.8	10.9	2.9	~111.6	5.2	37.9	
Queue Length 95th (m)	#102.8	63.2	36.5	56.8	38.0	8.7	#179.5	11.6	59.6	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	299	506	452	762	863	323	564	254	809	
Starvation Cap Reductn	0	0	0	223	105	0	167	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.95	0.54	0.44	0.54	0.64	0.07	1.45	0.22	0.40	

Cycle Length: 96

Actuated Cycle Length: 91.2

Natural Cycle: 90

Control Type: Actuated-Uncoordinated


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 16: Fallsview Blvd & Main St/Portage Rd

Synchro Report

02-09-2023

TTW_Hennepin_2023-01-09-v0.1.syn

	۶	→	•	•	←	4	4	†	~	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	f)		Ť	^	7	7	₽		Ť	f)	
Traffic Volume (vph)	262	163	88	183	267	448	21	433	96	51	260	34
Future Volume (vph)	262	163	88	183	267	448	21	433	96	51	260	34
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.97		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1639		1644	1731	1471	1644	1684		1644	1701	
Flt Permitted	0.58	1.00		0.43	1.00	1.00	0.57	1.00		0.12	1.00	
Satd. Flow (perm)	1008	1639		749	1731	1471	980	1684		209	1701	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	285	177	96	199	290	487	23	471	104	55	283	37
RTOR Reduction (vph)	0	20	0	0	0	219	0	8	0	0	5	0
Lane Group Flow (vph)	285	253	0	199	290	268	23	567	0	55	315	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	27.1	27.1		39.6	39.6	39.6	30.1	30.1		39.2	39.2	
Effective Green, g (s)	27.1	27.1		39.6	39.6	39.6	30.1	30.1		39.2	39.2	
Actuated g/C Ratio	0.30	0.30		0.43	0.43	0.43	0.33	0.33		0.43	0.43	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	297	483		415	746	634	321	552		184	726	
v/s Ratio Prot		0.15		c0.05	0.17			c0.34		0.02	c0.19	
v/s Ratio Perm	c0.28			0.16		0.18	0.02			0.11		
v/c Ratio	0.96	0.52		0.48	0.39	0.42	0.07	1.03		0.30	0.43	
Uniform Delay, d1	31.8	27.0		17.3	17.8	18.2	21.2	30.8		19.4	18.5	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	40.8	1.0		0.9	0.3	0.5	0.4	45.4		0.9	1.9	
Delay (s)	72.6	28.0		18.2	18.2	18.6	21.7	76.2		20.3	20.4	
Level of Service	Е	C		В	В	В	С	E		С	С	
Approach Delay (s)		50.8			18.4			74.1			20.4	
Approach LOS		D			В			E			С	
Intersection Summary												
HCM 2000 Control Delay			39.2	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.88									
Actuated Cycle Length (s)			91.8		um of lost				19.0			
Intersection Capacity Utiliza	ition		93.2%	IC	U Level of	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

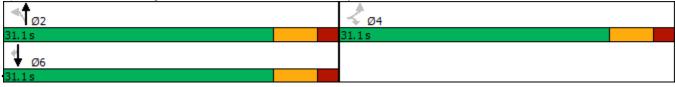
	•	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	†	†	7
Traffic Volume (vph)	106	249	426	112	141	391
Future Volume (vph)	106	249	426	112	141	391
Lane Group Flow (vph)	115	271	463	122	153	425
Turn Type	Perm	Perm	Perm	NA	NA	Perm
Protected Phases				2	6	
Permitted Phases	4	4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	31.1	31.1	31.1	31.1
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.19	0.38	0.95	0.17	0.21	0.49
Control Delay	13.1	3.7	52.5	12.8	13.1	3.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	13.1	3.7	52.5	12.8	13.1	3.7
Queue Length 50th (m)	8.1	0.0	~52.1	8.7	11.1	0.0
Queue Length 95th (m)	17.1	11.7	#105.6	17.9	21.7	14.4
Internal Link Dist (m)	9.1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	121.3	66.9	
Turn Bay Length (m)						
Base Capacity (vph)	702	784	488	739	739	872
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.16	0.35	0.95	0.17	0.21	0.49
Noudoed Wo Natio	0.10	0.00	0.55	0.17	0.21	0.43

Cycle Length: 62.2

Actuated Cycle Length: 59.2

Natural Cycle: 70

Control Type: Actuated-Uncoordinated


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 17: Portage Rd & Fallsview Casino Rear Driveway

Synchro Report TTW_Hennepin_2023-01-09-v0.1.syn

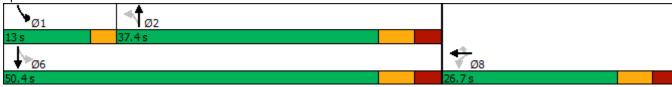
02-09-2023

	۶	•	4	†	ļ	✓			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻ	7	ሻ	1	†	7			
Traffic Volume (vph)	106	249	426	112	141	391			
Future Volume (vph)	106	249	426	112	141	391			
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750			
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)	1644	1471	1644	1731	1731	1471			
Flt Permitted	0.95	1.00	0.66	1.00	1.00	1.00			
Satd. Flow (perm)	1644	1471	1142	1731	1731	1471			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	115	271	463	122	153	425			
RTOR Reduction (vph)	0	172	0	0	0	243			
Lane Group Flow (vph)	115	99	463	122	153	182			
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%			
Turn Type	Perm	Perm	Perm	NA	NA	Perm			
Protected Phases				2	6				
Permitted Phases	4	4	2			6			
Actuated Green, G (s)	21.5	21.5	25.3	25.3	25.3	25.3			
Effective Green, g (s)	21.5	21.5	25.3	25.3	25.3	25.3			
Actuated g/C Ratio	0.36	0.36	0.43	0.43	0.43	0.43			
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
_ane Grp Cap (vph)	599	536	489	742	742	630			
v/s Ratio Prot				0.07	0.09				
v/s Ratio Perm	c0.07	0.07	c0.41			0.12			
v/c Ratio	0.19	0.18	0.95	0.16	0.21	0.29			
Uniform Delay, d1	12.8	12.8	16.2	10.4	10.6	11.0			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.2	0.2	29.4	0.5	0.6	1.2			
Delay (s)	13.0	12.9	45.6	10.8	11.2	12.1			
Level of Service	В	В	D	В	В	В			
Approach Delay (s)	13.0			38.4	11.9				
Approach LOS	В			D	В				
Intersection Summary									
HCM 2000 Control Delay			22.2	H	CM 2000	Level of Servic	9	С	
HCM 2000 Volume to Capac	city ratio		0.60						
Actuated Cycle Length (s)			59.0		um of lost			12.2	
Intersection Capacity Utilizat	tion		62.1%	IC	U Level o	of Service		В	
Analysis Period (min)			15						
c Critical Lane Group									

	•	•	•	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^	∱ }	
Traffic Volume (veh/h)	0	165	0	1295	1263	40
Future Volume (Veh/h)	0	165	0	1295	1263	40
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	179	0	1408	1373	43
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				110110	110110	
Upstream signal (m)				55	191	
pX, platoon unblocked	0.85	0.76	0.76		101	
vC, conflicting volume	2098	708	1416			
vC1, stage 1 conf vol	2000	700	1410			
vC2, stage 2 conf vol						
vCu, unblocked vol	664	0	908			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)	0.0	0.0	7.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	78	100			
cM capacity (veh/h)	340	826	574			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	179	704	704	915	501	
Volume Left	0	0	0	0	0	
Volume Right	179	0	0	0	43	
cSH	826	1700	1700	1700	1700	
Volume to Capacity	0.22	0.41	0.41	0.54	0.29	
Queue Length 95th (m)	6.2	0.0	0.0	0.0	0.0	
Control Delay (s)	10.6	0.0	0.0	0.0	0.0	
Lane LOS	В					
Approach Delay (s)	10.6	0.0		0.0		
Approach LOS	В					
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utiliza	ation		57.0%	IC	CU Level c	f Service
Analysis Period (min)	AUO11		15		J LOVOI C	. 5011100
Alialysis i cliou (Illili)			10			

	۶	→	•	•	+	•	1	†	~	/		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ň	∱ β		ň	∱ ∱	
Traffic Volume (veh/h)	23	5	7	0	0	0	79	519	163	177	442	96
Future Volume (Veh/h)	23	5	7	0	0	0	79	519	163	177	442	96
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	25	5	8	0	0	0	86	564	177	192	480	104
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)								139			114	
pX, platoon unblocked												
vC, conflicting volume	1370	1829	292	1459	1792	370	584			741		
vC1, stage 1 conf vol	916	916		824	824							
vC2, stage 2 conf vol	454	913		634	968							
vCu, unblocked vol	1370	1829	292	1459	1792	370	584			741		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	6.5	5.5		6.5	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	87	96	99	100	100	100	91			78		
cM capacity (veh/h)	198	123	710	199	160	632	1001			875		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	38	0	86	376	365	192	320	264				
Volume Left	25	0	86	0	0	192	0	0				
Volume Right	8	0	0	0	177	0	0	104				
cSH	214	1700	1001	1700	1700	875	1700	1700				
Volume to Capacity	0.18	0.00	0.09	0.22	0.21	0.22	0.19	0.16				
Queue Length 95th (m)	4.8	0.0	2.1	0.0	0.0	6.3	0.0	0.0				
Control Delay (s)	25.5	0.0	8.9	0.0	0.0	10.3	0.0	0.0				
Lane LOS	D	Α	Α	0.0	0.0	В	0.0	0.0				
Approach Delay (s)	25.5	0.0	0.9			2.5						
Approach LOS	25.5 D	Α	0.5			2.0						
Intersection Summary												
Average Delay			2.3									
Intersection Capacity Utilizat	tion		45.2%	ıc	ll evel	of Service			Α			
Analysis Period (min)	uon		45.2%	IC.	O LEVEL	DI OCIVICE			Α			
Analysis Feliou (IIIII)			13									

	←	•	4	†	>	ļ
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	ર્ન	7	ሻ	∱ }	ሻ	↑ ↑
Traffic Volume (vph)	1	113	16	472	195	664
Future Volume (vph)	1	113	16	472	195	664
Lane Group Flow (vph)	43	123	17	608	212	842
Turn Type	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases	8			2	1	6
Permitted Phases		8	2		6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?			<u> </u>	<u> </u>		
Recall Mode	None	None	None	None	None	None
v/c Ratio	0.13	0.32	0.07	0.47	0.34	0.39
Control Delay	22.2	7.9	13.2	14.2	5.4	6.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.2	7.9	13.2	14.2	5.4	6.5
Queue Length 50th (m)	3.8	0.0	1.1	23.7	7.1	21.5
Queue Length 95th (m)	11.8	11.8	4.6	37.6	13.9	32.8
Internal Link Dist (m)	32.2			90.4		112.9
Turn Bay Length (m)	V E.E		20.0	00.1	25.0	112.0
Base Capacity (vph)	631	639	356	1985	646	2563
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.19	0.05	0.31	0.33	0.33
	0.07	5.15	3.00	3.51	3.00	3.00
Intersection Summary						


Cycle Length: 77.1

Actuated Cycle Length: 53.9

Natural Cycle: 75

Control Type: Actuated-Uncoordinated

73: Fallsview Blvd & Hilton Lot/Fallsview Lot Splits and Phases:

Synchro Report 02-09-2023 TTW_Hennepin_2023-01-09-v0.1.syn Page 16

	۶	→	•	•	←	•	•	†	<i>></i>	\	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	*	∱ ⊅		ሻ	∱ î≽	
Traffic Volume (vph)	0	0	0	39	1	113	16	472	87	195	664	110
Future Volume (vph)	0	0	0	39	1	113	16	472	87	195	664	110
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Lane Util. Factor					1.00	1.00	1.00	0.95		1.00	0.95	
Frt					1.00	0.85	1.00	0.98		1.00	0.98	
Flt Protected					0.95	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)					1650	1471	1644	3211		1644	3218	
Flt Permitted					0.95	1.00	0.34	1.00		0.37	1.00	
Satd. Flow (perm)					1650	1471	580	3211		641	3218	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0.02	42	1	123	17	513	95	212	722	120
RTOR Reduction (vph)	0	0	0	0	0	106	0	20	0	0	15	0
Lane Group Flow (vph)	0	0	0	0	43	17	17	588	0	212	827	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	0 70	0 70	070	Perm	NA	Perm	Perm	NA	0 70	pm+pt	NA	0 70
Protected Phases				I GIIII	8	I CIIII	I GIIII	2		рш т рг 1	6	
Permitted Phases				8	O	8	2	۷		6	U	
Actuated Green, G (s)				0	7.6	7.6	21.6	21.6		33.7	33.7	
Effective Green, g (s)					7.6	7.6	21.6	21.6		33.7	33.7	
					0.14	0.14	0.39	0.39		0.61	0.61	
Actuated g/C Ratio					6.7	6.7	7.4	7.4		3.0	7.4	
Clearance Time (s)					4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)												
Lane Grp Cap (vph)					226	201	226	1251		554	1957	
v/s Ratio Prot					0.00	0.04	0.00	0.18		0.06	c0.26	
v/s Ratio Perm					0.03	0.01	0.03	0.47		0.17	0.40	
v/c Ratio					0.19	0.08	0.08	0.47		0.38	0.42	
Uniform Delay, d1					21.2	20.9	10.6	12.6		5.0	5.7	
Progression Factor					1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2					0.6	0.2	0.2	0.4		0.6	0.2	
Delay (s)					21.7	21.1	10.8	13.0		5.6	5.9	
Level of Service					С	С	В	В		Α	Α	
Approach Delay (s)		0.0			21.3			12.9			5.9	
Approach LOS		Α			С			В			Α	
Intersection Summary												
HCM 2000 Control Delay			9.6	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capaci	ty ratio		0.41									
Actuated Cycle Length (s)			55.4		um of los				17.1			
Intersection Capacity Utilization	on		66.7%	IC	U Level	of Service	!		С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	*	4	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations		4		ર્ન	7	ሻ	∱ }	7	∱ }	
Traffic Volume (vph)	35	14	87	59	322	55	938	306	1083	
Future Volume (vph)	35	14	87	59	322	55	938	306	1083	
Lane Group Flow (vph)	0	69	0	159	350	60	1092	333	1232	
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4		8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0	
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0	
Total Split (s)	35.0	35.0	35.0	35.0	35.0	18.0	47.0	18.0	47.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	35.0%	18.0%	47.0%	18.0%	47.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0	
Lead/Lag						Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max	
v/c Ratio		0.33		0.70	0.68	0.20	0.73	0.71	0.61	
Control Delay		31.9		55.0	12.6	6.1	23.5	29.7	11.2	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		31.9		55.0	12.6	6.1	23.5	29.7	11.2	
Queue Length 50th (m)		9.3		29.5	4.5	4.0	97.3	37.0	46.7	
Queue Length 95th (m)		19.9		46.2	28.7	m2.4	m104.9	m#72.9	m81.8	
Internal Link Dist (m)		100.0		3.9			71.5		31.5	
Turn Bay Length (m)						65.0		140.0		
Base Capacity (vph)		337		376	644	442	1500	467	2014	
Starvation Cap Reductn		0		0	0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	0	
Reduced v/c Ratio		0.20		0.42	0.54	0.14	0.73	0.71	0.61	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 76: Stanley Ave & Dixon St

Synchro Report

TTW_Hennepin_2023-01-09-v0.1.syn

•	۶	→	•	•	←	•	•	†	~	\		√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7	7	∱ ∱		*	∱ î≽	
Traffic Volume (vph)	35	14	15	87	59	322	55	938	66	306	1083	51
Future Volume (vph)	35	14	15	87	59	322	55	938	66	306	1083	51
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.97			1.00	0.85	1.00	0.99		1.00	0.99	
Flt Protected		0.97			0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1631			1680	1471	1644	3256		1644	3266	
FIt Permitted		0.70			0.78	1.00	0.23	1.00		0.15	1.00	
Satd. Flow (perm)		1167			1345	1471	393	3256		255	3266	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	38	15	16	95	64	350	60	1020	72	333	1177	55
RTOR Reduction (vph)	0	12	0	0	0	269	0	5	0	0	2	0
Lane Group Flow (vph)	0	57	0	0	159	81	60	1087	0	333	1230	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4	•		8	-	8	2	_		6	-	
Actuated Green, G (s)		16.8			16.8	16.8	51.1	45.9		69.2	61.0	
Effective Green, g (s)		16.8			16.8	16.8	51.1	45.9		69.2	61.0	
Actuated g/C Ratio		0.17			0.17	0.17	0.51	0.46		0.69	0.61	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		196			225	247	265	1494		458	1992	
v/s Ratio Prot							0.01	0.33		c0.15	0.38	
v/s Ratio Perm		0.05			c0.12	0.06	0.10			c0.36		
v/c Ratio		0.29			0.71	0.33	0.23	0.73		0.73	0.62	
Uniform Delay, d1		36.4			39.3	36.6	12.4	22.0		17.4	12.2	
Progression Factor		1.00			1.00	1.00	0.87	0.98		1.59	0.73	
Incremental Delay, d2		0.5			8.6	0.5	0.0	0.3		4.1	1.2	
Delay (s)		36.8			47.9	37.1	10.8	21.8		31.7	10.1	
Level of Service		D			D	D	В	С		С	В	
Approach Delay (s)		36.8			40.5			21.3			14.7	
Approach LOS		D			D			С			В	
Intersection Summary												
HCM 2000 Control Delay			21.4	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity	y ratio		0.74									
Actuated Cycle Length (s)			100.0	S	um of los	t time (s)			17.0			
Intersection Capacity Utilizatio	n		76.2%	IC	CU Level	of Service	Э		D			
Analysis Period (min)			15									
c Critical Lane Group												

	~	•	*_	ኘ	†	>	Ļ	ļ	•	\	\mathbf{x}	*
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWT
Lane Configurations		Ä	Ž.		4			4		ă	£	4
Traffic Volume (vph)	16	5	275	106	32	7	16	17	1	204	208	15
Future Volume (vph)	16	5	275	106	32	7	16	17	1	204	208	15
Lane Group Flow (vph)	0	22	358	0	166	0	0	44	0	223	259	44
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	NA
Protected Phases					10			14			6	2
Permitted Phases	4	4	4	10		14	14		6	6		
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	26.8	26.8	26.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8
Total Split (%)	24.1%	24.1%	24.1%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	6.8
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.12	1.39		0.58			0.14		0.81	0.69	0.13
Control Delay		40.2	232.5		47.7			35.5		63.7	50.7	35.8
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Delay		40.2	232.5		47.7			35.5		63.7	50.7	35.8
Queue Length 50th (m)		4.1	~103.7		32.4			7.6		46.2	52.1	7.7
Queue Length 95th (m)		11.3	#160.0		54.6			17.1		#85.5	80.2	17.2
Internal Link Dist (m)		102.7			229.8			295.5			298.1	208.5
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		188	258		287			308		277	373	348
Starvation Cap Reductn		0	0		0			0		0	0	0
Spillback Cap Reductn		0	0		0			0		0	0	0
Storage Cap Reductn		0	0		0			0		0	0	0
Reduced v/c Ratio		0.12	1.39		0.58			0.14		0.81	0.69	0.13

Cycle Length: 111.4 Actuated Cycle Length: 111.4

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 100 Control Type: Pretimed


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 78: Allandale Ave & Main St & Murray St

Synchro Report 02-09-2023 TTW_Hennepin_2023-01-09-v0.1.syn Page 20

Lane Group	Ø12
LaneConfigurations	
Traffic Volume (vph)	
Future Volume (vph)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	12
Permitted Phases	
Minimum Split (s)	21.0
Total Split (s)	21.0
Total Split (%)	19%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	
intorocotion outlinary	

Synchro Report TTW_Hennepin_2023-01-09-v0.1.syn 02-09-2023 Page 21

	~	•	*_	•	ሻ	†	~	r*	>	Ļ	ţ	» J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		Ä	Ž.			4					4	
Traffic Volume (vph)	16	5	275	54	106	32	10	5	7	16	17	1
Future Volume (vph)	16	5	275	54	106	32	10	5	7	16	17	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.99					1.00	
Flt Protected		0.95	1.00			0.97					0.97	
Satd. Flow (prot)		1612	1442			1618					1645	
Flt Permitted		0.62	1.00			0.77					0.81	
Satd. Flow (perm)		1050	1442			1282					1371	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	5	299	59	115	35	11	5	8	17	18	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	22	358	0	0	166	0	0	0	0	43	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		20.0	20.0			25.0					25.0	
Effective Green, g (s)		20.0	20.0			25.0					25.0	
Actuated g/C Ratio		0.18	0.18			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		188	258			287					307	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.25			c0.13					0.03	
v/c Ratio		0.12	1.39			0.58					0.14	
Uniform Delay, d1		38.3	45.7			38.5					34.6	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.3	196.6			8.2					1.0	
Delay (s)		39.6	242.3			46.7					35.6	
Level of Service		D	F			D					D	
Approach Delay (s)		230.5				46.7					35.6	
Approach LOS		F				D					D	
Intersection Summary												
HCM 2000 Control Delay			112.3	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	ity ratio		0.70									
Actuated Cycle Length (s)			111.4		um of lost				22.4			
Intersection Capacity Utilizati	ion		70.3%	IC	CU Level of	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\	\mathbf{x}	>	×	*	4
Movement	SEL2	SEL	SET	SER	NWT	NWR	NWR2
Lane Configurations		ă	î,		4		
Traffic Volume (vph)	1	204	208	30	15	11	15
Future Volume (vph)	1	204	208	30	15	11	15
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8		6.8		
Lane Util. Factor		1.00	1.00		1.00		
Frt		1.00	0.98		0.91		
Flt Protected		0.95	1.00		1.00		
Satd. Flow (prot)		1612	1664		1551		
Flt Permitted		0.73	1.00		1.00		
Satd. Flow (perm)		1236	1664		1551		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	222	226	33	16	12	16
RTOR Reduction (vph)	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	223	259	0	44	0	0
Turn Type	Perm	Perm	NA		NA		
Protected Phases			6		2		
Permitted Phases	6	6					
Actuated Green, G (s)		25.0	25.0		25.0		
Effective Green, g (s)		25.0	25.0		25.0		
Actuated g/C Ratio		0.22	0.22		0.22		
Clearance Time (s)		6.8	6.8		6.8		
Lane Grp Cap (vph)		277	373		348		
v/s Ratio Prot			0.16		0.03		
v/s Ratio Perm		c0.18					
v/c Ratio		0.81	0.69		0.13		
Uniform Delay, d1		40.9	39.7		34.5		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		21.5	10.2		0.7		
Delay (s)		62.4	49.9		35.2		
Level of Service		Е	D		D		
Approach Delay (s)			55.7		35.2		
Approach LOS			Е		D		
Intersection Summary							

	۶	→	•	•	—	4	1	†	<i>></i>	/	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	1	14	0	0	16	149	0	0	0	50	0	1
Future Volume (Veh/h)	1	14	0	0	16	149	0	0	0	50	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	15	0	0	17	162	0	0	0	54	0	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					124							
pX, platoon unblocked												
vC, conflicting volume	179			15			116	196	15	115	115	98
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	179			15			116	196	15	115	115	98
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)								0.0	V. <u>L</u>		0.0	0.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	100	94	100	100
cM capacity (veh/h)	1409			1616			864	703	1070	866	778	963
		WD 4	ND 4				004	700	1070		770	300
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	16	179	0	55								
Volume Left	1	0	0	54								
Volume Right	0	162	0	1								
cSH	1409	1616	1700	868								
Volume to Capacity	0.00	0.00	0.39	0.06								
Queue Length 95th (m)	0.0	0.0	0.0	1.5								
Control Delay (s)	0.5	0.0	0.0	9.4								
Lane LOS	Α		Α	Α								
Approach Delay (s)	0.5	0.0	0.0	9.4								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utilizat	ion		20.9%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	٠	•	4	†	ţ	✓			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻ	7	ሻ	^	∱ }				
Traffic Volume (veh/h)	Ö	0	0	1059	1293	0			
Future Volume (Veh/h)	0	0	0	1059	1293	0			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	0	0	1151	1405	0			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type				None	None				
Median storage veh)									
Upstream signal (m)				127	95				
pX, platoon unblocked	0.88	0.77	0.77						
vC, conflicting volume	1980	702	1405						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	640	6	922						
tC, single (s)	6.8	6.9	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	100	100	100						
cM capacity (veh/h)	361	830	575						
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2		
Volume Total	0	0	0	576	576	937	468		
Volume Left	0	0	0	0	0	0	0		
Volume Right	0	0	0	0	0	0	0		
cSH	1700	1700	1700	1700	1700	1700	1700		
Volume to Capacity	0.00	0.00	0.00	0.34	0.34	0.55	0.28		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Lane LOS	Α	Α	0.0	0.0	0.0	0.0	0.0		
Approach Delay (s)	0.0		0.0			0.0			
Approach LOS	Α		0.0			0.0			
Intersection Summary									
Average Delay			0.0						
Intersection Capacity Utiliza	ation		42.1%	IC	CU Level	of Service		Α	
Analysis Period (min)			15	10	. 5 25 76 7 6			, ,	
, maryoto i onou (mm)			10						

Page 26

	۶	→	←	•	>	✓
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		414	ħβ		*	7
Traffic Volume (veh/h)	0	310	817	0	0	0
Future Volume (Veh/h)	0	310	817	0	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	337	888	0	0	0
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		2.1.2				
Upstream signal (m)		88	33			
pX, platoon unblocked						
vC, conflicting volume	888				1056	444
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	888				1056	444
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)	1.1				3.0	0.0
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	100
cM capacity (veh/h)	771				224	567
		ED 0	MD 4	WD 0		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2
Volume Total	112	225	592	296	0	0
Volume Left	0	0	0	0	0	0
Volume Right	0	0	0	0	0	0
cSH	771	1700	1700	1700	1700	1700
Volume to Capacity	0.00	0.13	0.35	0.17	0.00	0.00
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Lane LOS					Α	Α
Approach Delay (s)	0.0		0.0		0.0	
Approach LOS					Α	
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliz	zation		27.9%	IC	U Level o	f Service
Analysis Period (min)			15			

Appendix F

2033 Future Background Conditions Synchro Reports - Mitigated

	•	•	•	4	†	ļ
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	7	7	4	Ţ	†	†
Traffic Volume (vph)	262	148	26	142	159	143
Future Volume (vph)	262	148	26	142	159	143
Lane Group Flow (vph)	285	161	44	154	173	545
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	7.0	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.81	0.31	0.09	0.41	0.19	0.71
Control Delay	42.8	5.3	13.0	10.3	9.2	17.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	1.9
Total Delay	42.8	5.3	13.0	10.3	9.2	19.4
Queue Length 50th (m)	31.2	0.0	2.4	8.8	11.2	36.3
Queue Length 95th (m)	#67.4	11.6	8.9	16.1	20.0	#85.2
Internal Link Dist (m)			8.0		230.0	55.6
Turn Bay Length (m)	50.0					
Base Capacity (vph)	378	555	506	379	939	772
Starvation Cap Reductn	0	0	0	0	0	107
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.75	0.29	0.09	0.41	0.18	0.82
1.00000 7/011000	0.70	0.20	0.00	V. 1 1	0.10	0.02

Cycle Length: 67.3

Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Fallsview Blvd & Embassy Suites

02-14-2023 TTW_Hennepin_2023-01-09-v0.1_HO.syn

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ		7		4		7	†		ň	†	
Traffic Volume (vph)	262	0	148	0	26	15	142	159	0	0	143	359
Future Volume (vph)	262	0	148	0	26	15	142	159	0	0	143	359
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.89	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1545	
Flt Permitted	0.73		1.00		1.00		0.25	1.00			1.00	
Satd. Flow (perm)	1260		1471		1646		424	1731			1545	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	285	0	161	0	28	16	154	173	0	0	155	390
RTOR Reduction (vph)	0	0	116	0	12	0	0	0	0	0	127	0
Lane Group Flow (vph)	285	0	45	0	32	0	154	173	0	0	418	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases	. 0		. 0		8		5	2		. 0	6	
Permitted Phases	4		4	8			2	-		6		
Actuated Green, G (s)	18.7		18.7		18.7		36.3	36.3			27.4	
Effective Green, g (s)	18.7		18.7		18.7		36.3	36.3			27.4	
Actuated g/C Ratio	0.28		0.28		0.28		0.54	0.54			0.41	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	350		408		457		335	933			629	
v/s Ratio Prot	000		100		0.02		c0.04	0.10			c0.27	
v/s Ratio Perm	c0.23		0.03		0.02		0.21	0.10			00.21	
v/c Ratio	0.81		0.11		0.07		0.46	0.19			0.66	
Uniform Delay, d1	22.7		18.1		17.9		9.7	7.9			16.2	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	14.2		0.2		0.1		1.4	0.4			5.5	
Delay (s)	36.8		18.3		18.0		11.1	8.4			21.7	
Level of Service	D		В		В		В	A			C	
Approach Delay (s)		30.1			18.0			9.7			21.7	
Approach LOS		C			В			A			C	
Intersection Summary												
HCM 2000 Control Delay			21.4	Н	CM 2000	Level of	Service		С			-
HCM 2000 Volume to Capa	acity ratio		0.70									
Actuated Cycle Length (s)			67.3	Sı	um of lost	time (s)			15.3			
Intersection Capacity Utiliza	ation		74.9%		U Level		9		D			
Analysis Period (min)			15									
c Critical Lane Group												

02-14-2023 TTW_Hennepin_2023-01-09-v0.1_HO.syn Synchro 11 Report Page 2

	•	→	•	←	4	†	>	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	f)	7	4	ሻ	ħβ	ሻ	∱ î≽	
Traffic Volume (vph)	69	178	147	122	186	1020	511	983	
Future Volume (vph)	69	178	147	122	186	1020	511	983	
Lane Group Flow (vph)	75	308	160	386	202	1335	555	1134	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	33.0	33.0	10.0	33.0	
Total Split (s)	35.0	35.0	35.0	35.0	48.0	48.0	17.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	48.0%	48.0%	17.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	0.64	0.66	0.89	0.78	0.98	0.87	1.68	0.53	
Control Delay	57.4	36.6	79.8	36.7	73.1	19.6	342.6	13.0	
Queue Delay	0.0	0.2	0.0	0.1	0.0	0.0	0.0	0.0	
Total Delay	57.4	36.9	79.8	36.8	73.1	19.6	342.6	13.0	
Queue Length 50th (m)	12.5	46.5	28.7	51.0	~43.1	61.1	~144.5	66.1	
Queue Length 95th (m)	#31.8	73.8	#63.6	84.3	m#75.5	#164.5	#208.3	83.3	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	131	518	200	543	206	1540	330	2154	
Starvation Cap Reductn	0	22	0	5	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.57	0.62	0.80	0.72	0.98	0.87	1.68	0.53	

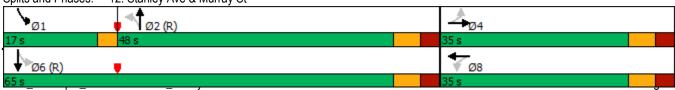
Cycle Length: 100

Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

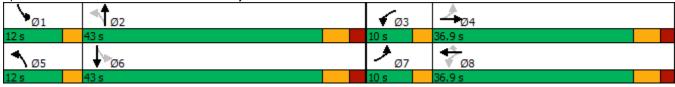
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 12: Stanley Ave & Murray St

	۶	→	•	•	←	•	4	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	£		7	4î		7	ħβ		ř	ħβ	
Traffic Volume (vph)	69	178	106	147	122	233	186	1020	208	511	983	61
Future Volume (vph)	69	178	106	147	122	233	186	1020	208	511	983	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.94		1.00	0.90		1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1774		1785	1694		1785	3479		1785	3539	
Flt Permitted	0.25	1.00		0.38	1.00		0.25	1.00		0.09	1.00	
Satd. Flow (perm)	468	1774		716	1694		471	3479		161	3539	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	75	193	115	160	133	253	202	1109	226	555	1068	66
RTOR Reduction (vph)	0	22	0	0	71	0	0	16	0	0	4	0
Lane Group Flow (vph)	75	286	0	160	315	0	202	1319	0	555	1130	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8	-		2	_		6		
Actuated Green, G (s)	25.2	25.2		25.2	25.2		43.8	43.8		60.8	60.8	
Effective Green, g (s)	25.2	25.2		25.2	25.2		43.8	43.8		60.8	60.8	
Actuated g/C Ratio	0.25	0.25		0.25	0.25		0.44	0.44		0.61	0.61	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.3	2.3		2.3	2.3		2.5	2.5		2.3	2.5	
Lane Grp Cap (vph)	117	447		180	426		206	1523		325	2151	
v/s Ratio Prot		0.16		100	0.19		200	0.38		c0.24	0.32	
v/s Ratio Perm	0.16	0.10		c0.22	0.10		0.43	0.00		c0.80	0.02	
v/c Ratio	0.64	0.64		0.89	0.74		0.98	0.87		1.71	0.53	
Uniform Delay, d1	33.4	33.3		36.1	34.4		27.7	25.4		30.6	11.3	
Progression Factor	1.00	1.00		1.00	1.00		0.52	0.50		1.00	1.00	
Incremental Delay, d2	9.5	2.5		36.7	6.0		51.1	5.5		331.3	0.9	
Delay (s)	42.9	35.8		72.8	40.4		65.6	18.2		361.9	12.2	
Level of Service	D	D		E	D		E	В		F	В	
Approach Delay (s)		37.2			49.9			24.5		•	127.1	
Approach LOS		D			D			C			F	
Intersection Summary												
HCM 2000 Control Delay			70.7	H	CM 2000	Level of S	Service		Ε			
HCM 2000 Volume to Capac	city ratio		1.51									
Actuated Cycle Length (s)			100.0	Sı	um of lost	time (s)			17.0			
Intersection Capacity Utiliza	tion		111.4%			of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

02-14-2023 TTW_Hennepin_2023-01-09-v0.1_HO.syn Synchro 11 Report Page 4

	•	→	•	•	•	~	†	>	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	∱ ⊅	ሻ	†	7	ሻ	∱ ∱	ሻ	∱ ⊅	
Traffic Volume (vph)	88	523	179	319	173	129	386	170	521	
Future Volume (vph)	88	523	179	319	173	129	386	170	521	
Lane Group Flow (vph)	96	902	195	347	188	140	771	185	606	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	5.5	20.0	7.0	20.0	20.0	5.5	20.0	7.0	20.0	
Minimum Split (s)	10.0	33.3	10.0	33.3	33.3	10.0	42.6	10.0	42.6	
Total Split (s)	10.0	36.9	10.0	36.9	36.9	12.0	43.0	12.0	43.0	
Total Split (%)	9.8%	36.2%	9.8%	36.2%	36.2%	11.8%	42.2%	11.8%	42.2%	
Yellow Time (s)	3.0	4.1	3.0	4.1	4.1	3.0	4.1	3.0	4.1	
All-Red Time (s)	0.0	2.2	0.0	2.2	2.2	0.0	2.5	0.0	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.3	3.0	6.3	6.3	3.0	6.6	3.0	6.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	
.ead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	Max	None	Max	
ı/c Ratio	0.27	0.86	0.96	0.60	0.30	0.34	0.57	0.55	0.46	
Control Delay	19.8	38.4	76.8	35.2	5.4	15.5	19.7	20.0	25.5	
Queue Delay	0.0	0.9	0.0	0.0	0.0	0.0	0.3	0.0	0.0	
Total Delay	19.8	39.3	76.8	35.2	5.4	15.5	20.0	20.0	25.5	
Queue Length 50th (m)	11.2	76.3	24.1	58.6	0.0	14.1	45.3	19.1	47.6	
Queue Length 95th (m)	21.1	100.7	#64.8	87.9	15.0	24.5	63.9	31.6	63.5	
Internal Link Dist (m)		39.6		70.0			112.9		294.7	
Turn Bay Length (m)	30.0		35.0			10.0		65.0		
Base Capacity (vph)	357	1119	204	586	628	421	1358	344	1308	
Starvation Cap Reductn	0	65	0	0	0	0	148	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.86	0.96	0.59	0.30	0.33	0.64	0.54	0.46	


Cycle Length: 101.9 Actuated Cycle Length: 99.6

Natural Cycle: 100

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 13: Fallsview Blvd & Murray St

	٠	→	•	•	—	•	•	†	~	\	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		*	†	7	*	∱ }		7	∱ }	
Traffic Volume (vph)	88	523	307	179	319	173	129	386	323	170	521	37
Future Volume (vph)	88	523	307	179	319	173	129	386	323	170	521	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.93		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3372		1785	1879	1597	1785	3326		1785	3535	
Flt Permitted	0.39	1.00		0.13	1.00	1.00	0.34	1.00		0.24	1.00	
Satd. Flow (perm)	725	3372		245	1879	1597	647	3326		450	3535	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	96	568	334	195	347	188	140	420	351	185	566	40
RTOR Reduction (vph)	0	85	0	0	0	130	0	141	0	0	5	0
Lane Group Flow (vph)	96	817	0	195	347	58	140	630	0	185	601	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8	-	8	2	_		6		
Actuated Green, G (s)	34.7	29.2		37.7	30.7	30.7	44.9	36.5		45.5	36.8	
Effective Green, g (s)	34.7	29.2		37.7	30.7	30.7	44.9	36.5		45.5	36.8	
Actuated g/C Ratio	0.35	0.29		0.38	0.31	0.31	0.45	0.36		0.45	0.37	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	308	981		199	575	488	384	1210		319	1296	
v/s Ratio Prot	0.02	0.24		c0.07	0.18		0.03	0.19		c0.05	0.17	
v/s Ratio Perm	0.09			c0.30		0.04	0.13			c0.21	-	
v/c Ratio	0.31	0.83		0.98	0.60	0.12	0.36	0.52		0.58	0.46	
Uniform Delay, d1	23.1	33.3		26.4	29.6	25.1	16.9	25.0		17.7	24.2	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.6	6.1		57.3	1.8	0.1	0.6	1.6		2.6	1.2	
Delay (s)	23.7	39.4		83.6	31.4	25.2	17.5	26.6		20.3	25.4	
Level of Service	С	D		F	С	С	В	С		С	С	
Approach Delay (s)		37.9			43.8			25.2			24.2	
Approach LOS		D			D			С			С	
Intersection Summary												
HCM 2000 Control Delay			32.6	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.78									
Actuated Cycle Length (s)			100.3		um of lost				18.9			
Intersection Capacity Utiliza	ation		82.1%	IC	U Level	of Service	Э		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	•	•	~	†	>	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	f.	ሻ	↑	7	ሻ	∱ ∱	ሻ	∱ î≽	
Traffic Volume (vph)	256	305	75	355	64	212	861	105	737	
Future Volume (vph)	256	305	75	355	64	212	861	105	737	
Lane Group Flow (vph)	278	480	82	386	70	230	1070	114	1038	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4		8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0	
Total Split (s)	39.0	39.0	39.0	39.0	39.0	50.0	50.0	11.0	61.0	
Total Split (%)	39.0%	39.0%	39.0%	39.0%	39.0%	50.0%	50.0%	11.0%	61.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
_ead/Lag						Lag	Lag	Lead		
_ead-Lag Optimize?										
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	
ı/c Ratio	1.36	0.81	0.63	0.64	0.12	1.08	0.70	0.43	0.55	
Control Delay	219.2	42.5	52.9	35.0	5.8	117.3	25.5	18.3	23.1	
Queue Delay	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	
Total Delay	219.2	42.5	52.9	38.3	5.8	117.3	25.5	18.3	23.1	
Queue Length 50th (m)	~71.2	81.1	13.4	63.6	0.0	~50.8	85.5	14.0	100.0	
Queue Length 95th (m)	#120.2	#131.1	#35.9	94.6	8.4	#96.2	108.7	m24.1	118.5	
nternal Link Dist (m)		213.7		94.8			227.1		103.4	
Turn Bay Length (m)	75.0		25.0		25.0	25.0		40.0		
Base Capacity (vph)	205	589	131	601	562	212	1537	277	1890	
Starvation Cap Reductn	0	0	0	130	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.36	0.81	0.63	0.82	0.12	1.08	0.70	0.41	0.55	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

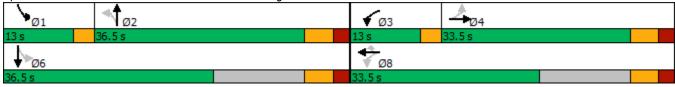
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 15: Stanley Ave & Dunn St

	•	→	`	•	—	•	•	<u></u>	<i>></i>	<u> </u>	1	√
Movement	EBL	EBT	EBR	₩BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	<u> </u>	LDIX	ነ ነ	<u> </u>	7	ሻ	†	, , D, t	ኝ	↑ ↑	05.1
Traffic Volume (vph)	256	305	136	75	355	64	212	861	123	105	737	218
Future Volume (vph)	256	305	136	75	355	64	212	861	123	105	737	218
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1792		1785	1879	1597	1785	3503		1785	3448	
Flt Permitted	0.34	1.00		0.22	1.00	1.00	0.26	1.00		0.14	1.00	
Satd. Flow (perm)	640	1792		410	1879	1597	487	3503		269	3448	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	278	332	148	82	386	70	230	936	134	114	801	237
RTOR Reduction (vph)	0	16	0	0	0	48	0	11	0	0	28	0
Lane Group Flow (vph)	278	464	0	82	386	22	230	1059	0	114	1010	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		<u> </u>	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	32.0	32.0		32.0	32.0	32.0	43.6	43.6		54.0	54.0	
Effective Green, g (s)	32.0	32.0		32.0	32.0	32.0	43.6	43.6		54.0	54.0	
Actuated g/C Ratio	0.32	0.32		0.32	0.32	0.32	0.44	0.44		0.54	0.54	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.5	2.5		2.5	2.5	2.5	2.5	2.5		2.7	2.5	
Lane Grp Cap (vph)	204	573		131	601	511	212	1527		257	1861	
v/s Ratio Prot		0.26			0.21			0.30		0.03	c0.29	
v/s Ratio Perm	c0.43			0.20		0.01	c0.47			0.21		
v/c Ratio	1.36	0.81		0.63	0.64	0.04	1.08	0.69		0.44	0.54	
Uniform Delay, d1	34.0	31.2		28.9	29.1	23.4	28.2	22.8		14.3	15.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.48	1.55	
Incremental Delay, d2	191.5	8.0		7.8	2.1	0.0	86.3	2.6		0.9	1.0	
Delay (s)	225.5	39.2		36.7	31.2	23.5	114.5	25.4		22.1	24.2	
Level of Service	F	D		D	С	С	F	С		С	С	
Approach Delay (s)		107.5			31.0			41.2			24.0	
Approach LOS		F			С			D			С	
Intersection Summary												
HCM 2000 Control Delay			47.9	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		1.14									
Actuated Cycle Length (s)			100.0		um of los				17.0			
Intersection Capacity Utiliza	ition		95.3%	IC	U Level	of Service	•		F			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	•	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	f.	ሻ	↑	7	- ነ	₽	ሻ	₽	
Traffic Volume (vph)	167	154	170	250	373	34	326	86	308	
Future Volume (vph)	167	154	170	250	373	34	326	86	308	
Lane Group Flow (vph)	182	247	185	272	405	37	455	93	372	
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	
Total Split (s)	33.5	33.5	13.0	33.5	33.5	36.5	36.5	13.0	36.5	
Total Split (%)	34.9%	34.9%	13.5%	34.9%	34.9%	38.0%	38.0%	13.5%	38.0%	
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	
Lead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Max	Max	None	Max	
v/c Ratio	0.63	0.51	0.39	0.36	0.46	0.11	0.72	0.26	0.45	
Control Delay	40.6	29.6	18.5	20.4	3.8	24.6	34.9	15.5	19.5	
Queue Delay	0.0	0.0	0.0	0.0	0.3	0.0	52.9	0.0	0.0	
Total Delay	40.6	29.6	18.5	20.4	4.0	24.6	87.8	15.5	19.5	
Queue Length 50th (m)	28.6	33.5	19.9	33.0	0.0	4.8	73.0	9.0	45.1	
Queue Length 95th (m)	51.2	56.4	34.0	52.6	16.5	12.2	#119.9	17.4	68.5	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	344	570	477	862	951	349	635	384	917	
Starvation Cap Reductn	0	0	0	0	154	0	220	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.53	0.43	0.39	0.32	0.51	0.11	1.10	0.24	0.41	

Cycle Length: 96


Actuated Cycle Length: 89.3

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	→	•	•	-	4	4	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		*	†	7	*	ĵ.		*	ĥ	
Traffic Volume (vph)	167	154	74	170	250	373	34	326	93	86	308	34
Future Volume (vph)	167	154	74	170	250	373	34	326	93	86	308	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1788		1785	1879	1597	1785	1816		1785	1851	
Flt Permitted	0.59	1.00		0.44	1.00	1.00	0.54	1.00		0.26	1.00	
Satd. Flow (perm)	1112	1788		831	1879	1597	1015	1816		481	1851	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	182	167	80	185	272	405	37	354	101	93	335	37
RTOR Reduction (vph)	0	19	0	0	0	242	0	11	0	0	4	0
Lane Group Flow (vph)	182	228	0	185	272	163	37	444	0	93	368	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA	- 70	pm+pt	NA	
Protected Phases	1 01111	4		3	8	1 01111	1 01111	2		1	6	
Permitted Phases	4	•		8	•	8	2	_		6	•	
Actuated Green, G (s)	23.2	23.2		36.0	36.0	36.0	30.7	30.7		40.7	40.7	
Effective Green, g (s)	23.2	23.2		36.0	36.0	36.0	30.7	30.7		40.7	40.7	
Actuated g/C Ratio	0.26	0.26		0.40	0.40	0.40	0.34	0.34		0.45	0.45	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)	287	462		437	754	640	347	621		320	839	
v/s Ratio Prot	201	0.13		c0.05	0.14	0.10	017	c0.24		0.02	c0.20	
v/s Ratio Perm	c0.16	0.10		0.12	0.11	0.10	0.04	00.21		0.11	00.20	
v/c Ratio	0.63	0.49		0.42	0.36	0.25	0.11	0.72		0.29	0.44	
Uniform Delay, d1	29.5	28.3		18.3	18.8	17.9	20.1	25.7		15.8	16.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.1	1.1		0.9	0.4	0.3	0.6	6.9		0.7	1.7	
Delay (s)	34.6	29.4		19.2	19.2	18.2	20.8	32.6		16.5	18.4	
Level of Service	C	C		В	В	В	C	C		В	В	
Approach Delay (s)		31.6			18.7			31.7			18.0	
Approach LOS		С			В			С			В	
Intersection Summary												
HCM 2000 Control Delay			23.9	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.62									
Actuated Cycle Length (s)			89.7	Sı	um of los	t time (s)			19.0			
Intersection Capacity Utilizat	tion		79.0%	IC	U Level	of Service	1		D			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	•	4	†	†	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	↑	†	7
Traffic Volume (vph)	89	201	209	17	106	733
Future Volume (vph)	89	201	209	17	106	733
Lane Group Flow (vph)	97	218	227	18	115	797
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4			2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	31.1	31.1	31.1	31.1
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.1	6.1
Lead/Lag	0.1	0.1	0.1	0.1	0.1	0.1
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.15	0.30	0.41	0.02	0.14	0.70
Control Delay	12.6	3.4	16.1	11.4	12.5	5.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.6	3.4	16.1	11.4	12.5	5.1
Queue Length 50th (m)	6.8	0.0	18.1	1.2	8.1	0.0
Queue Length 95th (m)	14.7	10.5	34.8	4.4	16.8	18.5
Internal Link Dist (m)	9.1	10.5	34.0	121.3	66.9	10.5
. ,	ن ا			121.3	00.9	
Turn Bay Length (m)	756	802	552	900	809	1141
Base Capacity (vph)	756			809		
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.27	0.41	0.02	0.14	0.70
Intersection Summary						
Cycle Length: 62.2						
Actuated Cycle Length: 59.	5					
Natural Cycle: 60	.0					
Control Type: Actuated-Un	coordinated					
Control Typo. Actuated Off	ooordinate0					
Splits and Phases: 17: P	ortage Rd 8	R Fallsvie	w Casino	Rear Dri	veway	
■	Situgo itu (. 1 4110110		. tour Dir		
Tø2					<	Ø4
31.1s					31.1	
4						
▼ Ø6						
31.1s						

	۶	•	1	†	+	✓			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ň	7	,	†		7			
Traffic Volume (vph)	89	201	209	17	106	733			
Future Volume (vph)	89	201	209	17	106	733			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)	1785	1597	1785	1879	1879	1597			
Flt Permitted	0.95	1.00	0.68	1.00	1.00	1.00			
Satd. Flow (perm)	1785	1597	1283	1879	1879	1597			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	97	218	227	18	115	797			
RTOR Reduction (vph)	0	139	0	0	0	454			
Lane Group Flow (vph)	97	79	227	18	115	343			
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%			
Turn Type	Prot	Perm	Perm	NA	NA	Perm			
Protected Phases	4			2	6				
Permitted Phases		4	2			6			
Actuated Green, G (s)	21.6	21.6	25.6	25.6	25.6	25.6			
Effective Green, g (s)	21.6	21.6	25.6	25.6	25.6	25.6			
Actuated g/C Ratio	0.36	0.36	0.43	0.43	0.43	0.43			
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1			
Vehicle Extension (s)	4.0	4.0	0.2	0.2	0.2	0.2			
Lane Grp Cap (vph)	649	580	552	809	809	688			
v/s Ratio Prot	c0.05			0.01	0.06				
v/s Ratio Perm		0.05	0.18			c0.22			
v/c Ratio	0.15	0.14	0.41	0.02	0.14	0.50			
Uniform Delay, d1	12.7	12.7	11.7	9.7	10.2	12.3			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.1	0.1	2.3	0.1	0.4	2.6			
Delay (s)	12.9	12.8	13.9	9.8	10.6	14.8			
Level of Service	В	В	В	Α	В	В			
Approach Delay (s)	12.8			13.6	14.3				
Approach LOS	В			В	В				
Intersection Summary									
HCM 2000 Control Delay			13.9	H	CM 2000	Level of Servic	е	В	
HCM 2000 Volume to Capaci	ty ratio		0.34						
Actuated Cycle Length (s)			59.4	Sı	um of lost	time (s)		12.2	
Intersection Capacity Utilizati	on		67.1%	IC	U Level o	of Service		С	
Analysis Period (min)			15						
c Critical Lane Group									

	•	•	•	†		1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations		7		^	↑ ⊅			
Traffic Volume (veh/h)	0	164	0	1286	1255	40		
Future Volume (Veh/h)	0	164	0	1286	1255	40		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	0.02	178	0	1398	1364	43		
Pedestrians				1000				
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)				TAOHC	TAOTIC			
Upstream signal (m)				55	191			
pX, platoon unblocked	0.82	0.82	0.82	33	131			
vC, conflicting volume	2084	704	1407					
vC1, stage 1 conf vol	2004	704	1407					
vC2, stage 2 conf vol								
vCu, unblocked vol	886	189	1050					
tC, single (s)	6.8	6.9	4.1					
tC, 2 stage (s)	0.0	0.9	4.1					
tF (s)	3.5	3.3	2.2					
p0 queue free %	100	74	100					
cM capacity (veh/h)	237	676	548					
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2			
Volume Total	178	699	699	909	498			
Volume Left	0	0	0	0	0			
Volume Right	178	0	0	0	43			
cSH	676	1700	1700	1700	1700			
Volume to Capacity	0.26	0.41	0.41	0.53	0.29			
Queue Length 95th (m)	8.0	0.0	0.0	0.0	0.0			
Control Delay (s)	12.2	0.0	0.0	0.0	0.0			
Lane LOS	В							
Approach Delay (s)	12.2	0.0		0.0				
Approach LOS	В							
Intersection Summary								
Average Delay			0.7					
Intersection Capacity Utilizat	tion		56.7%	IC	CU Level o	of Service	В	
Analysis Period (min)			15					
analysis i silva (ililii)			10					

=======================================	C (D ::/(C)									`		
	۶	→	\rightarrow	•	←	•	•	†	/	>	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	∱ β		7	∱ β	
Traffic Volume (veh/h)	22	5	15	0	0	0	78	515	162	175	440	95
Future Volume (Veh/h)	22	5	15	0	0	0	78	515	162	175	440	95
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	24	5	16	0	0	0	85	560	176	190	478	103
Pedestrians		559			275			30			30	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		49			24			3			3	
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)								140110			2	
Upstream signal (m)								139			114	
pX, platoon unblocked								100			117	
vC, conflicting volume	1948	2650	880	1760	2613	673	1140			1011		
vC1, stage 1 conf vol	1468	1468	000	1093	1093	013	1170			1011		
vC2, stage 2 conf vol	480	1181		668	1520							
vCu, unblocked vol	1948	2650	880	1760	2613	673	1140			1011		
	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, single (s)	6.5	5.5	0.9	6.5	5.5	0.9	4.1			4.1		
tC, 2 stage (s)			2.2			2.2	2.2			2.2		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	43	0	89	100	100	100	73			64		
cM capacity (veh/h)	42	4	145	83	4	297	314			525		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	45	0	85	373	363	190	319	262				
Volume Left	24	0	85	0	0	190	0	0				
Volume Right	16	0	0	0	176	0	0	103				
cSH	24	1700	314	1700	1700	525	1700	1700				
Volume to Capacity	1.88	0.00	0.27	0.22	0.21	0.36	0.19	0.15				
Queue Length 95th (m)	42.8	0.0	8.2	0.0	0.0	12.4	0.0	0.0				
Control Delay (s)	764.2	0.0	20.7	0.0	0.0	15.7	0.0	0.0				
Lane LOS	F	Α	С			С						
Approach Delay (s)	764.2	0.0	2.1			3.9						
Approach LOS	F	Α										
Intersection Summary												
Average Delay			23.9									
Intersection Capacity Utiliza	ation		42.4%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

Typical Weekend Mitigated Future Background Conditions

Intersection Sign configuration not allowed in HCM analysis.

	-	•	•	•	4	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	A	7	ች	^	¥	
Traffic Volume (veh/h)	770	244	133	597	72	108
Future Volume (Veh/h)	770	244	133	597	72	108
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	837	265	145	649	78	117
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	TWLTL			TWLTL		
Median storage veh)	2			2		
Upstream signal (m)	94			-		
pX, platoon unblocked	<u> </u>		0.70		0.70	0.70
vC, conflicting volume			1102		1452	837
vC1, stage 1 conf vol			1102		837	00.
vC2, stage 2 conf vol					614	
vCu, unblocked vol			928		1430	548
tC, single (s)			4.1		6.8	6.9
tC, 2 stage (s)					5.8	0.0
tF (s)			2.2		3.5	3.3
p0 queue free %			72		70	65
cM capacity (veh/h)			519		264	338
	ED 4	ED 0		MD 0		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	NB 1
Volume Total	837	265	145	324	324	195
Volume Left	0	0	145	0	0	78
Volume Right	0	265	0	0	0	117
cSH	1700	1700	519	1700	1700	304
Volume to Capacity	0.49	0.16	0.28	0.19	0.19	0.64
Queue Length 95th (m)	0.0	0.0	8.6	0.0	0.0	31.3
Control Delay (s)	0.0	0.0	14.6	0.0	0.0	35.8
Lane LOS			В			E
Approach Delay (s)	0.0		2.7			35.8
Approach LOS						Е
Intersection Summary						
Average Delay			4.4			
Intersection Capacity Utiliz	ation		68.5%	IC	U Level o	of Service
Analysis Period (min)			15			
			- 10			

	•	•	4	†	>	ļ	
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	4	7	7	ħβ	ሻ	↑ ↑	
Traffic Volume (vph)	1	112	16	468	193	660	
Future Volume (vph)	1	112	16	468	193	660	
Lane Group Flow (vph)	42	122	17	601	210	834	
Turn Type	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases	8			2	1	6	
Permitted Phases		8	2		6		
Detector Phase	8	8	2	2	1	6	
Switch Phase							
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4	
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4	
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%	
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4	
Lead/Lag			Lag	Lag	Lead		
Lead-Lag Optimize?							
Recall Mode	None	None	None	None	None	None	
v/c Ratio	0.13	0.32	0.07	0.46	0.34	0.39	
Control Delay	22.1	7.9	13.2	14.2	5.4	6.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	22.1	7.9	13.2	14.2	5.4	6.5	
Queue Length 50th (m)	3.7	0.0	1.1	23.4	7.0	21.2	
Queue Length 95th (m)	11.5	11.8	4.6	37.1	13.8	32.4	
Internal Link Dist (m)	32.2		00.0	90.4	05.0	112.9	
Turn Bay Length (m)	000	000	20.0	4007	25.0	0500	
Base Capacity (vph)	632	639	359	1987	648	2566	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0		0	0	0	0	
Storage Cap Reductn	0.07	0 0.19	0.05	0 20	0.32	0.33	
Reduced v/c Ratio	0.07	0.19	0.05	0.30	0.32	0.33	
Intersection Summary							
Cycle Length: 77.1	^						
Actuated Cycle Length: 53.9	9						
Natural Cycle: 75	P C I						
Control Type: Actuated-Uno	coordinated						
Splits and Phases: 73: Fa	allsview Blv	d & Hiltor	n Lot/Fall	sview Lot			
\	[†] ø₂						
Ø1							
13 s 37.4	† S						
₽ 06							

	۶	→	•	•	—	4	•	†	~	\		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	7	ħβ		7	∱ ∱	
Traffic Volume (vph)	0	0	0	38	1	112	16	468	85	193	660	108
Future Volume (vph)	0	0	0	38	1	112	16	468	85	193	660	108
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Lane Util. Factor					1.00	1.00	1.00	0.95		1.00	0.95	
Frt					1.00	0.85	1.00	0.98		1.00	0.98	
Flt Protected					0.95	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)					1650	1471	1644	3213		1644	3219	
FIt Permitted					0.95	1.00	0.34	1.00		0.37	1.00	
Satd. Flow (perm)					1650	1471	585	3213		645	3219	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0.02	41	1	122	17	509	92	210	717	117
RTOR Reduction (vph)	0	0	0	0	0	105	0	19	0	0	15	0
Lane Group Flow (vph)	0	0	0	0	42	17	17	582	0	210	819	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	0 70	0 70	0 70	Perm	NA	Perm	Perm	NA	0 70	pm+pt	NA	0 70
Protected Phases				r Cilli	8	r C illi	I GIIII	2		ριτι - ρι	6	
Permitted Phases				8	O	8	2	2		6	U	
Actuated Green, G (s)				O	7.6	7.6	21.6	21.6		33.6	33.6	
Effective Green, g (s)					7.6	7.6	21.6	21.6		33.6	33.6	
					0.14	0.14	0.39	0.39		0.61	0.61	
Actuated g/C Ratio					6.7	6.7	7.4	7.4		3.0	7.4	
Clearance Time (s)					4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)												
Lane Grp Cap (vph)					226	202	228	1254		554	1955	
v/s Ratio Prot					0.00	0.04	0.00	0.18		0.06	c0.25	
v/s Ratio Perm					0.03	0.01	0.03	0.40		0.17	0.40	
v/c Ratio					0.19	0.08	0.07	0.46		0.38	0.42	
Uniform Delay, d1					21.1	20.8	10.6	12.5		5.0	5.7	
Progression Factor					1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2					0.5	0.2	0.2	0.4		0.6	0.2	
Delay (s)					21.7	21.1	10.8	12.9		5.6	5.9	
Level of Service					С	С	В	В		Α	Α	
Approach Delay (s)		0.0			21.2			12.9			5.8	
Approach LOS		Α			С			В			Α	
Intersection Summary												
HCM 2000 Control Delay			9.6	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacit	ty ratio		0.41									
Actuated Cycle Length (s)			55.3		um of los				17.1			
Intersection Capacity Utilization	on		66.5%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	•	•	4	†	>	ţ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations		4		ર્ન	7	ሻ	∱ }	Ţ	∱ }
Traffic Volume (vph)	34	14	87	59	318	54	934	304	1077
Future Volume (vph)	34	14	87	59	318	54	934	304	1077
Lane Group Flow (vph)	0	68	0	159	346	59	1086	330	1224
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA
Protected Phases		4		8		5	2	1	6
Permitted Phases	4		8		8	2		6	
Detector Phase	4	4	8	8	8	5	2	1	6
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0	17.0	47.0	17.0	47.0
Total Split (%)	36.0%	36.0%	36.0%	36.0%	36.0%	17.0%	47.0%	17.0%	47.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0
Lead/Lag						Lead	Lag	Lead	Lag
Lead-Lag Optimize?							J		
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max
v/c Ratio		0.33		0.70	0.69	0.20	0.73	0.69	0.61
Control Delay		31.1		54.9	13.7	7.4	26.8	29.6	10.4
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		31.1		54.9	13.7	7.4	26.8	29.6	10.4
Queue Length 50th (m)		8.9		29.5	6.2	4.1	99.6	36.4	50.1
Queue Length 95th (m)		19.4		46.2	30.8	m3.1	m115.8	m#73.3	72.5
Internal Link Dist (m)		100.0		3.9			71.5		31.5
Turn Bay Length (m)						65.0		140.0	
Base Capacity (vph)		350		390	645	425	1478	476	2016
Starvation Cap Reductn		0		0	0	0	0	0	0
Spillback Cap Reductn		0		0	0	0	0	0	0
Storage Cap Reductn		0		0	0	0	0	0	0
Reduced v/c Ratio		0.19		0.41	0.54	0.14	0.73	0.69	0.61

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 76: Stanley Ave & Dixon St

02-14-2023

Synchro 11 Report

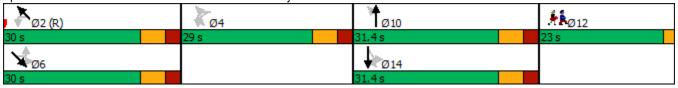
		→	•	•	+	4	4	†	<i>></i>	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7	ሻ	ħβ		ች	ħβ	
Traffic Volume (vph)	34	14	15	87	59	318	54	934	65	304	1077	49
Future Volume (vph)	34	14	15	87	59	318	54	934	65	304	1077	49
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.97			1.00	0.85	1.00	0.99		1.00	0.99	
Flt Protected		0.97			0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1631			1680	1471	1644	3256		1644	3267	
Flt Permitted		0.70			0.78	1.00	0.23	1.00		0.15	1.00	
Satd. Flow (perm)		1171			1346	1471	397	3256		253	3267	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	37	15	16	95	64	346	59	1015	71	330	1171	53
RTOR Reduction (vph)	0	13	0	0	0	257	0	5	0	0	2	0
Lane Group Flow (vph)	0	55	0	0	159	89	59	1081	0	330	1222	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		16.8			16.8	16.8	50.5	45.3		69.2	61.0	
Effective Green, g (s)		16.8			16.8	16.8	50.5	45.3		69.2	61.0	
Actuated g/C Ratio		0.17			0.17	0.17	0.50	0.45		0.69	0.61	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		196			226	247	265	1474		465	1992	
v/s Ratio Prot							0.01	0.33		c0.15	0.37	
v/s Ratio Perm		0.05			c0.12	0.06	0.10			c0.34		
v/c Ratio		0.28			0.70	0.36	0.22	0.73		0.71	0.61	
Uniform Delay, d1		36.3			39.3	36.8	12.7	22.4		17.1	12.2	
Progression Factor		1.00			1.00	1.00	0.95	1.04		1.59	0.67	
Incremental Delay, d2		0.5			8.5	0.5	0.1	1.9		3.9	1.3	
Delay (s)		36.8			47.7	37.4	12.2	25.3		31.1	9.4	
Level of Service		D			D	D	В	С		С	Α	
Approach Delay (s)		36.8			40.6			24.6			14.0	
Approach LOS		D			D			С			В	
Intersection Summary							•					
HCM 2000 Control Delay			22.3	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity	y ratio		0.73	_					4			
Actuated Cycle Length (s)			100.0		um of los				17.0			
Intersection Capacity Utilizatio	n		75.8%	IC	CU Level	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	~	•	*_	ሻ	†	>	Ļ	ļ	•	\	\mathbf{x}	×
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWT
Lane Configurations		Ž	Ž.		4			4		ă	ĵ»	4
Traffic Volume (vph)	16	5	274	103	32	7	16	17	1	203	206	15
Future Volume (vph)	16	5	274	103	32	7	16	17	1	203	206	15
Lane Group Flow (vph)	0	22	357	0	163	0	0	44	0	222	256	44
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	NA
Protected Phases					10			14			6	2
Permitted Phases	4	4	4	10		14	14		6	6		
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	29.0	29.0	29.0	31.4	31.4	31.4	31.4	31.4	30.0	30.0	30.0	30.0
Total Split (%)	25.6%	25.6%	25.6%	27.7%	27.7%	27.7%	27.7%	27.7%	26.5%	26.5%	26.5%	26.5%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	6.8
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.11	1.27		0.59			0.15		0.88	0.75	0.14
Control Delay		39.2	183.3		49.6			36.9		77.7	57.6	38.4
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Delay		39.2	183.3		49.6			36.9		77.7	57.6	38.4
Queue Length 50th (m)		4.0	~99.8		32.7			7.8		48.1	53.8	8.0
Queue Length 95th (m)		11.2	#156.1		55.1			17.7		#91.3	#89.6	18.0
Internal Link Dist (m)		102.7			229.8			295.5			298.1	208.5
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		205	282		278			297		252	340	317
Starvation Cap Reductn		0	0		0			0		0	0	0
Spillback Cap Reductn		0	0		0			0		0	0	0
Storage Cap Reductn		0	0		0			0		0	0	0
Reduced v/c Ratio		0.11	1.27		0.59			0.15		0.88	0.75	0.14

Cycle Length: 113.4 Actuated Cycle Length: 113.4

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 100 Control Type: Pretimed


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 78: Allandale Ave & Main St & Murray St

Lane Group	Ø12
LaneConfigurations	
Traffic Volume (vph)	
Future Volume (vph)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	12
Permitted Phases	
Minimum Split (s)	23.0
Total Split (s)	23.0
Total Split (%)	20%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	
mission community	

	4	•	*_	•	ሻ	†	~	۱,4	/	Ļ	+	≱ J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		Ä	Ž.			4					4	
Traffic Volume (vph)	16	5	274	54	103	32	10	5	7	16	17	1
Future Volume (vph)	16	5	274	54	103	32	10	5	7	16	17	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.99					1.00	
Flt Protected		0.95	1.00			0.97					0.97	
Satd. Flow (prot)		1612	1442			1619					1645	
Flt Permitted		0.62	1.00			0.77					0.81	
Satd. Flow (perm)		1051	1442			1284					1370	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	5	298	59	112	35	11	5	8	17	18	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	22	357	0	0	163	0	0	0	0	43	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		22.2	22.2			24.6					24.6	
Effective Green, g (s)		22.2	22.2			24.6					24.6	
Actuated g/C Ratio		0.20	0.20			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		205	282			278					297	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.25			c0.13					0.03	
v/c Ratio		0.11	1.27			0.59					0.15	
Uniform Delay, d1		37.5	45.6			39.8					35.9	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.1	144.8			8.8					1.0	
Delay (s)		38.5	190.4			48.6					36.9	
Level of Service		D	F			D					D	
Approach Delay (s)		181.6				48.6					36.9	
Approach LOS		F				D					D	
Intersection Summary												
HCM 2000 Control Delay			100.7	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ity ratio		0.69									
Actuated Cycle Length (s)			113.4		um of lost				22.4			
Intersection Capacity Utilizati	on		69.9%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\	\mathbf{x}	>	×	*	4
Movement	SEL2	SEL	SET	SER	NWT	NWR	NWR2
Lane Configurations		ă	f)		4		
Traffic Volume (vph)	1	203	206	29	15	11	15
Future Volume (vph)	1	203	206	29	15	11	15
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8		6.8		
Lane Util. Factor		1.00	1.00		1.00		
Frt		1.00	0.98		0.91		
Flt Protected		0.95	1.00		1.00		
Satd. Flow (prot)		1612	1665		1551		
Flt Permitted		0.73	1.00		1.00		
Satd. Flow (perm)		1236	1665		1551		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	221	224	32	16	12	16
RTOR Reduction (vph)	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	222	256	0	44	0	0
Turn Type	Perm	Perm	NA		NA		
Protected Phases			6		2		
Permitted Phases	6	6					
Actuated Green, G (s)		23.2	23.2		23.2		
Effective Green, g (s)		23.2	23.2		23.2		
Actuated g/C Ratio		0.20	0.20		0.20		
Clearance Time (s)		6.8	6.8		6.8		
Lane Grp Cap (vph)		252	340		317		
v/s Ratio Prot			0.15		0.03		
v/s Ratio Perm		c0.18					
v/c Ratio		0.88	0.75		0.14		
Uniform Delay, d1		43.8	42.4		36.9		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		32.8	14.3		0.9		
Delay (s)		76.5	56.7		37.8		
Level of Service		Е	Е		D		
Approach Delay (s)			65.9		37.8		
Approach LOS			Е		D		
Intersection Summary							

	-	•	•	←	4	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			†	W	
Traffic Volume (veh/h)	882	0	0	439	62	37
Future Volume (Veh/h)	882	0	0	439	62	37
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	959	0	0	477	67	40
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)	65			64		
pX, platoon unblocked					0.80	
vC, conflicting volume			959		1436	480
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			959		1420	480
tC, single (s)			4.1		6.8	6.9
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			100		35	93
cM capacity (veh/h)			725		104	538
Direction, Lane #	EB 1	EB 2	WB 1	NB 1		
Volume Total	480	480	477	107		
Volume Left	0	0	0	67		
Volume Right	0	0	0	40		
cSH	1700	1700	1700	149		
Volume to Capacity	0.28	0.28	0.28	0.72		
Queue Length 95th (m)	0.0	0.0	0.0	32.3		
Control Delay (s)	0.0	0.0	0.0	75.0		
Lane LOS				F		
Approach Delay (s)	0.0		0.0	75.0		
Approach LOS				F		
Intersection Summary						
Average Delay			5.2			
Intersection Capacity Utiliza	ation		39.3%	IC	U Level o	of Service
Analysis Period (min)			15			

	•	→	•	•	+	4	1	†	<i>></i>	\		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	1	14	0	0	16	146	0	0	0	49	0	1
Future Volume (Veh/h)	1	14	0	0	16	146	0	0	0	49	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	15	0	0	17	159	0	0	0	53	0	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					124							
pX, platoon unblocked												
vC, conflicting volume	176			15			114	193	15	114	114	96
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	176			15			114	193	15	114	114	96
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	100	94	100	100
cM capacity (veh/h)	1412			1616			866	705	1070	868	780	965
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	16	176	0	54								
Volume Left	1	0	0	53								
Volume Right	0	159	0	1								
cSH	1412	1616	1700	870								
Volume to Capacity	0.00	0.00	0.39	0.06								
Queue Length 95th (m)	0.0	0.0	0.0	1.5								
Control Delay (s)	0.5	0.0	0.0	9.4								
Lane LOS	Α		Α	Α								
Approach Delay (s)	0.5	0.0	0.0	9.4								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utilizat	tion		20.7%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

our charmey / tre or	i anting		.,						
	٠	\rightarrow	4	†	↓	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	7	7	7	^	∱ β				
Traffic Volume (veh/h)	0	0	0	1052	1287	0			
Future Volume (Veh/h)	0	0	0	1052	1287	0			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0.02	0.02	0.02	1143	1399	0			
Pedestrians				1110	1000				
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)				Mono	None				
Median type				None	None				
Median storage veh)				407	05				
Upstream signal (m)	0.00	0 77	0 ==	127	95				
pX, platoon unblocked	0.88	0.77	0.77						
vC, conflicting volume	1970	700	1399						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	689	13	921						
tC, single (s)	6.8	6.9	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	100	100	100						
cM capacity (veh/h)	339	825	577						
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2		
Volume Total	0	0	0	572	572	933	466		
Volume Left	0	0	0	0	0	0	0		
Volume Right	0	0	0	0	0	0	0		
cSH	1700	1700	1700	1700	1700	1700	1700		
Volume to Capacity	0.00	0.00	0.00	0.34	0.34	0.55	0.27		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Lane LOS	A	A	0.0	0.0	0.0	0.0	0.0		
Approach Delay (s)	0.0		0.0			0.0			
Approach LOS	Α		0.0			0.0			
Intersection Summary									
Average Delay			0.0						
Intersection Capacity Utiliza	ation		42.0%	ıc		of Service		Α	
	auOH		15	IC	O LEVEL	DI OCIVICE		^	
Analysis Period (min)			10						

	•	→	—	1	/	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		41∱	∱ ∱		ሻ	7
Traffic Volume (veh/h)	0	332	941	0	0	0
Future Volume (Veh/h)	0	332	941	0	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	361	1023	0	0	0
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)		88	33			
pX, platoon unblocked						
vC, conflicting volume	1023				1204	512
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1023				1204	512
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	100
cM capacity (veh/h)	686				180	513
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2
Volume Total	120	241	682	341	0	0
Volume Left	0	0	002	0	0	0
Volume Right	0	0	0	0	0	0
cSH	686	1700	1700	1700	1700	1700
Volume to Capacity	0.00	0.14	0.40	0.20	0.11	0.32
Queue Length 95th (m)	0.00	0.14	0.40	0.20	0.0	0.0
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
• • • • • • • • • • • • • • • • • • • •	0.0	0.0	0.0	0.0	0.0 A	Α
Lane LOS	0.0		0.0			А
Approach Delay (s) Approach LOS	0.0		0.0		0.0 A	
Approach LOS					А	
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliza	tion		31.6%	IC	U Level o	of Service
Analysis Period (min)			15			

	•	•	•	•	†	↓
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	ሻ	7	4	ሻ	†	†
Traffic Volume (vph)	263	149	26	143	160	144
Future Volume (vph)	263	149	26	143	160	144
Lane Group Flow (vph)	286	162	44	155	174	549
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	5.5	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.82	0.31	0.09	0.41	0.19	0.72
Control Delay	43.2	5.2	13.0	10.4	9.2	17.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	2.1
Total Delay	43.2	5.2	13.0	10.4	9.2	19.9
Queue Length 50th (m)	31.6	0.0	2.4	8.7	11.1	37.0
Queue Length 95th (m)	#67.6	11.6	8.9	16.2	20.2	#86.9
Internal Link Dist (m)			8.0		230.0	55.6
Turn Bay Length (m)	50.0					
Base Capacity (vph)	377	554	504	376	939	771
Starvation Cap Reductn	0	0	0	0	0	110
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.76	0.29	0.09	0.41	0.19	0.83

Cycle Length: 67.3

Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Fallsview Blvd & Embassy Suites

	•	→	•	•	←	•	4	†	/	\	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť		7		4		¥	†		¥	†	
Traffic Volume (vph)	263	0	149	0	26	15	143	160	0	0	144	361
Future Volume (vph)	263	0	149	0	26	15	143	160	0	0	144	361
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.89	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1545	
Flt Permitted	0.73		1.00		1.00		0.24	1.00			1.00	
Satd. Flow (perm)	1260		1471		1646		418	1731			1545	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	286	0	162	0	28	16	155	174	0	0	157	392
RTOR Reduction (vph)	0	0	117	0	12	0	0	0	0	0	126	0
Lane Group Flow (vph)	286	0	45	0	32	0	155	174	0	0	423	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases					8		5	2			6	
Permitted Phases	4		4	8			2			6		
Actuated Green, G (s)	18.7		18.7		18.7		36.3	36.3			27.4	
Effective Green, g (s)	18.7		18.7		18.7		36.3	36.3			27.4	
Actuated g/C Ratio	0.28		0.28		0.28		0.54	0.54			0.41	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	350		408		457		332	933			629	
v/s Ratio Prot					0.02		c0.04	0.10			c0.27	
v/s Ratio Perm	c0.23		0.03				0.21					
v/c Ratio	0.82		0.11		0.07		0.47	0.19			0.67	
Uniform Delay, d1	22.7		18.1		17.9		9.8	7.9			16.3	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	14.4		0.2		0.1		1.4	0.4			5.7	
Delay (s)	37.1		18.3		18.0		11.2	8.4			22.0	
Level of Service	D		В		В		В	Α			С	
Approach Delay (s)		30.3			18.0			9.7			22.0	
Approach LOS		С			В			Α			С	
Intersection Summary												
HCM 2000 Control Delay			21.6	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.70									
Actuated Cycle Length (s)			67.3		um of lost				15.3			
Intersection Capacity Utiliza	ation		75.2%	IC	U Level of	of Service	e		D			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 11 Report Page 2

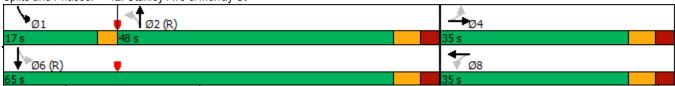
	۶	→	•	•	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	Ţ	£	7	£	ሻ	∱ ∱	7	∱ }	
Traffic Volume (vph)	67	209	149	130	182	912	407	1029	
Future Volume (vph)	67	209	149	130	182	912	407	1029	
Lane Group Flow (vph)	73	342	162	381	198	1206	442	1261	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	24.0	24.0	10.0	28.0	
Total Split (s)	35.0	35.0	35.0	35.0	48.0	48.0	17.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	48.0%	48.0%	17.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	0.54	0.73	0.99	0.78	1.25	0.89	1.45	0.66	
Control Delay	47.1	41.0	105.1	38.1	164.7	20.3	245.0	15.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	47.1	41.0	105.1	38.1	164.7	20.3	245.0	15.9	
Queue Length 50th (m)	11.9	55.5	30.8	53.1	~49.4	27.9	~103.1	80.8	
Queue Length 95th (m)	#27.7	87.2	#70.6	#95.5	m#78.7	#148.3	#162.3	103.3	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	140	478	169	500	159	1353	305	1908	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.52	0.72	0.96	0.76	1.25	0.89	1.45	0.66	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80


Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 12: Stanley Ave & Murray St

	<u>viaitay (</u>		_		←	4	4	*	_	ι.	ı	ر
		→	*	₩	_	`	7	ı	~	*	+	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		7	₽		*	ħβ		ሻ	Φβ	
Traffic Volume (vph)	67	209	106	149	130	221	182	912	198	407	1029	132
Future Volume (vph)	67	209	106	149	130	221	182	912	198	407	1029	132
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	0.91		1.00	0.97		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1643		1644	1567		1644	3200		1644	3232	
Flt Permitted	0.29	1.00		0.35	1.00		0.22	1.00		0.09	1.00	
Satd. Flow (perm)	499	1643		605	1567		381	3200		155	3232	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	73	227	115	162	141	240	198	991	215	442	1118	143
RTOR Reduction (vph)	0	18	0	0	62	0	0	18	0	0	10	0
Lane Group Flow (vph)	73	324	0	162	319	0	198	1188	0	442	1251	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	27.2	27.2		27.2	27.2		41.8	41.8		58.8	58.8	
Effective Green, g (s)	27.2	27.2		27.2	27.2		41.8	41.8		58.8	58.8	
Actuated g/C Ratio	0.27	0.27		0.27	0.27		0.42	0.42		0.59	0.59	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	135	446		164	426		159	1337		299	1900	
v/s Ratio Prot		0.20			0.20			0.37		c0.21	0.39	
v/s Ratio Perm	0.15	0.20		c0.27	0.20		0.52	0.0.		c0.66	0.00	
v/c Ratio	0.54	0.73		0.99	0.75		1.25	0.89		1.48	0.66	
Uniform Delay, d1	31.1	33.0		36.2	33.3		29.1	26.9		29.9	13.8	
Progression Factor	1.00	1.00		1.00	1.00		0.49	0.46		1.00	1.00	
Incremental Delay, d2	4.4	5.8		66.0	7.1		142.5	6.8		232.4	1.8	
Delay (s)	35.4	38.8		102.3	40.4		156.8	19.3		262.3	15.7	
Level of Service	D	D		F	D		F	В		F	В	
Approach Delay (s)		38.2		•	58.8		•	38.7		·	79.7	
Approach LOS		D			E			D			E	
Intersection Summary												
HCM 2000 Control Delay			58.5	H	CM 2000	Level of	Service		Ε			
HCM 2000 Volume to Capac	city ratio		1.36									
Actuated Cycle Length (s)			100.0	Sı	um of lost	time (s)			17.0			
Intersection Capacity Utiliza	tion		108.4%	IC	U Level o	of Service	·		G			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 11 Report Page 4

Page 5

	۶	→	•	←	•	1	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	Ť	↑ ↑	¥	†	7	¥	↑ ↑	¥	↑ ↑	,
Traffic Volume (vph)	88	500	134	260	165	115	334	170	445	
Future Volume (vph)	88	500	134	260	165	115	334	170	445	
Lane Group Flow (vph)	96	773	146	283	179	125	666	185	543	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	5.5	20.0	7.0	20.0	20.0	5.5	20.0	7.0	20.0	
Minimum Split (s)	10.0	33.3	10.0	33.3	33.3	10.0	42.6	10.0	42.6	
Total Split (s)	10.0	36.9	10.0	36.9	36.9	12.0	43.0	12.0	43.0	
Total Split (%)	9.8%	36.2%	9.8%	36.2%	36.2%	11.8%	42.2%	11.8%	42.2%	
Yellow Time (s)	3.0	4.1	3.0	4.1	4.1	3.0	4.1	3.0	4.1	
All-Red Time (s)	0.0	2.2	0.0	2.2	2.2	0.0	2.5	0.0	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.3	3.0	6.3	6.3	3.0	6.6	3.0	6.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	Max	None	Max	
v/c Ratio	0.26	0.84	0.70	0.54	0.32	0.30	0.52	0.52	0.45	
Control Delay	19.7	39.6	39.0	34.2	5.8	14.9	17.5	19.0	24.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	19.7	39.6	39.0	34.2	5.8	14.9	17.5	19.0	24.7	
Queue Length 50th (m)	11.2	67.4	17.6	46.6	0.0	12.2	34.3	18.8	41.1	
Queue Length 95th (m)	21.2	90.0	#34.8	72.2	14.8	22.4	51.9	32.2	57.1	
Internal Link Dist (m)		39.6		70.0			112.9		294.7	
Turn Bay Length (m)	30.0		35.0			10.0		65.0		
Base Capacity (vph)	375	1021	208	538	580	425	1277	364	1218	
Starvation Cap Reductn	0	5	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.26	0.76	0.70	0.53	0.31	0.29	0.52	0.51	0.45	

Intersection Summary

Cycle Length: 101.9 Actuated Cycle Length: 98.6 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 13: Fallsview Blvd & Murray St

Synchro 11 Report 02-14-2023 TTW_Hennepin_2023-01-09-v0.1_HO.syn

	٠	→	•	•	-	•	•	†	~	/	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	↑ ↑		7	†	7	7	∱ }		7	∱ }	
Traffic Volume (vph)	88	500	212	134	260	165	115	334	279	170	445	54
Future Volume (vph)	88	500	212	134	260	165	115	334	279	170	445	54
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.96		1.00	1.00	0.85	1.00	0.93		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	3141		1644	1731	1471	1644	3064		1644	3234	
Flt Permitted	0.48	1.00		0.17	1.00	1.00	0.39	1.00		0.30	1.00	
Satd. Flow (perm)	828	3141		287	1731	1471	676	3064		522	3234	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	96	543	230	146	283	179	125	363	303	185	484	59
RTOR Reduction (vph)	0	47	0	0	0	125	0	145	0	0	9	0
Lane Group Flow (vph)	96	726	0	146	283	54	125	521	0	185	534	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8	. 0	5	2		1	6	
Permitted Phases	4	•		8	•	8	2	=		6	· ·	
Actuated Green, G (s)	33.7	28.2		36.7	29.7	29.7	44.8	36.5		45.6	36.9	
Effective Green, g (s)	33.7	28.2		36.7	29.7	29.7	44.8	36.5		45.6	36.9	
Actuated g/C Ratio	0.34	0.28		0.37	0.30	0.30	0.45	0.37		0.46	0.37	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	326	892		201	517	439	385	1126		338	1201	
v/s Ratio Prot	0.02	c0.23		c0.05	0.16	100	0.03	0.17		c0.05	0.17	
v/s Ratio Perm	0.08	00.20		0.22	0.10	0.04	0.12	0.11		c0.20	0.11	
v/c Ratio	0.29	0.81		0.73	0.55	0.12	0.32	0.46		0.55	0.44	
Uniform Delay, d1	23.2	33.1		23.3	29.2	25.3	16.3	23.9		16.9	23.5	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	5.7		12.3	1.2	0.1	0.5	1.4		1.8	1.2	
Delay (s)	23.7	38.8		35.6	30.4	25.4	16.8	25.3		18.7	24.7	
Level of Service	C	D		D	С	C	В	C		В	C	
Approach Delay (s)		37.2			30.2		_	24.0		_	23.2	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			28.9	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.66									
Actuated Cycle Length (s)			99.3	S	um of los	t time (s)			18.9			
Intersection Capacity Utiliza	ation		77.8%	IC	U Level	of Service	е		D			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 11 Report Page 6

	•	→	•	←	•	4	†	/	ļ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	ħ	£	7	†	7	*	∱ ∱	7	∱ î≽
Traffic Volume (vph)	265	304	75	394	69	216	843	158	855
Future Volume (vph)	265	304	75	394	69	216	843	158	855
Lane Group Flow (vph)	288	491	82	428	75	235	1062	172	1197
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases		4		8			2	1	6
Permitted Phases	4		8		8	2		6	
Detector Phase	4	4	8	8	8	2	2	1	6
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0
Total Split (s)	39.0	39.0	39.0	39.0	39.0	50.0	50.0	11.0	61.0
Total Split (%)	39.0%	39.0%	39.0%	39.0%	39.0%	50.0%	50.0%	11.0%	61.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0
Lead/Lag						Lag	Lag	Lead	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max
v/c Ratio	1.83	0.90	0.73	0.77	0.14	1.60	0.76	0.68	0.69
Control Delay	424.1	52.9	68.7	41.8	6.5	323.4	27.9	30.6	26.5
Queue Delay	0.0	0.0	0.0	7.2	0.0	0.0	0.0	0.0	0.0
Total Delay	424.1	52.9	68.7	49.0	6.5	323.4	27.9	30.6	26.5
Queue Length 50th (m)	~84.8	86.3	14.0	74.4	0.0	~65.4	87.7	21.6	119.8
Queue Length 95th (m)	#134.3	#145.8	#39.5	#118.5	9.3	#84.2	113.0	#45.1	142.7
Internal Link Dist (m)		213.7		94.8			227.1		103.4
Turn Bay Length (m)	75.0		25.0		25.0	25.0		40.0	
Base Capacity (vph)	157	544	112	553	522	147	1399	255	1741
Starvation Cap Reductn	0	0	0	88	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.83	0.90	0.73	0.92	0.14	1.60	0.76	0.67	0.69

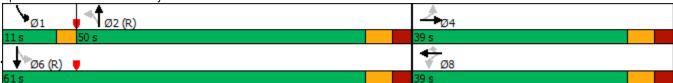
Cycle Length: 100

Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 15: Stanley Ave & Dunn St

	٠	→	•	•	←	4	1	†	~	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f.		ሻ	^	7	ሻ	↑ ↑		ሻ	† }	
Traffic Volume (vph)	265	304	148	75	394	69	216	843	134	158	855	247
Future Volume (vph)	265	304	148	75	394	69	216	843	134	158	855	247
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1645		1644	1731	1471	1644	3220		1644	3178	
Flt Permitted	0.29	1.00		0.20	1.00	1.00	0.20	1.00		0.14	1.00	
Satd. Flow (perm)	494	1645		353	1731	1471	342	3220		248	3178	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	288	330	161	82	428	75	235	916	146	172	929	268
RTOR Reduction (vph)	0	18	0	0	0	51	0	13	0	0	27	0
Lane Group Flow (vph)	288	473	0	82	428	24	235	1049	0	172	1170	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	32.0	32.0		32.0	32.0	32.0	43.1	43.1		54.0	54.0	
Effective Green, g (s)	32.0	32.0		32.0	32.0	32.0	43.1	43.1		54.0	54.0	
Actuated g/C Ratio	0.32	0.32		0.32	0.32	0.32	0.43	0.43		0.54	0.54	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	158	526		112	553	470	147	1387		244	1716	
v/s Ratio Prot		0.29			0.25			0.33		0.06	c0.37	
v/s Ratio Perm	c0.58			0.23		0.02	c0.69			0.33		
v/c Ratio	1.82	0.90		0.73	0.77	0.05	1.60	0.76		0.70	0.68	
Uniform Delay, d1	34.0	32.5		30.2	30.7	23.5	28.4	24.0		15.5	16.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.73	1.52	
Incremental Delay, d2	394.0	18.1		21.7	6.7	0.0	298.9	3.9		7.6	1.9	
Delay (s)	428.0	50.6		51.9	37.4	23.5	327.3	27.9		34.6	27.3	
Level of Service	F	D		D	D	С	F	С		С	С	
Approach Delay (s)		190.1			37.7			82.2			28.2	
Approach LOS		F			D			F			С	
Intersection Summary												
HCM 2000 Control Delay			78.2	H	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	acity ratio		1.60									
Actuated Cycle Length (s)			100.0		um of lost				17.0			
Intersection Capacity Utiliza	ation		109.0%	IC	U Level	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 11 Report Page 8

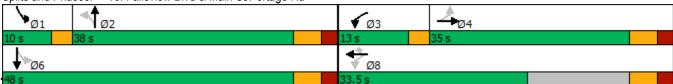
	۶	→	•	←	•	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	7	£	7	†	7	7	£	*	£	
Traffic Volume (vph)	262	154	183	267	448	21	433	60	260	
Future Volume (vph)	262	154	183	267	448	21	433	60	260	
Lane Group Flow (vph)	285	263	199	290	487	23	575	65	320	
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	
Total Split (s)	35.0	35.0	13.0	33.5	33.5	38.0	38.0	10.0	48.0	
Total Split (%)	36.5%	36.5%	13.5%	34.9%	34.9%	39.6%	39.6%	10.4%	50.0%	
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	
Lead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Max	Max	None	Max	
v/c Ratio	0.95	0.52	0.45	0.39	0.59	0.07	0.96	0.31	0.43	
Control Delay	76.6	28.8	19.0	20.6	9.5	23.0	61.2	18.2	20.6	
Queue Delay	0.0	0.0	0.0	0.9	0.7	0.0	43.2	0.0	0.0	
Total Delay	76.6	28.8	19.0	21.5	10.2	23.0	104.4	18.2	20.6	
Queue Length 50th (m)	51.7	35.5	21.5	35.7	17.5	2.9	~113.0	6.4	39.1	
Queue Length 95th (m)	#101.3	59.2	35.9	56.1	47.6	8.5	#176.5	13.5	61.3	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	299	509	449	751	827	343	597	209	743	
Starvation Cap Reductn	0	0	0	240	117	0	180	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.95	0.52	0.44	0.57	0.69	0.07	1.38	0.31	0.43	

Cycle Length: 96

Actuated Cycle Length: 95.7

Natural Cycle: 90

Control Type: Actuated-Uncoordinated


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 16: Fallsview Blvd & Main St/Portage Rd

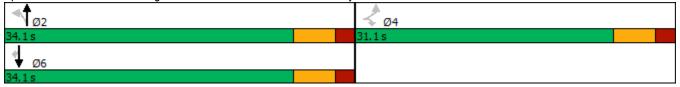
02-14-2023

Synchro 11 Report

	۶	→	•	•	←	•	1	†	~	\	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.		7	†	7	7	ĵ.		7	£	
Traffic Volume (vph)	262	154	88	183	267	448	21	433	96	60	260	34
Future Volume (vph)	262	154	88	183	267	448	21	433	96	60	260	34
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.97		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1636		1644	1731	1471	1644	1684		1644	1701	
Flt Permitted	0.58	1.00		0.44	1.00	1.00	0.57	1.00		0.13	1.00	
Satd. Flow (perm)	1008	1636		767	1731	1471	980	1684		224	1701	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	285	167	96	199	290	487	23	471	104	65	283	37
RTOR Reduction (vph)	0	22	0	0	0	191	0	8	0	0	5	0
Lane Group Flow (vph)	285	241	0	199	290	296	23	567	0	65	315	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		3	8	. 0	. 0	2		1	6	
Permitted Phases	4	•		8		8	2	_		6	· ·	
Actuated Green, G (s)	28.5	28.5		41.2	41.2	41.2	33.5	33.5		42.1	42.1	
Effective Green, g (s)	28.5	28.5		41.2	41.2	41.2	33.5	33.5		42.1	42.1	
Actuated g/C Ratio	0.30	0.30		0.43	0.43	0.43	0.35	0.35		0.44	0.44	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	298	484		416	740	629	340	585		180	743	
v/s Ratio Prot	200	0.15		0.05	0.17	020	0.0	c0.34		0.02	c0.19	
v/s Ratio Perm	c0.28	0.10		0.16	0.11	c0.20	0.02	00.01		0.14	00.10	
v/c Ratio	0.96	0.50		0.48	0.39	0.47	0.07	0.97		0.36	0.42	
Uniform Delay, d1	33.3	28.0		18.4	18.9	19.7	21.0	30.9		19.7	18.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	40.1	0.8		0.9	0.3	0.6	0.4	30.4		1.2	1.8	
Delay (s)	73.4	28.8		19.2	19.3	20.3	21.4	61.3		20.9	20.5	
Level of Service	E	C		В	В	C	С	E		C	C	
Approach Delay (s)		52.0		_	19.8			59.8			20.6	
Approach LOS		D			В			E			С	
Intersection Summary												
HCM 2000 Control Delay			36.5	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	ity ratio		0.87									
Actuated Cycle Length (s)			96.3	Sı	um of los	t time (s)			19.0			
Intersection Capacity Utilizat	ion		93.2%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	,	†	†	7
Traffic Volume (vph)	106	249	426	112	141	391
Future Volume (vph)	106	249	426	112	141	391
Lane Group Flow (vph)	115	271	463	122	153	425
Turn Type	Perm	Perm	Perm	NA	NA	Perm
Protected Phases				2	6	
Permitted Phases	4	4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	34.1	34.1	34.1	34.1
Total Split (%)	47.7%	47.7%	52.3%	52.3%	52.3%	52.3%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.20	0.39	0.89	0.16	0.19	0.47
Control Delay	14.5	4.0	41.2	12.2	12.4	3.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14.5	4.0	41.2	12.2	12.4	3.4
Queue Length 50th (m)	8.9	0.0	51.3	8.7	11.1	0.0
Queue Length 95th (m)	18.5	12.4	#105.5	17.6	21.4	13.9
Internal Link Dist (m)	9.1			121.3	66.9	
Turn Bay Length (m)	3. 1				20.0	
Base Capacity (vph)	668	758	519	787	787	901
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.17	0.36	0.89	0.16	0.19	0.47
1 toddood 1/0 I talio	0.17	3.00	5.00	5.10	5.15	0 .∓1

Cycle Length: 65.2


Actuated Cycle Length: 62.2

Natural Cycle: 70

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 17: Portage Rd & Fallsview Casino Rear Driveway

	۶	•	4	†	 	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	, j	7	ň	†	†	7			
Traffic Volume (vph)	106	249	426	112	141	391			
Future Volume (vph)	106	249	426	112	141	391			
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750			
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)	1644	1471	1644	1731	1731	1471			
Flt Permitted	0.95	1.00	0.66	1.00	1.00	1.00			
Satd. Flow (perm)	1644	1471	1142	1731	1731	1471			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	115	271	463	122	153	425			
RTOR Reduction (vph)	0	177	0	0	0	231			
Lane Group Flow (vph)	115	94	463	122	153	194			
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%			
Turn Type	Perm	Perm	Perm	NA	NA	Perm			
Protected Phases				2	6				
Permitted Phases	4	4	2			6			
Actuated Green, G (s)	21.6	21.6	28.3	28.3	28.3	28.3			
Effective Green, g (s)	21.6	21.6	28.3	28.3	28.3	28.3			
Actuated g/C Ratio	0.35	0.35	0.46	0.46	0.46	0.46			
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	571	511	520	788	788	670			
v/s Ratio Prot				0.07	0.09				
v/s Ratio Perm	c0.07	0.06	c0.41			0.13			
v/c Ratio	0.20	0.18	0.89	0.15	0.19	0.29			
Uniform Delay, d1	14.2	14.1	15.5	9.9	10.1	10.6			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.2	0.2	20.0	0.4	0.5	1.1			
Delay (s)	14.4	14.3	35.5	10.3	10.6	11.7			
Level of Service	В	В	D	В	В	В			
Approach Delay (s)	14.3			30.2	11.4				
Approach LOS	В			С	В				
Intersection Summary									
HCM 2000 Control Delay			19.2	H	CM 2000	Level of Service	e E	3	
HCM 2000 Volume to Capac	ity ratio		0.59						
Actuated Cycle Length (s)			62.1		um of lost		12.2		
Intersection Capacity Utilizat	ion		62.1%	IC	U Level of	of Service	Е	3	
Analysis Period (min)			15						
c Critical Lane Group									

oo: otariloy / tvo a it	iuiii Ot						
	۶	\rightarrow	4	†	ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		7		^	↑ ↑		
Traffic Volume (veh/h)	0	165	0	1295	1263	40	
Future Volume (Veh/h)	0	165	0	1295	1263	40	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	179	0.02	1408	1373	43	
Pedestrians		110		1 100	10.0		
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)				None	NOTIC		
• ,				55	191		
Upstream signal (m)	0.05	0.76	0.76	ວວ	191		
pX, platoon unblocked	0.85	0.76	0.76				
vC, conflicting volume	2098	708	1416				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol	0.47	•	000				
vCu, unblocked vol	647	0	908				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	78	100				
cM capacity (veh/h)	346	826	574				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	179	704	704	915	501		
Volume Left	0	0	0	0	0		
Volume Right	179	0	0	0	43		
cSH	826	1700	1700	1700	1700		
Volume to Capacity	0.22	0.41	0.41	0.54	0.29		
Queue Length 95th (m)	6.2	0.0	0.0	0.0	0.0		
Control Delay (s)	10.6	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	10.6	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.6				
Intersection Capacity Utilizat	ion		57.0%	IC	CU Level o	of Service	В
Analysis Period (min)			15				

								_				-,
	۶	-	•	•	•	•	1	Ī	_	-	¥	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	ħβ		7	∱ ⊅	
Traffic Volume (veh/h)	23	5	16	0	0	0	79	519	163	177	442	96
Future Volume (Veh/h)	23	5	16	0	0	0	79	519	163	177	442	96
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	25	5	17	0	0	0	86	564	177	192	480	104
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)								139			114	
pX, platoon unblocked												
vC, conflicting volume	1370	1829	292	1468	1792	370	584			741		
vC1, stage 1 conf vol	916	916		824	824							
vC2, stage 2 conf vol	454	913		644	968							
vCu, unblocked vol	1370	1829	292	1468	1792	370	584			741		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	6.5	5.5		6.5	5.5							
tF(s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	87	96	98	100	100	100	91			78		
cM capacity (veh/h)	198	123	710	194	160	632	1001			875		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	47	0	86	376	365	192	320	264				
Volume Left	25	0	86	0	0	192	0	0				
Volume Right	17	0	0	0	177	0	0	104				
cSH	247	1700	1001	1700	1700	875	1700	1700				
Volume to Capacity	0.19	0.00	0.09	0.22	0.21	0.22	0.19	0.16				
Queue Length 95th (m)	5.2	0.0	2.1	0.0	0.0	6.3	0.0	0.0				
Control Delay (s)	23.0	0.0	8.9	0.0	0.0	10.3	0.0	0.0				
Lane LOS	C	A	A			В	J. .	7.0				
Approach Delay (s)	23.0	0.0	0.9			2.5						
Approach LOS	C	A	0.0			•						
Intersection Summary												
Average Delay			2.3									
Intersection Capacity Utiliza	ation		45.2%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	←	•	4	†	/	ţ	
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ર્ન	7	ሻ	∱ ∱	ሻ	∱ ∱	
Traffic Volume (vph)	1	113	16	472	195	664	
Future Volume (vph)	1	113	16	472	195	664	
Lane Group Flow (vph)	43	123	17	608	212	842	
Turn Type	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases	8			2	1	6	
Permitted Phases		8	2		6		
Detector Phase	8	8	2	2	1	6	
Switch Phase							
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4	
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4	
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%	
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4	
Lead/Lag			Lag	Lag	Lead		
Lead-Lag Optimize?							
Recall Mode	None	None	None	None	None	None	
v/c Ratio	0.13	0.32	0.07	0.47	0.34	0.39	
Control Delay	22.2	7.9	13.2	14.2	5.4	6.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	22.2	7.9	13.2	14.2	5.4	6.5	
Queue Length 50th (m)	3.8	0.0	1.1	23.7	7.1	21.5	
Queue Length 95th (m)	11.8	11.8	4.6	37.6	13.9	32.8	
Internal Link Dist (m)	32.2			90.4		112.9	
Turn Bay Length (m)			20.0		25.0		
Base Capacity (vph)	631	639	356	1985	646	2563	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.19	0.05	0.31	0.33	0.33	
Intersection Summary							
Cycle Length: 77.1							
Actuated Cycle Length: 53.9)						
Natural Cycle: 75							
Control Type: Actuated-Unc	oordinated						
Splits and Phases: 73: Fa	ıllsview Blv	rd & Hilto	n Lot/Fall:	sview Lot			
	1						
Ø1	Ø2						
13 s 37.4	s						
Ø6							1 ₹ α₀
▼ 200							∀ ₩0

	۶	→	•	•	—	4	•	†	~	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	7	ħβ		7	∱ ∱	
Traffic Volume (vph)	0	0	0	39	1	113	16	472	87	195	664	110
Future Volume (vph)	0	0	0	39	1	113	16	472	87	195	664	110
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Lane Util. Factor					1.00	1.00	1.00	0.95		1.00	0.95	
Frt					1.00	0.85	1.00	0.98		1.00	0.98	
Flt Protected					0.95	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)					1650	1471	1644	3211		1644	3218	
FIt Permitted					0.95	1.00	0.34	1.00		0.37	1.00	
Satd. Flow (perm)					1650	1471	580	3211		641	3218	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0.02	42	1	123	17	513	95	212	722	120
RTOR Reduction (vph)	0	0	0	0	0	106	0	20	0	0	15	0
Lane Group Flow (vph)	0	0	0	0	43	17	17	588	0	212	827	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	0 70	0 70	0 70	Perm	NA	Perm	Perm	NA	0 70	pm+pt	NA	0 70
Protected Phases				r Cilli	8	r C illi	I GIIII	2		1	6	
Permitted Phases				8	Ü	8	2	2		6	U	
Actuated Green, G (s)				O	7.6	7.6	21.6	21.6		33.7	33.7	
Effective Green, g (s)					7.6	7.6	21.6	21.6		33.7	33.7	
					0.14	0.14	0.39	0.39		0.61	0.61	
Actuated g/C Ratio					6.7	6.7	7.4	7.4		3.0	7.4	
Clearance Time (s)					4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)												
Lane Grp Cap (vph)					226	201	226	1251		554	1957	
v/s Ratio Prot					0.00	0.04	0.00	0.18		0.06	c0.26	
v/s Ratio Perm					0.03	0.01	0.03	0.47		0.17	0.40	
v/c Ratio					0.19	0.08	0.08	0.47		0.38	0.42	
Uniform Delay, d1					21.2	20.9	10.6	12.6		5.0	5.7	
Progression Factor					1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2					0.6	0.2	0.2	0.4		0.6	0.2	
Delay (s)					21.7	21.1	10.8	13.0		5.6	5.9	
Level of Service					С	С	В	В		Α	Α	
Approach Delay (s)		0.0			21.3			12.9			5.9	
Approach LOS		Α			С			В			Α	
Intersection Summary												
HCM 2000 Control Delay			9.6	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capaci	ty ratio		0.41									
Actuated Cycle Length (s)			55.4		um of lost				17.1			
Intersection Capacity Utilization	on		66.7%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	•	4	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations		4		ર્ન	7	ሻ	∱ }	7	∱ î≽	
Traffic Volume (vph)	35	14	87	59	322	55	938	306	1083	
Future Volume (vph)	35	14	87	59	322	55	938	306	1083	
Lane Group Flow (vph)	0	69	0	159	350	60	1092	333	1232	
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4		8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0	
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0	
Total Split (s)	36.0	36.0	36.0	36.0	36.0	17.0	47.0	17.0	47.0	
Total Split (%)	36.0%	36.0%	36.0%	36.0%	36.0%	17.0%	47.0%	17.0%	47.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0	
Lead/Lag						Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max	
v/c Ratio		0.33		0.70	0.69	0.20	0.75	0.70	0.61	
Control Delay		31.9		55.0	14.1	7.0	25.7	29.3	11.5	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay		31.9		55.0	14.1	7.0	25.7	29.3	11.5	
Queue Length 50th (m)		9.3		29.5	6.9	4.2	99.9	38.1	46.6	
Queue Length 95th (m)		19.9		46.2	32.0	m2.6	m109.1	m#74.8	m84.2	
Internal Link Dist (m)		100.0		3.9			71.5		31.5	
Turn Bay Length (m)						65.0		140.0		
Base Capacity (vph)		349		390	645	421	1461	479	2014	
Starvation Cap Reductn		0		0	0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	0	
Reduced v/c Ratio		0.20		0.41	0.54	0.14	0.75	0.70	0.61	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 76: Stanley Ave & Dixon St

02-14-2023

Synchro 11 Report

	۶	→	•	•	+	4	•	†	<i>></i>	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7	ሻ	∱ 1≽		ሻ	↑ ↑	
Traffic Volume (vph)	35	14	15	87	59	322	55	938	66	306	1083	51
Future Volume (vph)	35	14	15	87	59	322	55	938	66	306	1083	51
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.97			1.00	0.85	1.00	0.99		1.00	0.99	
Flt Protected		0.97			0.97	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1631			1680	1471	1644	3256		1644	3266	
Flt Permitted		0.70			0.78	1.00	0.23	1.00		0.14	1.00	
Satd. Flow (perm)		1167			1345	1471	393	3256		244	3266	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	38	15	16	95	64	350	60	1020	72	333	1177	55
RTOR Reduction (vph)	0	12	0	0	0	257	0	5	0	0	2	0
Lane Group Flow (vph)	0	57	0	0	159	93	60	1087	0	333	1230	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		16.8			16.8	16.8	49.9	44.7		69.2	61.0	
Effective Green, g (s)		16.8			16.8	16.8	49.9	44.7		69.2	61.0	
Actuated g/C Ratio		0.17			0.17	0.17	0.50	0.45		0.69	0.61	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		196			225	247	261	1455		469	1992	
v/s Ratio Prot							0.01	0.33		c0.15	0.38	
v/s Ratio Perm		0.05			c0.12	0.06	0.10			c0.34		
v/c Ratio		0.29			0.71	0.38	0.23	0.75		0.71	0.62	
Uniform Delay, d1		36.4			39.3	36.9	13.0	23.0		17.9	12.2	
Progression Factor		1.00			1.00	1.00	0.95	1.01		1.53	0.75	
Incremental Delay, d2		0.5			8.6	0.6	0.1	1.1		3.6	1.2	
Delay (s)		36.8			47.9	37.5	12.4	24.4		30.9	10.4	
Level of Service		D			D	D	В	С		С	В	
Approach Delay (s)		36.8			40.7			23.7			14.7	
Approach LOS		D			D			С			В	
Intersection Summary												
HCM 2000 Control Delay			22.4	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacit	y ratio		0.73									
Actuated Cycle Length (s)			100.0		um of los				17.0			
Intersection Capacity Utilization	n		76.2%	IC	CU Level	of Service	Э		D			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 11 Report Page 18

	~	•	*_	ኘ	†	>	Ļ	ļ	•	\	×	×
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWT
Lane Configurations		ă	Ž.		4			4		ă	ĵ.	
Traffic Volume (vph)	16	5	275	106	32	7	16	17	1	204	208	15
Future Volume (vph)	16	5	275	106	32	7	16	17	1	204	208	15
Lane Group Flow (vph)	0	22	358	0	166	0	0	44	0	223	259	44
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	NA
Protected Phases					10			14			6	2
Permitted Phases	4	4	4	10		14	14		6	6		
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	29.0	29.0	29.0	31.4	31.4	31.4	31.4	31.4	30.0	30.0	30.0	30.0
Total Split (%)	26.0%	26.0%	26.0%	28.2%	28.2%	28.2%	28.2%	28.2%	26.9%	26.9%	26.9%	26.9%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	6.8
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.11	1.25		0.59			0.15		0.87	0.75	0.14
Control Delay		38.1	175.4		48.4			35.9		74.3	56.1	37.4
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Delay		38.1	175.4		48.4			35.9		74.3	56.1	37.4
Queue Length 50th (m)		4.0	~97.2		32.5			7.6		47.3	53.2	7.9
Queue Length 95th (m)		11.0	#153.5		54.8			17.2		#90.0	#88.4	17.6
Internal Link Dist (m)		102.7			229.8			295.5			298.1	208.5
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		209	287		283			303		257	346	323
Starvation Cap Reductn		0	0		0			0		0	0	0
Spillback Cap Reductn		0	0		0			0		0	0	0
Storage Cap Reductn		0	0		0			0		0	0	0
Reduced v/c Ratio		0.11	1.25		0.59			0.15		0.87	0.75	0.14

Cycle Length: 111.4 Actuated Cycle Length: 111.4

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 100 Control Type: Pretimed

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 78: Allandale Ave & Main St & Murray St

Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	12 21.0 21.0 19% 2.0 0.0
Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	21.0 21.0 19% 2.0
Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	21.0 21.0 19% 2.0
Turn Type Protected Phases Permitted Phases Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	21.0 21.0 19% 2.0
Protected Phases Permitted Phases Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	21.0 21.0 19% 2.0
Permitted Phases Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	21.0 21.0 19% 2.0
Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	21.0 19% 2.0
Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	21.0 19% 2.0
Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	19% 2.0
Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	2.0
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	0.0
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	
Lead/Lag Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	
Lead-Lag Optimize? v/c Ratio Control Delay Queue Delay Total Delay	
v/c Ratio Control Delay Queue Delay Total Delay	
Control Delay Queue Delay Total Delay	
Queue Delay Total Delay	
Total Delay	
()usus Longth E()th /m)	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	

	~	•	*_	•	ኘ	†	~	الم	\	Ļ	+	≱ J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		ă	Ž.			4					4	
Traffic Volume (vph)	16	5	275	54	106	32	10	5	7	16	17	1
Future Volume (vph)	16	5	275	54	106	32	10	5	7	16	17	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.99					1.00	
Flt Protected		0.95	1.00			0.97					0.97	
Satd. Flow (prot)		1612	1442			1618					1645	
Flt Permitted		0.62	1.00			0.77					0.81	
Satd. Flow (perm)		1050	1442			1282					1370	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	5	299	59	115	35	11	5	8	17	18	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	22	358	0	0	166	0	0	0	0	43	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		22.2	22.2			24.6					24.6	
Effective Green, g (s)		22.2	22.2			24.6					24.6	
Actuated g/C Ratio		0.20	0.20			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		209	287			283					302	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.25			c0.13					0.03	
v/c Ratio		0.11	1.25			0.59					0.14	
Uniform Delay, d1		36.5	44.6			38.8					34.9	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.0	137.0			8.6					1.0	
Delay (s)		37.5	181.6			47.5					35.9	
Level of Service		D	F			D					D	
Approach Delay (s)		173.3				47.5					35.9	
Approach LOS		F				D					D	
Intersection Summary												
HCM 2000 Control Delay			96.3	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capaci	ity ratio		0.70									
Actuated Cycle Length (s)			111.4		um of lost				22.4			
Intersection Capacity Utilizati	on		70.3%	IC	CU Level of	of Service	1		С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\	×	>	×	*	4
Movement	SEL2	SEL	SET	SER	NWT	NWR	NWR2
Lane Configurations		ă	∱		4		
Traffic Volume (vph)	1	204	208	30	15	11	15
Future Volume (vph)	1	204	208	30	15	11	15
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8		6.8		
Lane Util. Factor		1.00	1.00		1.00		
Frt		1.00	0.98		0.91		
Flt Protected		0.95	1.00		1.00		
Satd. Flow (prot)		1612	1664		1551		
Flt Permitted		0.73	1.00		1.00		
Satd. Flow (perm)		1236	1664		1551		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	222	226	33	16	12	16
RTOR Reduction (vph)	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	223	259	0	44	0	0
Turn Type	Perm	Perm	NA		NA		
Protected Phases			6		2		
Permitted Phases	6	6					
Actuated Green, G (s)		23.2	23.2		23.2		
Effective Green, g (s)		23.2	23.2		23.2		
Actuated g/C Ratio		0.21	0.21		0.21		
Clearance Time (s)		6.8	6.8		6.8		
Lane Grp Cap (vph)		257	346		323		
v/s Ratio Prot			0.16		0.03		
v/s Ratio Perm		c0.18					
v/c Ratio		0.87	0.75		0.14		
Uniform Delay, d1		42.6	41.4		35.9		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		30.4	13.8		0.9		
Delay (s)		73.0	55.2		36.8		
Level of Service		Е	Ε		D		
Approach Delay (s)			63.4		36.8		
Approach LOS			Е		D		
Intersection Summary							

e i i i ariting i aeinty	,,, mana			51X-511 - C1								
	۶	→	•	•	←	•	4	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	,
Traffic Volume (veh/h)	1	14	0	0	16	149	0	0	0	50	0	1
Future Volume (Veh/h)	1	14	0	0	16	149	0	0	0	50	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	15	0	0	17	162	0	0	0	54	0	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					124							
pX, platoon unblocked												
vC, conflicting volume	179			15			116	196	15	115	115	98
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	179			15			116	196	15	115	115	98
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			100	100	100	94	100	100
cM capacity (veh/h)	1409			1616			864	703	1070	866	778	963
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	16	179	0	55								
Volume Left	1	0	0	54								
Volume Right	0	162	0	1								
cSH	1409	1616	1700	868								
Volume to Capacity	0.00	0.00	0.39	0.06								
Queue Length 95th (m)	0.0	0.0	0.0	1.5								
Control Delay (s)	0.5	0.0	0.0	9.4								
Lane LOS	А		А	Α								
Approach Delay (s)	0.5	0.0	0.0	9.4								
Approach LOS			Α	Α								
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utiliza	ation		20.9%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

oo. otariloy 7 tvo a	i anang	1 Goint	,					- 0		
	•	•	•	†	ļ	4				
Movement	EBL	EBR	NBL	NBT	SBT	SBR				
Lane Configurations	Ť	7	ř	^	↑ ↑					
Traffic Volume (veh/h)	0	0	0	1059	1293	0				
Future Volume (Veh/h)	0	0	0	1059	1293	0				
Sign Control	Stop			Free	Free					
Grade	0%			0%	0%					
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				
Hourly flow rate (vph)	0	0	0	1151	1405	0				
Pedestrians			-			•				
Lane Width (m)										
Walking Speed (m/s)										
Percent Blockage										
Right turn flare (veh)										
Median type				None	None					
Median storage veh)				140110	TAOTIC					
Upstream signal (m)				127	95					
pX, platoon unblocked	0.87	0.77	0.77	121	33					
vC, conflicting volume	1980	702	1405							
vC1, stage 1 conf vol	1900	702	1405							
vC2, stage 2 conf vol	631	6	922							
vCu, unblocked vol										
tC, single (s)	6.8	6.9	4.1							
tC, 2 stage (s)	2.5	2.2	0.0							
tF (s)	3.5	3.3	2.2							
p0 queue free %	100	100	100							
cM capacity (veh/h)	365	830	575							
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2			
Volume Total	0	0	0	576	576	937	468			
Volume Left	0	0	0	0	0	0	0			
Volume Right	0	0	0	0	0	0	0			
cSH	1700	1700	1700	1700	1700	1700	1700			
Volume to Capacity	0.00	0.00	0.00	0.34	0.34	0.55	0.28			
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Lane LOS	Α	Α								
Approach Delay (s)	0.0		0.0			0.0				
Approach LOS	А									
Intersection Summary										
Average Delay			0.0							
Intersection Capacity Utiliza	ation		42.1%	IC	CU Level o	of Service			Α	
Analysis Period (min)			15							

	٠	→	+	•	/	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4₽	∱ }		7	7
Traffic Volume (veh/h)	0	310	817	0	0	0
Future Volume (Veh/h)	0	310	817	0	0	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	337	888	0	0	0
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		1,5110	1,0110			
Upstream signal (m)		88	33			
pX, platoon unblocked		00				
vC, conflicting volume	888				1056	444
vC1, stage 1 conf vol	000				1000	777
vC2, stage 2 conf vol						
vCu, unblocked vol	888				1056	444
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)	7.1				0.0	0.5
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	100
cM capacity (veh/h)	771				224	567
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2
Volume Total	112	225	592	296	0	0
Volume Left	0	0	0	0	0	0
Volume Right	0	0	0	0	0	0
cSH	771	1700	1700	1700	1700	1700
Volume to Capacity	0.00	0.13	0.35	0.17	0.11	0.32
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Lane LOS					Α	Α
Approach Delay (s)	0.0		0.0		0.0	
Approach LOS					Α	
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliza	ation		27.9%	IC	U Level o	of Service
Analysis Period (min)			15			
maryolo i onou (mmi)			10			

Appendix G

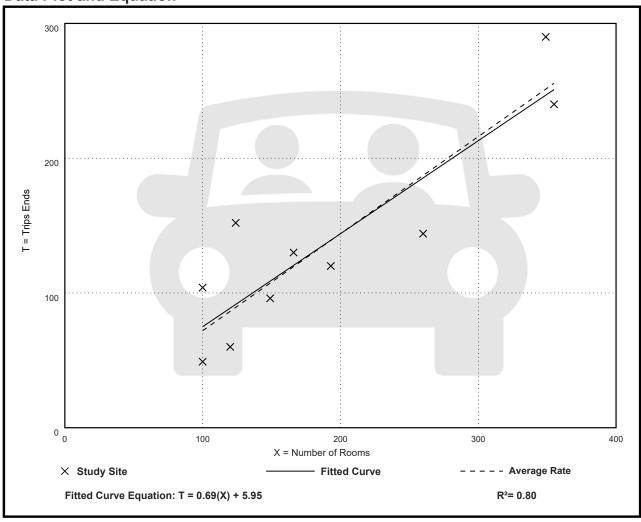
ITE Trip Generation Manual Source Data

Hotel (310)

Vehicle Trip Ends vs: Rooms

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban


Number of Studies: 10 Avg. Num. of Rooms: 192

Directional Distribution: 56% entering, 44% exiting

Vehicle Trip Generation per Room

Average Rate	Range of Rates	Standard Deviation
0.72	0.49 - 1.23	0.20

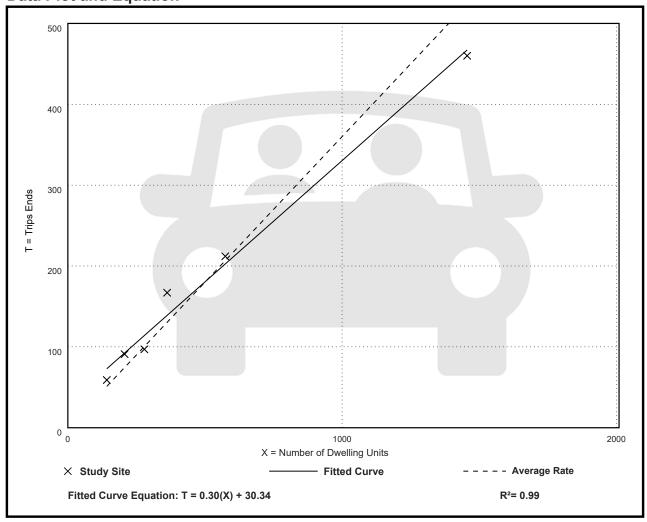
Data Plot and Equation

Multifamily Housing (High-Rise) Not Close to Rail Transit (222)

Vehicle Trip Ends vs: Dwelling Units

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban


Number of Studies: 6 Avg. Num. of Dwelling Units: 503

Directional Distribution: 57% entering, 43% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.36	0.32 - 0.46	0.06

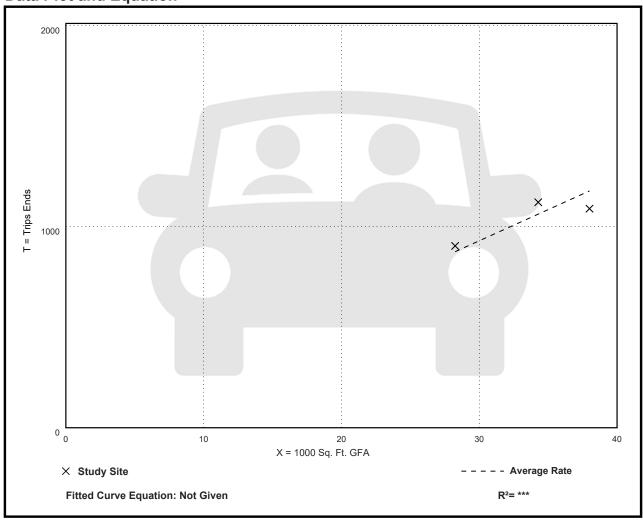
Data Plot and Equation

Casino (473)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban


Number of Studies: 3 Avg. 1000 Sq. Ft. GFA: 34

Directional Distribution: 54% entering, 46% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
30.98	28.66 - 32.70	2.24

Data Plot and Equation

Appendix H

2033 Future Total Conditions Synchro Reports

	•	•	←	4	†	ļ
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	7	7	4	J.	†	+
Traffic Volume (vph)	271	148	26	142	159	143
Future Volume (vph)	271	148	26	142	159	143
Lane Group Flow (vph)	295	161	44	154	173	556
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	7.0	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.84	0.30	0.09	0.42	0.19	0.72
Control Delay	44.8	5.2	13.0	10.6	9.2	18.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	2.3
Total Delay	44.8	5.2	13.0	10.6	9.2	20.3
Queue Length 50th (m)	33.0	0.0	2.4	8.6	11.0	36.9
Queue Length 95th (m)	#70.8	11.6	8.9	16.1	20.0	#87.7
Internal Link Dist (m)	1110.0	11.0	8.0	10.1	230.0	55.6
Turn Bay Length (m)	50.0		0.0		200.0	00.0
Base Capacity (vph)	377	553	504	368	932	772
Starvation Cap Reductn	0	0	0	0	0	110
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.78	0.29	0.09	0.42	0.19	0.84
NEUUUEU WU NAUU	0.70	0.29	0.03	0.42	0.13	0.04

Cycle Length: 67.3

Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 70

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Fallsview Blvd & Embassy Suites

01-11-2024 TTW_Hennepin_2024-01-09-v0.1.syn

	٠	→	•	•	←	•	•	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, A		7		4		*	†		¥	†	
Traffic Volume (vph)	271	0	148	0	26	15	142	159	0	0	143	369
Future Volume (vph)	271	0	148	0	26	15	142	159	0	0	143	369
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.89	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1543	
Flt Permitted	0.73		1.00		1.00		0.23	1.00			1.00	
Satd. Flow (perm)	1260		1471		1646		402	1731			1543	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	295	0	161	0	28	16	154	173	0	0	155	401
RTOR Reduction (vph)	0	0	116	0	12	0	0	0	0	0	131	0
Lane Group Flow (vph)	295	0	45	0	32	0	154	173	0	0	425	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases					8		5	2			6	
Permitted Phases	4		4	8			2			6		
Actuated Green, G (s)	18.9		18.9		18.9		36.1	36.1			27.2	
Effective Green, g (s)	18.9		18.9		18.9		36.1	36.1			27.2	
Actuated g/C Ratio	0.28		0.28		0.28		0.54	0.54			0.40	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	353		413		462		324	928			623	
v/s Ratio Prot					0.02		c0.04	0.10			c0.28	
v/s Ratio Perm	c0.23		0.03		0.07		0.21	0.40			0.00	
v/c Ratio	0.84		0.11		0.07		0.48	0.19			0.68	
Uniform Delay, d1	22.7		18.0		17.8		10.0	8.0			16.5	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	16.2		0.2		0.1		1.5	0.4			6.0	
Delay (s)	39.0		18.1		17.8		11.5	8.5			22.4	
Level of Service	D	24.0	В		B		В	A			C	
Approach LOS		31.6			17.8			9.9			22.4	
Approach LOS		С			В			А			С	
Intersection Summary			00.0	- 11	014 0000		<u> </u>					
HCM 2000 Control Delay	., ,,		22.3	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity ratio			0.71						45.0			
Actuated Cycle Length (s)	-4!		67.3		um of lost				15.3			
Intersection Capacity Utilization			76.1%	IC	CU Level of	or Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	£	Ţ	£	*	∱ }	7	∱ ∱	
Traffic Volume (vph)	116	208	147	122	186	1125	523	1172	
Future Volume (vph)	116	208	147	122	186	1125	523	1172	
Lane Group Flow (vph)	126	341	160	396	202	1505	568	1340	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	33.0	33.0	10.0	33.0	
Total Split (s)	35.0	35.0	35.0	35.0	47.0	47.0	18.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	47.0%	47.0%	18.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	1.04	0.70	0.97	0.77	1.29	1.02	1.63	0.63	
Control Delay	130.9	39.2	100.8	36.0	172.9	41.8	319.0	15.0	
Queue Delay	0.0	0.4	0.0	0.1	0.0	0.0	0.0	0.0	
Total Delay	130.9	39.6	100.8	36.1	172.9	41.8	319.0	15.0	
Queue Length 50th (m)	24.1	54.1	29.8	52.5	~51.7	~168.0	~145.4	85.5	
Queue Length 95th (m)	#59.9	84.1	#68.3	86.5	m#69.7	m#185.0	#209.6	107.2	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	130	517	177	544	157	1472	349	2126	
Starvation Cap Reductn	0	25	0	4	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.97	0.69	0.90	0.73	1.29	1.02	1.63	0.63	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

- ~ Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

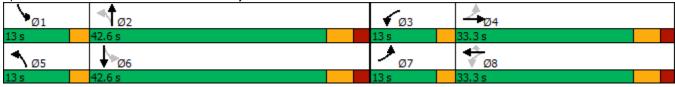
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 12: Stanley Ave & Murray St

	٦	→	•	•	←	•	4	†	~	\	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>		7	ĵ∍		7	∱ β		ሻ	∱ β	
Traffic Volume (vph)	116	208	106	147	122	242	186	1125	259	523	1172	61
Future Volume (vph)	116	208	106	147	122	242	186	1125	259	523	1172	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	0.90		1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1784		1785	1692		1785	3470		1785	3544	
Flt Permitted	0.25	1.00		0.34	1.00		0.20	1.00		0.09	1.00	
Satd. Flow (perm)	466	1784		633	1692		375	3470		167	3544	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	126	226	115	160	133	263	202	1223	282	568	1274	66
RTOR Reduction (vph)	0	18	0	0	73	0	0	19	0	0	4	0
Lane Group Flow (vph)	126	323	0	160	323	0	202	1486	0	568	1336	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	26.1	26.1		26.1	26.1		41.9	41.9		59.9	59.9	
Effective Green, g (s)	26.1	26.1		26.1	26.1		41.9	41.9		59.9	59.9	
Actuated g/C Ratio	0.26	0.26		0.26	0.26		0.42	0.42		0.60	0.60	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.3	2.3		2.3	2.3		2.5	2.5		2.3	2.5	
Lane Grp Cap (vph)	121	465		165	441		157	1453		342	2122	
v/s Ratio Prot		0.18			0.19			0.43		c0.25	0.38	
v/s Ratio Perm	c0.27			0.25			0.54			c0.74		
v/c Ratio	1.04	0.69		0.97	0.73		1.29	1.02		1.66	0.63	
Uniform Delay, d1	37.0	33.3		36.6	33.8		29.1	29.1		31.6	12.9	
Progression Factor	1.00	1.00		1.00	1.00		0.61	0.59		1.00	1.00	
Incremental Delay, d2	93.3	3.9		60.2	5.6		149.8	22.2		310.1	1.4	
Delay (s)	130.3	37.2		96.7	39.4		167.5	39.3		341.6	14.3	
Level of Service	F	D		F	D		F	D		F	В	
Approach Delay (s)		62.3			55.9			54.5			111.8	
Approach LOS		Е			Е			D			F	
Intersection Summary												
HCM 2000 Control Delay			79.0	H	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		1.51									
Actuated Cycle Length (s) 100.0				um of lost			17.0					
Intersection Capacity Utiliza	ation		117.1%	IC	U Level o	of Service	•		Н			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	•	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	∱ ⊅	ሻ	↑	7	ሻ	∱ ∱	ሻ	∱ ∱	
Traffic Volume (vph)	169	526	182	322	175	135	428	172	678	
Future Volume (vph)	169	526	182	322	175	135	428	172	678	
Lane Group Flow (vph)	184	915	198	350	190	147	816	187	777	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	5.5	20.0	7.0	20.0	20.0	5.5	20.0	7.0	20.0	
Minimum Split (s)	10.0	33.3	10.0	33.3	33.3	10.0	42.6	10.0	42.6	
Total Split (s)	13.0	33.3	13.0	33.3	33.3	13.0	42.6	13.0	42.6	
Total Split (%)	12.8%	32.7%	12.8%	32.7%	32.7%	12.8%	41.8%	12.8%	41.8%	
Yellow Time (s)	3.0	4.1	3.0	4.1	4.1	3.0	4.1	3.0	4.1	
All-Red Time (s)	0.0	2.2	0.0	2.2	2.2	0.0	2.5	0.0	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.3	3.0	6.3	6.3	3.0	6.6	3.0	6.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	Max	None	Max	
v/c Ratio	0.53	0.93	0.77	0.70	0.34	0.44	0.62	0.58	0.61	
Control Delay	25.0	49.1	41.0	42.2	6.2	17.4	22.1	20.9	28.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	
Total Delay	25.0	49.1	41.0	42.2	6.2	17.4	22.4	20.9	28.9	
Queue Length 50th (m)	22.8	82.5	24.8	62.6	0.0	14.7	51.9	19.1	65.5	
Queue Length 95th (m)	37.7	#121.1	#53.9	93.8	16.0	25.3	71.7	31.6	85.2	
Internal Link Dist (m)		39.6		70.0			112.9		294.7	
Turn Bay Length (m)	30.0		35.0			10.0		65.0		
Base Capacity (vph)	354	988	260	502	566	352	1322	333	1280	
Starvation Cap Reductn	0	0	0	0	0	0	139	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.52	0.93	0.76	0.70	0.34	0.42	0.69	0.56	0.61	


Cycle Length: 101.9 Actuated Cycle Length: 101 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	←	•	1	†	~	\	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ î≽		7	†	7	ሻ	∱ ∱		ሻ	∱ ∱	
Traffic Volume (vph)	169	526	316	182	322	175	135	428	323	172	678	37
Future Volume (vph)	169	526	316	182	322	175	135	428	323	172	678	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.94		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3369		1785	1879	1597	1785	3340		1785	3542	
Flt Permitted	0.32	1.00		0.15	1.00	1.00	0.24	1.00		0.21	1.00	
Satd. Flow (perm)	595	3369		279	1879	1597	448	3340		395	3542	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	184	572	343	198	350	190	147	465	351	187	737	40
RTOR Reduction (vph)	0	88	0	0	0	139	0	133	0	0	4	0
Lane Group Flow (vph)	184	827	0	198	350	51	147	683	0	187	773	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	36.3	26.7		36.7	26.9	26.9	45.1	36.0		45.9	36.4	
Effective Green, g (s)	36.3	26.7		36.7	26.9	26.9	45.1	36.0		45.9	36.4	
Actuated g/C Ratio	0.36	0.26		0.36	0.27	0.27	0.45	0.36		0.45	0.36	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	327	891		247	500	425	320	1191		310	1277	
v/s Ratio Prot	0.05	c0.25		c0.08	0.19		0.04	0.20		c0.06	c0.22	
v/s Ratio Perm	0.15			0.21		0.03	0.16			0.22		
v/c Ratio	0.56	0.93		0.80	0.70	0.12	0.46	0.57		0.60	0.61	
Uniform Delay, d1	23.8	36.2		25.6	33.4	28.0	17.7	26.2		18.1	26.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.2	15.5		16.8	4.3	0.1	1.0	2.0		3.3	2.1	
Delay (s)	26.0	51.7		42.4	37.6	28.2	18.8	28.3		21.4	28.5	
Level of Service	С	D		D	D	С	В	С		С	С	
Approach Delay (s)		47.4			36.5			26.8			27.1	
Approach LOS		D			D			С			С	
Intersection Summary												
	HCM 2000 Control Delay 34.8			H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity ratio		0.74										
Actuated Cycle Length (s)			100.9		um of los				18.9			_
Intersection Capacity Utilization		83.9%	IC	U Level	of Service	е		Е				
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	•	•	4	†	>	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	f)	ሻ	†	7	ሻ	∱ ∱	7	ħβ	
Traffic Volume (vph)	256	305	82	355	64	212	876	105	749	
Future Volume (vph)	256	305	82	355	64	212	876	105	749	
Lane Group Flow (vph)	278	480	89	386	70	230	1095	114	1051	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4		8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0	
Total Split (s)	37.0	37.0	37.0	37.0	37.0	50.0	50.0	13.0	63.0	
Total Split (%)	37.0%	37.0%	37.0%	37.0%	37.0%	50.0%	50.0%	13.0%	63.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
_ead/Lag						Lag	Lag	Lead		
_ead-Lag Optimize?										
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	
r/c Ratio	1.55	0.87	0.85	0.69	0.13	1.04	0.69	0.41	0.54	
Control Delay	302.9	49.3	90.9	38.2	6.1	100.6	24.5	11.5	16.6	
Queue Delay	0.0	0.0	0.0	3.4	0.0	0.0	0.0	0.0	0.0	
Total Delay	302.9	49.3	90.9	41.6	6.1	100.6	24.5	11.5	16.6	
Queue Length 50th (m)	~76.4	83.9	16.1	65.7	0.0	~48.1	84.7	11.8	94.4	
Queue Length 95th (m)	#125.5	#138.8	#45.1	97.7	8.7	#95.6	112.3	m12.5	m107.6	
nternal Link Dist (m)		213.7		94.8			227.1		103.4	
Furn Bay Length (m)	75.0		25.0		25.0	25.0		40.0		
Base Capacity (vph)	179	553	105	563	532	222	1587	312	1958	
Starvation Cap Reductn	0	0	0	100	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.55	0.87	0.85	0.83	0.13	1.04	0.69	0.37	0.54	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

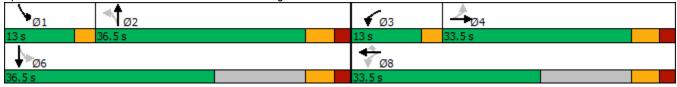
Splits and Phases: 15: Stanley Ave & Dunn St

	٠	→	•	•	—	4	1	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĥ		ሻ	†	7	*	∱ }		ሻ	ħβ	
Traffic Volume (vph)	256	305	136	82	355	64	212	876	132	105	749	218
Future Volume (vph)	256	305	136	82	355	64	212	876	132	105	749	218
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1792		1785	1879	1597	1785	3500		1785	3449	
FIt Permitted	0.32	1.00		0.19	1.00	1.00	0.26	1.00		0.14	1.00	
Satd. Flow (perm)	598	1792		354	1879	1597	493	3500		267	3449	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	278	332	148	89	386	70	230	952	143	114	814	237
RTOR Reduction (vph)	0	16	0	0	0	49	0	12	0	0	27	0
Lane Group Flow (vph)	278	464	0	89	386	21	230	1083	0	114	1024	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	30.0	30.0		30.0	30.0	30.0	45.1	45.1		56.0	56.0	
Effective Green, g (s)	30.0	30.0		30.0	30.0	30.0	45.1	45.1		56.0	56.0	
Actuated g/C Ratio	0.30	0.30		0.30	0.30	0.30	0.45	0.45		0.56	0.56	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.5	2.5		2.5	2.5	2.5	2.5	2.5		2.7	2.5	
Lane Grp Cap (vph)	179	537		106	563	479	222	1578		269	1931	
v/s Ratio Prot	A 4-	0.26			0.21	2.21	A 1-	0.31		0.03	c0.30	
v/s Ratio Perm	c0.47	0.00		0.25	0.00	0.01	c0.47	0.00		0.20	0.50	
v/c Ratio	1.55	0.86		0.84	0.69	0.04	1.04	0.69		0.42	0.53	
Uniform Delay, d1	35.0	33.1		32.7	30.8	24.8	27.4	21.8		13.5	13.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.07	1.23	
Incremental Delay, d2	274.5	13.4		40.6	3.2	0.0	70.1	2.5		0.4	0.5	
Delay (s)	309.5	46.5		73.4	34.0	24.9	97.6	24.3		14.9	17.5	
Level of Service	F	D		E	C	С	F	C		В	B	
Approach Delay (s)		142.9			39.3			37.0			17.2	
Approach LOS		F			D			D			В	
Intersection Summary												
	HCM 2000 Control Delay 52.4			H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity ratio 1.18												
Actuated Cycle Length (s)			100.0		um of lost				17.0			
Intersection Capacity Utilization		95.6%	IC	U Level	of Service			F				
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	←	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	ą.	ሻ	†	7	ሻ	f _a	ሻ	f)	
Traffic Volume (vph)	167	341	176	459	414	34	327	138	312	
Future Volume (vph)	167	341	176	459	414	34	327	138	312	
Lane Group Flow (vph)	182	451	191	499	450	37	465	150	376	
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	
Total Split (s)	33.5	33.5	13.0	33.5	33.5	36.5	36.5	13.0	36.5	
Total Split (%)	34.9%	34.9%	13.5%	34.9%	34.9%	38.0%	38.0%	13.5%	38.0%	
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	
Lead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Max	Max	None	Max	
v/c Ratio	0.80	0.89	0.66	0.65	0.49	0.11	0.79	0.45	0.45	
Control Delay	59.2	53.6	28.0	27.1	3.8	24.9	39.7	18.2	19.8	
Queue Delay	0.0	0.0	0.0	5.2	0.4	0.0	54.2	0.0	0.0	
Total Delay	59.2	53.6	28.0	32.3	4.2	24.9	93.9	18.2	19.8	
Queue Length 50th (m)	31.0	77.6	21.0	71.7	0.0	4.9	76.1	15.1	45.9	
Queue Length 95th (m)	#65.7	#130.4	#35.5	105.4	17.2	12.2	#124.2	26.2	69.5	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	239	534	293	800	938	322	591	345	851	
Starvation Cap Reductn	0	0	0	233	147	0	216	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.76	0.84	0.65	0.88	0.57	0.11	1.24	0.43	0.44	

Cycle Length: 96

Actuated Cycle Length: 94

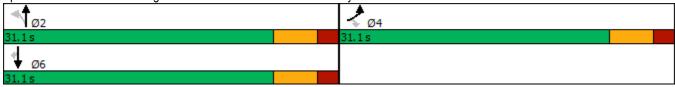

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 16: Fallsview Blvd & Main St/Portage Rd



	•	→	•	•	←	•	•	†	<i>></i>	\	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	†	7	ሻ	1>		ሻ	₽	
Traffic Volume (vph)	167	341	74	176	459	414	34	327	101	138	312	34
Future Volume (vph)	167	341	74	176	459	414	34	327	101	138	312	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	1.00	0.85	1.00	0.96		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1829		1785	1879	1597	1785	1812		1785	1851	
Flt Permitted	0.44	1.00		0.16	1.00	1.00	0.54	1.00		0.21	1.00	
Satd. Flow (perm)	832	1829		305	1879	1597	1011	1812		404	1851	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	182	371	80	191	499	450	37	355	110	150	339	37
RTOR Reduction (vph)	0	8	0	0	0	266	0	12	0	0	4	0
Lane Group Flow (vph)	182	443	0	191	499	184	37	453	0	150	372	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	25.6	25.6		38.4	38.4	38.4	30.1	30.1		42.6	42.6	
Effective Green, g (s)	25.6	25.6		38.4	38.4	38.4	30.1	30.1		42.6	42.6	
Actuated g/C Ratio	0.27	0.27		0.41	0.41	0.41	0.32	0.32		0.45	0.45	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)	226	498		278	767	652	323	580		322	838	
v/s Ratio Prot		c0.24		c0.07	0.27			c0.25		c0.05	0.20	
v/s Ratio Perm	0.22			0.21		0.12	0.04			0.16		
v/c Ratio	0.81	0.89		0.69	0.65	0.28	0.11	0.78		0.47	0.44	
Uniform Delay, d1	31.9	32.8		20.9	22.4	18.6	22.5	29.0		17.6	17.6	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	19.4	17.8		7.5	2.2	0.3	0.7	10.1		1.5	1.7	
Delay (s)	51.3	50.7		28.4	24.6	18.9	23.3	39.1		19.0	19.3	
Level of Service	D	D		С	С	В	С	D		В	В	
Approach Delay (s)		50.8			23.0			37.9			19.2	
Approach LOS		D			С			D			В	
Intersection Summary												
HCM 2000 Control Delay			31.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.77									
Actuated Cycle Length (s)			94.0		um of los				19.0			
Intersection Capacity Utilizat	ion		90.2%	IC	U Level	of Service	!		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	•	•	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	*		1	7
Traffic Volume (vph)	89	250	271	17	106	733
Future Volume (vph)	89	250	271	17	106	733
Lane Group Flow (vph)	97	272	295	18	115	797
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4			2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	31.1	31.1	31.1	31.1
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.15	0.36	0.54	0.02	0.14	0.70
Control Delay	12.6	3.4	18.7	11.4	12.6	5.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.6	3.4	18.7	11.4	12.6	5.1
Queue Length 50th (m)	6.8	0.0	25.3	1.2	8.1	0.0
Queue Length 95th (m)	14.7	11.6	47.2	4.4	16.8	18.5
Internal Link Dist (m)	9.1			121.3	66.9	
Turn Bay Length (m)						
Base Capacity (vph)	763	838	548	803	803	1138
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.32	0.54	0.02	0.14	0.70
Intersection Summary						
Cycle Length: 62.2						
Actuated Cycle Length: 59.2	2					
Natural Cycle: 60	_					
Control Type: Actuated-Line	oordinated	1				

Control Type: Actuated-Uncoordinated

Splits and Phases: 17: Portage Rd & Fallsview Casino Rear Driveway

	۶	•	•	†	ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻ	7	ሻ	↑	1	7		
raffic Volume (vph)	89	250	271	17	106	733		
uture Volume (vph)	89	250	271	17	106	733		
eal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
otal Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
ane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
rt	1.00	0.85	1.00	1.00	1.00	0.85		
t Protected	0.95	1.00	0.95	1.00	1.00	1.00		
atd. Flow (prot)	1785	1597	1785	1879	1879	1597		
: Permitted	0.95	1.00	0.68	1.00	1.00	1.00		
td. Flow (perm)	1785	1597	1283	1879	1879	1597		
ak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
lj. Flow (vph)	97	272	295	18	115	797		
OR Reduction (vph)	0	173	0	0	0	455		
ne Group Flow (vph)	97	99	295	18	115	342		
eavy Vehicles (%)	0%	0%	0%	0%	0%	0%		
n Type	Prot	Perm	Perm	NA	NA	Perm		
tected Phases	4			2	6			
rmitted Phases		4	2			6		
uated Green, G (s)	21.5	21.5	25.3	25.3	25.3	25.3		
ective Green, g (s)	21.5	21.5	25.3	25.3	25.3	25.3		
uated g/C Ratio	0.36	0.36	0.43	0.43	0.43	0.43		
earance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
hicle Extension (s)	4.0	4.0	0.2	0.2	0.2	0.2		
ine Grp Cap (vph)	650	581	550	805	805	684		
s Ratio Prot	0.05			0.01	0.06			
s Ratio Perm		c0.06	c0.23			0.21		
c Ratio	0.15	0.17	0.54	0.02	0.14	0.50		
niform Delay, d1	12.6	12.7	12.5	9.7	10.3	12.2		
ogression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
cremental Delay, d2	0.1	0.2	3.7	0.1	0.4	2.6		
elay (s)	12.7	12.9	16.2	9.8	10.6	14.8		
evel of Service	В	В	В	Α	В	В		
proach Delay (s)	12.9			15.8	14.3			
proach LOS	В			В	В			
ersection Summary								
M 2000 Control Delay			14.3	H	CM 2000	Level of Service	e	В
M 2000 Volume to Capac	ity ratio		0.37					
uated Cycle Length (s)			59.0	Sı	um of lost	time (s)	1:	2.2
tersection Capacity Utilizat	ion		70.6%			of Service		С
nalysis Period (min)			15					
Critical Lane Group								

	٠	•	•	†	+	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		† †	↑ Ъ	
Traffic Volume (veh/h)	0	164	0	1442	1444	40
Future Volume (Veh/h)	0	164	0	1442	1444	40
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	178	0	1567	1570	43
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				55	191	
pX, platoon unblocked	0.83	0.75	0.75			
vC, conflicting volume	2375	806	1613			
vC1, stage 1 conf vol	20.0	000	1010			
vC2, stage 2 conf vol						
vCu, unblocked vol	891	75	1151			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)	0.0	0.0	7.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	76	100			
cM capacity (veh/h)	237	733	461			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	178	784	784	1047	566	
Volume Left	0	0	0	0	0	
Volume Right	178	0	0	0	43	
cSH	733	1700	1700	1700	1700	
Volume to Capacity	0.24	0.46	0.46	0.62	0.33	
Queue Length 95th (m)	7.2	0.0	0.0	0.0	0.0	
Control Delay (s)	11.5	0.0	0.0	0.0	0.0	
Lane LOS	В					
Approach Delay (s)	11.5	0.0		0.0		
Approach LOS	В					
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utiliza	ation		62.4%	IC	U Level o	of Service
Analysis Period (min)			15			

	۶	→	•	•	•	•	•	†	/	\	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	∱ β		7	∱ }	
Traffic Volume (veh/h)	22	5	15	0	0	0	78	554	165	179	496	197
Future Volume (Veh/h)	22	5	15	0	0	0	78	554	165	179	496	197
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	24	5	16	0	0	0	85	602	179	195	539	214
Pedestrians		559			275			30			30	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		49			24			3			3	
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)								139			114	
pX, platoon unblocked	0.92	0.92	0.92	0.92	0.92		0.92					
vC, conflicting volume	2096	2821	966	1844	2838	696	1312			1056		
vC1, stage 1 conf vol	1595	1595		1136	1136							
vC2, stage 2 conf vol	501	1226		708	1702							
vCu, unblocked vol	2017	2805	787	1743	2824	696	1164			1056		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	6.5	5.5	0.0	6.5	5.5	0.0						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	34	0	90	100	100	100	70			61		
cM capacity (veh/h)	37	3	153	84	3	287	283			505		
								CD 2		000		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	45	0	85	401	380	195	359	394				
Volume Left	24	0	85	0	0	195	0	0				
Volume Right	16	0	0	0	179	0	0	214				
cSH	18	1700	283	1700	1700	505	1700	1700				
Volume to Capacity	2.55	0.00	0.30	0.24	0.22	0.39	0.21	0.23				
Queue Length 95th (m)	46.8	0.0	9.3	0.0	0.0	13.7	0.0	0.0				
Control Delay (s)	1151.6	0.0	23.1	0.0	0.0	16.5	0.0	0.0				
Lane LOS	F	Α	С			С						
Approach Delay (s)	1151.6	0.0	2.3			3.4						
Approach LOS	F	Α										
Intersection Summary												
Average Delay			30.7									
Intersection Capacity Utiliz	ation		43.8%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	←	•	1	†	-	ļ
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	ર્ન	7	ሻ	đβ	ሻ	∱ }
Traffic Volume (vph)	1	122	16	506	202	820
Future Volume (vph)	1	122	16	506	202	820
Lane Group Flow (vph)	46	133	17	643	220	1008
Turn Type	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases	8			2	1	6
Permitted Phases		8	2		6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?						
Recall Mode	None	None	None	None	None	None
v/c Ratio	0.14	0.34	0.09	0.49	0.36	0.47
Control Delay	22.7	8.0	13.6	14.5	5.6	7.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.7	8.0	13.6	14.5	5.6	7.2
Queue Length 50th (m)	4.1	0.0	1.1	25.8	7.4	28.2
Queue Length 95th (m)	12.4	12.4	4.8	40.5	14.7	43.1
Internal Link Dist (m)	32.2			90.4		112.9
Turn Bay Length (m)			20.0		25.0	•
Base Capacity (vph)	625	640	298	1969	629	2546
Starvation Cap Reductn	0	0	0	0	0	112
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.21	0.06	0.33	0.35	0.41
Interception Comment						

Cycle Length: 77.1

Actuated Cycle Length: 54.6

Natural Cycle: 75

Control Type: Actuated-Uncoordinated

Splits and Phases: 73: Fallsview Blvd & Hilton Lot/Fallsview Lot

	۶	→	*	•	-	•	•	†	/	/	Ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	ሻ	∱ ∱		7	∱ î≽	
Traffic Volume (vph)	0	0	0	41	1	122	16	506	86	202	820	108
Future Volume (vph)	0	0	0	41	1	122	16	506	86	202	820	108
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Lane Util. Factor					1.00	1.00	1.00	0.95		1.00	0.95	
Frt					1.00	0.85	1.00	0.98		1.00	0.98	
Flt Protected					0.95	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)					1650	1471	1644	3217		1644	3231	
Flt Permitted					0.95	1.00	0.28	1.00		0.35	1.00	
Satd. Flow (perm)					1650	1471	492	3217		609	3231	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	45	1	133	17	550	93	220	891	117
RTOR Reduction (vph)	0	0	0	0	0	115	0	18	0	0	12	0
Lane Group Flow (vph)	0	0	0	0	46	18	17	625	0	220	996	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type				Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases					8			2		1	6	
Permitted Phases				8		8	2			6		
Actuated Green, G (s)					7.7	7.7	22.2	22.2		34.3	34.3	
Effective Green, g (s)					7.7	7.7	22.2	22.2		34.3	34.3	
Actuated g/C Ratio					0.14	0.14	0.40	0.40		0.61	0.61	
Clearance Time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Vehicle Extension (s)					4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)					226	201	194	1273		540	1975	
v/s Ratio Prot								0.19		0.07	c0.31	
v/s Ratio Perm					0.03	0.01	0.03			0.18		
v/c Ratio					0.20	0.09	0.09	0.49		0.41	0.50	
Uniform Delay, d1					21.5	21.1	10.6	12.7		5.0	6.1	
Progression Factor					1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2					0.6	0.3	0.3	0.4		0.7	0.3	
Delay (s)					22.1	21.4	10.9	13.1		5.7	6.4	
Level of Service		0.0			C	С	В	В		Α	A	
Approach Delay (s)		0.0			21.6			13.1			6.3	
Approach LOS		Α			С			В			Α	
Intersection Summary												
HCM 2000 Control Delay			9.8	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capacity	ratio		0.48									
Actuated Cycle Length (s)			56.1		um of los				17.1			
Intersection Capacity Utilization			71.3%	IC	CU Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	•	4	†	-	ţ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations		4		ર્ન	7	ň	↑ ↑	¥	↑ ↑
Traffic Volume (vph)	141	143	152	256	367	59	934	362	1138
Future Volume (vph)	141	143	152	256	367	59	934	362	1138
Lane Group Flow (vph)	0	337	0	443	399	64	1086	393	1366
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA
Protected Phases		4		8		5	2	1	6
Permitted Phases	4		8		8	2		6	
Detector Phase	4	4	8	8	8	5	2	1	6
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0
Total Split (s)	35.0	35.0	35.0	35.0	35.0	18.0	47.0	18.0	47.0
Total Split (%)	35.0%	35.0%	35.0%	35.0%	35.0%	18.0%	47.0%	18.0%	47.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0
Lead/Lag						Lead	Lag	Lead	Lag
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max
v/c Ratio		2.57		1.27	0.62	0.33	0.83	1.15	0.84
Control Delay		748.9		174.6	11.5	8.8	31.8	125.1	20.0
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		748.9		174.6	11.5	8.8	31.8	125.1	20.0
Queue Length 50th (m)		~110.9		~108.8	11.2	4.9	103.6	~72.0	67.1
Queue Length 95th (m)		#141.0		#166.8	40.4	m4.5	m112.0 r	n#125.6 r	n#103.3
Internal Link Dist (m)		100.0		3.9			71.5		31.5
Turn Bay Length (m)						65.0		140.0	
Base Capacity (vph)		131		349	644	334	1307	341	1633
Starvation Cap Reductn		0		0	0	0	0	0	0
Spillback Cap Reductn		0		0	0	0	0	0	0
Storage Cap Reductn		0		0	0	0	0	0	0
Reduced v/c Ratio		2.57		1.27	0.62	0.19	0.83	1.15	0.84

Cycle Length: 100

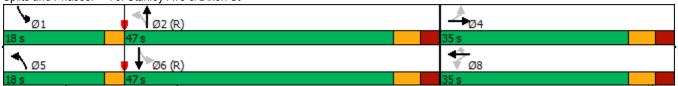
Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 76: Stanley Ave & Dixon St

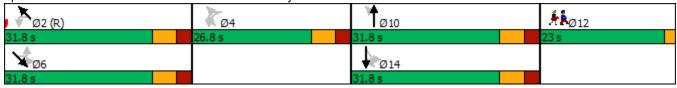
-	۶	→	•	•	←	•	4	†	<i>></i>	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	7	ሻ	∱ î≽		7	∱ ∱	
Traffic Volume (vph)	141	143	27	152	256	367	59	934	65	362	1138	119
Future Volume (vph)	141	143	27	152	256	367	59	934	65	362	1138	119
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.99			1.00	0.85	1.00	0.99		1.00	0.99	
Flt Protected		0.98			0.98	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1672			1699	1471	1644	3256		1644	3241	
Flt Permitted		0.27			0.72	1.00	0.11	1.00		0.12	1.00	
Satd. Flow (perm)		458			1249	1471	198	3256		202	3241	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	153	155	29	165	278	399	64	1015	71	393	1237	129
RTOR Reduction (vph)	0	4	0	0	0	233	0	5	0	0	7	0
Lane Group Flow (vph)	0	333	0	0	443	166	64	1081	0	393	1359	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		28.0			28.0	28.0	45.4	40.0		58.0	49.6	
Effective Green, g (s)		28.0			28.0	28.0	45.4	40.0		58.0	49.6	
Actuated g/C Ratio		0.28			0.28	0.28	0.45	0.40		0.58	0.50	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		128			349	411	167	1302		333	1607	
v/s Ratio Prot							0.02	0.33		c0.18	0.42	
v/s Ratio Perm		c0.73			0.35	0.11	0.15			c0.51		
v/c Ratio		2.60			1.27	0.40	0.38	0.83		1.18	0.85	
Uniform Delay, d1		36.0			36.0	29.2	17.3	26.9		27.1	21.9	
Progression Factor		1.00			1.00	1.00	0.74	1.04		1.46	0.67	
Incremental Delay, d2		744.3			142.0	0.4	0.4	3.3		104.0	4.8	
Delay (s)		780.3			178.0	29.6	13.3	31.4		143.6	19.5	
Level of Service		F			F	С	В	С		F	В	
Approach Delay (s)		780.3			107.7			30.4			47.2	
Approach LOS		F			F			С			D	
Intersection Summary												
HCM 2000 Control Delay			115.4	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacity	/ ratio		1.69									
Actuated Cycle Length (s)			100.0		um of los				17.0			
Intersection Capacity Utilization	n		115.1%	10	CU Level	of Service	е		Н			
Analysis Period (min)			15									
c Critical Lane Group												

	~	•	*_	ሽ	†	>	Ļ	ļ	•	\	\mathbf{x}	€
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWL
Lane Configurations		ă	Ž.		4			4		ă	ĵ»	
Traffic Volume (vph)	16	5	274	103	32	7	16	17	1	203	206	1
Future Volume (vph)	16	5	274	103	32	7	16	17	1	203	206	1
Lane Group Flow (vph)	0	22	357	0	247	0	0	44	0	222	256	0
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases					10			14			6	
Permitted Phases	4	4	4	10		14	14		6	6		2
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	26.8	26.8	26.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8
Total Split (%)	23.6%	23.6%	23.6%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%	28.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.12	1.41		0.84			0.16		0.82	0.70	
Control Delay		41.3	240.4		67.5			36.9		66.2	52.2	
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	
Total Delay		41.3	240.4		67.5			36.9		66.2	52.2	
Queue Length 50th (m)		4.1	~106.2		52.7			7.8		47.1	52.6	
Queue Length 95th (m)		11.6	#162.6		#95.5			17.7		#86.8	81.1	
Internal Link Dist (m)		102.7			229.8			295.5			298.1	
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		185	254		294			280		272	366	
Starvation Cap Reductn		0	0		0			0		0	0	
Spillback Cap Reductn		0	0		0			0		0	0	
Storage Cap Reductn		0	0		0			0		0	0	
Reduced v/c Ratio		0.12	1.41		0.84			0.16		0.82	0.70	

Cycle Length: 113.4 Actuated Cycle Length: 113.4

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 110 Control Type: Pretimed


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 78: Allandale Ave & Main St & Murray St

Lane Group	NWT	Ø12
Lane Configurations	4	
Traffic Volume (vph)	15	
Future Volume (vph)	15	
Lane Group Flow (vph)	45	
Turn Type	NA	
Protected Phases	2	12
Permitted Phases		
Minimum Split (s)	16.8	23.0
Total Split (s)	31.8	23.0
Total Split (%)	28.0%	20%
Yellow Time (s)	4.1	2.0
All-Red Time (s)	2.7	0.0
Lost Time Adjust (s)	0.0	
Total Lost Time (s)	6.8	
Lead/Lag		
Lead-Lag Optimize?		
v/c Ratio	0.13	
Control Delay	36.8	
Queue Delay	0.0	
Total Delay	36.8	
Queue Length 50th (m)	8.1	
Queue Length 95th (m)	17.8	
Internal Link Dist (m)	208.5	
Turn Bay Length (m)		
Base Capacity (vph)	340	
Starvation Cap Reductn	0	
Spillback Cap Reductn	0	
Storage Cap Reductn	0	
Reduced v/c Ratio	0.13	
Intersection Summary		
intersection Summary		

	4	•	*_	•	ሻ	†	/	r*	/	Ļ	ţ	¥J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		Ä	Ž.			4					4	
Traffic Volume (vph)	16	5	274	54	103	32	87	5	7	16	17	1
Future Volume (vph)	16	5	274	54	103	32	87	5	7	16	17	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.95					1.00	
Flt Protected		0.95	1.00			0.98					0.97	
Satd. Flow (prot)		1612	1442			1568					1645	
Flt Permitted		0.62	1.00			0.83					0.75	
Satd. Flow (perm)		1051	1442			1336					1268	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	5	298	59	112	35	95	5	8	17	18	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	22	357	0	0	247	0	0	0	0	43	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		20.0	20.0			25.0					25.0	
Effective Green, g (s)		20.0	20.0			25.0					25.0	
Actuated g/C Ratio		0.18	0.18			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		185	254			294					279	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.25			c0.18					0.03	
v/c Ratio		0.12	1.41			0.84					0.15	
Uniform Delay, d1		39.3	46.7			42.3					35.7	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.3	204.4			24.1					1.2	
Delay (s)		40.6	251.1			66.4					36.9	
Level of Service		D	F			Ε					D	
Approach Delay (s)		238.9				66.4					36.9	
Approach LOS		F				Е					D	
Intersection Summary												
HCM 2000 Control Delay			115.5	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	ity ratio		0.76									
Actuated Cycle Length (s)			113.4		um of lost				22.4			
Intersection Capacity Utilizat	ion		74.1%	IC	CU Level of	of Service	1		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\	\mathbf{x}	>	€	×	*	4	
Movement	SEL2	SEL	SET	SER	NWL	NWT	NWR	NWR2	
Lane Configurations		ă	∱			4			
Traffic Volume (vph)	1	203	206	29	1	15	11	15	
Future Volume (vph)	1	203	206	29	1	15	11	15	
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	
Total Lost time (s)		6.8	6.8			6.8			
Lane Util. Factor		1.00	1.00			1.00			
Frt		1.00	0.98			0.92			
Flt Protected		0.95	1.00			1.00			
Satd. Flow (prot)		1612	1665			1552			
Flt Permitted		0.73	1.00			0.99			
Satd. Flow (perm)		1235	1665			1544			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	1	221	224	32	1	16	12	16	
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	
Lane Group Flow (vph)	0	222	256	0	0	45	0	0	
Turn Type	Perm	Perm	NA		Perm	NA			
Protected Phases			6			2			
Permitted Phases	6	6			2				
Actuated Green, G (s)		25.0	25.0			25.0			
Effective Green, g (s)		25.0	25.0			25.0			
Actuated g/C Ratio		0.22	0.22			0.22			
Clearance Time (s)		6.8	6.8			6.8			
Lane Grp Cap (vph)		272	367			340			
v/s Ratio Prot			0.15						
v/s Ratio Perm		c0.18				0.03			
v/c Ratio		0.82	0.70			0.13			
Uniform Delay, d1		42.0	40.7			35.5			
Progression Factor		1.00	1.00			1.00			
Incremental Delay, d2		23.0	10.5			8.0			
Delay (s)		65.0	51.2			36.3			
Level of Service		Е	D			D			
Approach Delay (s)			57.6			36.3			
Approach LOS			Е			D			
Intersection Summary									

	•	→	•	•	←	•	•	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			44			44	
Traffic Volume (veh/h)	1	14	0	272	16	146	0	77	248	49	0	1
Future Volume (Veh/h)	1	14	0	272	16	146	0	77	248	49	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	15	0	296	17	159	0	84	270	53	0	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					124							
pX, platoon unblocked	0.83						0.83	0.83		0.83	0.83	0.83
vC, conflicting volume	176			15			706	785	15	1018	706	96
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	0			15			541	636	15	917	540	0
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			82			100	69	75	49	100	100
cM capacity (veh/h)	1354			1616			323	269	1070	104	305	902
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	16	472	354	54								
Volume Left	10	296	0	53								
	0	159	270	1								
Volume Right cSH	1354	1616	627	105								
Volume to Capacity	0.00	0.18	0.56	0.51								
Queue Length 95th (m)	0.00	5.1	26.8	17.6								
	0.0	5.4	17.9	70.7								
Control Delay (s)	0.5 A	3.4 A	17.9 C	70.7								
Lane LOS	0.5	5.4	17.9	70.7								
Approach Delay (s) Approach LOS	0.5	5.4	17.9 C	70.7								
••			U	Г								
Intersection Summary			44.0									
Average Delay			14.2									
Intersection Capacity Utilizat	ion		67.9%	IC	U Level	of Service			С			
Analysis Period (min)			15									

	٠	•	•	†	+	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	7	7	7	† †	∱ β				
Traffic Volume (veh/h)	0	0	10	1057	1299	126			
Future Volume (Veh/h)	0	0	10	1057	1299	126			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	0	11	1149	1412	137			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type				None	None				
Median storage veh)									
Upstream signal (m)				127	95				
pX, platoon unblocked	0.75	0.64	0.64						
vC, conflicting volume	2077	774	1549						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	432	0	735						
tC, single (s)	6.8	6.9	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	100	100	98						
cM capacity (veh/h)	411	699	563						
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2		
Volume Total	0	0	11	574	574	941	608		
Volume Left	0	0	11	0	0	0	0		
Volume Right	0	0	0	0	0	0	137		
cSH	1700	1700	563	1700	1700	1700	1700		
Volume to Capacity	0.00	0.00	0.02	0.34	0.34	0.55	0.36		
Queue Length 95th (m)	0.0	0.0	0.5	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	11.5	0.0	0.0	0.0	0.0		
Lane LOS	Α	А	В						
Approach Delay (s)	0.0		0.1			0.0			
Approach LOS	А								
Intersection Summary									
Average Delay			0.0						
Intersection Capacity Utiliza	ation		46.7%	IC	U Level o	of Service		Α	
Analysis Period (min)			15						
Analysis i enou (IIIII)			10						

	٠	→	+	4	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		414	ħβ		ች	7
Traffic Volume (veh/h)	211	368	985	18	13	212
Future Volume (Veh/h)	211	368	985	18	13	212
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	229	400	1071	20	14	230
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)		88	33			
pX, platoon unblocked						
vC, conflicting volume	1091				1739	546
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1091				1739	546
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	65				73	53
cM capacity (veh/h)	647				52	487
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2
Volume Total	362	267	714	377	14	230
Volume Left	229	0	0	0	14	0
Volume Right	0	1700	1700	20	0	230
cSH	647	1700	1700	1700	52	487
Volume to Capacity	0.35	0.16	0.42	0.22	0.27	0.47
Queue Length 95th (m)	12.1	0.0	0.0	0.0	7.1	18.9
Control Delay (s)	10.5	0.0	0.0	0.0	99.0	18.8
Lane LOS	В		0.0		F	С
Approach Delay (s)	6.0		0.0		23.4	
Approach LOS					С	
Intersection Summary						
Average Delay			4.8			
Intersection Capacity Utiliza	ation		61.2%	IC	U Level o	of Service
Analysis Period (min)			15			

	•	•	•	1	†	ļ
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	*	7	4	*	+	
Traffic Volume (vph)	272	149	26	143	160	144
Future Volume (vph)	272	149	26	143	160	144
Lane Group Flow (vph)	296	162	44	155	174	560
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	5.5	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.84	0.31	0.09	0.42	0.19	0.73
Control Delay	45.3	5.2	13.0	10.7	9.2	18.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	2.5
Total Delay	45.3	5.2	13.0	10.7	9.2	20.9
Queue Length 50th (m)	33.3	0.0	2.5	8.6	10.9	37.4
Queue Length 95th (m)	#71.1	11.6	8.9	16.2	20.2	#89.5
Internal Link Dist (m)			8.0		230.0	55.6
Turn Bay Length (m)	50.0					
Base Capacity (vph)	376	553	502	365	931	771
Starvation Cap Reductn	0	0	0	0	0	112
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.79	0.29	0.09	0.42	0.19	0.85
	· ·	=			-	

Cycle Length: 67.3

Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Fallsview Blvd & Embassy Suites

01-11-2024 TTW_Hennepin_2024-01-09-v0.1.syn

	٠	→	•	•	←	•	•	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲		7		4		*	†		¥	†	
Traffic Volume (vph)	272	0	149	0	26	15	143	160	0	0	144	371
Future Volume (vph)	272	0	149	0	26	15	143	160	0	0	144	371
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.89	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1544	
Flt Permitted	0.73		1.00		1.00		0.23	1.00			1.00	
Satd. Flow (perm)	1260		1471		1646		395	1731			1544	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	296	0	162	0	28	16	155	174	0	0	157	403
RTOR Reduction (vph)	0	0	117	0	12	0	0	0	0	0	130	0
Lane Group Flow (vph)	296	0	45	0	32	0	155	174	0	0	430	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases					8		5	2			6	
Permitted Phases	4		4	8			2			6		
Actuated Green, G (s)	18.9		18.9		18.9		36.1	36.1			27.2	
Effective Green, g (s)	18.9		18.9		18.9		36.1	36.1			27.2	
Actuated g/C Ratio	0.28		0.28		0.28		0.54	0.54			0.40	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	353		413		462		321	928			624	
v/s Ratio Prot					0.02		c0.04	0.10			c0.28	
v/s Ratio Perm	c0.23		0.03				0.22					
v/c Ratio	0.84		0.11		0.07		0.48	0.19			0.69	
Uniform Delay, d1	22.8		18.0		17.8		10.1	8.0			16.6	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	16.5		0.2		0.1		1.6	0.4			6.1	
Delay (s)	39.2		18.1		17.8		11.6	8.5			22.7	
Level of Service	D	24.0	В		B		В	A			C	
Approach Delay (s)		31.8			17.8			10.0			22.7	
Approach LOS		С			В			Α			С	
Intersection Summary												
HCM 2000 Control Delay			22.5	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.72						4= 0			
Actuated Cycle Length (s)			67.3		um of lost				15.3			
Intersection Capacity Utiliza	ation		76.4%	IC	CU Level of	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	f)	ሻ	f)	*	ħβ	ሻ	∱ ∱	
Traffic Volume (vph)	114	239	149	130	182	1017	419	1218	
Future Volume (vph)	114	239	149	130	182	1017	419	1218	
Lane Group Flow (vph)	124	375	162	391	198	1376	455	1467	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	24.0	24.0	10.0	28.0	
Total Split (s)	35.0	35.0	35.0	35.0	47.0	47.0	18.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	47.0%	47.0%	18.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	0.90	0.78	1.09	0.78	1.90	1.06	1.41	0.78	
Control Delay	91.5	44.4	136.0	37.6	438.1	52.6	229.0	19.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	91.5	44.4	136.0	37.6	438.1	52.6	229.0	19.5	
Queue Length 50th (m)	23.1	63.3	~35.3	54.6	~59.8	~151.4	~104.3	105.7	
Queue Length 95th (m)	#57.6	#106.4	#74.7	#98.6	m#75.1	m#168.5	#163.9	134.8	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	138	478	149	502	104	1297	322	1886	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.90	0.78	1.09	0.78	1.90	1.06	1.41	0.78	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 12: Stanley Ave & Murray St

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl) 1750
Total Lost time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 3.0 7.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 0.95 Frt 1.00 0.95 1.00 0.90 1.00 0.97 1.00 0.99 Fit Protected 0.95 1.00 0.95 1.00 0.95 1.00 0.95 Satd. Flow (prot) 1644 1651 1644 1565 1644 3191 1644 3240 Fit Permitted 0.28 1.00 0.31 1.00 0.15 1.00 0.09 1.00 Satd. Flow (perm) 493 1651 534 1565 259 3191 161 3240 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.99
Fit 1.00 0.95 1.00 0.90 1.00 0.97 1.00 0.99 Fit Protected 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 Satd. Flow (prot) 1644 1651 1644 1565 1644 3191 1644 3240 Fit Permitted 0.28 1.00 0.31 1.00 0.15 1.00 0.09 1.00 Satd. Flow (perm) 493 1651 534 1565 259 3191 161 3240 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Fit Protected 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1644 1651 1644 1565 1644 3191 1644 3240 Fit Permitted 0.28 1.00 0.31 1.00 0.15 1.00 0.09 1.00 Satd. Flow (perm) 493 1651 534 1565 259 3191 161 3240 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Statd. Flow (prot) 1644 1651 1644 1565 1644 3191 1644 3240 Flt Permitted 0.28 1.00 0.31 1.00 0.15 1.00 0.09 1.00 Satd. Flow (perm) 493 1651 534 1565 259 3191 161 3240 Peak-hour factor, PHF 0.92 0.9
Fit Permitted 0.28 1.00 0.31 1.00 0.15 1.00 0.09 1.00 Satd. Flow (perm) 493 1651 534 1565 259 3191 161 3240 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Statd. Flow (perm) 493 1651 534 1565 259 3191 161 3240 Peak-hour factor, PHF 0.92 <
Peak-hour factor, PHF 0.92
Adj. Flow (vph) 124 260 115 162 141 250 198 1105 271 455 1324 143 RTOR Reduction (vph) 0 16 0 0 64 0 0 22 0 0 8 0 Lane Group Flow (vph) 124 359 0 162 327 0 198 1354 0 455 1459 0 Heavy Vehicles (%) 0% 0% 0% 0% 0% 0% 0% 0% 0%
RTOR Reduction (vph) 0 16 0 0 64 0 0 22 0 0 8 0 Lane Group Flow (vph) 124 359 0 162 327 0 198 1354 0 455 1459 0 Heavy Vehicles (%) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
RTOR Reduction (vph) 0 16 0 0 64 0 0 22 0 0 8 0 Lane Group Flow (vph) 124 359 0 162 327 0 198 1354 0 455 1459 0 Heavy Vehicles (%) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Lane Group Flow (vph) 124 359 0 162 327 0 198 1354 0 455 1459 0 Heavy Vehicles (%) 0%<
Heavy Vehicles (%) 0%
Protected Phases 4 8 2 1 6 Permitted Phases 4 8 2 6 Actuated Green, G (s) 28.0 28.0 28.0 28.0 40.0 40.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0 5
Protected Phases 4 8 2 1 6 Permitted Phases 4 8 2 6 Actuated Green, G (s) 28.0 28.0 28.0 28.0 40.0 40.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0 5
Permitted Phases 4 8 2 6 Actuated Green, G (s) 28.0 28.0 28.0 28.0 40.0 40.0 58.0 58.0 Effective Green, g (s) 28.0 28.0 28.0 28.0 40.0 40.0 58.0 58.0 Actuated g/C Ratio 0.28 0.28 0.28 0.28 0.40 0.40 0.58 0.58 Clearance Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 3.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Actuated Green, G (s) 28.0 28.0 28.0 28.0 40.0 40.0 58.0 58.0 Effective Green, g (s) 28.0 28.0 28.0 28.0 40.0 40.0 58.0 58.0 Actuated g/C Ratio 0.28 0.28 0.28 0.28 0.40 0.40 0.58 0.58 Clearance Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 3.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Effective Green, g (s) 28.0 28.0 28.0 28.0 40.0 40.0 58.0 58.0 Actuated g/C Ratio 0.28 0.28 0.28 0.28 0.40 0.40 0.58 0.58 Clearance Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Actuated g/C Ratio 0.28 0.28 0.28 0.28 0.40 0.40 0.58 0.58 Clearance Time (s) 7.0 7.0 7.0 7.0 7.0 3.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Clearance Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 3.0 7.0 Vehicle Extension (s) 3.0
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0
Lane Grp Cap (vph) 138 462 149 438 103 1276 315 1879
v/s Ratio Prot 0.22 0.21 0.42 c0.22 0.45
v/s Ratio Perm 0.25 c0.30 c0.76 0.62
v/c Ratio 0.90 0.78 1.09 0.75 1.92 1.06 1.44 0.78
Uniform Delay, d1 34.6 33.1 36.0 32.8 30.0 30.0 30.9 16.0
Progression Factor 1.00 1.00 1.00 0.58 0.56 1.00 1.00
Incremental Delay, d2 46.9 8.0 99.0 6.8 426.5 34.0 217.1 3.2
Delay (s) 81.6 41.2 135.0 39.6 443.8 50.8 248.0 19.3
Level of Service F D F D F B
Approach Delay (s) 51.2 67.5 100.2 73.4
Approach LOS D E F E
Intersection Summary
HCM 2000 Control Delay 79.5 HCM 2000 Level of Service E
HCM 2000 Volume to Capacity ratio 1.55
Actuated Cycle Length (s) 100.0 Sum of lost time (s) 17.0
Intersection Capacity Utilization 114.8% ICU Level of Service H
Analysis Period (min) 15
Critical Lane Group

Lane Group		•	-	•	•	•	4	†	-	ļ	
Traffic Volume (vph)	Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Traffic Volume (vph) 169 503 137 263 167 121 376 172 602 Future Volume (vph) 169 503 137 263 167 121 376 172 602 Lane Group Flow (vph) 184 787 149 286 182 132 712 187 713 Turn Type pm+pt NA 2	Lane Configurations	ሻ	ተ ኈ	ሻ	1	7	ሻ	↑ 1≽	ሻ	↑ ↑	
Lane Group Flow (vph)	Traffic Volume (vph)	169		137	263	167	121		172		
Turn Type	Future Volume (vph)	169	503	137	263	167	121	376	172	602	
Protected Phases 7 4 3 8 8 5 2 1 6 Permitted Phases 4 8 8 8 2 6 6 Detector Phase 7 4 3 8 8 5 2 1 6 Switch Phase Minimum Initial (s) 5.5 20.0 7.0 20.0 20.0 5.5 20.0 7.0 20.0 Minimum Split (s) 10.0 33.3 10.0 33.3 33.3 10.0 42.6 10.0 42.6 Total Split (s) 13.0 33.3 13.0 33.3 33.3 13.0 42.6 13.0 42.6 Total Split (%) 12.8% 32.7% 12.8% 32.7% 32.7% 12.8% 41.8% 12.8% 41.8% Yellow Time (s) 3.0 4.1 3.0 4.1 4.1 3.0 4.1 3.0 4.1 3.0 4.1 All-Red Time (s) 0.0 0.2 2 0.0 2.2 2.2 2.0 0.0 2.5 0.0 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 3.0 6.3 3.0 6.3 6.3 3.0 6.6 3.0 6.6 Lead-Lag Optimize? Recall Mode None None None None None None Max None Max V/C Ratio 0.50 0.91 0.64 0.64 0.35 0.39 0.57 0.55 0.60 Control Delay 24.6 48.6 32.1 40.6 6.6 16.5 20.4 19.8 28.4 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Lane Group Flow (vph)	184	787	149	286	182	132	712	187	713	
Permitted Phases		pm+pt		pm+pt	NA	Perm	pm+pt		pm+pt		
Detector Phase 7	Protected Phases	7	4	3	8		5	2	1	6	
Switch Phase Minimum Initial (s) 5.5 20.0 7.0 20.0 20.0 5.5 20.0 7.0 20.0 Minimum Split (s) 10.0 33.3 10.0 33.3 33.3 10.0 42.6 10.0 42.6 Total Split (s) 13.0 33.3 13.0 33.3 13.0 42.6 13.0 42.6 Total Split (%) 12.8% 32.7% 12.8% 32.7% 12.8% 41.8% 12.8% 41.8% Yellow Time (s) 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 4.1 3.0 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 <td>Permitted Phases</td> <td>4</td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td>	Permitted Phases	4		8					6		
Minimum Initial (s) 5.5 20.0 7.0 20.0 20.0 5.5 20.0 7.0 20.0 Minimum Split (s) 10.0 33.3 10.0 33.3 10.0 42.6 10.0 42.6 Total Split (s) 13.0 33.3 13.0 33.3 13.0 42.6 13.0 42.6 Total Split (%) 12.8% 32.7% 12.8% 32.7% 12.8% 41.8% 12.8% 41.8% Yellow Time (s) 3.0 4.1 3.0 4.1 4.1 3.0 4.1 3.0 4.1 All-Red Time (s) 0.0 0.2 0.0 2.2 2.2 0.0 2.5 0.0 2.5 Lost Time Adjust (s) 0.0	Detector Phase	7	4	3	8	8	5	2	1	6	
Minimum Split (s) 10.0 33.3 10.0 33.3 10.0 42.6 10.0 42.6 Total Split (s) 13.0 33.3 13.0 33.3 13.0 42.6 13.0 42.6 Total Split (%) 12.8% 32.7% 12.8% 32.7% 12.8% 41.8% 12.8% 41.8% Yellow Time (s) 3.0 4.1 3.0 4.1 4.1 3.0 4.1 3.0 4.1 All-Red Time (s) 0.0 0.2 0.0 2.2 2.2 0.0 2.5 0.0 2.5 Lost Time Adjust (s) 0.0											
Total Split (s) 13.0 33.3 13.0 33.3 13.0 42.6 13.0 42.6 Total Split (%) 12.8% 32.7% 12.8% 32.7% 32.7% 12.8% 41.8% 12.8% 41.8% Yellow Time (s) 3.0 4.1 3.0 4.1 4.1 3.0 4.1 3.0 4.1 All-Red Time (s) 0.0 2.2 0.0 2.2 2.2 0.0 2.5 0.0 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Minimum Initial (s)										
Total Split (%)											
Yellow Time (s) 3.0 4.1 3.0 4.1 3.0 4.1 3.0 4.1 All-Red Time (s) 0.0 2.2 0.0 2.2 2.2 0.0 2.5 0.0 2.5 Lost Time Adjust (s) 0.0	Total Split (s)										
All-Red Time (s)											
Lost Time Adjust (s) 0.0											
Total Lost Time (s) 3.0 6.3 3.0 6.3 3.0 6.6 3.0 6.6 Lead/Lag Lead Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Recall Mode None None None None None None Max None Max V/c Ratio 0.50 0.91 0.64 0.64 0.35 0.39 0.57 0.55 0.60 Control Delay 24.6 48.6 32.1 40.6 6.6 16.5 20.4 19.8 28.4 Queue Delay 0.0											
Lead/Lag Lead Lag Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Recall Mode None None None None None None Max None Max V/c Ratio 0.50 0.91 0.64 0.64 0.35 0.39 0.57 0.55 0.60 Control Delay 24.6 48.6 32.1 40.6 6.6 16.5 20.4 19.8 28.4 Queue Delay 0.0 <t< td=""><td>Lost Time Adjust (s)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Lost Time Adjust (s)										
Lead-Lag Optimize? Recall Mode None None None None None None Max None Max v/c Ratio 0.50 0.91 0.64 0.64 0.35 0.39 0.57 0.55 0.60 Control Delay 24.6 48.6 32.1 40.6 6.6 16.5 20.4 19.8 28.4 Queue Delay 0.0 </td <td>. ,</td> <td>3.0</td> <td>6.3</td> <td></td> <td>6.3</td> <td>6.3</td> <td>3.0</td> <td>6.6</td> <td></td> <td>6.6</td> <td></td>	. ,	3.0	6.3		6.3	6.3	3.0	6.6		6.6	
Recall Mode None None None None None None Max None Max v/c Ratio 0.50 0.91 0.64 0.64 0.35 0.39 0.57 0.55 0.60 Control Delay 24.6 48.6 32.1 40.6 6.6 16.5 20.4 19.8 28.4 Queue Delay 0.0 <td< td=""><td>•</td><td>Lead</td><td>Lag</td><td>Lead</td><td>Lag</td><td>Lag</td><td>Lead</td><td>Lag</td><td>Lead</td><td>Lag</td><td></td></td<>	•	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	
v/c Ratio 0.50 0.91 0.64 0.64 0.35 0.39 0.57 0.55 0.60 Control Delay 24.6 48.6 32.1 40.6 6.6 16.5 20.4 19.8 28.4 Queue Delay 0.0											
Control Delay 24.6 48.6 32.1 40.6 6.6 16.5 20.4 19.8 28.4 Queue Delay 0.0<											
Queue Delay 0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
Total Delay 24.6 48.6 32.1 40.6 6.6 16.5 20.4 19.8 28.4 Queue Length 50th (m) 23.0 73.1 18.2 49.8 0.0 13.1 42.2 19.3 59.6 Queue Length 95th (m) 38.3 #106.9 #31.5 77.2 15.8 23.3 60.6 32.1 78.9 Internal Link Dist (m) 39.6 70.0 112.9 294.7 Turn Bay Length (m) 30.0 35.0 10.0 65.0 Base Capacity (vph) 371 897 242 467 530 356 1240 351 1196 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0	•										
Queue Length 50th (m) 23.0 73.1 18.2 49.8 0.0 13.1 42.2 19.3 59.6 Queue Length 95th (m) 38.3 #106.9 #31.5 77.2 15.8 23.3 60.6 32.1 78.9 Internal Link Dist (m) 39.6 70.0 112.9 294.7 Turn Bay Length (m) 30.0 35.0 10.0 65.0 Base Capacity (vph) 371 897 242 467 530 356 1240 351 1196 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0											
Queue Length 95th (m) 38.3 #106.9 #31.5 77.2 77.2 77.2 77.2 77.2 77.2 77.2 77.2	•										
Internal Link Dist (m) 39.6 70.0 112.9 294.7 Turn Bay Length (m) 30.0 35.0 10.0 65.0 Base Capacity (vph) 371 897 242 467 530 356 1240 351 1196 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0			-				-				
Turn Bay Length (m) 30.0 35.0 10.0 65.0 Base Capacity (vph) 371 897 242 467 530 356 1240 351 1196 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	• ,	38.3		#31.5		15.8	23.3		32.1		
Base Capacity (vph) 371 897 242 467 530 356 1240 351 1196 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0			39.6		70.0			112.9		294.7	
Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	, , , , , , , , , , , , , , , , , , ,										
Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0											
Storage Cap Reductn 0 0 0 0 0 0 0											
	_ ·										
Reduced v/c Ratio 0.50 0.88 0.62 0.61 0.34 0.37 0.57 0.53 0.60	•										
	Reduced v/c Ratio	0.50	0.88	0.62	0.61	0.34	0.37	0.57	0.53	0.60	

Cycle Length: 101.9 Actuated Cycle Length: 100 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 13: Fallsview Blvd & Murray St

	۶	→	•	•	—	•	•	†	~	/	ţ	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	∱ }		7	†	7	7	∱ ∱		7	∱ ∱	
Traffic Volume (vph)	169	503	221	137	263	167	121	376	279	172	602	54
Future Volume (vph)	169	503	221	137	263	167	121	376	279	172	602	54
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.94		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	3138		1644	1731	1471	1644	3078		1644	3247	
Flt Permitted	0.41	1.00		0.15	1.00	1.00	0.28	1.00		0.27	1.00	
Satd. Flow (perm)	702	3138		267	1731	1471	485	3078		465	3247	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	184	547	240	149	286	182	132	409	303	187	654	59
RTOR Reduction (vph)	0	49	0	0	0	135	0	130	0	0	6	0
Lane Group Flow (vph)	184	738	0	149	286	47	132	582	0	187	707	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4	•		8	-	8	2	_		6	-	
Actuated Green, G (s)	35.9	26.2		35.3	25.9	25.9	45.0	36.1		46.2	36.7	
Effective Green, g (s)	35.9	26.2		35.3	25.9	25.9	45.0	36.1		46.2	36.7	
Actuated g/C Ratio	0.36	0.26		0.35	0.26	0.26	0.45	0.36		0.46	0.37	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	343	821		223	447	380	321	1110		326	1190	
v/s Ratio Prot	0.05	c0.24		c0.06	0.17		0.04	0.19		c0.05	c0.22	
v/s Ratio Perm	0.14			0.17	• • • • • • • • • • • • • • • • • • • •	0.03	0.15			0.21	•••	
v/c Ratio	0.54	0.90		0.67	0.64	0.12	0.41	0.52		0.57	0.59	
Uniform Delay, d1	23.6	35.7		24.6	33.0	28.4	17.1	25.2		17.2	25.7	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.6	12.6		7.4	3.0	0.1	0.9	1.8		2.4	2.2	
Delay (s)	25.2	48.3		32.0	36.0	28.6	17.9	27.0		19.6	27.9	
Level of Service	С	D		С	D	С	В	C		В	C	
Approach Delay (s)		43.9			32.8			25.6			26.1	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			32.4	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.70									
Actuated Cycle Length (s)			100.1	Sı	um of lost	t time (s)			18.9			
Intersection Capacity Utiliza	ation		79.8%	IC	U Level	of Service	Э		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	←	•	•	†	>	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	4î	7	↑	7	7	∱ ⊅	7	∱ }	
Traffic Volume (vph)	265	304	82	394	69	216	858	158	867	
Future Volume (vph)	265	304	82	394	69	216	858	158	867	,
Lane Group Flow (vph)	288	491	89	428	75	235	1088	172	1210)
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA	(
Protected Phases		4		8			2	1	6	j
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	2	2	1	6	;
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0)
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0	
Total Split (s)	37.0	37.0	37.0	37.0	37.0	50.0	50.0	13.0	63.0)
Total Split (%)	37.0%	37.0%	37.0%	37.0%	37.0%	50.0%	50.0%	13.0%	63.0%)
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0)
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0)
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0)
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0)
Lead/Lag						Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	(
v/c Ratio	2.15	0.96	1.00	0.82	0.15	1.52	0.77	0.63	0.67	,
Control Delay	563.7	65.3	135.2	47.5	6.9	286.9	27.8	16.5	19.4	ļ
Queue Delay	0.0	0.0	0.0	7.6	0.0	0.0	0.0	0.0	0.0)
Total Delay	563.7	65.3	135.2	55.1	6.9	286.9	27.8	16.5	19.4	ļ.
Queue Length 50th (m)	~89.6	89.4	17.1	76.8	0.0	~64.3	90.9	19.7	111.4	ļ
Queue Length 95th (m)	#139.0	#152.8	#48.3	#125.5	9.6	#109.7	117.0	m20.4	m125.1	
Internal Link Dist (m)		213.7		94.8			227.1		103.4	ļ
Turn Bay Length (m)	75.0		25.0		25.0	25.0		40.0		
Base Capacity (vph)	134	511	89	519	494	155	1421	283	1806	;
Starvation Cap Reductn	0	0	0	62	0	0	0	0	0)
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0)
Storage Cap Reductn	0	0	0	0	0	0	0	0	0)
Reduced v/c Ratio	2.15	0.96	1.00	0.94	0.15	1.52	0.77	0.61	0.67	,

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 15: Stanley Ave & Dunn St

	۶	→	•	•	—	•	•	†	/	/	ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	î»		ħ	†	7	7	∱ β		7	∱ ∱	
Traffic Volume (vph)	265	304	148	82	394	69	216	858	143	158	867	247
Future Volume (vph)	265	304	148	82	394	69	216	858	143	158	867	247
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1645		1644	1731	1471	1644	3218		1644	3179	
Flt Permitted	0.26	1.00		0.17	1.00	1.00	0.21	1.00		0.14	1.00	
Satd. Flow (perm)	449	1645		300	1731	1471	357	3218		239	3179	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	288	330	161	89	428	75	235	933	155	172	942	268
RTOR Reduction (vph)	0	18	0	0	0	53	0	13	0	0	26	0
Lane Group Flow (vph)	288	474	0	89	428	23	235	1075	0	172	1184	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	30.0	30.0		30.0	30.0	30.0	43.8	43.8		56.0	56.0	
Effective Green, g (s)	30.0	30.0		30.0	30.0	30.0	43.8	43.8		56.0	56.0	
Actuated g/C Ratio	0.30	0.30		0.30	0.30	0.30	0.44	0.44		0.56	0.56	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	134	493		90	519	441	156	1409		263	1780	
v/s Ratio Prot		0.29			0.25			0.33		0.06	c0.37	
v/s Ratio Perm	c0.64			0.30		0.02	c0.66			0.31		
v/c Ratio	2.15	0.96		0.99	0.82	0.05	1.51	0.76		0.65	0.67	
Uniform Delay, d1	35.0	34.4		34.8	32.6	24.9	28.1	23.7		14.8	15.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.05	1.23	
Incremental Delay, d2	541.2	30.5		90.4	10.3	0.0	258.2	4.0		2.9	1.0	
Delay (s)	576.2	65.0		125.2	42.8	24.9	286.3	27.7		18.4	20.0	
Level of Service	F	Е		F	D	С	F	С		В	В	
Approach Delay (s)		254.0			52.9			73.6			19.8	
Approach LOS		F			D			Ε			В	
Intersection Summary												
HCM 2000 Control Delay			86.8	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		1.64									
Actuated Cycle Length (s)			100.0	Sı	um of los	t time (s)			17.0			
Intersection Capacity Utilizat	tion		109.4%	IC	U Level	of Service	:		Н			
Analysis Period (min)			15									
c Critical Lane Group												

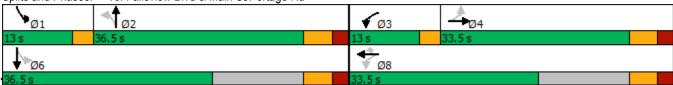
	•	→	•	•	•	4	†	\	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	₽	ሻ	↑	7	ች	₽	ሻ	f)	
Traffic Volume (vph)	262	341	189	476	489	21	434	112	264	
Future Volume (vph)	262	341	189	476	489	21	434	112	264	
Lane Group Flow (vph)	285	467	205	517	532	23	585	122	324	
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	
Total Split (s)	33.5	33.5	13.0	33.5	33.5	36.5	36.5	13.0	36.5	
Total Split (%)	34.9%	34.9%	13.5%	34.9%	34.9%	38.0%	38.0%	13.5%	38.0%	
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	
Lead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Max	Max	None	Max	
v/c Ratio	1.37	0.96	0.76	0.71	0.63	0.07	1.08	0.52	0.43	
Control Delay	224.5	65.9	36.8	29.5	9.7	24.1	95.4	22.2	19.8	
Queue Delay	0.0	0.0	0.0	9.4	0.7	0.0	9.6	0.0	0.0	
Total Delay	224.5	65.9	36.8	38.9	10.4	24.1	105.0	22.2	19.8	
Queue Length 50th (m)	~70.1	82.5	22.7	76.9	17.1	3.0	~120.8	12.1	38.5	
Queue Length 95th (m)	#119.4	#145.3	#50.5	115.7	51.0	8.7	#186.1	22.2	60.2	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	208	487	271	730	843	309	540	251	776	
Starvation Cap Reductn	0	0	0	181	98	0	162	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.37	0.96	0.76	0.94	0.71	0.07	1.55	0.49	0.42	

Cycle Length: 96

Actuated Cycle Length: 94.8

Natural Cycle: 130

Control Type: Actuated-Uncoordinated


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 16: Fallsview Blvd & Main St/Portage Rd

01-11-2024

Synchro 11 Report

To. I diloviow bive	٠	→	`	•	←	4	•	<u>†</u>	<u> </u>	\		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĵ.			†	7	ሻ	^		ሻ	\$	02.1
Traffic Volume (vph)	262	341	88	189	476	489	21	434	104	112	264	34
Future Volume (vph)	262	341	88	189	476	489	21	434	104	112	264	34
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	1.00	0.85	1.00	0.97		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1677		1644	1731	1471	1644	1680		1644	1701	
Flt Permitted	0.42	1.00		0.16	1.00	1.00	0.56	1.00		0.12	1.00	
Satd. Flow (perm)	733	1677		279	1731	1471	977	1680		210	1701	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	285	371	96	205	517	532	23	472	113	122	287	37
RTOR Reduction (vph)	0	10	0	0	0	223	0	9	0	0	5	0
Lane Group Flow (vph)	285	457	0	205	517	309	23	576	0	122	319	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	27.0	27.0		39.8	39.8	39.8	30.0	30.0		41.9	41.9	
Effective Green, g (s)	27.0	27.0		39.8	39.8	39.8	30.0	30.0		41.9	41.9	
Actuated g/C Ratio	0.29	0.29		0.42	0.42	0.42	0.32	0.32		0.44	0.44	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	208	478		258	727	618	309	532		227	752	
v/s Ratio Prot		0.27		c0.08	0.30			c0.34		c0.05	0.19	
v/s Ratio Perm	c0.39			0.25		0.21	0.02			0.19		
v/c Ratio	1.37	0.96		0.79	0.71	0.50	0.07	1.08		0.54	0.42	
Uniform Delay, d1	33.9	33.3		21.0	22.7	20.1	22.6	32.4		20.4	18.1	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	194.1	30.0		15.4	3.3	0.6	0.5	63.3		2.4	1.8	
Delay (s)	227.9	63.2		36.4	26.0	20.8	23.1	95.7		22.8	19.9	
Level of Service	F	Е		D	С	С	С	F		С	В	
Approach Delay (s)		125.7			25.5			93.0			20.7	
Approach LOS		F			С			F			С	
Intersection Summary							•		_			
HCM 2000 Control Delay	11 11		62.8	H	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	acity ratio		1.08						40.0			
Actuated Cycle Length (s)	· C · · · ·		94.7		um of lost				19.0			
Intersection Capacity Utiliza	ation		100.9%	IC	U Level o	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	†	†	7
Traffic Volume (vph)	106	298	488	112	141	391
Future Volume (vph)	106	298	488	112	141	391
Lane Group Flow (vph)	115	324	530	122	153	425
Turn Type	Perm	Perm	Perm	NA	NA	Perm
Protected Phases				2	6	
Permitted Phases	4	4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	31.1	31.1	31.1	31.1
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.19	0.44	1.09	0.17	0.21	0.49
Control Delay	13.1	3.9	89.6	12.8	13.1	3.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	13.1	3.9	89.6	12.8	13.1	3.7
Queue Length 50th (m)	8.1	0.0	~73.9	8.7	11.1	0.0
Queue Length 95th (m)	17.1	12.7	#124.6	17.9	21.7	14.4
Internal Link Dist (m)	9.1			121.3	66.9	
Turn Bay Length (m)						
Base Capacity (vph)	702	814	488	739	739	872
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.16	0.40	1.09	0.17	0.21	0.49
1000000 770 11000	0.10	0.10	1.00	0.17	0.21	0.10

Cycle Length: 62.2

Actuated Cycle Length: 59.2

Natural Cycle: 80

Control Type: Actuated-Uncoordinated

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 17: Portage Rd & Fallsview Casino Rear Driveway

01-11-2024 TTW_Hennepin_2024-01-09-v0.1.syn Synchro 11 Report

	•	•	•	†	ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
_ane Configurations	*	7	ሻ	1	1	7		
Fraffic Volume (vph)	106	298	488	112	141	391		
uture Volume (vph)	106	298	488	112	141	391		
deal Flow (vphpl)	1750	1750	1750	1750	1750	1750		
otal Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
ane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
-rt	1.00	0.85	1.00	1.00	1.00	0.85		
It Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1644	1471	1644	1731	1731	1471		
It Permitted	0.95	1.00	0.66	1.00	1.00	1.00		
Satd. Flow (perm)	1644	1471	1142	1731	1731	1471		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	115	324	530	122	153	425		
RTOR Reduction (vph)	0	206	0	0	0	243		
ane Group Flow (vph)	115	118	530	122	153	182		
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%		
urn Type	Perm	Perm	Perm	NA	NA	Perm		
Protected Phases				2	6			
Permitted Phases	4	4	2			6		
Actuated Green, G (s)	21.5	21.5	25.3	25.3	25.3	25.3		
ffective Green, g (s)	21.5	21.5	25.3	25.3	25.3	25.3		
Actuated g/C Ratio	0.36	0.36	0.43	0.43	0.43	0.43		
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
/ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
ane Grp Cap (vph)	599	536	489	742	742	630		
//s Ratio Prot				0.07	0.09			
/s Ratio Perm	0.07	c0.08	c0.46			0.12		
v/c Ratio	0.19	0.22	1.08	0.16	0.21	0.29		
Jniform Delay, d1	12.8	13.0	16.9	10.4	10.6	11.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
ncremental Delay, d2	0.2	0.2	65.2	0.5	0.6	1.2		
Delay (s)	13.0	13.2	82.1	10.8	11.2	12.1		
_evel of Service	В	В	F	В	В	В		
Approach Delay (s)	13.1			68.8	11.9			
pproach LOS	В			Е	В			
ntersection Summary								
ICM 2000 Control Delay			34.4	H	CM 2000	Level of Service	ce	С
ICM 2000 Volume to Capa	city ratio		0.69					
ctuated Cycle Length (s)			59.0	Sı	um of lost	time (s)	12	2.2
ntersection Capacity Utiliza	ation		65.8%			of Service		С
Analysis Period (min)			15					
Critical Lane Group								

	•	•	•	†	+	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	I
Lane Configurations		7		^	↑ ↑		
Traffic Volume (veh/h)	0	165	0	1451	1452	40	
Future Volume (Veh/h)	0	165	0	1451	1452	40	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	179	0	1577	1578	43	
Pedestrians	-						
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)				140110	140110		
Upstream signal (m)				55	191		
pX, platoon unblocked	0.81	0.66	0.66	00	101		
vC, conflicting volume	2388	810	1621				
vC1, stage 1 conf vol	2000	010	1021				
vC2, stage 2 conf vol							
vCu, unblocked vol	599	0	924				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)	0.0	0.5	7.1				
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	75	100				
cM capacity (veh/h)	356	724	497				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	179	788	788	1052	569		
Volume Left	0	0	0	0	0		
Volume Right	179	0	0	0	43		
cSH	724	1700	1700	1700	1700		
Volume to Capacity	0.25	0.46	0.46	0.62	0.33		
Queue Length 95th (m)	7.4	0.0	0.0	0.0	0.0		
Control Delay (s)	11.6	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	11.6	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.6				ĺ
Intersection Capacity Utiliza	tion		62.7%	IC	CU Level	of Service	
Analysis Period (min)			15		3 = 3.51		

	۶	→	•	•	←	4	1	†	<i>></i>	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	∱ ∱		ሻ	∱ β	
Traffic Volume (veh/h)	23	5	16	0	0	0	79	558	166	181	498	198
Future Volume (Veh/h)	23	5	16	0	0	0	79	558	166	181	498	198
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	25	5	17	0	0	0	86	607	180	197	541	215
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)								139			114	
pX, platoon unblocked	0.92	0.92	0.92	0.92	0.92		0.92					
vC, conflicting volume	1518	2002	378	1553	2019	394	756			787		
vC1, stage 1 conf vol	1042	1042		869	869							
vC2, stage 2 conf vol	476	959		684	1150							
vCu, unblocked vol	1387	1914	147	1426	1933	394	558			787		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	6.5	5.5		6.5	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	87	95	98	100	100	100	91			77		
cM capacity (veh/h)	187	103	809	206	133	611	940			841		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3		• • • • • • • • • • • • • • • • • • • •		
Volume Total			86	405			361	395				
	47	0			382	197						
Volume Left	25	0	86	0	0	197	0	0				
Volume Right	17	0	0	0	180	0	0	215				
cSH	231	1700	940	1700	1700	841	1700	1700				
Volume to Capacity	0.20	0.00	0.09	0.24	0.22	0.23	0.21	0.23				
Queue Length 95th (m)	5.6	0.0	2.3	0.0	0.0	6.9	0.0	0.0				
Control Delay (s)	24.5	0.0	9.2	0.0	0.0	10.6	0.0	0.0				
Lane LOS	С	Α	Α			В						
Approach Delay (s)	24.5	0.0	0.9			2.2						
Approach LOS	С	Α										
Intersection Summary												
Average Delay			2.2									
Intersection Capacity Utilizat	ion		46.7%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	←	•	4	†	-	↓
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	र्स	7	ሻ	∱ }	ሻ	↑ ↑
Traffic Volume (vph)	1	123	16	510	204	824
Future Volume (vph)	1	123	16	510	204	824
Lane Group Flow (vph)	47	134	17	650	222	1016
Turn Type	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases	8			2	1	6
Permitted Phases		8	2		6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4
Lead/Lag	0	U.	Lag	Lag	Lead	
Lead-Lag Optimize?			ag	ug	Loud	
Recall Mode	None	None	None	None	None	None
v/c Ratio	0.15	0.34	0.09	0.49	0.37	0.47
Control Delay	23.0	8.1	13.4	14.4	5.6	7.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.0	8.1	13.4	14.4	5.6	7.2
Queue Length 50th (m)	4.2	0.0	1.1	26.2	7.4	28.6
Queue Length 95th (m)	13.0	12.6	4.7	40.8	14.8	43.4
Internal Link Dist (m)	32.2	12.0	7.1	90.4	17.0	112.9
Turn Bay Length (m)	52.2		20.0	30.4	25.0	112.5
Base Capacity (vph)	623	639	296	1963	626	2535
Starvation Cap Reductn	023	039	290	0	020	121
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductin	0	0	0	0	0	0
Reduced v/c Ratio			0.06			
	0.08	0.21	0.00	0.33	0.35	0.42
Intersection Summary						
Cycle Length: 77.1						
Actuated Cycle Length: 54.9						
Natural Cycle: 75						
Control Type: Actuated Upor	ardinator	1				

Control Type: Actuated-Uncoordinated

Splits and Phases: 73: Fallsview Blvd & Hilton Lot/Fallsview Lot

	۶	→	•	•	—	•	•	†	~	\	ţ	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	ሻ	∱ ∱		ሻ	ተ ኈ	
Traffic Volume (vph)	0	0	0	42	1	123	16	510	88	204	824	110
Future Volume (vph)	0	0	0	42	1	123	16	510	88	204	824	110
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Lane Util. Factor					1.00	1.00	1.00	0.95		1.00	0.95	
Frt					1.00	0.85	1.00	0.98		1.00	0.98	
Flt Protected					0.95	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)					1650	1471	1644	3215		1644	3230	
Flt Permitted					0.95	1.00	0.28	1.00		0.35	1.00	
Satd. Flow (perm)					1650	1471	488	3215		603	3230	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	46	1	134	17	554	96	222	896	120
RTOR Reduction (vph)	0	0	0	0	0	116	0	18	0	0	12	0
Lane Group Flow (vph)	0	0	0	0	47	18	17	632	0	222	1004	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type				Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases				1 01111	8	1 01111	1 01111	2		1	6	
Permitted Phases				8		8	2	_		6		
Actuated Green, G (s)					7.7	7.7	22.4	22.4		34.5	34.5	
Effective Green, g (s)					7.7	7.7	22.4	22.4		34.5	34.5	
Actuated g/C Ratio					0.14	0.14	0.40	0.40		0.61	0.61	
Clearance Time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Vehicle Extension (s)					4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)					225	201	194	1279		537	1979	
v/s Ratio Prot					220	201	104	0.20		0.07	c0.31	
v/s Ratio Perm					0.03	0.01	0.03	0.20		0.19	60.51	
v/c Ratio					0.21	0.09	0.09	0.49		0.13	0.51	
Uniform Delay, d1					21.6	21.2	10.6	12.7		5.0	6.1	
Progression Factor					1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2					0.6	0.3	0.3	0.4		0.7	0.3	
Delay (s)					22.2	21.5	10.8	13.1		5.8	6.4	
Level of Service					C	Z1.5	В	В		3.0 A	0. 4	
Approach Delay (s)		0.0			21.7			13.1			6.3	
Approach LOS		Α			C C			В			Α	
Intersection Summary												
HCM 2000 Control Delay			9.8	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	v ratio		0.49									
Actuated Cycle Length (s)	,		56.3	Sı	um of los	time (s)			17.1			
Intersection Capacity Utilizatio	n		71.5%			of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	←	*	4	†	-	ţ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations		4		ર્ન	7	ሻ	∱ }	7	↑ ↑
Traffic Volume (vph)	142	143	152	256	371	60	938	364	1144
Future Volume (vph)	142	143	152	256	371	60	938	364	1144
Lane Group Flow (vph)	0	338	0	443	403	65	1092	396	1375
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA
Protected Phases		4		8		5	2	1	6
Permitted Phases	4		8		8	2		6	
Detector Phase	4	4	8	8	8	5	2	1	6
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0
Total Split (s)	35.0	35.0	35.0	35.0	35.0	18.0	47.0	18.0	47.0
Total Split (%)	35.0%	35.0%	35.0%	35.0%	35.0%	18.0%	47.0%	18.0%	47.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0
Lead/Lag						Lead	Lag	Lead	Lag
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max
v/c Ratio		2.58		1.27	0.63	0.34	0.84	1.16	0.84
Control Delay		752.3		174.6	11.8	6.9	27.8	125.8	22.3
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		752.3		174.6	11.8	6.9	27.8	125.8	22.3
Queue Length 50th (m)		~111.3		~108.8	11.8	4.0	103.6	~73.7	73.8
Queue Length 95th (m)		#141.4		#166.8	41.5	m3.6	m105.7 r	n#116.8 r	
Internal Link Dist (m)		100.0		3.9			71.5		31.5
Turn Bay Length (m)						65.0		140.0	
Base Capacity (vph)		131		349	644	331	1307	340	1632
Starvation Cap Reductn		0		0	0	0	0	0	0
Spillback Cap Reductn		0		0	0	0	0	0	0
Storage Cap Reductn		0		0	0	0	0	0	0
Reduced v/c Ratio		2.58		1.27	0.63	0.20	0.84	1.16	0.84

Cycle Length: 100

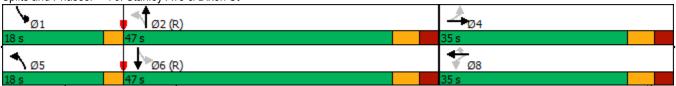
Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 76: Stanley Ave & Dixon St

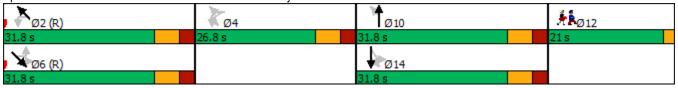
	۶	→	•	•	—	•	•	†	~	\	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ર્ન	7	ሻ	∱ ⊅		7	∱ ∱	
Traffic Volume (vph)	142	143	27	152	256	371	60	938	66	364	1144	121
Future Volume (vph)	142	143	27	152	256	371	60	938	66	364	1144	121
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.99			1.00	0.85	1.00	0.99		1.00	0.99	
Flt Protected		0.98			0.98	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1672			1699	1471	1644	3256		1644	3241	
Flt Permitted		0.27			0.72	1.00	0.11	1.00		0.11	1.00	
Satd. Flow (perm)		458			1249	1471	193	3256		198	3241	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	154	155	29	165	278	403	65	1020	72	396	1243	132
RTOR Reduction (vph)	0	4	0	0	0	233	0	5	0	0	7	0
Lane Group Flow (vph)	0	334	0	0	443	170	65	1087	0	396	1368	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		28.0			28.0	28.0	45.4	40.0		58.0	49.6	
Effective Green, g (s)		28.0			28.0	28.0	45.4	40.0		58.0	49.6	
Actuated g/C Ratio		0.28			0.28	0.28	0.45	0.40		0.58	0.50	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		128			349	411	165	1302		331	1607	
v/s Ratio Prot							0.02	0.33		c0.18	0.42	
v/s Ratio Perm		c0.73			0.35	0.12	0.16			c0.51		
v/c Ratio		2.61			1.27	0.41	0.39	0.83		1.20	0.85	
Uniform Delay, d1		36.0			36.0	29.3	17.4	27.0		27.3	22.0	
Progression Factor		1.00			1.00	1.00	0.74	0.99		1.41	0.80	
Incremental Delay, d2		747.7			142.0	0.4	0.1	0.6		107.2	4.2	
Delay (s)		783.7			178.0	29.7	12.9	27.4		145.7	21.8	
Level of Service		F			F	С	В	С		F	С	
Approach Delay (s)		783.7			107.3			26.6			49.5	
Approach LOS		F			F			С			D	
Intersection Summary												
HCM 2000 Control Delay			115.3	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacity	ratio		1.71									
Actuated Cycle Length (s)			100.0	S	um of los	t time (s)			17.0			
Intersection Capacity Utilization	1		115.4%	IC	U Level	of Service	Э		Н			
Analysis Period (min)			15									
c Critical Lane Group												

	~	•	*_	ሻ	†	/	Ļ	ţ	•	\	\mathbf{x}	×
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWT
Lane Configurations		ă	Ž.		4			4		ă	ĵ»	4
Traffic Volume (vph)	16	5	275	106	32	7	16	17	1	204	208	15
Future Volume (vph)	16	5	275	106	32	7	16	17	1	204	208	15
Lane Group Flow (vph)	0	22	358	0	250	0	0	44	0	223	259	44
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	NA
Protected Phases					10			14			6	2
Permitted Phases	4	4	4	10		14	14		6	6		
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	26.8	26.8	26.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8
Total Split (%)	24.1%	24.1%	24.1%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%	28.5%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	6.8
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.12	1.39		0.84			0.15		0.81	0.69	0.13
Control Delay		40.2	232.5		65.7			35.9		63.7	50.7	35.8
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Delay		40.2	232.5		65.7			35.9		63.7	50.7	35.8
Queue Length 50th (m)		4.1	~103.7		52.2			7.6		46.2	52.1	7.7
Queue Length 95th (m)		11.3	#160.0		#94.5			17.2		#85.5	80.2	17.2
Internal Link Dist (m)		102.7			229.8			295.5			298.1	208.5
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		188	258		299			286		277	373	348
Starvation Cap Reductn		0	0		0			0		0	0	0
Spillback Cap Reductn		0	0		0			0		0	0	0
Storage Cap Reductn		0	0		0			0		0	0	0
Reduced v/c Ratio		0.12	1.39		0.84			0.15		0.81	0.69	0.13

Cycle Length: 111.4 Actuated Cycle Length: 111.4

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 110 Control Type: Pretimed


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 78: Allandale Ave & Main St & Murray St

Lane Group	Ø12	
LaneConfigurations		
Traffic Volume (vph)		
Future Volume (vph)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	12	
Permitted Phases		
Minimum Split (s)	21.0	
Total Split (s)	21.0	
Total Split (%)	19%	
Yellow Time (s)	2.0	
All-Red Time (s)	0.0	
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
interesocion cummary		

	4	•	*_	•	ሻ	†	/	۱,4	/	Ļ	+	≱ J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		Ä	Ž.			4					4	
Traffic Volume (vph)	16	5	275	54	106	32	87	5	7	16	17	1
Future Volume (vph)	16	5	275	54	106	32	87	5	7	16	17	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.95					1.00	
Flt Protected		0.95	1.00			0.98					0.97	
Satd. Flow (prot)		1612	1442			1569					1645	
Flt Permitted		0.62	1.00			0.83					0.75	
Satd. Flow (perm)		1050	1442			1334					1274	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	5	299	59	115	35	95	5	8	17	18	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	22	358	0	0	250	0	0	0	0	43	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		20.0	20.0			25.0					25.0	
Effective Green, g (s)		20.0	20.0			25.0					25.0	
Actuated g/C Ratio		0.18	0.18			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		188	258			299					285	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.25			c0.19					0.03	
v/c Ratio		0.12	1.39			0.84					0.15	
Uniform Delay, d1		38.3	45.7			41.2					34.7	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.3	196.6			23.3					1.1	
Delay (s)		39.6	242.3			64.6					35.8	
Level of Service		D	F			Ε					D	
Approach Delay (s)		230.5				64.6					35.8	
Approach LOS		F				Е					D	
Intersection Summary												
HCM 2000 Control Delay			111.4	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ty ratio		0.77									
Actuated Cycle Length (s)			111.4		um of lost				22.4			
Intersection Capacity Utilization	on		74.5%	IC	CU Level of	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\	\mathbf{x}	7	×	*	4
Movement	SEL2	SEL	SET	SER	NWT	NWR	NWR2
Lane Configurations		ă	î,		4		
Traffic Volume (vph)	1	204	208	30	15	11	15
Future Volume (vph)	1	204	208	30	15	11	15
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8		6.8		
Lane Util. Factor		1.00	1.00		1.00		
Frt		1.00	0.98		0.91		
Flt Protected		0.95	1.00		1.00		
Satd. Flow (prot)		1612	1664		1551		
Flt Permitted		0.73	1.00		1.00		
Satd. Flow (perm)		1236	1664		1551		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	222	226	33	16	12	16
RTOR Reduction (vph)	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	223	259	0	44	0	0
Turn Type	Perm	Perm	NA		NA		
Protected Phases			6		2		
Permitted Phases	6	6					
Actuated Green, G (s)		25.0	25.0		25.0		
Effective Green, g (s)		25.0	25.0		25.0		
Actuated g/C Ratio		0.22	0.22		0.22		
Clearance Time (s)		6.8	6.8		6.8		
Lane Grp Cap (vph)		277	373		348		
v/s Ratio Prot			0.16		0.03		
v/s Ratio Perm		c0.18					
v/c Ratio		0.81	0.69		0.13		
Uniform Delay, d1		40.9	39.7		34.5		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		21.5	10.2		0.7		
Delay (s)		62.4	49.9		35.2		
Level of Service		Е	D		D		
Approach Delay (s)			55.7		35.2		
Approach LOS			Е		D		
Intersection Summary							

	۶	→	•	•	←	4	1	†	~	/	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	1	14	0	272	16	149	0	77	248	50	0	1
Future Volume (Veh/h)	1	14	0	272	16	149	0	77	248	50	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	15	0	296	17	162	0	84	270	54	0	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					124							
pX, platoon unblocked	0.83						0.83	0.83		0.83	0.83	0.83
vC, conflicting volume	179			15			708	788	15	1019	707	98
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	0			15			543	639	15	919	541	0
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			82			100	69	75	48	100	100
cM capacity (veh/h)	1354			1616			322	268	1070	103	304	902
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	16	475	354	55								
Volume Left	1	296	0	54								
Volume Right	0	162	270	1								
cSH	1354	1616	625	105								
Volume to Capacity	0.00	0.18	0.57	0.52								
Queue Length 95th (m)	0.0	5.1	26.9	18.2								
Control Delay (s)	0.5	5.4	18.0	72.3								
Lane LOS	Α	Α	С	F								
Approach Delay (s)	0.5	5.4	18.0	72.3								
Approach LOS			С	F								
Intersection Summary												
Average Delay			14.4									
Intersection Capacity Utilizat	ion		68.1%	IC	U Level	of Service			С			
Analysis Period (min)			15									

	۶	•	1	†	ţ	√			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻ	7	ሻ	^	↑ ↑				
Traffic Volume (veh/h)	0	0	10	1064	1305	126			
Future Volume (Veh/h)	0	0	10	1064	1305	126			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	0	11	1157	1418	137			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type				None	None				
Median storage veh)									
Upstream signal (m)				127	95				
pX, platoon unblocked	0.76	0.64	0.64						
vC, conflicting volume	2087	778	1555						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	329	0	730						
tC, single (s)	6.8	6.9	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	100	100	98						
cM capacity (veh/h)	482	694	562						
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2		
Volume Total	0	0	11	578	578	945	610		
Volume Left	0	0	11	0	0	0	0		
Volume Right	0	0	0	0	0	0	137		
cSH	1700	1700	562	1700	1700	1700	1700		
Volume to Capacity	0.00	0.00	0.02	0.34	0.34	0.56	0.36		
Queue Length 95th (m)	0.00	0.00	0.02	0.04	0.04	0.0	0.0		
Control Delay (s)	0.0	0.0	11.5	0.0	0.0	0.0	0.0		
Lane LOS	0.0 A	0.0 A	11.5 B	0.0	0.0	0.0	0.0		
	0.0	А	0.1			0.0			
Approach Delay (s) Approach LOS	0.0 A		U. I			0.0			
	А								
Intersection Summary									
Average Delay			0.0						
Intersection Capacity Utiliz	ation		46.9%	IC	CU Level of	of Service		Α	
Analysis Period (min)			15						

	•	→	←	4	\	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		414	ħβ		ሻ	7
Traffic Volume (veh/h)	211	346	861	18	13	212
Future Volume (Veh/h)	211	346	861	18	13	212
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	229	376	936	20	14	230
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)		88	33			
pX, platoon unblocked						
vC, conflicting volume	956				1592	478
vC1, stage 1 conf vol					.002	
vC2, stage 2 conf vol						
vCu, unblocked vol	956				1592	478
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)					0.0	0.0
tF (s)	2.2				3.5	3.3
p0 queue free %	69				80	57
cM capacity (veh/h)	727				68	539
		ED 0	MD 4	M/D O		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2
Volume Total	354	251	624	332	14	230
Volume Left	229	0	0	0	14	0
Volume Right	0	0	0	20	0	230
cSH	727	1700	1700	1700	68	539
Volume to Capacity	0.31	0.15	0.37	0.20	0.20	0.43
Queue Length 95th (m)	10.3	0.0	0.0	0.0	5.3	16.1
Control Delay (s)	9.4	0.0	0.0	0.0	70.6	16.6
Lane LOS	Α				F	С
Approach Delay (s)	5.5		0.0		19.7	
Approach LOS					С	
Intersection Summary						
Average Delay			4.5			
Intersection Capacity Utiliz	zation		56.8%	IC	U Level o	f Service
Analysis Period (min)			15			22
Analysis Period (min)			15			

Appendix I

2033 Future Total Conditions Synchro Reports - Mitigated

	•	•	←	4	†	ļ
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	*	7	4	7	†	†
Traffic Volume (vph)	271	148	26	142	159	143
Future Volume (vph)	271	148	26	142	159	143
Lane Group Flow (vph)	295	161	44	154	173	556
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	7.0	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.84	0.30	0.09	0.42	0.19	0.72
Control Delay	44.8	5.2	13.0	10.6	9.2	18.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	2.3
Total Delay	44.8	5.2	13.0	10.6	9.2	20.3
Queue Length 50th (m)	33.0	0.0	2.4	8.6	11.0	36.9
Queue Length 95th (m)	#70.8	11.6	8.9	16.1	20.0	#87.7
Internal Link Dist (m)			8.0		230.0	55.6
Turn Bay Length (m)	50.0					
Base Capacity (vph)	377	553	504	368	932	772
Starvation Cap Reductn	0	0	0	0	0	110
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.78	0.29	0.09	0.42	0.19	0.84
1.000000 1/0110110	0.70	0.20	0.00	V. 12	0.10	0.01

Cycle Length: 67.3

Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Fallsview Blvd & Embassy Suites

01-11-2024 TTW_Hennepin_2024-01-10-v0.2 Mitigated.syn

	۶	→	*	•	←	•	4	†	<i>></i>	\	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		7		4		7	†		7	†	
Traffic Volume (vph)	271	0	148	0	26	15	142	159	0	0	143	369
Future Volume (vph)	271	0	148	0	26	15	142	159	0	0	143	369
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.89	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1543	
Flt Permitted	0.73		1.00		1.00		0.23	1.00			1.00	
Satd. Flow (perm)	1260		1471		1646		402	1731			1543	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	295	0	161	0	28	16	154	173	0	0	155	401
RTOR Reduction (vph)	0	0	116	0	12	0	0	0	0	0	131	0
Lane Group Flow (vph)	295	0	45	0	32	0	154	173	0	0	425	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases					8		5	2			6	
Permitted Phases	4		4	8			2			6		
Actuated Green, G (s)	18.9		18.9		18.9		36.1	36.1			27.2	
Effective Green, g (s)	18.9		18.9		18.9		36.1	36.1			27.2	
Actuated g/C Ratio	0.28		0.28		0.28		0.54	0.54			0.40	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	353		413		462		324	928			623	
v/s Ratio Prot					0.02		c0.04	0.10			c0.28	
v/s Ratio Perm	c0.23		0.03				0.21					
v/c Ratio	0.84		0.11		0.07		0.48	0.19			0.68	
Uniform Delay, d1	22.7		18.0		17.8		10.0	8.0			16.5	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	16.2		0.2		0.1		1.5	0.4			6.0	
Delay (s)	39.0		18.1		17.8		11.5	8.5			22.4	
Level of Service	D		В		В		В	Α			С	
Approach Delay (s)		31.6			17.8			9.9			22.4	
Approach LOS		С			В			Α			С	
Intersection Summary												
HCM 2000 Control Delay			22.3	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.71						15.			
Actuated Cycle Length (s)			67.3		um of lost				15.3			
Intersection Capacity Utiliza	ation		76.1%	IC	CU Level of	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	•	•	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	ĵ.	ሻ	f)	ሻ	ተ ኈ	ሻ	↑ ↑	
Traffic Volume (vph)	116	208	147	122	186	1125	523	1172	
Future Volume (vph)	116	208	147	122	186	1125	523	1172	
Lane Group Flow (vph)	126	341	160	396	202	1505	568	1340	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	33.0	33.0	10.0	33.0	
Total Split (s)	35.0	35.0	35.0	35.0	48.0	48.0	17.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	48.0%	48.0%	17.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	1.04	0.70	0.97	0.77	1.29	1.00	1.72	0.63	
Control Delay	130.9	39.2	100.8	36.0	175.4	35.1	358.3	15.0	
Queue Delay	0.0	0.4	0.0	0.1	0.0	0.0	0.0	0.0	
Total Delay	130.9	39.6	100.8	36.1	175.4	35.1	358.3	15.0	
Queue Length 50th (m)	24.1	54.1	29.8	52.5	~52.5		~149.3	85.5	
Queue Length 95th (m)	#59.9	84.1	#68.3	86.5	m#70.8	m#182.6	#213.5	107.2	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	130	517	177	544	157	1507	331	2126	
Starvation Cap Reductn	0	25	0	4	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.97	0.69	0.90	0.73	1.29	1.00	1.72	0.63	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

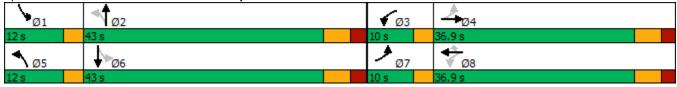
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 12: Stanley Ave & Murray St

	٠	→	`	6	←	4	•	†	<i>></i>	\	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>		*	f		*	↑ ↑		ች	↑ Ъ	
Traffic Volume (vph)	116	208	106	147	122	242	186	1125	259	523	1172	61
Future Volume (vph)	116	208	106	147	122	242	186	1125	259	523	1172	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	0.90		1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1784		1785	1692		1785	3470		1785	3544	
Flt Permitted	0.25	1.00		0.34	1.00		0.20	1.00		0.09	1.00	
Satd. Flow (perm)	466	1784		633	1692		367	3470		164	3544	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	126	226	115	160	133	263	202	1223	282	568	1274	66
RTOR Reduction (vph)	0	18	0	0	73	0	0	19	0	0	4	0
Lane Group Flow (vph)	126	323	0	160	323	0	202	1486	0	568	1336	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	26.1	26.1		26.1	26.1		42.9	42.9		59.9	59.9	
Effective Green, g (s)	26.1	26.1		26.1	26.1		42.9	42.9		59.9	59.9	
Actuated g/C Ratio	0.26	0.26		0.26	0.26		0.43	0.43		0.60	0.60	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.3	2.3		2.3	2.3		2.5	2.5		2.3	2.5	
Lane Grp Cap (vph)	121	465		165	441		157	1488		325	2122	
v/s Ratio Prot		0.18			0.19			0.43		c0.24	0.38	
v/s Ratio Perm	c0.27			0.25			0.55			c0.80		
v/c Ratio	1.04	0.69		0.97	0.73		1.29	1.00		1.75	0.63	
Uniform Delay, d1	37.0	33.3		36.6	33.8		28.6	28.5		31.5	12.9	
Progression Factor	1.00	1.00		1.00	1.00		0.60	0.57		1.00	1.00	
Incremental Delay, d2	93.3	3.9		60.2	5.6		151.2	16.2		348.9	1.4	
Delay (s)	130.3	37.2		96.7	39.4		168.3	32.6		380.5	14.3	
Level of Service	F	D		F	D		F	C		F	В	
Approach Delay (s)		62.3			55.9			48.6			123.3	
Approach LOS		E			E			D			<u> </u>	
Intersection Summary			04.0		014 0000		<u> </u>					
HCM 2000 Control Delay	alboretta		81.6	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.58		uma a fila - i	Almae /=\			47.0			
Actuated Cycle Length (s)	ntion		100.0		um of lost				17.0			
Intersection Capacity Utiliza	auon		117.1%	IC	U Level o	or Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	←	•	1	†	/	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	∱ î≽	Ţ	†	7	ሻ	∱ }	7	∱ }	
Traffic Volume (vph)	169	526	182	322	175	135	428	172	678	
Future Volume (vph)	169	526	182	322	175	135	428	172	678	
Lane Group Flow (vph)	184	915	198	350	190	147	816	187	777	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	5.5	20.0	7.0	20.0	20.0	5.5	20.0	7.0	20.0	
Minimum Split (s)	10.0	33.3	10.0	33.3	33.3	10.0	42.6	10.0	42.6	
Total Split (s)	10.0	36.9	10.0	36.9	36.9	12.0	43.0	12.0	43.0	
Total Split (%)	9.8%	36.2%	9.8%	36.2%	36.2%	11.8%	42.2%	11.8%	42.2%	
Yellow Time (s)	3.0	4.1	3.0	4.1	4.1	3.0	4.1	3.0	4.1	
All-Red Time (s)	0.0	2.2	0.0	2.2	2.2	0.0	2.5	0.0	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.3	3.0	6.3	6.3	3.0	6.6	3.0	6.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	Max	None	Max	
v/c Ratio	0.56	0.86	0.95	0.65	0.32	0.44	0.60	0.58	0.60	
Control Delay	26.4	38.7	75.1	37.5	5.6	17.5	21.3	21.4	28.1	
Queue Delay	0.0	1.1	0.0	0.0	0.0	0.0	0.3	0.0	0.0	
Total Delay	26.4	39.8	75.1	37.5	5.6	17.5	21.7	21.4	28.1	
Queue Length 50th (m)	22.5	77.5	24.5	59.3	0.0	14.9	51.5	19.4	65.2	
Queue Length 95th (m)	37.3	102.3	#63.7	88.9	15.2	25.6	71.1	32.0	84.5	
Internal Link Dist (m)		39.6		70.0			112.9		294.7	
Turn Bay Length (m)	30.0		35.0			10.0		65.0		
Base Capacity (vph)	331	1121	209	577	621	344	1350	326	1305	
Starvation Cap Reductn	0	66	0	0	0	0	149	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.56	0.87	0.95	0.61	0.31	0.43	0.68	0.57	0.60	


Cycle Length: 101.9 Actuated Cycle Length: 99.8 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 13: Fallsview Blvd & Murray St

	•	→	`	6	+	•	•	†	<i>></i>	<u> </u>		√
Movement	EBL	EBT	EBR	₩BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	LDIX	Y T	<u>₩</u>	7	i i	†	HUIT	<u> </u>	†	ODIN
Traffic Volume (vph)	169	526	316	182	322	175	135	428	323	172	678	37
Future Volume (vph)	169	526	316	182	322	175	135	428	323	172	678	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.3	1000	3.0	6.3	6.3	3.0	6.6	1000	3.0	6.6	1000
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.94		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3369		1785	1879	1597	1785	3340		1785	3542	
Flt Permitted	0.34	1.00		0.14	1.00	1.00	0.24	1.00		0.22	1.00	
Satd. Flow (perm)	644	3369		262	1879	1597	455	3340		410	3542	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	184	572	343	198	350	190	147	465	351	187	737	40
RTOR Reduction (vph)	0	89	0	0	0	135	0	131	0	0	4	0
Lane Group Flow (vph)	184	826	0	198	350	55	147	685	0	187	773	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	0,0	pm+pt	NA	Perm	pm+pt	NA	• • • • • • • • • • • • • • • • • • • •	pm+pt	NA	0 70
Protected Phases	7	4		3	8	1 01111	5	2		1	6	
Permitted Phases	4	•		8		8	2	_		6		
Actuated Green, G (s)	35.7	28.7		35.7	28.7	28.7	45.0	36.5		45.4	36.7	
Effective Green, g (s)	35.7	28.7		35.7	28.7	28.7	45.0	36.5		45.4	36.7	
Actuated g/C Ratio	0.36	0.29		0.36	0.29	0.29	0.45	0.37		0.45	0.37	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	310	968		200	540	459	318	1221		306	1302	
v/s Ratio Prot	0.04	0.25		c0.07	0.19	100	0.04	0.21		c0.05	0.22	
v/s Ratio Perm	0.17	0.20		c0.28	00	0.03	0.17	V		c0.22	V	
v/c Ratio	0.59	0.85		0.99	0.65	0.12	0.46	0.56		0.61	0.59	
Uniform Delay, d1	24.1	33.6		27.8	31.1	26.2	17.3	25.3		17.8	25.5	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.0	7.4		60.1	2.7	0.1	1.1	1.9		3.6	2.0	
Delay (s)	27.1	41.0		87.9	33.8	26.3	18.3	27.1		21.4	27.5	
Level of Service	С	D		F	С	С	В	С		С	С	
Approach Delay (s)		38.6			46.4			25.8			26.3	
Approach LOS		D			D			С			С	
Intersection Summary												
HCM 2000 Control Delay			33.7	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.78									
Actuated Cycle Length (s)			99.8		um of lost	. ,			18.9			
Intersection Capacity Utiliza	ation		83.9%	IC	U Level	of Service	е		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	←	*	4	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	7	4î	ሻ	↑	7	7	∱ ∱	ሻ	∱ }	
Traffic Volume (vph)	256	305	82	355	64	212	876	105	749	
Future Volume (vph)	256	305	82	355	64	212	876	105	749	
Lane Group Flow (vph)	278	480	89	386	70	230	1095	114	1051	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4		8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0	
Total Split (s)	39.0	39.0	39.0	39.0	39.0	50.0	50.0	11.0	61.0	
Total Split (%)	39.0%	39.0%	39.0%	39.0%	39.0%	50.0%	50.0%	11.0%	61.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag						Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	1.36	0.81	0.68	0.64	0.12	1.11	0.71	0.44	0.56	
Control Delay	219.2	42.5	58.1	35.0	5.8	124.8	25.9	12.7	17.8	
Queue Delay	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	
Total Delay	219.2	42.5	58.1	38.3	5.8	124.8	25.9	12.7	17.8	
Queue Length 50th (m)	~71.2	81.1	14.9	63.6	0.0	~51.7	88.4	12.5	95.8	
Queue Length 95th (m)	#120.2		#39.9	94.6	8.4	#97.1	112.3	m13.2	m108.2	
Internal Link Dist (m)		213.7		94.8			227.1		103.4	
Turn Bay Length (m)	75.0		25.0		25.0	25.0		40.0		
Base Capacity (vph)	205	589	131	601	562	208	1536	268	1889	
Starvation Cap Reductn	0	0	0	130	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.36	0.81	0.68	0.82	0.12	1.11	0.71	0.43	0.56	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

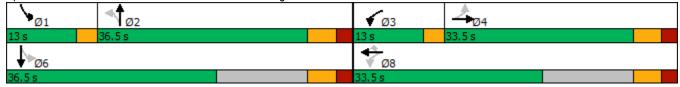
Splits and Phases: 15: Stanley Ave & Dunn St

	•	→	•	•	←	•	4	†	~	>	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f.		*		7	*	∱ }		Ĭ	↑ ↑	
Traffic Volume (vph)	256	305	136	82	355	64	212	876	132	105	749	218
Future Volume (vph)	256	305	136	82	355	64	212	876	132	105	749	218
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1792		1785	1879	1597	1785	3500		1785	3449	
Flt Permitted	0.34	1.00		0.22	1.00	1.00	0.25	1.00		0.13	1.00	
Satd. Flow (perm)	640	1792		410	1879	1597	477	3500		253	3449	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	278	332	148	89	386	70	230	952	143	114	814	237
RTOR Reduction (vph)	0	16	0	0	0	48	0	12	0	0	27	0
Lane Group Flow (vph)	278	464	0	89	386	22	230	1083	0	114	1024	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	32.0	32.0		32.0	32.0	32.0	43.6	43.6		54.0	54.0	
Effective Green, g (s)	32.0	32.0		32.0	32.0	32.0	43.6	43.6		54.0	54.0	
Actuated g/C Ratio	0.32	0.32		0.32	0.32	0.32	0.44	0.44		0.54	0.54	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.5	2.5		2.5	2.5	2.5	2.5	2.5		2.7	2.5	
Lane Grp Cap (vph)	204	573		131	601	511	207	1526		249	1862	
v/s Ratio Prot		0.26			0.21			0.31		0.03	c0.30	
v/s Ratio Perm	c0.43			0.22		0.01	c0.48			0.21		
v/c Ratio	1.36	0.81		0.68	0.64	0.04	1.11	0.71		0.46	0.55	
Uniform Delay, d1	34.0	31.2		29.5	29.1	23.4	28.2	23.0		14.6	15.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.06	1.20	
Incremental Delay, d2	191.5	8.0		12.0	2.1	0.0	95.5	2.8		0.5	0.6	
Delay (s)	225.5	39.2		41.5	31.2	23.5	123.7	25.9		16.0	18.7	
Level of Service	F	D		D	С	С	F	С		В	В	
Approach Delay (s)		107.5			31.9			42.8			18.4	
Approach LOS		F			С			D			В	
Intersection Summary												
HCM 2000 Control Delay			46.7	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		1.16									
Actuated Cycle Length (s)			100.0		um of lost				17.0			
Intersection Capacity Utiliza	ition		95.6%	IC	U Level	of Service	.		F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	•	•	4	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	ą,	ሻ	†	7	ሻ	f)	ሻ	ĵ»	
Traffic Volume (vph)	167	341	176	459	414	34	327	138	312	
Future Volume (vph)	167	341	176	459	414	34	327	138	312	
Lane Group Flow (vph)	182	451	191	499	450	37	465	150	376	
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	
Total Split (s)	33.5	33.5	13.0	33.5	33.5	36.5	36.5	13.0	36.5	
Total Split (%)	34.9%	34.9%	13.5%	34.9%	34.9%	38.0%	38.0%	13.5%	38.0%	
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	
Lead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Max	Max	None	Max	
v/c Ratio	0.80	0.89	0.66	0.65	0.49	0.11	0.79	0.45	0.45	
Control Delay	59.2	53.6	28.0	27.1	3.8	24.9	39.7	18.2	19.8	
Queue Delay	0.0	0.0	0.0	5.2	0.4	0.0	54.2	0.0	0.0	
Total Delay	59.2	53.6	28.0	32.3	4.2	24.9	93.9	18.2	19.8	
Queue Length 50th (m)	31.0	77.6	21.0	71.7	0.0	4.9	76.1	15.1	45.9	
Queue Length 95th (m)	#65.7	#130.4	#35.5	105.4	17.2	12.2	#124.2	26.2	69.5	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	239	534	293	800	938	322	591	345	851	
Starvation Cap Reductn	0	0	0	233	147	0	216	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.76	0.84	0.65	0.88	0.57	0.11	1.24	0.43	0.44	

Cycle Length: 96

Actuated Cycle Length: 94


Natural Cycle: 90

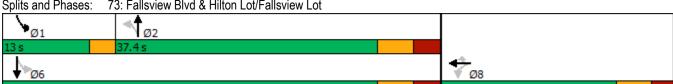
Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 16: Fallsview Blvd & Main St/Portage Rd

To. I diloviow Biva	٠	→	`	•	+	4	•	<u>†</u>	<u> </u>	\	 	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f.		ች	†	7	ሻ	₽		ች	1>	
Traffic Volume (vph)	167	341	74	176	459	414	34	327	101	138	312	34
Future Volume (vph)	167	341	74	176	459	414	34	327	101	138	312	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	1.00	0.85	1.00	0.96		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1829		1785	1879	1597	1785	1812		1785	1851	
Flt Permitted	0.44	1.00		0.16	1.00	1.00	0.54	1.00		0.21	1.00	
Satd. Flow (perm)	832	1829		305	1879	1597	1011	1812		404	1851	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	182	371	80	191	499	450	37	355	110	150	339	37
RTOR Reduction (vph)	0	8	0	0	0	266	0	12	0	0	4	0
Lane Group Flow (vph)	182	443	0	191	499	184	37	453	0	150	372	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	25.6	25.6		38.4	38.4	38.4	30.1	30.1		42.6	42.6	
Effective Green, g (s)	25.6	25.6		38.4	38.4	38.4	30.1	30.1		42.6	42.6	
Actuated g/C Ratio	0.27	0.27		0.41	0.41	0.41	0.32	0.32		0.45	0.45	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)	226	498		278	767	652	323	580		322	838	
v/s Ratio Prot		c0.24		c0.07	0.27			c0.25		c0.05	0.20	
v/s Ratio Perm	0.22			0.21		0.12	0.04			0.16		
v/c Ratio	0.81	0.89		0.69	0.65	0.28	0.11	0.78		0.47	0.44	
Uniform Delay, d1	31.9	32.8		20.9	22.4	18.6	22.5	29.0		17.6	17.6	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	19.4	17.8		7.5	2.2	0.3	0.7	10.1		1.5	1.7	
Delay (s)	51.3	50.7		28.4	24.6	18.9	23.3	39.1		19.0	19.3	
Level of Service	D	D		С	С	В	С	D		В	В	
Approach Delay (s)		50.8			23.0			37.9			19.2	
Approach LOS		D			С			D			В	
Intersection Summary												
HCM 2000 Control Delay			31.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.77									
Actuated Cycle Length (s)			94.0		um of los				19.0			
Intersection Capacity Utiliza	ition		90.2%	IC	CU Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												


	۶	•	4	†	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	↑	↑	7
Traffic Volume (vph)	89	250	271	17	106	733
Future Volume (vph)	89	250	271	17	106	733
Lane Group Flow (vph)	97	272	295	18	115	797
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4			2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	31.1	31.1	31.1	31.1
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
. ,	0.0	0.0	0.0	0.0	0.0	0.0
Lost Time Adjust (s)	6.1	6.1	6.1	6.1	6.1	6.1
Total Lost Time (s)	٥.١	0.1	0.1	0.1	0.1	0.1
Lead/Lag						
Lead-Lag Optimize?	More	Minim	N 4 -	N.4 -	N.A -	N 4 -
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.15	0.36	0.54	0.02	0.14	0.70
Control Delay	12.6	3.4	18.7	11.4	12.6	5.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.6	3.4	18.7	11.4	12.6	5.1
Queue Length 50th (m)	6.8	0.0	25.3	1.2	8.1	0.0
Queue Length 95th (m)	14.7	11.6	47.2	4.4	16.8	18.5
Internal Link Dist (m)	9.1			121.3	66.9	
Turn Bay Length (m)						
Base Capacity (vph)	763	838	548	803	803	1138
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.32	0.54	0.02	0.14	0.70
Intersection Summary						
Cycle Length: 62.2	^					
Actuated Cycle Length: 59.	2					
Natural Cycle: 60	l. (
Control Type: Actuated-Und	coordinated					
Culity and Dhases 17. D	antana Dal () Fallavia	Casina	Daar Dri		
Splits and Phases: 17: P	ortage Rd 8	k Fallsvie	w Casino	Rear Dri	veway	
¶ _{Ø2}					_ ₹	Ø4
31.1s					31,1	
4					3211	
₩ Ø6					- 1	
31.1 s						

	۶	•	•	†	↓	✓		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻ	7	ሻ	†	1	7		
Traffic Volume (vph)	89	250	271	17	106	733		
Future Volume (vph)	89	250	271	17	106	733		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1785	1597	1785	1879	1879	1597		
Flt Permitted	0.95	1.00	0.68	1.00	1.00	1.00		
Satd. Flow (perm)	1785	1597	1283	1879	1879	1597		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	97	272	295	18	115	797		
RTOR Reduction (vph)	0	173	0	0	0	455		
Lane Group Flow (vph)	97	99	295	18	115	342		
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%		
Turn Type	Prot	Perm	Perm	NA	NA	Perm		
Protected Phases	4			2	6			
Permitted Phases		4	2			6		
Actuated Green, G (s)	21.5	21.5	25.3	25.3	25.3	25.3		
Effective Green, g (s)	21.5	21.5	25.3	25.3	25.3	25.3		
Actuated g/C Ratio	0.36	0.36	0.43	0.43	0.43	0.43		
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
Vehicle Extension (s)	4.0	4.0	0.2	0.2	0.2	0.2		
Lane Grp Cap (vph)	650	581	550	805	805	684		
v/s Ratio Prot	0.05			0.01	0.06			
v/s Ratio Perm		c0.06	c0.23			0.21		
v/c Ratio	0.15	0.17	0.54	0.02	0.14	0.50		
Uniform Delay, d1	12.6	12.7	12.5	9.7	10.3	12.2		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.1	0.2	3.7	0.1	0.4	2.6		
Delay (s)	12.7	12.9	16.2	9.8	10.6	14.8		
Level of Service	В	В	В	Α	В	В		
Approach Delay (s)	12.9			15.8	14.3			
Approach LOS	В			В	В			
Intersection Summary								
HCM 2000 Control Delay			14.3	H	CM 2000	Level of Service	е	
HCM 2000 Volume to Capac	ity ratio		0.37					
Actuated Cycle Length (s)			59.0	Sı	ım of lost	t time (s)		
Intersection Capacity Utilizat	ion		70.6%	IC	U Level o	of Service		
Analysis Period (min)			15					
c Critical Lane Group								

-	۶	•	•	†	 	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		#		^	† 1>	-
Traffic Volume (veh/h)	0	164	0	1442	1444	40
Future Volume (Veh/h)	0	164	0	1442	1444	40
Sign Control	Stop			Free	Free	10
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0.52	178	0.52	1567	1570	43
Pedestrians	0	170		1007	1070	70
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
				None	None	
Median type				ivorie	None	
Median storage veh)				E E	101	
Upstream signal (m)	0.02	0.75	0.75	55	191	
pX, platoon unblocked	0.83	0.75	0.75			
vC, conflicting volume	2375	806	1613			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	004	7.5	4454			
vCu, unblocked vol	891	75	1151			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)		0.0				
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	76	100			
cM capacity (veh/h)	237	733	461			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	178	784	784	1047	566	
Volume Left	0	0	0	0	0	
Volume Right	178	0	0	0	43	
cSH	733	1700	1700	1700	1700	
Volume to Capacity	0.24	0.46	0.46	0.62	0.33	
Queue Length 95th (m)	7.2	0.0	0.0	0.0	0.0	
Control Delay (s)	11.5	0.0	0.0	0.0	0.0	
Lane LOS	В					
Approach Delay (s)	11.5	0.0		0.0		
Approach LOS	В					
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utiliza	ation		62.4%	IC	CU Level o	f Service
Analysis Period (min)			15		2 2 2 2 7 0 7 0	. 55.7100
marysis i enou (iiiii)			10			

OZI I GIIOTIOTI BITG	O (D)) (O)											
	٠	→	*	•	+	•	•	†	/	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	∱ β		7	∱ ∱	
Traffic Volume (veh/h)	22	5	15	0	0	0	78	554	165	179	496	197
Future Volume (Veh/h)	22	5	15	0	0	0	78	554	165	179	496	197
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	24	5	16	0	0	0	85	602	179	195	539	214
Pedestrians		559			275			30			30	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		49			24			3			3	
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)								139			114	
pX, platoon unblocked	0.92	0.92	0.92	0.92	0.92		0.92					
vC, conflicting volume	2096	2821	966	1844	2838	696	1312			1056		
vC1, stage 1 conf vol	1595	1595		1136	1136							
vC2, stage 2 conf vol	501	1226		708	1702							
vCu, unblocked vol	2017	2805	787	1743	2824	696	1164			1056		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	6.5	5.5		6.5	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	34	0	90	100	100	100	70			61		
cM capacity (veh/h)	37	3	153	84	3	287	283			505		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	45	0	85	401	380	195	359	394				
Volume Left	24	0	85	0	0	195	0	0				
Volume Right	16	0	0	0	179	0	0	214				
cSH	18	1700	283	1700	1700	505	1700	1700				
Volume to Capacity	2.55	0.00	0.30	0.24	0.22	0.39	0.21	0.23				
Queue Length 95th (m)	46.8	0.0	9.3	0.0	0.0	13.7	0.0	0.0				
Control Delay (s)	1151.6	0.0	23.1	0.0	0.0	16.5	0.0	0.0				
Lane LOS	F	Α	С			С						
Approach Delay (s)	1151.6	0.0	2.3			3.4						
Approach LOS	F	Α										
Intersection Summary												
Average Delay			30.7									
Intersection Capacity Utiliz	zation		43.8%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	←	•	4	†	>	ļ
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	4	7	ሻ	∱ }	ሻ	↑ ↑
Traffic Volume (vph)	1	122	16	506	202	820
Future Volume (vph)	1	122	16	506	202	820
Lane Group Flow (vph)	46	133	17	643	220	1008
Turn Type	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases	8			2	1	6
Permitted Phases		8	2		6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?						
Recall Mode	None	None	None	None	None	None
v/c Ratio	0.14	0.34	0.09	0.49	0.36	0.47
Control Delay	22.7	8.0	13.6	14.5	5.6	7.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.7	8.0	13.6	14.5	5.6	7.2
Queue Length 50th (m)	4.1	0.0	1.1	25.8	7.4	28.2
Queue Length 95th (m)	12.4	12.4	4.8	40.5	14.7	43.1
Internal Link Dist (m)	32.2			90.4		112.9
Turn Bay Length (m)	J		20.0	50	25.0	
Base Capacity (vph)	625	640	298	1969	629	2546
Starvation Cap Reductn	0	0	0	0	0	112
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.21	0.06	0.33	0.35	0.41
Intersection Summary						
Cycle Length: 77.1						
Actuated Cycle Length: 54.6						
Natural Cycle: 75						
Control Type: Actuated-Unco	ordinator	1				
Control Type. Actuated-Unco	Jordinated					
Splits and Phases: 73: Fal	llsview Blv	/d & Hilto	n Lot/Fall	sview Lot		

								_		Α,	<u> </u>	
	•	-	*	•	•	•		T		-	¥	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	ሻ	∱ ∱		ሻ	ተ ኈ	
Traffic Volume (vph)	0	0	0	41	1	122	16	506	86	202	820	108
Future Volume (vph)	0	0	0	41	1	122	16	506	86	202	820	108
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Lane Util. Factor					1.00	1.00	1.00	0.95		1.00	0.95	
Frt					1.00	0.85	1.00	0.98		1.00	0.98	
Flt Protected					0.95	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)					1650	1471	1644	3217		1644	3231	
Flt Permitted					0.95	1.00	0.28	1.00		0.35	1.00	
Satd. Flow (perm)					1650	1471	492	3217		609	3231	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	45	1	133	17	550	93	220	891	117
RTOR Reduction (vph)	0	0	0	0	0	115	0	18	0	0	12	0
Lane Group Flow (vph)	0	0	0	0	46	18	17	625	0	220	996	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type				Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases					8			2		1	6	
Permitted Phases				8		8	2			6		
Actuated Green, G (s)					7.7	7.7	22.2	22.2		34.3	34.3	
Effective Green, g (s)					7.7	7.7	22.2	22.2		34.3	34.3	
Actuated g/C Ratio					0.14	0.14	0.40	0.40		0.61	0.61	
Clearance Time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Vehicle Extension (s)					4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)					226	201	194	1273		540	1975	
v/s Ratio Prot								0.19		0.07	c0.31	
v/s Ratio Perm					0.03	0.01	0.03			0.18		
v/c Ratio					0.20	0.09	0.09	0.49		0.41	0.50	
Uniform Delay, d1					21.5	21.1	10.6	12.7		5.0	6.1	
Progression Factor					1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2					0.6	0.3	0.3	0.4		0.7	0.3	
Delay (s)					22.1	21.4	10.9	13.1		5.7	6.4	
Level of Service					С	С	В	В		Α	Α	
Approach Delay (s)		0.0			21.6			13.1			6.3	
Approach LOS		Α			С			В			Α	
Intersection Summary												
HCM 2000 Control Delay			9.8	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	ratio		0.48									
Actuated Cycle Length (s)			56.1	S	um of los	t time (s)			17.1			
Intersection Capacity Utilization	1		71.3%	IC	U Level	of Service)		С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	←	•	4	†	>	ţ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations		4		ર્ન	7	ሻ	∱ }	ሻ	∱ }
Traffic Volume (vph)	141	143	152	256	367	59	934	362	1138
Future Volume (vph)	141	143	152	256	367	59	934	362	1138
Lane Group Flow (vph)	0	337	0	443	399	64	1086	393	1366
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA
Protected Phases		4		8		5	2	1	6
Permitted Phases	4		8		8	2		6	
Detector Phase	4	4	8	8	8	5	2	1	6
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0	17.0	47.0	17.0	47.0
Total Split (%)	36.0%	36.0%	36.0%	36.0%	36.0%	17.0%	47.0%	17.0%	47.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0
Lead/Lag						Lead	Lag	Lead	Lag
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max
v/c Ratio		2.31		1.22	0.62	0.34	0.83	1.21	0.85
Control Delay		630.8		156.0	12.1	9.6	32.0	146.8	21.7
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		630.8		156.0	12.1	9.6	32.0	146.8	21.7
Queue Length 50th (m)		~107.7		~106.1	13.2	4.7	105.0	~75.4	68.4
Queue Length 95th (m)		#161.1		#164.1	42.9	m5.1	m116.1 r	n#129.1ı	m#166.7
Internal Link Dist (m)		100.0		3.9			71.5		31.5
Turn Bay Length (m)						65.0		140.0	
Base Capacity (vph)		146		362	645	310	1307	325	1599
Starvation Cap Reductn		0		0	0	0	0	0	0
Spillback Cap Reductn		0		0	0	0	0	0	0
Storage Cap Reductn		0		0	0	0	0	0	0
Reduced v/c Ratio		2.31		1.22	0.62	0.21	0.83	1.21	0.85

Cycle Length: 100

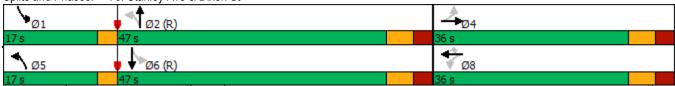
Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 76: Stanley Ave & Dixon St

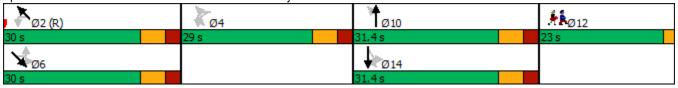
	۶	→	•	•	←	•	1	†	<i>></i>	/		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	7	ሻ	∱ î≽		7	∱ ∱	
Traffic Volume (vph)	141	143	27	152	256	367	59	934	65	362	1138	119
Future Volume (vph)	141	143	27	152	256	367	59	934	65	362	1138	119
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.99			1.00	0.85	1.00	0.99		1.00	0.99	
Flt Protected		0.98			0.98	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1672			1699	1471	1644	3256		1644	3241	
Flt Permitted		0.29			0.72	1.00	0.11	1.00		0.12	1.00	
Satd. Flow (perm)		493			1251	1471	183	3256		202	3241	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	153	155	29	165	278	399	64	1015	71	393	1237	129
RTOR Reduction (vph)	0	4	0	0	0	219	0	5	0	0	7	0
Lane Group Flow (vph)	0	333	0	0	443	180	64	1081	0	393	1359	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		29.0			29.0	29.0	45.5	40.0		57.0	48.5	
Effective Green, g (s)		29.0			29.0	29.0	45.5	40.0		57.0	48.5	
Actuated g/C Ratio		0.29			0.29	0.29	0.46	0.40		0.57	0.48	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		142			362	426	163	1302		317	1571	
v/s Ratio Prot							0.02	0.33		c0.17	0.42	
v/s Ratio Perm		c0.68			0.35	0.12	0.16			c0.53		
v/c Ratio		2.35			1.22	0.42	0.39	0.83		1.24	0.87	
Uniform Delay, d1		35.5			35.5	28.7	17.6	26.9		26.7	22.9	
Progression Factor		1.00			1.00	1.00	0.76	1.05		1.47	0.69	
Incremental Delay, d2		628.0			123.0	0.4	0.5	3.5		128.4	5.6	
Delay (s)		663.5			158.5	29.1	13.9	31.7		167.6	21.4	
Level of Service		F			F	С	В	С		F	С	
Approach Delay (s)		663.5			97.2			30.7			54.0	
Approach LOS		F			F			С			D	
Intersection Summary												
HCM 2000 Control Delay			106.6	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacity	/ ratio		1.66									
Actuated Cycle Length (s)			100.0		um of los				17.0			
Intersection Capacity Utilization	n		115.1%	IC	CU Level	of Service	е		Н			
Analysis Period (min)			15									
c Critical Lane Group												

	~	•	*_	ሻ	†	>	Ļ	ţ	•	\	\mathbf{x}	€
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWL
Lane Configurations		ă	Ž.		4			4		ă	ą.	
Traffic Volume (vph)	16	5	274	103	32	7	16	17	1	203	206	1
Future Volume (vph)	16	5	274	103	32	7	16	17	1	203	206	1
Lane Group Flow (vph)	0	22	357	0	247	0	0	44	0	222	256	0
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases					10			14			6	
Permitted Phases	4	4	4	10		14	14		6	6		2
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	29.0	29.0	29.0	31.4	31.4	31.4	31.4	31.4	30.0	30.0	30.0	30.0
Total Split (%)	25.6%	25.6%	25.6%	27.7%	27.7%	27.7%	27.7%	27.7%	26.5%	26.5%	26.5%	26.5%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.11	1.27		0.85			0.16		0.88	0.75	
Control Delay		39.2	183.3		70.0			37.3		77.7	57.6	
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	
Total Delay		39.2	183.3		70.0			37.3		77.7	57.6	
Queue Length 50th (m)		4.0	~99.8		53.0			7.8		48.1	53.8	
Queue Length 95th (m)		11.2	#156.1		#96.6			17.8		#91.3	#89.6	
Internal Link Dist (m)		102.7			229.8			295.5			298.1	
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		205	282		289			274		252	340	
Starvation Cap Reductn		0	0		0			0		0	0	
Spillback Cap Reductn		0	0		0			0		0	0	
Storage Cap Reductn		0	0		0			0		0	0	
Reduced v/c Ratio		0.11	1.27		0.85			0.16		0.88	0.75	

Cycle Length: 113.4 Actuated Cycle Length: 113.4

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 110 Control Type: Pretimed


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 78: Allandale Ave & Main St & Murray St

Lane Group	NWT	Ø12
Lane Configurations	4	
Traffic Volume (vph)	15	
Future Volume (vph)	15	
Lane Group Flow (vph)	45	
Turn Type	NA	
Protected Phases	2	12
Permitted Phases		
Minimum Split (s)	16.8	23.0
Total Split (s)	30.0	23.0
Total Split (%)	26.5%	20%
Yellow Time (s)	4.1	2.0
All-Red Time (s)	2.7	0.0
Lost Time Adjust (s)	0.0	
Total Lost Time (s)	6.8	
Lead/Lag		
Lead-Lag Optimize?		
v/c Ratio	0.14	
Control Delay	38.5	
Queue Delay	0.0	
Total Delay	38.5	
Queue Length 50th (m)	8.3	
Queue Length 95th (m)	18.2	
Internal Link Dist (m)	208.5	
Turn Bay Length (m)		
Base Capacity (vph)	315	
Starvation Cap Reductn	0	
Spillback Cap Reductn	0	
Storage Cap Reductn	0	
Reduced v/c Ratio	0.14	
Intersection Summary		

	4	•	*_	•	ሻ	†	/	ſ*	>	Ļ	+	≱ J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		Ä	Ž.			4					4	
Traffic Volume (vph)	16	5	274	54	103	32	87	5	7	16	17	1
Future Volume (vph)	16	5	274	54	103	32	87	5	7	16	17	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.95					1.00	
Flt Protected		0.95	1.00			0.98					0.97	
Satd. Flow (prot)		1612	1442			1568					1645	
Flt Permitted		0.62	1.00			0.83					0.75	
Satd. Flow (perm)		1051	1442			1336					1262	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	5	298	59	112	35	95	5	8	17	18	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	22	357	0	0	247	0	0	0	0	43	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		22.2	22.2			24.6					24.6	
Effective Green, g (s)		22.2	22.2			24.6					24.6	
Actuated g/C Ratio		0.20	0.20			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		205	282			289					273	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.25			c0.18					0.03	
v/c Ratio		0.11	1.27			0.85					0.16	
Uniform Delay, d1		37.5	45.6			42.7					36.0	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.1	144.8			26.2					1.2	
Delay (s)		38.5	190.4			68.8					37.2	
Level of Service		D	F			E					D	
Approach Delay (s)		181.6				68.8					37.2	
Approach LOS		F				Е					D	
Intersection Summary												
HCM 2000 Control Delay			101.2	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ity ratio		0.76									
Actuated Cycle Length (s)			113.4		um of lost				22.4			
Intersection Capacity Utilization	on		74.1%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\	\mathbf{x}	>	€	*	*	4	
Movement	SEL2	SEL	SET	SER	NWL	NWT	NWR	NWR2	
Lane Configurations		ă	₽			4			
Traffic Volume (vph)	1	203	206	29	1	15	11	15	
Future Volume (vph)	1	203	206	29	1	15	11	15	
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	
Total Lost time (s)		6.8	6.8			6.8			
Lane Util. Factor		1.00	1.00			1.00			
Frt		1.00	0.98			0.92			
Flt Protected		0.95	1.00			1.00			
Satd. Flow (prot)		1612	1665			1552			
Flt Permitted		0.73	1.00			0.99			
Satd. Flow (perm)		1235	1665			1544			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	1	221	224	32	1	16	12	16	
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	
Lane Group Flow (vph)	0	222	256	0	0	45	0	0	
Turn Type	Perm	Perm	NA		Perm	NA			
Protected Phases			6			2			
Permitted Phases	6	6			2				
Actuated Green, G (s)		23.2	23.2			23.2			
Effective Green, g (s)		23.2	23.2			23.2			
Actuated g/C Ratio		0.20	0.20			0.20			
Clearance Time (s)		6.8	6.8			6.8			
Lane Grp Cap (vph)		252	340			315			
v/s Ratio Prot			0.15						
v/s Ratio Perm		c0.18				0.03			
v/c Ratio		0.88	0.75			0.14			
Uniform Delay, d1		43.8	42.4			37.0			
Progression Factor		1.00	1.00			1.00			
Incremental Delay, d2		32.8	14.3			1.0			
Delay (s)		76.5	56.7			37.9			
Level of Service		Е	Е			D			
Approach Delay (s)			65.9			37.9			
Approach LOS			Е			D			
Intersection Summary									

OT. I arking racility	/// tilaliu		J Q DIA	OII Ot			imagatod i didio i otal conditiono						
	٠	→	•	•	←	•	4	†	/	>	ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Volume (veh/h)	1	14	0	272	16	146	0	77	248	49	0	1	
Future Volume (Veh/h)	1	14	0	272	16	146	0	77	248	49	0	1	
Sign Control		Free			Free			Stop			Stop		
Grade		0%			0%			0%			0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	1	15	0	296	17	159	0	84	270	53	0	1	
Pedestrians													
Lane Width (m)													
Walking Speed (m/s)													
Percent Blockage													
Right turn flare (veh)													
Median type		None			None								
Median storage veh)													
Upstream signal (m)					124								
pX, platoon unblocked	0.83						0.83	0.83		0.83	0.83	0.83	
vC, conflicting volume	176			15			706	785	15	1018	706	96	
vC1, stage 1 conf vol													
vC2, stage 2 conf vol													
vCu, unblocked vol	0			15			545	639	15	919	544	0	
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2	
tC, 2 stage (s)													
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3	
p0 queue free %	100			82			100	69	75	49	100	100	
cM capacity (veh/h)	1359			1616			322	269	1070	104	305	906	
Direction, Lane #	EB 1	WB 1	NB 1	SB 1									
Volume Total	16	472	354	54									
Volume Left	1	296	0	53									
Volume Right	0	159	270	1									
cSH	1359	1616	627	105									
Volume to Capacity	0.00	0.18	0.56	0.51									
Queue Length 95th (m)	0.0	5.1	26.8	17.6									
Control Delay (s)	0.5	5.4	17.9	70.7									
Lane LOS	Α	Α	С	F									
Approach Delay (s)	0.5	5.4	17.9	70.7									
Approach LOS			С	F									
Intersection Summary													
Average Delay			14.2										
Intersection Capacity Utiliza	ation		67.9%	IC	CU Level	of Service			С				
Analysis Period (min)			15										

	۶	•	•	†	 	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻ	7	7	^	↑ ↑				
Traffic Volume (veh/h)	0	0	10	1057	1299	126			
Future Volume (Veh/h)	0	0	10	1057	1299	126			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	0	11	1149	1412	137			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type				None	None				
Median storage veh)									
Upstream signal (m)				127	95				
pX, platoon unblocked	0.75	0.63	0.63						
vC, conflicting volume	2077	774	1549						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	375	0	707						
tC, single (s)	6.8	6.9	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	100	100	98						
cM capacity (veh/h)	443	690	570						
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2		
Volume Total	0	0	11	574	574	941	608		
Volume Left	0	0	11	0	0	0	0		
Volume Right	0	0	0	0	0	0	137		
cSH	1700	1700	570	1700	1700	1700	1700		
Volume to Capacity	0.00	0.00	0.02	0.34	0.34	0.55	0.36		
Queue Length 95th (m)	0.00	0.00	0.02	0.04	0.04	0.0	0.0		
• ,	0.0	0.0	11.4	0.0	0.0	0.0	0.0		
Control Delay (s) Lane LOS	0.0 A	0.0 A	В	0.0	0.0	0.0	0.0		
Approach Delay (s)	0.0	A	0.1			0.0			
Approach LOS	0.0 A		0.1			0.0			
•	A								
Intersection Summary									
Average Delay			0.0						
Intersection Capacity Utiliza	ation		46.7%	IC	U Level	of Service		Α	
Analysis Period (min)			15						

	۶	→	+	4	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		41	ħβ		ች	7
Traffic Volume (veh/h)	211	368	985	18	13	212
Future Volume (Veh/h)	211	368	985	18	13	212
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	229	400	1071	20	14	230
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)		88	33			
pX, platoon unblocked						
vC, conflicting volume	1091				1739	546
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1091				1739	546
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)					J.U	
tF (s)	2.2				3.5	3.3
p0 queue free %	65				73	53
cM capacity (veh/h)	647				52	487
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2
	362		714			
Volume Total		267		377	14	230
Volume Left	229	0	0	0	14	0
Volume Right	0	1700	1700	20	0	230
cSH	647	1700	1700	1700	52	487
Volume to Capacity	0.35	0.16	0.42	0.22	0.27	0.47
Queue Length 95th (m)	12.1	0.0	0.0	0.0	7.1	18.9
Control Delay (s)	10.5	0.0	0.0	0.0	99.0	18.8
Lane LOS	В		2.0		F	С
Approach Delay (s)	6.0		0.0		23.4	
Approach LOS					С	
Intersection Summary						
Average Delay			4.8			
Intersection Capacity Utiliza	ation		61.2%	IC	U Level o	of Service
Analysis Period (min)			15			

	•	•	←	4	†	ļ
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	7	7	4	J.	†	+
Traffic Volume (vph)	270	149	26	143	160	144
Future Volume (vph)	270	149	26	143	160	144
Lane Group Flow (vph)	293	162	44	155	174	559
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	5.5	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.83	0.31	0.09	0.42	0.19	0.73
Control Delay	44.8	5.2	13.0	10.6	9.2	18.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	2.4
Total Delay	44.8	5.2	13.0	10.6	9.2	20.7
Queue Length 50th (m)	32.8	0.0	2.5	8.6	11.0	37.3
Queue Length 95th (m)	#70.0	11.6	8.9	16.2	20.2	#88.9
Internal Link Dist (m)	1110.0	11.0	8.0	10.2	230.0	55.6
Turn Bay Length (m)	50.0		0.0		200.0	00.0
Base Capacity (vph)	376	553	503	368	934	771
Starvation Cap Reductn	0	0	0	0	0	111
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.78	0.29	0.09	0.42	0.19	0.85
Neudoed We Natio	0.70	0.23	0.03	0.42	0.13	0.00

Cycle Length: 67.3

Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Fallsview Blvd & Embassy Suites

01-11-2024 TTW_Hennepin_2024-01-10-v0.2 Mitigated.syn

	•	→	•	•	←	•	•	†	~	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň		7		4		7	†		ħ	†	
Traffic Volume (vph)	270	0	149	0	26	15	143	160	0	0	144	370
Future Volume (vph)	270	0	149	0	26	15	143	160	0	0	144	370
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.89	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1544	
Flt Permitted	0.73		1.00		1.00		0.23	1.00			1.00	
Satd. Flow (perm)	1260		1471		1646		399	1731			1544	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	293	0	162	0	28	16	155	174	0	0	157	402
RTOR Reduction (vph)	0	0	117	0	12	0	0	0	0	0	130	0
Lane Group Flow (vph)	293	0	45	0	32	0	155	174	0	0	429	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases					8		5	2			6	
Permitted Phases	4		4	8			2			6		
Actuated Green, G (s)	18.8		18.8		18.8		36.2	36.2			27.3	
Effective Green, g (s)	18.8		18.8		18.8		36.2	36.2			27.3	
Actuated g/C Ratio	0.28		0.28		0.28		0.54	0.54			0.41	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	351		410		459		323	931			626	
v/s Ratio Prot					0.02		c0.04	0.10			c0.28	
v/s Ratio Perm	c0.23		0.03				0.22					
v/c Ratio	0.83		0.11		0.07		0.48	0.19			0.69	
Uniform Delay, d1	22.8		18.0		17.8		10.0	8.0			16.5	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	16.2		0.2		0.1		1.5	0.4			6.0	
Delay (s)	39.0		18.2		17.9		11.5	8.4			22.5	
Level of Service	D		В		В		В	Α			С	
Approach Delay (s)		31.6			17.9			9.9			22.5	
Approach LOS		С			В			Α			С	
Intersection Summary												
HCM 2000 Control Delay			22.3	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.72									
Actuated Cycle Length (s)			67.3		um of lost				15.3			
Intersection Capacity Utilization	ation		76.2%	IC	U Level	of Service	•		D			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	f)	ሻ	î,	ሻ	ħβ	ሻ	∱ }	
Traffic Volume (vph)	105	239	149	130	182	988	415	1174	
Future Volume (vph)	105	239	149	130	182	988	415	1174	
Lane Group Flow (vph)	114	375	162	389	198	1322	451	1419	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	24.0	24.0	10.0	28.0	
Total Split (s)	35.0	35.0	35.0	35.0	48.0	48.0	17.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	48.0%	48.0%	17.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	0.82	0.78	1.09	0.78	1.74	0.99	1.48	0.75	
Control Delay	76.7	44.4	136.0	37.5	371.6	33.6	257.4	18.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	76.7	44.4	136.0	37.5	371.6	33.6	257.4	18.6	
Queue Length 50th (m)	20.6	63.3	~35.3	54.3	~57.6	40.4	~106.3	99.4	
Queue Length 95th (m)	#51.6	#106.4	#74.7	#98.5	m#77.1	m#167.0	#165.9	126.5	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	139	478	149	501	114	1330	305	1887	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.82	0.78	1.09	0.78	1.74	0.99	1.48	0.75	

Cycle Length: 100

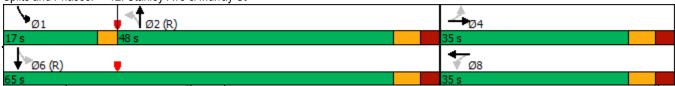
Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 12: Stanley Ave & Murray St

	٦	→	•	•	←	4	4	†	<i>></i>	\	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	î.		7	ĵ∍		*	∱β		ሻ	∱ ⊅	
Traffic Volume (vph)	105	239	106	149	130	228	182	988	228	415	1174	132
Future Volume (vph)	105	239	106	149	130	228	182	988	228	415	1174	132
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	0.90		1.00	0.97		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1651		1644	1565		1644	3196		1644	3238	
Flt Permitted	0.29	1.00		0.31	1.00		0.16	1.00		0.09	1.00	
Satd. Flow (perm)	498	1651		534	1565		280	3196		157	3238	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	114	260	115	162	141	248	198	1074	248	451	1276	143
RTOR Reduction (vph)	0	16	0	0	63	0	0	20	0	0	8	0
Lane Group Flow (vph)	114	359	0	162	326	0	198	1302	0	451	1411	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	28.0	28.0		28.0	28.0		41.0	41.0		58.0	58.0	
Effective Green, g (s)	28.0	28.0		28.0	28.0		41.0	41.0		58.0	58.0	
Actuated g/C Ratio	0.28	0.28		0.28	0.28		0.41	0.41		0.58	0.58	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	139	462		149	438		114	1310		299	1878	
v/s Ratio Prot		0.22			0.21			0.41		c0.21	0.44	
v/s Ratio Perm	0.23			c0.30			c0.71			0.66		
v/c Ratio	0.82	0.78		1.09	0.74		1.74	0.99		1.51	0.75	
Uniform Delay, d1	33.6	33.1		36.0	32.7		29.5	29.4		30.4	15.6	
Progression Factor	1.00	1.00		1.00	1.00		0.52	0.50		1.00	1.00	
Incremental Delay, d2	30.5	8.0		99.0	6.7		351.4	17.3		245.4	2.8	
Delay (s)	64.2	41.2		135.0	39.4		366.6	31.9		275.8	18.5	
Level of Service	Е	D		F	D		F	С		F	В	
Approach Delay (s)		46.5			67.5			75.5			80.5	
Approach LOS		D			Е			Е			F	
Intersection Summary												
HCM 2000 Control Delay			73.4	H	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capac	city ratio		1.47									
Actuated Cycle Length (s)			100.0		um of lost				17.0			
Intersection Capacity Utiliza	tion		113.0%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												


	•	→	•	←	•	1	†	/	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	∱ î≽	Ţ	†	7	7	∱ }	7	∱ }	
Traffic Volume (vph)	148	503	137	263	167	119	366	172	562	
Future Volume (vph)	148	503	137	263	167	119	366	172	562	
Lane Group Flow (vph)	161	783	149	286	182	129	701	187	670	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	5.5	20.0	7.0	20.0	20.0	5.5	20.0	7.0	20.0	
Minimum Split (s)	10.0	33.3	10.0	33.3	33.3	10.0	42.6	10.0	42.6	
Total Split (s)	10.0	36.9	10.0	36.9	36.9	12.0	43.0	12.0	43.0	
Total Split (%)	9.8%	36.2%	9.8%	36.2%	36.2%	11.8%	42.2%	11.8%	42.2%	
Yellow Time (s)	3.0	4.1	3.0	4.1	4.1	3.0	4.1	3.0	4.1	
All-Red Time (s)	0.0	2.2	0.0	2.2	2.2	0.0	2.5	0.0	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.3	3.0	6.3	6.3	3.0	6.6	3.0	6.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	Max	None	Max	
v/c Ratio	0.46	0.84	0.72	0.59	0.34	0.36	0.55	0.54	0.55	
Control Delay	23.8	40.0	41.0	36.2	6.0	16.0	19.1	19.9	26.8	
Queue Delay	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.8	40.1	41.0	36.2	6.0	16.0	19.1	19.9	26.8	
Queue Length 50th (m)	19.6	68.5	18.0	47.3	0.0	12.8	39.6	19.2	54.2	
Queue Length 95th (m)	33.5	91.2	#36.1	73.2	15.0	23.1	58.1	32.6	72.8	
Internal Link Dist (m)		39.6		70.0			112.9		294.7	
Turn Bay Length (m)	30.0		35.0			10.0		65.0		
Base Capacity (vph)	351	1021	206	537	582	367	1268	349	1217	
Starvation Cap Reductn	0	7	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.46	0.77	0.72	0.53	0.31	0.35	0.55	0.54	0.55	

Cycle Length: 101.9 Actuated Cycle Length: 98.8 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 13: Fallsview Blvd & Murray St

TO. 1 GIIOVIOW BIVG		,										
	•	-	•	•	•	•	1	Ī		-	¥	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ⊅		Ť	†	7	ሻ	∱ ∱		7	∱ ⊅	
Traffic Volume (vph)	148	503	217	137	263	167	119	366	279	172	562	54
Future Volume (vph)	148	503	217	137	263	167	119	366	279	172	562	54
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.94		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	3139		1644	1731	1471	1644	3075		1644	3245	
Flt Permitted	0.43	1.00		0.16	1.00	1.00	0.31	1.00		0.28	1.00	
Satd. Flow (perm)	750	3139		285	1731	1471	535	3075		489	3245	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	161	547	236	149	286	182	129	398	303	187	611	59
RTOR Reduction (vph)	0	49	0	0	0	131	0	133	0	0	7	0
Lane Group Flow (vph)	161	734	0	149	286	51	129	568	0	187	663	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	34.6	27.6		34.6	27.6	27.6	44.8	36.5		45.6	36.9	
Effective Green, g (s)	34.6	27.6		34.6	27.6	27.6	44.8	36.5		45.6	36.9	
Actuated g/C Ratio	0.35	0.28		0.35	0.28	0.28	0.45	0.37		0.46	0.37	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	326	877		196	484	411	336	1137		327	1213	
v/s Ratio Prot	0.03	c0.23		c0.05	0.17		0.03	0.18		c0.05	0.20	
v/s Ratio Perm	0.14			0.21		0.03	0.14			c0.21		
v/c Ratio	0.49	0.84		0.76	0.59	0.12	0.38	0.50		0.57	0.55	
Uniform Delay, d1	23.4	33.4		24.4	30.7	26.5	16.4	24.0		16.8	24.3	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.2	7.0		15.8	1.9	0.1	0.7	1.6		2.4	1.8	
Delay (s)	24.6	40.4		40.2	32.6	26.7	17.1	25.6		19.2	26.1	
Level of Service	С	D		D	С	С	В	С		В	С	
Approach Delay (s)		37.7			32.7			24.3			24.6	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			29.9	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.68									
Actuated Cycle Length (s)			98.7	S	um of los	time (s)			18.9			
Intersection Capacity Utiliza	ation		79.3%	IC	U Level	of Service	Э		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	•	•	4	†	-	ļ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	*	f)	7	<u></u>	7	7	↑ ↑	*	∱ }
Traffic Volume (vph)	265	304	81	394	69	216	854	158	864
Future Volume (vph)	265	304	81	394	69	216	854	158	864
Lane Group Flow (vph)	288	491	88	428	75	235	1081	172	1207
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases		4		8			2	1	6
Permitted Phases	4		8		8	2		6	
Detector Phase	4	4	8	8	8	2	2	1	6
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0
Total Split (s)	39.0	39.0	39.0	39.0	39.0	50.0	50.0	11.0	61.0
Total Split (%)	39.0%	39.0%	39.0%	39.0%	39.0%	50.0%	50.0%	11.0%	61.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0
Lead/Lag						Lag	Lag	Lead	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max
v/c Ratio	1.83	0.90	0.79	0.77	0.14	1.63	0.77	0.69	0.69
Control Delay	424.1	52.9	76.6	41.8	6.5	337.8	28.4	23.3	21.4
Queue Delay	0.0	0.0	0.0	7.2	0.0	0.0	0.0	0.0	0.0
Total Delay	424.1	52.9	76.6	49.0	6.5	337.8	28.4	23.3	21.4
Queue Length 50th (m)	~84.8	86.3	15.4	74.4	0.0	~66.0	90.1	21.0	112.9
Queue Length 95th (m)	#134.3	#145.8	#43.2	#118.5	9.3	#85.4	115.6	m23.3	m132.6
Internal Link Dist (m)		213.7		94.8			227.1		103.4
Turn Bay Length (m)	75.0		25.0		25.0	25.0		40.0	
Base Capacity (vph)	157	544	112	553	522	144	1399	250	1743
Starvation Cap Reductn	0	0	0	88	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.83	0.90	0.79	0.92	0.14	1.63	0.77	0.69	0.69

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 15: Stanley Ave & Dunn St

	۶	→	•	•	←	4	1	†	~	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ		7	ሻ	∱ 1≽		ሻ	∱ }	
Traffic Volume (vph)	265	304	148	81	394	69	216	854	141	158	864	247
Future Volume (vph)	265	304	148	81	394	69	216	854	141	158	864	247
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1645		1644	1731	1471	1644	3218		1644	3179	
Flt Permitted	0.29	1.00		0.20	1.00	1.00	0.19	1.00		0.14	1.00	
Satd. Flow (perm)	494	1645		353	1731	1471	336	3218		236	3179	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	288	330	161	88	428	75	235	928	153	172	939	268
RTOR Reduction (vph)	0	18	0	0	0	51	0	13	0	0	26	0
Lane Group Flow (vph)	288	473	0	88	428	24	235	1068	0	172	1181	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	32.0	32.0		32.0	32.0	32.0	43.1	43.1		54.0	54.0	
Effective Green, g (s)	32.0	32.0		32.0	32.0	32.0	43.1	43.1		54.0	54.0	
Actuated g/C Ratio	0.32	0.32		0.32	0.32	0.32	0.43	0.43		0.54	0.54	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	158	526		112	553	470	144	1386		238	1716	
v/s Ratio Prot		0.29			0.25			0.33		0.06	c0.37	
v/s Ratio Perm	c0.58			0.25		0.02	c0.70			0.33		
v/c Ratio	1.82	0.90		0.79	0.77	0.05	1.63	0.77		0.72	0.69	
Uniform Delay, d1	34.0	32.5		30.9	30.7	23.5	28.4	24.2		15.8	16.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.26	1.23	
Incremental Delay, d2	394.0	18.1		29.4	6.7	0.0	313.6	4.2		6.1	1.3	
Delay (s)	428.0	50.6		60.3	37.4	23.5	342.1	28.4		26.1	22.0	
Level of Service	F	D		E	D	С	F	C		С	C	
Approach Delay (s)		190.1			39.1			84.4			22.5	
Approach LOS		F			D			F			C	
Intersection Summary HCM 2000 Control Delay			77.1	Li	CM 2000	Level of	Convino		E			
HCM 2000 Control Delay	acity ratio		1.61	П	CIVI ZUUU	Level of	Service					
	acity ratio		100.0	C.	ım of loo	t time (a)			17.0			
Actuated Cycle Length (s)	ntion		100.0		um of los	of Service			17.0 H			
Intersection Capacity Utiliza Analysis Period (min)	auUH			IC	O Level (DI SEI VICE			П			
c Critical Lane Group			15									
Contical Lane Group												

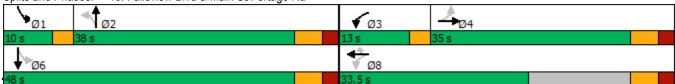
	•	→	•	←	•	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	£	ሻ	†	7	ሻ	₽	ሻ	f)	
Traffic Volume (vph)	262	306	188	425	479	21	434	88	264	
Future Volume (vph)	262	306	188	425	479	21	434	88	264	
Lane Group Flow (vph)	285	429	204	462	521	23	583	96	324	
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	
Total Split (s)	35.0	35.0	13.0	33.5	33.5	38.0	38.0	10.0	48.0	
Total Split (%)	36.5%	36.5%	13.5%	34.9%	34.9%	39.6%	39.6%	10.4%	50.0%	
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	
_ead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
_ead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Max	Max	None	Max	
ı/c Ratio	1.11	0.84	0.66	0.62	0.63	0.07	0.98	0.47	0.44	
Control Delay	124.5	47.5	27.1	25.7	11.1	23.1	64.6	22.4	20.8	
Queue Delay	0.0	0.0	0.0	4.2	0.9	0.0	40.7	0.0	0.0	
Total Delay	124.5	47.5	27.1	29.8	12.0	23.1	105.3	22.4	20.8	
Queue Length 50th (m)	~61.2	72.0	22.2	64.5	23.3	2.9	~116.2	9.7	39.7	
Queue Length 95th (m)	#109.7	#123.0	#36.8	96.8	57.3	8.5	#179.7	18.7	62.2	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	256	508	312	750	826	342	596	203	742	
Starvation Cap Reductn	0	0	0	208	112	0	178	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.11	0.84	0.65	0.85	0.73	0.07	1.39	0.47	0.44	

Cycle Length: 96

Actuated Cycle Length: 95.7

Natural Cycle: 130

Control Type: Actuated-Uncoordinated


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 16: Fallsview Blvd & Main St/Portage Rd

01-11-2024

Synchro 11 Report

	۶	→	•	•	←	•	•	†	<i>></i>	\	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.		7	†	7	7	î,		7	ĵ.	
Traffic Volume (vph)	262	306	88	188	425	479	21	434	102	88	264	34
Future Volume (vph)	262	306	88	188	425	479	21	434	102	88	264	34
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	1.00	0.85	1.00	0.97		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1672		1644	1731	1471	1644	1681		1644	1701	
Flt Permitted	0.50	1.00		0.22	1.00	1.00	0.56	1.00		0.12	1.00	
Satd. Flow (perm)	861	1672		388	1731	1471	977	1681		209	1701	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	285	333	96	204	462	521	23	472	111	96	287	37
RTOR Reduction (vph)	0	11	0	0	0	191	0	8	0	0	5	0
Lane Group Flow (vph)	285	418	0	204	462	330	23	575	0	96	319	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	28.5	28.5		41.2	41.2	41.2	33.5	33.5		42.1	42.1	
Effective Green, g (s)	28.5	28.5		41.2	41.2	41.2	33.5	33.5		42.1	42.1	
Actuated g/C Ratio	0.30	0.30		0.43	0.43	0.43	0.35	0.35		0.44	0.44	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	254	494		292	740	629	339	584		174	743	
v/s Ratio Prot		0.25		c0.07	0.27			c0.34		c0.03	0.19	
v/s Ratio Perm	c0.33			0.23		0.22	0.02			0.21		
v/c Ratio	1.12	0.85		0.70	0.62	0.53	0.07	0.98		0.55	0.43	
Uniform Delay, d1	33.9	31.9		20.1	21.5	20.3	21.0	31.1		20.4	18.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	93.3	12.7		7.1	1.6	0.8	0.4	33.5		3.7	1.8	
Delay (s)	127.2	44.5		27.2	23.2	21.1	21.4	64.6		24.1	20.6	
Level of Service	F	D		С	С	С	С	Е		С	С	
Approach Delay (s)		77.5			23.0			63.0			21.4	
Approach LOS		Е			С			Е			С	
Intersection Summary												
HCM 2000 Control Delay			44.3	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	city ratio		0.97									
Actuated Cycle Length (s)			96.3	Sı	um of los	t time (s)			19.0			
Intersection Capacity Utiliza	tion		97.0%	IC	U Level	of Service	1		F			
Analysis Period (min)			15									
c Critical Lane Group												

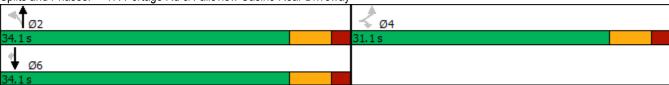
	۶	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	†	†	7
Traffic Volume (vph)	106	284	472	112	141	391
Future Volume (vph)	106	284	472	112	141	391
Lane Group Flow (vph)	115	309	513	122	153	425
Turn Type	Perm	Perm	Perm	NA	NA	Perm
Protected Phases				2	6	
Permitted Phases	4	4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	34.1	34.1	34.1	34.1
Total Split (%)	47.7%	47.7%	52.3%	52.3%	52.3%	52.3%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.20	0.43	0.99	0.16	0.19	0.47
Control Delay	14.5	4.1	59.8	12.2	12.4	3.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14.5	4.1	59.8	12.2	12.4	3.4
Queue Length 50th (m)	8.9	0.0	~69.3	8.7	11.1	0.0
Queue Length 95th (m)	18.5	13.2	#120.5	17.6	21.4	13.9
Internal Link Dist (m)	9.1			121.3	66.9	
Turn Bay Length (m)						
Base Capacity (vph)	668	781	519	787	787	901
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.17	0.40	0.99	0.16	0.19	0.47
11000000 1/0 11000	0.11	0.10	0.00	0.10	0.10	0.17

Cycle Length: 65.2

Actuated Cycle Length: 62.2

Natural Cycle: 80

Control Type: Actuated-Uncoordinated


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 17: Portage Rd & Fallsview Casino Rear Driveway

01-11-2024

Synchro 11 Report

	•	•	•	†		✓		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻ	7	ሻ	†	†	7		
Traffic Volume (vph)	106	284	472	112	141	391		
Future Volume (vph)	106	284	472	112	141	391		
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750		
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1644	1471	1644	1731	1731	1471		
Flt Permitted	0.95	1.00	0.66	1.00	1.00	1.00		
Satd. Flow (perm)	1644	1471	1142	1731	1731	1471		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	115	309	513	122	153	425		
RTOR Reduction (vph)	0	202	0	0	0	231		
Lane Group Flow (vph)	115	107	513	122	153	194		
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%		
Turn Type	Perm	Perm	Perm	NA	NA	Perm		
Protected Phases				2	6			
Permitted Phases	4	4	2			6		
Actuated Green, G (s)	21.6	21.6	28.3	28.3	28.3	28.3		
Effective Green, g (s)	21.6	21.6	28.3	28.3	28.3	28.3		
Actuated g/C Ratio	0.35	0.35	0.46	0.46	0.46	0.46		
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	571	511	520	788	788	670		
v/s Ratio Prot				0.07	0.09			
v/s Ratio Perm	0.07	c0.07	c0.45			0.13		
v/c Ratio	0.20	0.21	0.99	0.15	0.19	0.29		
Uniform Delay, d1	14.2	14.2	16.7	9.9	10.1	10.6		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.2	0.2	36.3	0.4	0.5	1.1		
Delay (s)	14.4	14.5	53.0	10.3	10.6	11.7		
Level of Service	В	В	D	В	В	В		
Approach Delay (s)	14.4			44.8	11.4			
Approach LOS	В			D	В			
Intersection Summary								
HCM 2000 Control Delay			25.1	H	CM 2000	Level of Service	9	
HCM 2000 Volume to Capa	city ratio		0.65					
Actuated Cycle Length (s)			62.1		ım of lost			
Intersection Capacity Utiliza	ation		64.8%	IC	U Level of	of Service		
Analysis Period (min)			15					
c Critical Lane Group								

-	٠	•	•	†	 	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		7		^	† 1>	02.1	
Traffic Volume (veh/h)	0	165	0	1401	1408	40	
Future Volume (Veh/h)	0	165	0	1401	1408	40	
Sign Control	Stop		-	Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0.02	179	0.02	1523	1530	43	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)				110110	110110		
Upstream signal (m)				55	191		
pX, platoon unblocked	0.84	0.69	0.69				
vC, conflicting volume	2313	786	1573				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	574	0	922				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	76	100				
cM capacity (veh/h)	379	749	514				
				OD 4	CD 0		
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	179	762	762	1020	553		
Volume Left	0	0	0	0	0		
Volume Right	179	0	0	0	43		
cSH	749	1700	1700	1700	1700		
Volume to Capacity	0.24	0.45	0.45	0.60	0.33		
Queue Length 95th (m)	7.1	0.0	0.0	0.0	0.0		
Control Delay (s)	11.3	0.0	0.0	0.0	0.0		
Lane LOS	В	0.0		2.0			
Approach Delay (s)	11.3	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.6				
Intersection Capacity Utiliza	ation		61.4%	IC	CU Level o	f Service	
Analysis Period (min)			15				

<u></u>	0. 3.7.0.											
	•	→	*	•	+	•	•	†	/	\		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	ħβ		7	∱ ∱	
Traffic Volume (veh/h)	23	5	7	0	0	0	79	549	165	181	483	173
Future Volume (Veh/h)	23	5	7	0	0	0	79	549	165	181	483	173
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	25	5	8	0	0	0	86	597	179	197	525	188
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)								139			114	
pX, platoon unblocked	0.94	0.94	0.94	0.94	0.94		0.94					
vC, conflicting volume	1484	1961	356	1526	1966	388	713			776		
vC1, stage 1 conf vol	1013	1013		858	858							
vC2, stage 2 conf vol	470	948		667	1107							
vCu, unblocked vol	1387	1895	188	1431	1900	388	567			776		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	6.5	5.5		6.5	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	87	95	99	100	100	100	91			77		
cM capacity (veh/h)	188	107	779	206	139	616	954			849		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	38	0	86	398	378	197	350	363				
Volume Left	25	0	86	0	0	197	0	0				
Volume Right	8	0	0	0	179	0	0	188				
cSH	200	1700	954	1700	1700	849	1700	1700				
Volume to Capacity	0.19	0.00	0.09	0.23	0.22	0.23	0.21	0.21				
Queue Length 95th (m)	5.2	0.0	2.3	0.0	0.0	6.8	0.0	0.0				
Control Delay (s)	27.1	0.0	9.1	0.0	0.0	10.5	0.0	0.0				
Lane LOS	D	A	A		0.0	В		7.0				
Approach Delay (s)	27.1	0.0	0.9			2.3						
Approach LOS	D	А										
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utiliza	ation		46.4%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

	←	•	4	†	/	ţ
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	र्स	7	ሻ	∱ }	ሻ	↑ ↑
Traffic Volume (vph)	1	120	16	501	200	784
Future Volume (vph)	1	120	16	501	200	784
Lane Group Flow (vph)	46	130	17	641	217	972
Turn Type	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases	8			2	1	6
Permitted Phases		8	2		6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4
Lead/Lag	U	V	Lag	Lag	Lead	
Lead-Lag Optimize?			9	9		
Recall Mode	None	None	None	None	None	None
v/c Ratio	0.14	0.33	0.08	0.49	0.36	0.45
Control Delay	22.7	8.0	13.4	14.4	5.6	7.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.7	8.0	13.4	14.4	5.6	7.1
Queue Length 50th (m)	4.0	0.0	1.1	25.5	7.2	26.8
Queue Length 95th (m)	12.5	12.2	4.7	40.2	14.5	40.6
Internal Link Dist (m)	32.2			90.4	1 1.0	112.9
Turn Bay Length (m)	02.2		20.0	30.7	25.0	112.0
Base Capacity (vph)	626	639	311	1972	630	2545
Starvation Cap Reductn	0	0	0	0	0	110
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.20	0.05	0.33	0.34	0.40
	0.07	0.20	0.00	0.00	0.04	0.40
Intersection Summary						
Cycle Length: 77.1	-					
Actuated Cycle Length: 54.	5					
Natural Cycle: 75	ν					

Control Type: Actuated-Uncoordinated

Splits and Phases: 73: Fallsview Blvd & Hilton Lot/Fallsview Lot

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR		⋆	~			_	•	_	•		τ.	1	J
Lane Configurations			→	*	•	•		7	ı	~	*	+	*
Traffic Volume (yph) 0 0 0 41 1 120 16 501 88 200 784 110 ldeal Flow (yphpl) 1750 1750 1750 1750 1750 1750 1750 1750		EBL	EBT	EBR	WBL					NBR			SBR
Future Volume (vph) 0 0 0 41 1 1 120 16 501 88 200 784 110 (adeal Flow (vphpl) 1750 1750 1750 1750 1750 1750 1750 1750													
Ideal Flow (yphpi) 1750				7		•							
Total Lost time (s)													
Lane Util. Factor		1750	1750	1750	1750					1750			1750
Fit Protected	. ,												
Fit Protected													
Satd. Flow (prot) 1650													
Fit Permitted													
Satid. Flow (perm)	. ,												
Peak-hour factor, PHF 0.92													
Adj. Flow (vph) 0 0 0 45 1 130 17 545 96 217 852 120 RTOR Reduction (vph) 0 0 0 0 112 0 18 0 0 12 0 Lane Group Flow (vph) 0 0 0 46 18 17 623 0 217 960 0 Heavy Vehicles (%) 0%	Satd. Flow (perm)					1650		510				3227	
RTOR Reduction (vph) 0 0 0 0 112 0 18 0 0 12 0 Lane Group Flow (vph) 0 0 0 0 46 18 17 623 0 217 960 0 Heavy Vehicles (%) 0%	Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Lane Group Flow (vph) 0 0 0 46 18 17 623 0 217 960 0 Heavy Vehicles (%) 0%		0	0	0	45	1	130	17	545	96	217	852	120
Heavy Vehicles (%)	RTOR Reduction (vph)	0	0	0	0	0	112	0	18	0	0	12	0
Turn Type	Lane Group Flow (vph)	0	0	0	0	46	18	17	623	0	217	960	0
Protected Phases 8	Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Protected Phases 8	Turn Type				Perm	NA	Perm	Perm	NA		pm+pt	NA	
Actuated Green, G (s) 7.6 7.6 22.1 22.1 34.2 34.2 Effective Green, g (s) 7.6 7.6 22.1 22.1 34.2 34.2 Actuated g/C Ratio 0.14 0.14 0.40 0.40 0.40 0.61 0.61 Clearance Time (s) 6.7 6.7 7.4 7.4 3.0 7.4 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Lane Grp Cap (vph) 224 199 201 1270 541 1974 v/s Ratio Prot 0.19 0.07 c0.30 v/s Ratio Perm 0.03 0.01 0.03 0.01 0.03 0.18 v/c Ratio Perm 0.03 0.01 0.03 0.10 0.03 0.18 v/c Ratio 0.21 0.09 0.08 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 lncremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A A A Approach Delay (s) 0.0 21.6 13.0 6.1 Approach Delay (s) 9.7 HCM 2000 Level of Service A HCM 2000 Control Delay 9.7 HCM 2000 Level of Service C C Analysis Period (min) 15						8			2			6	
Effective Green, g (s) 7.6 7.6 22.1 22.1 34.2 34.2 Actuated g/C Ratio 0.14 0.14 0.40 0.40 0.61 0.61 Clearance Time (s) 6.7 6.7 7.4 7.4 3.0 7.4 Vehicle Extension (s) 4.0	Permitted Phases				8		8	2			6		
Effective Green, g (s) 7.6 7.6 22.1 22.1 34.2 34.2 Actuated g/C Ratio 0.14 0.14 0.40 0.40 0.61 0.61 Clearance Time (s) 6.7 6.7 7.4 7.4 3.0 7.4 Vehicle Extension (s) 4.0 6.1 1.0	Actuated Green, G (s)					7.6	7.6	22.1	22.1		34.2	34.2	
Actuated g/C Ratito 0.14 0.14 0.40 0.40 0.61 0.61 Clearance Time (s) 6.7 6.7 7.4 7.4 3.0 7.4 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 Lane Grp Cap (vph) 224 199 201 1270 541 1974 v/s Ratio Prot 0.19 0.03 0.19 0.07 c0.30 v/s Ratio Perm 0.03 0.01 0.03 0.18 v/c Ratio 0.21 0.09 0.08 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 <td> ,</td> <td></td> <td></td> <td></td> <td></td> <td>7.6</td> <td>7.6</td> <td>22.1</td> <td>22.1</td> <td></td> <td>34.2</td> <td>34.2</td> <td></td>	,					7.6	7.6	22.1	22.1		34.2	34.2	
Clearance Time (s) 6.7 6.7 7.4 7.4 7.4 3.0 7.4 7						0.14	0.14	0.40	0.40		0.61	0.61	
Vehicle Extension (s) 4.0 6.0 8.0 6.0 9.0 0.0 0.0 0.0 0.0 1.00						6.7	6.7	7.4	7.4		3.0	7.4	
Lane Grp Cap (vph) 224 199 201 1270 541 1974 v/s Ratio Prot 0.19 0.07 c0.30 v/s Ratio Perm 0.03 0.01 0.03 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach LOS A C B A A Intersection Summary HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU						4.0	4.0	4.0	4.0		4.0	4.0	
v/s Ratio Prot 0.19 0.07 c0.30 v/s Ratio Perm 0.03 0.01 0.03 0.18 v/c Ratio 0.21 0.09 0.08 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach LOS A C B B A Approach LOS A C B A Intersection Summary B A A HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 A A Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization						224	199	201	1270		541	1974	
v/s Ratio Perm 0.03 0.01 0.03 0.18 v/c Ratio 0.21 0.09 0.08 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach LOS A C B B A Approach LOS A C B A Intersection Summary B A A HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 A C Service C Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization To.3% ICU Level of Service C<													
v/c Ratio 0.21 0.09 0.08 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach Delay (s) 0.0 21.6 13.0 6.1 A Approach LOS A C B A A Intersection Summary HCM 2000 Level of Service A A C A						0.03	0.01	0.03					
Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach Delay (s) 0.0 21.6 13.0 6.1 Approach LOS A C B A Intersection Summary HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15									0.49			0.49	
Progression Factor 1.00 <td></td>													
Incremental Delay, d2							1.00						
Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach Delay (s) 0.0 21.6 13.0 6.1 Approach LOS A C B A Intersection Summary B A A HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15													
Level of Service C C B B A A Approach Delay (s) 0.0 21.6 13.0 6.1 Approach LOS A C B A Intersection Summary B A HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15	•												
Approach Delay (s) 0.0 21.6 13.0 6.1 Approach LOS A C B A Intersection Summary HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15													
Approach LOS A C B A Intersection Summary HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15			0.0			21.6			13.0				
HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15													
HCM 2000 Volume to Capacity ratio O.47 Actuated Cycle Length (s) Intersection Capacity Utilization Analysis Period (min) O.47 Sum of lost time (s) 17.1 ICU Level of Service C	Intersection Summary												
Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15	HCM 2000 Control Delay			9.7	H	CM 2000	Level of	Service		Α			
Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15		ratio		0.47									
Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15				55.9	Sı	um of los	t time (s)			17.1			
Analysis Period (min) 15		1		70.3%				<u> </u>					
	c Critical Lane Group												

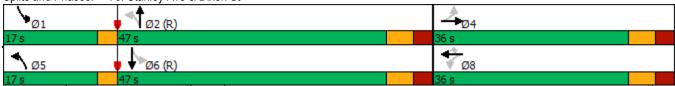
	۶	→	•	←	•	4	†	-	ţ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations		4		ર્ન	7	ň	↑ ↑	¥	↑ ↑
Traffic Volume (vph)	104	111	141	203	359	60	938	352	1133
Future Volume (vph)	104	111	141	203	359	60	938	352	1133
Lane Group Flow (vph)	0	260	0	374	390	65	1092	383	1341
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA
Protected Phases		4		8		5	2	1	6
Permitted Phases	4		8		8	2		6	
Detector Phase	4	4	8	8	8	5	2	1	6
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0	17.0	47.0	17.0	47.0
Total Split (%)	36.0%	36.0%	36.0%	36.0%	36.0%	17.0%	47.0%	17.0%	47.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0
Lead/Lag						Lead	Lag	Lead	Lag
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max
v/c Ratio		1.24		1.02	0.60	0.33	0.84	1.19	0.84
Control Delay		175.9		88.0	11.4	8.2	29.8	134.7	22.7
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		175.9		88.0	11.4	8.2	29.8	134.7	22.7
Queue Length 50th (m)		~62.6		~74.4	11.8	4.5	105.0	~71.2	72.9
Queue Length 95th (m)		#111.0		#131.8	40.5	m4.2	m109.2 r	n#117.9 r	n#122.6
Internal Link Dist (m)		100.0		3.9			71.5		31.5
Turn Bay Length (m)						65.0		140.0	
Base Capacity (vph)		209		368	645	316	1307	323	1601
Starvation Cap Reductn		0		0	0	0	0	0	0
Spillback Cap Reductn		0		0	0	0	0	0	0
Storage Cap Reductn		0		0	0	0	0	0	0
Reduced v/c Ratio		1.24		1.02	0.60	0.21	0.84	1.19	0.84

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 76: Stanley Ave & Dixon St

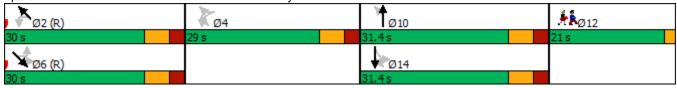
-	ၨ	→	•	6	+	4	4	†	<i>></i>	\	1	4
Movement	EBL	EBT	EBR	₩BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	LDIT	******	4	7	ሻ	↑ ↑	HOIT	ሻ	†	02.1
Traffic Volume (vph)	104	111	24	141	203	359	60	938	66	352	1133	100
Future Volume (vph)	104	111	24	141	203	359	60	938	66	352	1133	100
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.99			1.00	0.85	1.00	0.99		1.00	0.99	
Flt Protected		0.98			0.98	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1671			1696	1471	1644	3256		1644	3248	
Flt Permitted		0.41			0.73	1.00	0.11	1.00		0.11	1.00	
Satd. Flow (perm)		707			1270	1471	196	3256		198	3248	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	113	121	26	153	221	390	65	1020	72	383	1232	109
RTOR Reduction (vph)	0	4	0	0	0	219	0	5	0	0	6	0
Lane Group Flow (vph)	0	256	0	0	374	171	65	1087	0	383	1335	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		29.0			29.0	29.0	45.5	40.0		57.0	48.5	
Effective Green, g (s)		29.0			29.0	29.0	45.5	40.0		57.0	48.5	
Actuated g/C Ratio		0.29			0.29	0.29	0.46	0.40		0.57	0.48	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		205			368	426	168	1302		315	1575	
v/s Ratio Prot							0.02	0.33		c0.17	0.41	
v/s Ratio Perm		c0.36			0.29	0.12	0.15			c0.52		
v/c Ratio		1.25			1.02	0.40	0.39	0.83		1.22	0.85	
Uniform Delay, d1		35.5			35.5	28.5	17.4	27.0		26.9	22.5	
Progression Factor		1.00			1.00	1.00	0.76	1.02		1.42	0.80	
Incremental Delay, d2		145.3			51.1	0.4	0.2	1.9		116.3	4.3	
Delay (s)		180.8			86.6	28.9	13.5	29.4		154.6	22.2	
Level of Service		F			F	С	В	С		F	С	
Approach Delay (s)		180.8			57.1			28.6			51.6	
Approach LOS		F			E			С			D	
Intersection Summary			54.5	- 11	014 0000		<u> </u>					
HCM 2000 Control Delay			54.5	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity	ratio		1.26	_	uma afla	1 4ima = /= \			17.0			
Actuated Cycle Length (s)	_		100.0		um of los		_		17.0			
Intersection Capacity Utilization	1		106.7%	IC	CU Level	or Service	9		G			
Analysis Period (min)			15									
c Critical Lane Group												

	~	•	*_	ሻ	†	-	Ļ	ļ	•	\	\mathbf{x}	×
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWT
Lane Configurations		ă	Ž.		4			4		ă	ĵ»	4
Traffic Volume (vph)	16	5	275	106	32	7	16	17	1	204	208	15
Future Volume (vph)	16	5	275	106	32	7	16	17	1	204	208	15
Lane Group Flow (vph)	0	22	358	0	250	0	0	44	0	223	259	44
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	NA
Protected Phases					10			14			6	2
Permitted Phases	4	4	4	10		14	14		6	6		
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	29.0	29.0	29.0	31.4	31.4	31.4	31.4	31.4	30.0	30.0	30.0	30.0
Total Split (%)	26.0%	26.0%	26.0%	28.2%	28.2%	28.2%	28.2%	28.2%	26.9%	26.9%	26.9%	26.9%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	6.8
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.11	1.25		0.85			0.16		0.87	0.75	0.14
Control Delay		38.1	175.4		68.1			36.2		74.3	56.1	37.4
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Delay		38.1	175.4		68.1			36.2		74.3	56.1	37.4
Queue Length 50th (m)		4.0	~97.2		52.5			7.6		47.3	53.2	7.9
Queue Length 95th (m)		11.0	#153.5		#95.6			17.3		#90.0	#88.4	17.6
Internal Link Dist (m)		102.7			229.8			295.5			298.1	208.5
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		209	287		294			281		257	346	323
Starvation Cap Reductn		0	0		0			0		0	0	0
Spillback Cap Reductn		0	0		0			0		0	0	0
Storage Cap Reductn		0	0		0			0		0	0	0
Reduced v/c Ratio		0.11	1.25		0.85			0.16		0.87	0.75	0.14

Cycle Length: 111.4 Actuated Cycle Length: 111.4

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 110 Control Type: Pretimed


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 78: Allandale Ave & Main St & Murray St

Lane Group	Ø12
LanaConfigurations	
Traffic Volume (vph)	
Future Volume (vph)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	12
Permitted Phases	
Minimum Split (s)	21.0
Total Split (s)	21.0
Total Split (%)	19%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	

	4	•	*_	•	ኘ	†	/	ſ*	>	Ļ	†	≱ J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		Ä	Ž.			4					4	
Traffic Volume (vph)	16	5	275	54	106	32	87	5	7	16	17	1
Future Volume (vph)	16	5	275	54	106	32	87	5	7	16	17	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.95					1.00	
Flt Protected		0.95	1.00			0.98					0.97	
Satd. Flow (prot)		1612	1442			1569					1645	
Flt Permitted		0.62	1.00			0.83					0.75	
Satd. Flow (perm)		1050	1442			1334					1268	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	5	299	59	115	35	95	5	8	17	18	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	22	358	0	0	250	0	0	0	0	43	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		22.2	22.2			24.6					24.6	
Effective Green, g (s)		22.2	22.2			24.6					24.6	
Actuated g/C Ratio		0.20	0.20			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		209	287			294					280	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.25			c0.19					0.03	
v/c Ratio		0.11	1.25			0.85					0.15	
Uniform Delay, d1		36.5	44.6			41.6					35.0	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.0	137.0			25.3					1.2	
Delay (s)		37.5	181.6			66.9					36.2	
Level of Service		D	F			Ε					D	
Approach Delay (s)		173.3				66.9					36.2	
Approach LOS		F				Е					D	
Intersection Summary												
HCM 2000 Control Delay			97.0	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ity ratio		0.77									
Actuated Cycle Length (s)			111.4		um of lost				22.4			
Intersection Capacity Utilizati	on		74.5%	IC	CU Level of	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\	×	>	×	*	4
Movement	SEL2	SEL	SET	SER	NWT	NWR	NWR2
Lane Configurations		ă	∱		4		
Traffic Volume (vph)	1	204	208	30	15	11	15
Future Volume (vph)	1	204	208	30	15	11	15
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8		6.8		
Lane Util. Factor		1.00	1.00		1.00		
Frt		1.00	0.98		0.91		
Flt Protected		0.95	1.00		1.00		
Satd. Flow (prot)		1612	1664		1551		
Flt Permitted		0.73	1.00		1.00		
Satd. Flow (perm)		1236	1664		1551		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	222	226	33	16	12	16
RTOR Reduction (vph)	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	223	259	0	44	0	0
Turn Type	Perm	Perm	NA		NA		
Protected Phases			6		2		
Permitted Phases	6	6					
Actuated Green, G (s)		23.2	23.2		23.2		
Effective Green, g (s)		23.2	23.2		23.2		
Actuated g/C Ratio		0.21	0.21		0.21		
Clearance Time (s)		6.8	6.8		6.8		
Lane Grp Cap (vph)		257	346		323		
v/s Ratio Prot			0.16		0.03		
v/s Ratio Perm		c0.18					
v/c Ratio		0.87	0.75		0.14		
Uniform Delay, d1		42.6	41.4		35.9		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		30.4	13.8		0.9		
Delay (s)		73.0	55.2		36.8		
Level of Service		Е	Ε		D		
Approach Delay (s)			63.4		36.8		
Approach LOS			Е		D		
Intersection Summary							

or: ranking radiity	TT thomas											
	٠	→	•	•	•	•	•	†	<i>></i>	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	1	14	0	198	16	149	0	68	175	50	0	1
Future Volume (Veh/h)	1	14	0	198	16	149	0	68	175	50	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	15	0	215	17	162	0	74	190	54	0	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					124							
pX, platoon unblocked												
vC, conflicting volume	179			15			546	626	15	772	545	98
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	179			15			546	626	15	772	545	98
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			87			100	79	82	73	100	100
cM capacity (veh/h)	1409			1616			405	349	1070	198	389	963
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	16	394	264	55								
Volume Left	1	215	0	54								
Volume Right	0	162	190	1								
cSH	1409	1616	678	201								
Volume to Capacity	0.00	0.13	0.39	0.27								
Queue Length 95th (m)	0.0	3.5	14.0	8.1								
Control Delay (s)	0.5	4.6	13.7	29.6								
Lane LOS	Α	Α	В	D								_
Approach Delay (s)	0.5	4.6	13.7	29.6								
Approach LOS			В	D								
Intersection Summary												
Average Delay			9.7									
Intersection Capacity Utiliza	ation		58.3%	IC	U Level	of Service			В			
Analysis Period (min)			15									

•	•		•	•	ī	J			
		*	7	ı	*	•			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻ	7	ሻ	^	∱ ∱				
Traffic Volume (veh/h)	0	0	6	1064	1302	104			
Future Volume (Veh/h)	0	0	6	1064	1302	104			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	0	7	1157	1415	113			
Pedestrians									
ane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type				None	None				
Median storage veh)				110110	110110				
Jpstream signal (m)				127	95				
oX, platoon unblocked	0.77	0.64	0.64	121	00				
C, conflicting volume	2064	764	1528						
C1, stage 1 conf vol	2001	701	1020						
vC2, stage 2 conf vol									
Cu, unblocked vol	320	0	716						
C, single (s)	6.8	6.9	4.1						
C, 2 stage (s)	0.0	0.5	7.1						
F (s)	3.5	3.3	2.2						
o0 queue free %	100	100	99						
cM capacity (veh/h)	497	703	576						
,									
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2		
/olume Total	0	0	7	578	578	943	585		
/olume Left	0	0	7	0	0	0	0		
/olume Right	0	0	0	0	0	0	113		
SH	1700	1700	576	1700	1700	1700	1700		
Volume to Capacity	0.00	0.00	0.01	0.34	0.34	0.55	0.34		
Queue Length 95th (m)	0.0	0.0	0.3	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	11.3	0.0	0.0	0.0	0.0		
ane LOS	Α	Α	В						
Approach Delay (s)	0.0		0.1			0.0			
Approach LOS	Α								
ntersection Summary									
Average Delay			0.0						
ntersection Capacity Utiliza	ation		46.0%	IC	U Level	of Service		А	
Analysis Period (min)			15						

Novement		<u> </u>	→	—	•	\	4
Lane Configurations	Movement	FRI	FRT	WRT	WRR	SRI	SBR
Traffic Volume (veh/h) 160 336 850 13 9 161 Future Volume (Veh/h) 160 336 850 13 9 161 Sign Control Free Free Stop Grade 0% 0% 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 174 365 924 14 10 175 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) 88 33 pX, platoon unblocked vC, conflicting volume 938 1462 469 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, tstage (s) tF (s) 2.2 3.5 3.3 p0 queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 10 0 Volume Left 174 0 0 0 0 10 0 0 Volume Left 174 0 0 0 0 10 0 0 Volume Left 174 0 0 0 0 10 0 Volume Left 174 0 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume Logacity (24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 4.3 0.0 16.5 Approach LoS		LDL			WDIX		
Future Volume (Veh/h) Sign Control Free Free Free Free Stop Grade 0% 0% 0% 0% 0% 0% Peak Hour Factor 174 365 924 14 10 175 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 8 tC, single (s) tC, single (s) tF (s) p0 queue free % cM capacity (veh/h) T39 Sign Control Free Free Free Stop 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0932 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9		160		T №	12		
Sign Control Free Output Free Output Free Output Stop Output Grade 0% 0% 0% 0% Peak Hour Factor 0.92 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Grade 0% 0% 0% Peak Hour Factor 0.92		100			13		101
Peak Hour Factor 0.92							
Hourly flow rate (vph) 174 365 924 14 10 175 Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol tC, single (s) tC, 2 stage (s) tF (s) p0 queue free % p0 queue free % p1 fe be p2 fe be p1 fe be p2 fe be p1 fe be p2 fe be		0.00			0.00		0.00
Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh Upstream signal (m) PX, platoon unblocked VC, conflicting volume 938 1462 469 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC4, single (s) 4.1 6.8 6.9 4.1 6.8 6.9 4.1 6.8 6.9 4.1 6.8 6.9 4.1 6.8 6.9 6.9 6.8 6.9 6.9 6.8 6.9 6.9 6.8 6.9 6.							
Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume vC2, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol tC, 2 stage (s) tF (s) pQ queue free % rAnd capacity (veh/h) Direction, Lane # EB 1 EB 2 Volume Total Volume Left Volume Right O O O O O O O O O O O O O		1/4	365	924	14	10	1/5
Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) 88 33 pX, platoon unblocked vC, conflicting volume 938 1462 469 vC1, stage 1 conf vol vCu, unblocked vol 938 1462 469 vCu, unblocked vol 938 1462 469 tC, stage 2 conf vol vCu, unblocked vol 938 1462 469 tC, single (s) 4.1 6.8 6.9 6.9 tC, 2 stage (s) tF (s) 2.2 3.5 3.3 p0 queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 Volume Right 0 0 0 170 93 546 <							
Percent Blockage Right turn flare (veh) None None Median storage veh) Upstream signal (m) 88 33 pX, platoon unblocked vC, conflicting volume 938 1462 469 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 938 1462 469 tC, single (s) 4.1 6.8 6.9 6.9 tC, 2 stage (s) tF (s) 2.2 3.5 3.3 p0 queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Right 0 0 14 0 175 Volume Total 296 243 616 322 10 175 Volume Right 0 0 14 0 175 175 CSH	. ,						
Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) 88 33 pX, platoon unblocked vC, conflicting volume 938 1462 469 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 938 1462 469 tC, single (s) 4.1 6.8 6.9 6.9 tC, 2 stage (s) tF (s) 2.2 3.5 3.3 p0 queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 93 546 Volume to Capacity 0.24							
Median type None None Median storage veh) Upstream signal (m) 88 33 pX, platoon unblocked vC, conflicting volume 938 1462 469 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 938 1462 469 vC2, stage 2 conf vol vCu, unblocked vol 938 1462 469 tC, single (s) 4.1 6.8 6.9 tC, 2 stage (s) tF (s) 3.5 3.3 p0 queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 Volume Right 0 0 14 0 175 cSH 739 1700 1700 93 546 V							
Median storage veh) Upstream signal (m) 88 33 pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 938 1462 469 vCu, unblocked vol tC, single (s) 4.1 6.8 6.9 6.9 6.8 6.9 6.9 6.8 6.9 6.9 6.8 6.9 6.8 6.9 6.8 6.9 6.8 6.9 6.8 6.9 6.8 6.9 6.8 6.9 6.8 6.9 6.8 6.9 6.9 6.8 6.9							
Upstream signal (m) pX, platoon unblocked vC, conflicting volume 938 1462 469 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 4.1 6.8 6.9 tC, single (s) 4.1 6.8 6.9 tC, 2 stage (s) tF (s) 2.2 3.5 3.3 p0 queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS Approach LOS C	,		None	None			
pX, platoon unblocked vC, conflicting volume 938 1462 469 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 938 1462 469 tC, single (s) 4.1 6.8 6.9 tC, 2 stage (s) tF (s) 2.2 3.5 3.3 pO queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS	Median storage veh)						
vC, conflicting volume 938 1462 469 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 938 1462 469 tC, single (s) 4.1 6.8 6.9 tC, 2 stage (s) 546 546 546 EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume free % 76 89 68 6	Upstream signal (m)		88	33			
vC, conflicting volume 938 1462 469 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 938 1462 469 tC, single (s) 4.1 6.8 6.9 tC, 2 stage (s) 546 546 546 EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume free % 76 89 68 6	pX, platoon unblocked						
VC1, stage 1 conf vol VC2, stage 2 conf vol VCu, unblocked vol 938 1462 469 tC, single (s) 4.1 6.8 6.9 tC, 2 stage (s) tF (s) 2.2 3.5 3.3 p0 queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach LOS C		938				1462	469
vC2, stage 2 conf vol vCu, unblocked vol 938 1462 469 tC, single (s) 4.1 6.8 6.9 tC, 2 stage (s) 5 3.5 3.3 p0 queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach LOS <td>vC1, stage 1 conf vol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	vC1, stage 1 conf vol						
vCu, unblocked vol 938 1462 469 tC, single (s) 4.1 6.8 6.9 tC, 2 stage (s) 5 3.5 3.3 p0 queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach LOS 4.3 0.0 16.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
tC, single (s) tC, 2 stage (s) tF (s) 2.2 3.5 3.3 p0 queue free % 76 CM capacity (veh/h) 739 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 16.5 Approach LOS C		938				1462	469
tC, 2 stage (s) tF (s)	The second secon						
tF (s) 2.2 3.5 3.3 p0 queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS							
p0 queue free % 76 89 68 cM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C C		2.2				3.5	3.3
CM capacity (veh/h) 739 93 546 Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C C							
Direction, Lane # EB 1 EB 2 WB 1 WB 2 SB 1 SB 2 Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C C	•						
Volume Total 296 243 616 322 10 175 Volume Left 174 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C C			ED 0	WD 4	MD 0		
Volume Left 174 0 0 0 10 0 Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C C							
Volume Right 0 0 0 14 0 175 cSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C C							
CSH 739 1700 1700 1700 93 546 Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C							
Volume to Capacity 0.24 0.14 0.36 0.19 0.11 0.32 Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C							
Queue Length 95th (m) 6.9 0.0 0.0 0.0 2.7 10.4 Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C							
Control Delay (s) 7.9 0.0 0.0 0.0 48.2 14.7 Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C	Volume to Capacity						
Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C	Queue Length 95th (m)	6.9	0.0	0.0	0.0	2.7	10.4
Lane LOS A E B Approach Delay (s) 4.3 0.0 16.5 Approach LOS C	Control Delay (s)	7.9	0.0	0.0	0.0	48.2	14.7
Approach LOS C	Lane LOS	Α				E	В
Approach LOS C	Approach Delay (s)	4.3		0.0		16.5	
Intersection Summary						С	
	Intersection Summary						
Average Delay 3.2	Average Delay			3.2			
Intersection Capacity Utilization 54.4% ICU Level of Service		lization			IC	U Level	of Service
Analysis Period (min) 15							

Appendix J

Existing Plus Site Traffic Conditions Synchro Reports

	•	•	←	4	†	ļ
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	¥	7	4	7	†	†
Traffic Volume (vph)	271	148	26	142	159	143
Future Volume (vph)	271	148	26	142	159	143
Lane Group Flow (vph)	295	161	44	154	173	556
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	7.0	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.84	0.30	0.09	0.42	0.19	0.72
Control Delay	44.8	5.2	13.0	10.6	9.2	18.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	2.3
Total Delay	44.8	5.2	13.0	10.6	9.2	20.3
Queue Length 50th (m)	33.0	0.0	2.4	8.6	11.0	36.9
Queue Length 95th (m)	#70.8	11.6	8.9	16.1	20.0	#87.7
Internal Link Dist (m)			8.0		230.0	55.6
Turn Bay Length (m)	50.0					
Base Capacity (vph)	377	553	504	368	932	772
Starvation Cap Reductn	0	0	0	0	0	110
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.78	0.29	0.09	0.42	0.19	0.84
	56	JU	5.50	V	56	

Cycle Length: 67.3

Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Fallsview Blvd & Embassy Suites

	٠	→	*	•	←	•	4	†	<i>></i>	\	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		7		4		7	†		7	†	
Traffic Volume (vph)	271	0	148	0	26	15	142	159	0	0	143	369
Future Volume (vph)	271	0	148	0	26	15	142	159	0	0	143	369
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.89	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1543	
Flt Permitted	0.73		1.00		1.00		0.23	1.00			1.00	
Satd. Flow (perm)	1260		1471		1646		402	1731			1543	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	295	0	161	0	28	16	154	173	0	0	155	401
RTOR Reduction (vph)	0	0	116	0	12	0	0	0	0	0	131	0
Lane Group Flow (vph)	295	0	45	0	32	0	154	173	0	0	425	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases					8		5	2			6	
Permitted Phases	4		4	8			2			6		
Actuated Green, G (s)	18.9		18.9		18.9		36.1	36.1			27.2	
Effective Green, g (s)	18.9		18.9		18.9		36.1	36.1			27.2	
Actuated g/C Ratio	0.28		0.28		0.28		0.54	0.54			0.40	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	353		413		462		324	928			623	
v/s Ratio Prot					0.02		c0.04	0.10			c0.28	
v/s Ratio Perm	c0.23		0.03				0.21					
v/c Ratio	0.84		0.11		0.07		0.48	0.19			0.68	
Uniform Delay, d1	22.7		18.0		17.8		10.0	8.0			16.5	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	16.2		0.2		0.1		1.5	0.4			6.0	
Delay (s)	39.0		18.1		17.8		11.5	8.5			22.4	
Level of Service	D		В		В		В	Α			С	
Approach Delay (s)		31.6			17.8			9.9			22.4	
Approach LOS		С			В			Α			С	
Intersection Summary												
HCM 2000 Control Delay			22.3	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.71	_								
Actuated Cycle Length (s)			67.3		um of lost				15.3			
Intersection Capacity Utiliza	ation		76.1%	IC	CU Level of	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	•	•	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	ĵ.	ሻ	f)	ሻ	ተ ኈ	ሻ	↑ ↑	
Traffic Volume (vph)	116	208	147	122	186	1125	523	1172	
Future Volume (vph)	116	208	147	122	186	1125	523	1172	
Lane Group Flow (vph)	126	341	160	396	202	1505	568	1340	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	33.0	33.0	10.0	33.0	
Total Split (s)	35.0	35.0	35.0	35.0	48.0	48.0	17.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	48.0%	48.0%	17.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	1.04	0.70	0.97	0.77	1.29	1.00	1.72	0.63	
Control Delay	130.9	39.2	100.8	36.0	175.4	35.1	358.3	15.0	
Queue Delay	0.0	0.4	0.0	0.1	0.0	0.0	0.0	0.0	
Total Delay	130.9	39.6	100.8	36.1	175.4	35.1	358.3	15.0	
Queue Length 50th (m)	24.1	54.1	29.8	52.5	~52.5		~149.3	85.5	
Queue Length 95th (m)	#59.9	84.1	#68.3	86.5	m#70.8	m#182.6	#213.5	107.2	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	130	517	177	544	157	1507	331	2126	
Starvation Cap Reductn	0	25	0	4	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.97	0.69	0.90	0.73	1.29	1.00	1.72	0.63	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

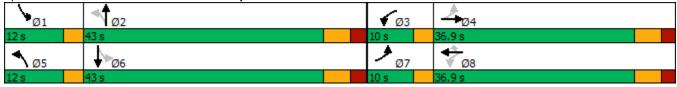
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 12: Stanley Ave & Murray St

	٠	→	`	6	←	4	•	†	<i>></i>	\	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>		*	f		*	↑ ↑		ች	↑ Ъ	
Traffic Volume (vph)	116	208	106	147	122	242	186	1125	259	523	1172	61
Future Volume (vph)	116	208	106	147	122	242	186	1125	259	523	1172	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	0.90		1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1784		1785	1692		1785	3470		1785	3544	
Flt Permitted	0.25	1.00		0.34	1.00		0.20	1.00		0.09	1.00	
Satd. Flow (perm)	466	1784		633	1692		367	3470		164	3544	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	126	226	115	160	133	263	202	1223	282	568	1274	66
RTOR Reduction (vph)	0	18	0	0	73	0	0	19	0	0	4	0
Lane Group Flow (vph)	126	323	0	160	323	0	202	1486	0	568	1336	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	26.1	26.1		26.1	26.1		42.9	42.9		59.9	59.9	
Effective Green, g (s)	26.1	26.1		26.1	26.1		42.9	42.9		59.9	59.9	
Actuated g/C Ratio	0.26	0.26		0.26	0.26		0.43	0.43		0.60	0.60	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.3	2.3		2.3	2.3		2.5	2.5		2.3	2.5	
Lane Grp Cap (vph)	121	465		165	441		157	1488		325	2122	
v/s Ratio Prot		0.18			0.19			0.43		c0.24	0.38	
v/s Ratio Perm	c0.27			0.25			0.55			c0.80		
v/c Ratio	1.04	0.69		0.97	0.73		1.29	1.00		1.75	0.63	
Uniform Delay, d1	37.0	33.3		36.6	33.8		28.6	28.5		31.5	12.9	
Progression Factor	1.00	1.00		1.00	1.00		0.60	0.57		1.00	1.00	
Incremental Delay, d2	93.3	3.9		60.2	5.6		151.2	16.2		348.9	1.4	
Delay (s)	130.3	37.2		96.7	39.4		168.3	32.6		380.5	14.3	
Level of Service	F	D		F	D		F	C		F	В	
Approach Delay (s)		62.3			55.9			48.6			123.3	
Approach LOS		E			E			D			<u> </u>	
Intersection Summary			04.0		014 0000	1	<u> </u>					
HCM 2000 Control Delay	alboretta		81.6	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.58		uma a fila - i	Almae /=\			47.0			
Actuated Cycle Length (s)	ntion		100.0		um of lost				17.0			
Intersection Capacity Utiliza	auon		117.1%	IC	U Level o	or Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	←	•	1	†	/	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	∱ î≽	Ţ	†	7	7	∱ }	7	∱ }	
Traffic Volume (vph)	169	526	182	322	175	135	428	172	678	
Future Volume (vph)	169	526	182	322	175	135	428	172	678	
Lane Group Flow (vph)	184	915	198	350	190	147	816	187	777	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	5.5	20.0	7.0	20.0	20.0	5.5	20.0	7.0	20.0	
Minimum Split (s)	10.0	33.3	10.0	33.3	33.3	10.0	42.6	10.0	42.6	
Total Split (s)	10.0	36.9	10.0	36.9	36.9	12.0	43.0	12.0	43.0	
Total Split (%)	9.8%	36.2%	9.8%	36.2%	36.2%	11.8%	42.2%	11.8%	42.2%	
Yellow Time (s)	3.0	4.1	3.0	4.1	4.1	3.0	4.1	3.0	4.1	
All-Red Time (s)	0.0	2.2	0.0	2.2	2.2	0.0	2.5	0.0	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.3	3.0	6.3	6.3	3.0	6.6	3.0	6.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	Max	None	Max	
v/c Ratio	0.56	0.86	0.95	0.65	0.32	0.44	0.60	0.58	0.60	
Control Delay	26.4	38.7	75.1	37.5	5.6	17.5	21.3	21.4	28.1	
Queue Delay	0.0	1.1	0.0	0.0	0.0	0.0	0.3	0.0	0.0	
Total Delay	26.4	39.8	75.1	37.5	5.6	17.5	21.7	21.4	28.1	
Queue Length 50th (m)	22.5	77.5	24.5	59.3	0.0	14.9	51.5	19.4	65.2	
Queue Length 95th (m)	37.3	102.3	#63.7	88.9	15.2	25.6	71.1	32.0	84.5	
Internal Link Dist (m)		39.6		70.0			112.9		294.7	
Turn Bay Length (m)	30.0		35.0			10.0		65.0		
Base Capacity (vph)	331	1121	209	577	621	344	1350	326	1305	
Starvation Cap Reductn	0	66	0	0	0	0	149	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.56	0.87	0.95	0.61	0.31	0.43	0.68	0.57	0.60	


Cycle Length: 101.9 Actuated Cycle Length: 99.8 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 13: Fallsview Blvd & Murray St

	•	→	`	6	+	•	•	†	<i>></i>	<u> </u>		√
Movement	EBL	EBT	EBR	₩BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	LDIX	Y T	<u>₩</u>	7	i i	†	HUIT	<u> </u>	†	ODIN
Traffic Volume (vph)	169	526	316	182	322	175	135	428	323	172	678	37
Future Volume (vph)	169	526	316	182	322	175	135	428	323	172	678	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	3.0	6.3	1000	3.0	6.3	6.3	3.0	6.6	1000	3.0	6.6	1000
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.94		1.00	1.00	0.85	1.00	0.94		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3369		1785	1879	1597	1785	3340		1785	3542	
Flt Permitted	0.34	1.00		0.14	1.00	1.00	0.24	1.00		0.22	1.00	
Satd. Flow (perm)	644	3369		262	1879	1597	455	3340		410	3542	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	184	572	343	198	350	190	147	465	351	187	737	40
RTOR Reduction (vph)	0	89	0	0	0	135	0	131	0	0	4	0
Lane Group Flow (vph)	184	826	0	198	350	55	147	685	0	187	773	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	0,0	pm+pt	NA	Perm	pm+pt	NA	• • • • • • • • • • • • • • • • • • • •	pm+pt	NA	0 70
Protected Phases	7	4		3	8	1 01111	5	2		1	6	
Permitted Phases	4	•		8		8	2	_		6		
Actuated Green, G (s)	35.7	28.7		35.7	28.7	28.7	45.0	36.5		45.4	36.7	
Effective Green, g (s)	35.7	28.7		35.7	28.7	28.7	45.0	36.5		45.4	36.7	
Actuated g/C Ratio	0.36	0.29		0.36	0.29	0.29	0.45	0.37		0.45	0.37	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	310	968		200	540	459	318	1221		306	1302	
v/s Ratio Prot	0.04	0.25		c0.07	0.19	100	0.04	0.21		c0.05	0.22	
v/s Ratio Perm	0.17	0.20		c0.28	00	0.03	0.17	V		c0.22	V	
v/c Ratio	0.59	0.85		0.99	0.65	0.12	0.46	0.56		0.61	0.59	
Uniform Delay, d1	24.1	33.6		27.8	31.1	26.2	17.3	25.3		17.8	25.5	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.0	7.4		60.1	2.7	0.1	1.1	1.9		3.6	2.0	
Delay (s)	27.1	41.0		87.9	33.8	26.3	18.3	27.1		21.4	27.5	
Level of Service	С	D		F	С	С	В	С		С	С	
Approach Delay (s)		38.6			46.4			25.8			26.3	
Approach LOS		D			D			С			С	
Intersection Summary												
HCM 2000 Control Delay			33.7	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.78									
Actuated Cycle Length (s)			99.8		um of lost	. ,			18.9			
Intersection Capacity Utiliza	ation		83.9%	IC	U Level	of Service	е		Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	←	*	4	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	7	4î	ሻ	↑	7	7	∱ ∱	ሻ	∱ }	
Traffic Volume (vph)	256	305	82	355	64	212	876	105	749	
Future Volume (vph)	256	305	82	355	64	212	876	105	749	
Lane Group Flow (vph)	278	480	89	386	70	230	1095	114	1051	
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4		8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	8	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0	
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0	
Total Split (s)	39.0	39.0	39.0	39.0	39.0	50.0	50.0	11.0	61.0	
Total Split (%)	39.0%	39.0%	39.0%	39.0%	39.0%	50.0%	50.0%	11.0%	61.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag						Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	1.36	0.81	0.68	0.64	0.12	1.11	0.71	0.44	0.56	
Control Delay	219.2	42.5	58.1	35.0	5.8	124.8	25.9	12.7	17.8	
Queue Delay	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	
Total Delay	219.2	42.5	58.1	38.3	5.8	124.8	25.9	12.7	17.8	
Queue Length 50th (m)	~71.2	81.1	14.9	63.6	0.0	~51.7	88.4	12.5	95.8	
Queue Length 95th (m)	#120.2		#39.9	94.6	8.4	#97.1	112.3	m13.2	m108.2	
Internal Link Dist (m)		213.7		94.8			227.1		103.4	
Turn Bay Length (m)	75.0		25.0		25.0	25.0		40.0		
Base Capacity (vph)	205	589	131	601	562	208	1536	268	1889	
Starvation Cap Reductn	0	0	0	130	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.36	0.81	0.68	0.82	0.12	1.11	0.71	0.43	0.56	

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

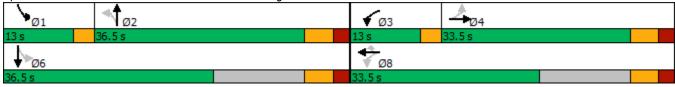
Splits and Phases: 15: Stanley Ave & Dunn St

	•	→	•	•	←	•	4	†	~	>	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f.		*		7	*	∱ }		Ĭ	↑ ↑	
Traffic Volume (vph)	256	305	136	82	355	64	212	876	132	105	749	218
Future Volume (vph)	256	305	136	82	355	64	212	876	132	105	749	218
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1792		1785	1879	1597	1785	3500		1785	3449	
Flt Permitted	0.34	1.00		0.22	1.00	1.00	0.25	1.00		0.13	1.00	
Satd. Flow (perm)	640	1792		410	1879	1597	477	3500		253	3449	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	278	332	148	89	386	70	230	952	143	114	814	237
RTOR Reduction (vph)	0	16	0	0	0	48	0	12	0	0	27	0
Lane Group Flow (vph)	278	464	0	89	386	22	230	1083	0	114	1024	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	32.0	32.0		32.0	32.0	32.0	43.6	43.6		54.0	54.0	
Effective Green, g (s)	32.0	32.0		32.0	32.0	32.0	43.6	43.6		54.0	54.0	
Actuated g/C Ratio	0.32	0.32		0.32	0.32	0.32	0.44	0.44		0.54	0.54	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	2.5	2.5		2.5	2.5	2.5	2.5	2.5		2.7	2.5	
Lane Grp Cap (vph)	204	573		131	601	511	207	1526		249	1862	
v/s Ratio Prot		0.26			0.21			0.31		0.03	c0.30	
v/s Ratio Perm	c0.43			0.22		0.01	c0.48			0.21		
v/c Ratio	1.36	0.81		0.68	0.64	0.04	1.11	0.71		0.46	0.55	
Uniform Delay, d1	34.0	31.2		29.5	29.1	23.4	28.2	23.0		14.6	15.0	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.06	1.20	
Incremental Delay, d2	191.5	8.0		12.0	2.1	0.0	95.5	2.8		0.5	0.6	
Delay (s)	225.5	39.2		41.5	31.2	23.5	123.7	25.9		16.0	18.7	
Level of Service	F	D		D	С	С	F	С		В	В	
Approach Delay (s)		107.5			31.9			42.8			18.4	
Approach LOS		F			С			D			В	
Intersection Summary												
HCM 2000 Control Delay			46.7	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		1.16									
Actuated Cycle Length (s)			100.0		um of lost				17.0			
Intersection Capacity Utiliza	ition		95.6%	IC	U Level	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	•	•	•	4	†	\	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	f)	7	†	7	*	f)	7	f)	
Traffic Volume (vph)	167	341	176	459	414	34	327	138	312	
Future Volume (vph)	167	341	176	459	414	34	327	138	312	
Lane Group Flow (vph)	182	451	191	499	450	37	465	150	376	
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	
Total Split (s)	33.5	33.5	13.0	33.5	33.5	36.5	36.5	13.0	36.5	
Total Split (%)	34.9%	34.9%	13.5%	34.9%	34.9%	38.0%	38.0%	13.5%	38.0%	
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	
Lead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Max	Max	None	Max	
v/c Ratio	0.80	0.89	0.66	0.65	0.49	0.11	0.79	0.45	0.45	
Control Delay	59.2	53.6	28.0	27.1	3.8	24.9	39.7	18.2	19.8	
Queue Delay	0.0	0.0	0.0	5.2	0.4	0.0	54.2	0.0	0.0	
Total Delay	59.2	53.6	28.0	32.3	4.2	24.9	93.9	18.2	19.8	
Queue Length 50th (m)	31.0	77.6	21.0	71.7	0.0	4.9	76.1	15.1	45.9	
Queue Length 95th (m)	#65.7	#130.4	#35.5	105.4	17.2	12.2		26.2	69.5	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	239	534	293	800	938	322	591	345	851	
Starvation Cap Reductn	0	0	0	233	147	0	216	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.76	0.84	0.65	0.88	0.57	0.11	1.24	0.43	0.44	

Cycle Length: 96

Actuated Cycle Length: 94


Natural Cycle: 90

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

To. I diloviow Biva	٠	→	`	•	+	4	•	<u>†</u>	<u> </u>	\	 	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f.		ች	†	7	ሻ	₽		ች	1>	
Traffic Volume (vph)	167	341	74	176	459	414	34	327	101	138	312	34
Future Volume (vph)	167	341	74	176	459	414	34	327	101	138	312	34
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	1.00	0.85	1.00	0.96		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	1829		1785	1879	1597	1785	1812		1785	1851	
Flt Permitted	0.44	1.00		0.16	1.00	1.00	0.54	1.00		0.21	1.00	
Satd. Flow (perm)	832	1829		305	1879	1597	1011	1812		404	1851	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	182	371	80	191	499	450	37	355	110	150	339	37
RTOR Reduction (vph)	0	8	0	0	0	266	0	12	0	0	4	0
Lane Group Flow (vph)	182	443	0	191	499	184	37	453	0	150	372	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	25.6	25.6		38.4	38.4	38.4	30.1	30.1		42.6	42.6	
Effective Green, g (s)	25.6	25.6		38.4	38.4	38.4	30.1	30.1		42.6	42.6	
Actuated g/C Ratio	0.27	0.27		0.41	0.41	0.41	0.32	0.32		0.45	0.45	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)	226	498		278	767	652	323	580		322	838	
v/s Ratio Prot		c0.24		c0.07	0.27			c0.25		c0.05	0.20	
v/s Ratio Perm	0.22			0.21		0.12	0.04			0.16		
v/c Ratio	0.81	0.89		0.69	0.65	0.28	0.11	0.78		0.47	0.44	
Uniform Delay, d1	31.9	32.8		20.9	22.4	18.6	22.5	29.0		17.6	17.6	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	19.4	17.8		7.5	2.2	0.3	0.7	10.1		1.5	1.7	
Delay (s)	51.3	50.7		28.4	24.6	18.9	23.3	39.1		19.0	19.3	
Level of Service	D	D		С	С	В	С	D		В	В	
Approach Delay (s)		50.8			23.0			37.9			19.2	
Approach LOS		D			С			D			В	
Intersection Summary												
HCM 2000 Control Delay			31.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.77									
Actuated Cycle Length (s)			94.0		um of los				19.0			
Intersection Capacity Utiliza	ition		90.2%	IC	CU Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	•	4	†	ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	↑	↑	7
Traffic Volume (vph)	89	250	271	17	106	733
Future Volume (vph)	89	250	271	17	106	733
Lane Group Flow (vph)	97	272	295	18	115	797
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4			2	6	
Permitted Phases		4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	31.1	31.1	31.1	31.1
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
. ,	0.0	0.0	0.0	0.0	0.0	0.0
Lost Time Adjust (s)	6.1	6.1	6.1	6.1	6.1	6.1
Total Lost Time (s)	٥.١	0.1	0.1	0.1	0.1	0.1
Lead/Lag						
Lead-Lag Optimize?	More	Minim	N 4 -	N.4 -	N.A -	N 4 -
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.15	0.36	0.54	0.02	0.14	0.70
Control Delay	12.6	3.4	18.7	11.4	12.6	5.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.6	3.4	18.7	11.4	12.6	5.1
Queue Length 50th (m)	6.8	0.0	25.3	1.2	8.1	0.0
Queue Length 95th (m)	14.7	11.6	47.2	4.4	16.8	18.5
Internal Link Dist (m)	9.1			121.3	66.9	
Turn Bay Length (m)						
Base Capacity (vph)	763	838	548	803	803	1138
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.32	0.54	0.02	0.14	0.70
Intersection Summary						
Cycle Length: 62.2	^					
Actuated Cycle Length: 59.	2					
Natural Cycle: 60	l. (
Control Type: Actuated-Und	coordinated					
Culity and Dhases, 17, D	antana Dal () Fallavia	Casina	Daar Dri		
Splits and Phases: 17: P	ortage Rd 8	k Fallsvie	w Casino	Rear Dri	veway	
¶ _{Ø2}					_ ₹	Ø4
31.1s					31,1	
4					3211	
₩ Ø6					- 1	
31.1 s						

	۶	•	•	†	↓	✓		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻ	7	ሻ	†	1	7		
Traffic Volume (vph)	89	250	271	17	106	733		
Future Volume (vph)	89	250	271	17	106	733		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1785	1597	1785	1879	1879	1597		
Flt Permitted	0.95	1.00	0.68	1.00	1.00	1.00		
Satd. Flow (perm)	1785	1597	1283	1879	1879	1597		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	97	272	295	18	115	797		
RTOR Reduction (vph)	0	173	0	0	0	455		
Lane Group Flow (vph)	97	99	295	18	115	342		
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%		
Turn Type	Prot	Perm	Perm	NA	NA	Perm		
Protected Phases	4			2	6			
Permitted Phases		4	2			6		
Actuated Green, G (s)	21.5	21.5	25.3	25.3	25.3	25.3		
Effective Green, g (s)	21.5	21.5	25.3	25.3	25.3	25.3		
Actuated g/C Ratio	0.36	0.36	0.43	0.43	0.43	0.43		
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
Vehicle Extension (s)	4.0	4.0	0.2	0.2	0.2	0.2		
Lane Grp Cap (vph)	650	581	550	805	805	684		
v/s Ratio Prot	0.05			0.01	0.06			
v/s Ratio Perm		c0.06	c0.23			0.21		
v/c Ratio	0.15	0.17	0.54	0.02	0.14	0.50		
Uniform Delay, d1	12.6	12.7	12.5	9.7	10.3	12.2		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.1	0.2	3.7	0.1	0.4	2.6		
Delay (s)	12.7	12.9	16.2	9.8	10.6	14.8		
Level of Service	В	В	В	Α	В	В		
Approach Delay (s)	12.9			15.8	14.3			
Approach LOS	В			В	В			
Intersection Summary								
HCM 2000 Control Delay			14.3	H	CM 2000	Level of Service	е	
HCM 2000 Volume to Capac	ity ratio		0.37					
Actuated Cycle Length (s)			59.0	Sı	ım of lost	t time (s)		
Intersection Capacity Utilizat	ion		70.6%	IC	U Level o	of Service		
Analysis Period (min)			15					
c Critical Lane Group								

	•	•	4	†	ţ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		7		^	∱ ⊅		
Traffic Volume (veh/h)	0	164	0	1442	1444	40	
Future Volume (Veh/h)	0	164	0	1442	1444	40	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	178	0	1567	1570	43	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)				, <u>.</u>			
Upstream signal (m)				55	191		
pX, platoon unblocked	0.83	0.75	0.75				
vC, conflicting volume	2375	806	1613				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	891	75	1151				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	76	100				
cM capacity (veh/h)	237	733	461				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	178	784	784	1047	566		
Volume Left	0	0	0	0	000		
	178	0	0	0	43		
Volume Right cSH	733	1700	1700	1700	1700		
	0.24	0.46	0.46	0.62	0.33		
Volume to Capacity	7.2	0.46	0.46	0.02	0.33		
Queue Length 95th (m)	11.5		0.0		0.0		
Control Delay (s)		0.0	0.0	0.0	0.0		
Lane LOS	11 F	0.0		0.0			
Approach LOS	11.5	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.6				
Intersection Capacity Utiliza	ition		62.4%	IC	CU Level o	of Service	
Analysis Period (min)			15				

OZI I GIIOTIOTI BITG	C (D ::/(C)											
	٠	→	•	•	+	•	•	†	<i>></i>	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	∱ β		7	∱ β	
Traffic Volume (veh/h)	22	5	15	0	0	0	78	554	165	179	496	197
Future Volume (Veh/h)	22	5	15	0	0	0	78	554	165	179	496	197
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	24	5	16	0	0	0	85	602	179	195	539	214
Pedestrians		559			275			30			30	
Lane Width (m)		3.5			3.5			3.5			3.5	
Walking Speed (m/s)		1.1			1.1			1.1			1.1	
Percent Blockage		49			24			3			3	
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (m)								139			114	
pX, platoon unblocked	0.92	0.92	0.92	0.92	0.92		0.92					
vC, conflicting volume	2096	2821	966	1844	2838	696	1312			1056		
vC1, stage 1 conf vol	1595	1595		1136	1136							
vC2, stage 2 conf vol	501	1226		708	1702							
vCu, unblocked vol	2017	2805	787	1743	2824	696	1164			1056		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	6.5	5.5		6.5	5.5							
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	34	0	90	100	100	100	70			61		
cM capacity (veh/h)	37	3	153	84	3	287	283			505		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	45	0	85	401	380	195	359	394				
Volume Left	24	0	85	0	0	195	0	0				
Volume Right	16	0	0	0	179	0	0	214				
cSH	18	1700	283	1700	1700	505	1700	1700				
Volume to Capacity	2.55	0.00	0.30	0.24	0.22	0.39	0.21	0.23				
Queue Length 95th (m)	46.8	0.0	9.3	0.0	0.0	13.7	0.0	0.0				
Control Delay (s)	1151.6	0.0	23.1	0.0	0.0	16.5	0.0	0.0				
Lane LOS	F	Α	С			С						
Approach Delay (s)	1151.6	0.0	2.3			3.4						
Approach LOS	F	Α										
Intersection Summary												
Average Delay			30.7									
Intersection Capacity Utiliz	ation		43.8%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	←	4	4	†	/	ţ
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	4	7	ሻ	↑ ↑	ሻ	↑ ↑
Traffic Volume (vph)	1	122	16	506	202	820
Future Volume (vph)	1	122	16	506	202	820
Lane Group Flow (vph)	46	133	17	643	220	1008
Turn Type	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases	8			2	1	6
Permitted Phases		8	2		6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?						
Recall Mode	None	None	None	None	None	None
v/c Ratio	0.14	0.34	0.09	0.49	0.36	0.47
Control Delay	22.7	8.0	13.6	14.5	5.6	7.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.7	8.0	13.6	14.5	5.6	7.2
Queue Length 50th (m)	4.1	0.0	1.1	25.8	7.4	28.2
Queue Length 95th (m)	12.4	12.4	4.8	40.5	14.7	43.1
Internal Link Dist (m)	32.2			90.4		112.9
Turn Bay Length (m)			20.0		25.0	
Base Capacity (vph)	625	640	298	1969	629	2546
Starvation Cap Reductn	0	0	0	0	0	112
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.21	0.06	0.33	0.35	0.41
Intersection Summary						
Cycle Length: 77.1						
Actuated Cycle Length: 54.	6					
Natural Cycle: 75	.0					
Control Type: Actuated-Un	coordinated					
Control Typo. Actuatou on	oooramatoo					
Snlite and Phases 73. F	alleviow Rh	rd & Hilto	n I ot/Eall	eviou Lot		

Splits and Phases: 73: Fallsview Blvd & Hilton Lot/Fallsview Lot

				_	_	A		A	_	ι.	1	
	•	-	•	•	•	•		T		-	¥	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	7	ሻ	∱ ∱		ሻ	∱ ∱	
Traffic Volume (vph)	0	0	0	41	1	122	16	506	86	202	820	108
Future Volume (vph)	0	0	0	41	1	122	16	506	86	202	820	108
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Lane Util. Factor					1.00	1.00	1.00	0.95		1.00	0.95	
Frt					1.00	0.85	1.00	0.98		1.00	0.98	
Flt Protected					0.95	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)					1650	1471	1644	3217		1644	3231	
Flt Permitted					0.95	1.00	0.28	1.00		0.35	1.00	
Satd. Flow (perm)					1650	1471	492	3217		609	3231	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	45	1	133	17	550	93	220	891	117
RTOR Reduction (vph)	0	0	0	0	0	115	0	18	0	0	12	0
Lane Group Flow (vph)	0	0	0	0	46	18	17	625	0	220	996	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type				Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases					8			2		1	6	
Permitted Phases				8		8	2			6		
Actuated Green, G (s)					7.7	7.7	22.2	22.2		34.3	34.3	
Effective Green, g (s)					7.7	7.7	22.2	22.2		34.3	34.3	
Actuated g/C Ratio					0.14	0.14	0.40	0.40		0.61	0.61	
Clearance Time (s)					6.7	6.7	7.4	7.4		3.0	7.4	
Vehicle Extension (s)					4.0	4.0	4.0	4.0		4.0	4.0	
Lane Grp Cap (vph)					226	201	194	1273		540	1975	
v/s Ratio Prot								0.19		0.07	c0.31	
v/s Ratio Perm					0.03	0.01	0.03			0.18		
v/c Ratio					0.20	0.09	0.09	0.49		0.41	0.50	
Uniform Delay, d1					21.5	21.1	10.6	12.7		5.0	6.1	
Progression Factor					1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2					0.6	0.3	0.3	0.4		0.7	0.3	
Delay (s)					22.1	21.4	10.9	13.1		5.7	6.4	
Level of Service					С	С	В	В		Α	Α	
Approach Delay (s)		0.0			21.6			13.1			6.3	
Approach LOS		Α			С			В			Α	
Intersection Summary												
HCM 2000 Control Delay			9.8	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacity	ratio		0.48									
Actuated Cycle Length (s)			56.1	Sı	um of lost	t time (s)			17.1			
Intersection Capacity Utilization	า		71.3%			of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	←	•	4	†	>	ţ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations		4		4	7	ሻ	∱ ∱	ሻ	∱ ∱
Traffic Volume (vph)	141	143	152	256	367	59	934	362	1138
Future Volume (vph)	141	143	152	256	367	59	934	362	1138
Lane Group Flow (vph)	0	337	0	443	399	64	1086	393	1366
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA
Protected Phases		4		8		5	2	1	6
Permitted Phases	4		8		8	2		6	
Detector Phase	4	4	8	8	8	5	2	1	6
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0	17.0	47.0	17.0	47.0
Total Split (%)	36.0%	36.0%	36.0%	36.0%	36.0%	17.0%	47.0%	17.0%	47.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0
Lead/Lag						Lead	Lag	Lead	Lag
Lead-Lag Optimize?							•		
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max
v/c Ratio		2.31		1.22	0.62	0.34	0.83	1.21	0.85
Control Delay		630.8		156.0	12.1	9.6	32.0	146.8	21.7
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		630.8		156.0	12.1	9.6	32.0	146.8	21.7
Queue Length 50th (m)		~107.7		~106.1	13.2	4.7	105.0	~75.4	68.4
Queue Length 95th (m)		#161.1		#164.1	42.9	m5.1	m116.1 r	n#129.1ı	m#166.7
Internal Link Dist (m)		100.0		3.9			71.5		31.5
Turn Bay Length (m)						65.0		140.0	
Base Capacity (vph)		146		362	645	310	1307	325	1599
Starvation Cap Reductn		0		0	0	0	0	0	0
Spillback Cap Reductn		0		0	0	0	0	0	0
Storage Cap Reductn		0		0	0	0	0	0	0
Reduced v/c Ratio		2.31		1.22	0.62	0.21	0.83	1.21	0.85

Cycle Length: 100

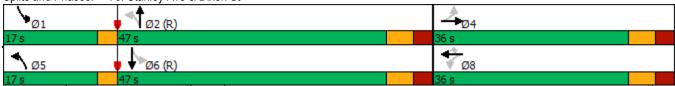
Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 76: Stanley Ave & Dixon St

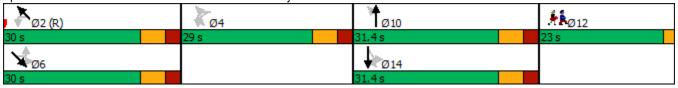
	۶	→	•	•	←	•	1	†	<i>></i>	/		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	7	ሻ	∱ î≽		7	∱ ∱	
Traffic Volume (vph)	141	143	27	152	256	367	59	934	65	362	1138	119
Future Volume (vph)	141	143	27	152	256	367	59	934	65	362	1138	119
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.99			1.00	0.85	1.00	0.99		1.00	0.99	
Flt Protected		0.98			0.98	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1672			1699	1471	1644	3256		1644	3241	
Flt Permitted		0.29			0.72	1.00	0.11	1.00		0.12	1.00	
Satd. Flow (perm)		493			1251	1471	183	3256		202	3241	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	153	155	29	165	278	399	64	1015	71	393	1237	129
RTOR Reduction (vph)	0	4	0	0	0	219	0	5	0	0	7	0
Lane Group Flow (vph)	0	333	0	0	443	180	64	1081	0	393	1359	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		29.0			29.0	29.0	45.5	40.0		57.0	48.5	
Effective Green, g (s)		29.0			29.0	29.0	45.5	40.0		57.0	48.5	
Actuated g/C Ratio		0.29			0.29	0.29	0.46	0.40		0.57	0.48	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		142			362	426	163	1302		317	1571	
v/s Ratio Prot							0.02	0.33		c0.17	0.42	
v/s Ratio Perm		c0.68			0.35	0.12	0.16			c0.53		
v/c Ratio		2.35			1.22	0.42	0.39	0.83		1.24	0.87	
Uniform Delay, d1		35.5			35.5	28.7	17.6	26.9		26.7	22.9	
Progression Factor		1.00			1.00	1.00	0.76	1.05		1.47	0.69	
Incremental Delay, d2		628.0			123.0	0.4	0.5	3.5		128.4	5.6	
Delay (s)		663.5			158.5	29.1	13.9	31.7		167.6	21.4	
Level of Service		F			F	С	В	С		F	С	
Approach Delay (s)		663.5			97.2			30.7			54.0	
Approach LOS		F			F			С			D	
Intersection Summary												
HCM 2000 Control Delay			106.6	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacity	/ ratio		1.66									
Actuated Cycle Length (s)			100.0		um of los				17.0			
Intersection Capacity Utilization	n		115.1%	IC	CU Level	of Service	е		Н			
Analysis Period (min)			15									
c Critical Lane Group												

	~	•	*_	ሻ	†	>	Ļ	ţ	•	\	\mathbf{x}	€
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWL
Lane Configurations		ă	Ž.		4			4		ă	ą.	
Traffic Volume (vph)	16	5	274	103	32	7	16	17	1	203	206	1
Future Volume (vph)	16	5	274	103	32	7	16	17	1	203	206	1
Lane Group Flow (vph)	0	22	357	0	247	0	0	44	0	222	256	0
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases					10			14			6	
Permitted Phases	4	4	4	10		14	14		6	6		2
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	29.0	29.0	29.0	31.4	31.4	31.4	31.4	31.4	30.0	30.0	30.0	30.0
Total Split (%)	25.6%	25.6%	25.6%	27.7%	27.7%	27.7%	27.7%	27.7%	26.5%	26.5%	26.5%	26.5%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.11	1.27		0.85			0.16		0.88	0.75	
Control Delay		39.2	183.3		70.0			37.3		77.7	57.6	
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	
Total Delay		39.2	183.3		70.0			37.3		77.7	57.6	
Queue Length 50th (m)		4.0	~99.8		53.0			7.8		48.1	53.8	
Queue Length 95th (m)		11.2	#156.1		#96.6			17.8		#91.3	#89.6	
Internal Link Dist (m)		102.7			229.8			295.5			298.1	
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		205	282		289			274		252	340	
Starvation Cap Reductn		0	0		0			0		0	0	
Spillback Cap Reductn		0	0		0			0		0	0	
Storage Cap Reductn		0	0		0			0		0	0	
Reduced v/c Ratio		0.11	1.27		0.85			0.16		0.88	0.75	

Cycle Length: 113.4 Actuated Cycle Length: 113.4

Offset: 0 (0%), Referenced to phase 2:NWTL, Start of Green

Natural Cycle: 110 Control Type: Pretimed


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 78: Allandale Ave & Main St & Murray St

Lane Group	NWT	Ø12
Lane Configurations	4	
Traffic Volume (vph)	15	
Future Volume (vph)	15	
Lane Group Flow (vph)	45	
Turn Type	NA	
Protected Phases	2	12
Permitted Phases		
Minimum Split (s)	16.8	23.0
Total Split (s)	30.0	23.0
Total Split (%)	26.5%	20%
Yellow Time (s)	4.1	2.0
All-Red Time (s)	2.7	0.0
Lost Time Adjust (s)	0.0	
Total Lost Time (s)	6.8	
Lead/Lag		
Lead-Lag Optimize?		
v/c Ratio	0.14	
Control Delay	38.5	
Queue Delay	0.0	
Total Delay	38.5	
Queue Length 50th (m)	8.3	
Queue Length 95th (m)	18.2	
Internal Link Dist (m)	208.5	
Turn Bay Length (m)		
Base Capacity (vph)	315	
Starvation Cap Reductn	0	
Spillback Cap Reductn	0	
Storage Cap Reductn	0	
Reduced v/c Ratio	0.14	
Intersection Summary		
intersection Summary		

	4	•	*_	•	ሻ	†	/	ſ*	>	Ļ	†	≱ J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		Ä	Ž.			4					4	
Traffic Volume (vph)	16	5	274	54	103	32	87	5	7	16	17	1
Future Volume (vph)	16	5	274	54	103	32	87	5	7	16	17	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.95					1.00	
Flt Protected		0.95	1.00			0.98					0.97	
Satd. Flow (prot)		1612	1442			1568					1645	
Flt Permitted		0.62	1.00			0.83					0.75	
Satd. Flow (perm)		1051	1442			1336					1262	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	5	298	59	112	35	95	5	8	17	18	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	22	357	0	0	247	0	0	0	0	43	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		22.2	22.2			24.6					24.6	
Effective Green, g (s)		22.2	22.2			24.6					24.6	
Actuated g/C Ratio		0.20	0.20			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		205	282			289					273	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.25			c0.18					0.03	
v/c Ratio		0.11	1.27			0.85					0.16	
Uniform Delay, d1		37.5	45.6			42.7					36.0	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.1	144.8			26.2					1.2	
Delay (s)		38.5	190.4			68.8					37.2	
Level of Service		D	F			E					D	
Approach Delay (s)		181.6				68.8					37.2	
Approach LOS		F				Е					D	
Intersection Summary												
HCM 2000 Control Delay			101.2	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ity ratio		0.76									
Actuated Cycle Length (s)			113.4		um of lost				22.4			
Intersection Capacity Utilization	on		74.1%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	\	\mathbf{x}	>	€	*	*	4	
Movement	SEL2	SEL	SET	SER	NWL	NWT	NWR	NWR2	
Lane Configurations		ă	₽			4			
Traffic Volume (vph)	1	203	206	29	1	15	11	15	
Future Volume (vph)	1	203	206	29	1	15	11	15	
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	
Total Lost time (s)		6.8	6.8			6.8			
Lane Util. Factor		1.00	1.00			1.00			
Frt		1.00	0.98			0.92			
Flt Protected		0.95	1.00			1.00			
Satd. Flow (prot)		1612	1665			1552			
Flt Permitted		0.73	1.00			0.99			
Satd. Flow (perm)		1235	1665			1544			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	1	221	224	32	1	16	12	16	
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	
Lane Group Flow (vph)	0	222	256	0	0	45	0	0	
Turn Type	Perm	Perm	NA		Perm	NA			
Protected Phases			6			2			
Permitted Phases	6	6			2				
Actuated Green, G (s)		23.2	23.2			23.2			
Effective Green, g (s)		23.2	23.2			23.2			
Actuated g/C Ratio		0.20	0.20			0.20			
Clearance Time (s)		6.8	6.8			6.8			
Lane Grp Cap (vph)		252	340			315			
v/s Ratio Prot			0.15						
v/s Ratio Perm		c0.18				0.03			
v/c Ratio		0.88	0.75			0.14			
Uniform Delay, d1		43.8	42.4			37.0			
Progression Factor		1.00	1.00			1.00			
Incremental Delay, d2		32.8	14.3			1.0			
Delay (s)		76.5	56.7			37.9			
Level of Service		Е	Е			D			
Approach Delay (s)			65.9			37.9			
Approach LOS			Е			D			
Intersection Summary									

OT. I arking racility	// tilaliu		J Q DIA	OII Ot								
	٠	→	•	•	←	•	4	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	1	14	0	272	16	146	0	77	248	49	0	1
Future Volume (Veh/h)	1	14	0	272	16	146	0	77	248	49	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	15	0	296	17	159	0	84	270	53	0	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					124							
pX, platoon unblocked	0.83						0.83	0.83		0.83	0.83	0.83
vC, conflicting volume	176			15			706	785	15	1018	706	96
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	0			15			545	639	15	919	544	0
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			82			100	69	75	49	100	100
cM capacity (veh/h)	1359			1616			322	269	1070	104	305	906
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	16	472	354	54								
Volume Left	1	296	0	53								
Volume Right	0	159	270	1								
cSH	1359	1616	627	105								
Volume to Capacity	0.00	0.18	0.56	0.51								
Queue Length 95th (m)	0.0	5.1	26.8	17.6								
Control Delay (s)	0.5	5.4	17.9	70.7								
Lane LOS	Α	Α	С	F								
Approach Delay (s)	0.5	5.4	17.9	70.7								
Approach LOS			С	F								
Intersection Summary												
Average Delay			14.2									
Intersection Capacity Utiliza	ition		67.9%	IC	U Level	of Service			С			
Analysis Period (min)			15									

	۶	•	•	†	 	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻ	7	7	^	↑ ↑				
Traffic Volume (veh/h)	0	0	10	1057	1299	126			
Future Volume (Veh/h)	0	0	10	1057	1299	126			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	0	11	1149	1412	137			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type				None	None				
Median storage veh)									
Upstream signal (m)				127	95				
pX, platoon unblocked	0.75	0.63	0.63						
vC, conflicting volume	2077	774	1549						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	375	0	707						
tC, single (s)	6.8	6.9	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	100	100	98						
cM capacity (veh/h)	443	690	570						
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2		
Volume Total	0	0	11	574	574	941	608		
Volume Left	0	0	11	0	0	0	0		
Volume Right	0	0	0	0	0	0	137		
cSH	1700	1700	570	1700	1700	1700	1700		
Volume to Capacity	0.00	0.00	0.02	0.34	0.34	0.55	0.36		
Queue Length 95th (m)	0.00	0.00	0.02	0.04	0.04	0.0	0.0		
• ,	0.0	0.0	11.4	0.0	0.0	0.0	0.0		
Control Delay (s) Lane LOS	0.0 A	0.0 A	В	0.0	0.0	0.0	0.0		
Approach Delay (s)	0.0		0.1			0.0			
Approach LOS	0.0 A		0.1			0.0			
•	A								
Intersection Summary									
Average Delay			0.0						
Intersection Capacity Utiliza	ation		46.7%	IC	U Level	of Service		Α	
Analysis Period (min)			15						

	۶	→	+	4	/	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		414	† 1>		*	7
Traffic Volume (veh/h)	211	368	985	18	13	212
Future Volume (Veh/h)	211	368	985	18	13	212
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	229	400	1071	20	14	230
Pedestrians	223	400	1071	20	17	230
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
		None	None			
Median type		None	ivorie			
Median storage veh)		0.0	22			
Upstream signal (m)		88	33			
pX, platoon unblocked	4004				1700	E 40
vC, conflicting volume	1091				1739	546
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	4004				4700	540
vCu, unblocked vol	1091				1739	546
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)					6 -	
tF (s)	2.2				3.5	3.3
p0 queue free %	65				73	53
cM capacity (veh/h)	647				52	487
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2
Volume Total	362	267	714	377	14	230
Volume Left	229	0	0	0	14	0
Volume Right	0	0	0	20	0	230
cSH	647	1700	1700	1700	52	487
Volume to Capacity	0.35	0.16	0.42	0.22	0.27	0.47
Queue Length 95th (m)	12.1	0.0	0.0	0.0	7.1	18.9
Control Delay (s)	10.5	0.0	0.0	0.0	99.0	18.8
Lane LOS	В				F	С
Approach Delay (s)	6.0		0.0		23.4	
Approach LOS					С	
Intersection Summary						
Average Delay			4.8			
Intersection Capacity Utiliz	ation		61.2%	IC	U Level	of Service
Analysis Period (min)			15	۰٬۰	2 23.01	2. 23. 1100
tharyona i chica (illiil)			10			

	•	•	←	4	†	ļ
Lane Group	EBL	EBR	WBT	NBL	NBT	SBT
Lane Configurations	7	7	4	J.	†	+
Traffic Volume (vph)	270	149	26	143	160	144
Future Volume (vph)	270	149	26	143	160	144
Lane Group Flow (vph)	293	162	44	155	174	559
Turn Type	Perm	Perm	NA	pm+pt	NA	NA
Protected Phases			8	5	2	6
Permitted Phases	4	4		2		
Detector Phase	4	4	8	5	2	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	5.5	20.0	20.0
Minimum Split (s)	26.2	26.2	26.2	10.0	30.1	30.1
Total Split (s)	26.2	26.2	26.2	10.0	41.1	31.1
Total Split (%)	38.9%	38.9%	38.9%	14.9%	61.1%	46.2%
Yellow Time (s)	4.1	4.1	4.1	3.0	4.1	4.1
All-Red Time (s)	2.1	2.1	2.1	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	3.0	6.1	6.1
Lead/Lag				Lead		Lag
Lead-Lag Optimize?						
Recall Mode	Min	Min	Min	None	C-Min	C-Min
v/c Ratio	0.83	0.31	0.09	0.42	0.19	0.73
Control Delay	44.8	5.2	13.0	10.6	9.2	18.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	2.4
Total Delay	44.8	5.2	13.0	10.6	9.2	20.7
Queue Length 50th (m)	32.8	0.0	2.5	8.6	11.0	37.3
Queue Length 95th (m)	#70.0	11.6	8.9	16.2	20.2	#88.9
Internal Link Dist (m)	1110.0	11.0	8.0	10.2	230.0	55.6
Turn Bay Length (m)	50.0		0.0		200.0	00.0
Base Capacity (vph)	376	553	503	368	934	771
Starvation Cap Reductn	0	0	0	0	0	111
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.78	0.29	0.09	0.42	0.19	0.85
Neudoed We Natio	0.70	0.23	0.03	0.42	0.13	0.00

Cycle Length: 67.3

Actuated Cycle Length: 67.3

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Fallsview Blvd & Embassy Suites

01-11-2024 TTW_Hennepin_2024-01-10-v0.2 Mitigated.syn

	•	→	•	•	←	•	•	†	~	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň		7		4		7	†		ħ	†	
Traffic Volume (vph)	270	0	149	0	26	15	143	160	0	0	144	370
Future Volume (vph)	270	0	149	0	26	15	143	160	0	0	144	370
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Lane Util. Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Frt	1.00		0.85		0.95		1.00	1.00			0.89	
Flt Protected	0.95		1.00		1.00		0.95	1.00			1.00	
Satd. Flow (prot)	1644		1471		1646		1644	1731			1544	
Flt Permitted	0.73		1.00		1.00		0.23	1.00			1.00	
Satd. Flow (perm)	1260		1471		1646		399	1731			1544	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	293	0	162	0	28	16	155	174	0	0	157	402
RTOR Reduction (vph)	0	0	117	0	12	0	0	0	0	0	130	0
Lane Group Flow (vph)	293	0	45	0	32	0	155	174	0	0	429	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm		Perm		NA		pm+pt	NA		Perm	NA	
Protected Phases					8		5	2			6	
Permitted Phases	4		4	8			2			6		
Actuated Green, G (s)	18.8		18.8		18.8		36.2	36.2			27.3	
Effective Green, g (s)	18.8		18.8		18.8		36.2	36.2			27.3	
Actuated g/C Ratio	0.28		0.28		0.28		0.54	0.54			0.41	
Clearance Time (s)	6.2		6.2		6.2		3.0	6.1			6.1	
Vehicle Extension (s)	4.0		4.0		4.0		4.0	4.0			4.0	
Lane Grp Cap (vph)	351		410		459		323	931			626	
v/s Ratio Prot					0.02		c0.04	0.10			c0.28	
v/s Ratio Perm	c0.23		0.03				0.22					
v/c Ratio	0.83		0.11		0.07		0.48	0.19			0.69	
Uniform Delay, d1	22.8		18.0		17.8		10.0	8.0			16.5	
Progression Factor	1.00		1.00		1.00		1.00	1.00			1.00	
Incremental Delay, d2	16.2		0.2		0.1		1.5	0.4			6.0	
Delay (s)	39.0		18.2		17.9		11.5	8.4			22.5	
Level of Service	D		В		В		В	Α			С	
Approach Delay (s)		31.6			17.9			9.9			22.5	
Approach LOS		С			В			Α			С	
Intersection Summary												
HCM 2000 Control Delay			22.3	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.72									
Actuated Cycle Length (s)			67.3		um of lost				15.3			
Intersection Capacity Utiliza	ation		76.2%	IC	U Level	of Service	•		D			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	f)	ሻ	î,	ሻ	ħβ	ሻ	∱ }	
Traffic Volume (vph)	105	239	149	130	182	988	415	1174	
Future Volume (vph)	105	239	149	130	182	988	415	1174	
Lane Group Flow (vph)	114	375	162	389	198	1322	451	1419	
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm+pt	NA	
Protected Phases		4		8		2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	1	6	
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	24.0	24.0	10.0	28.0	
Total Split (s)	35.0	35.0	35.0	35.0	48.0	48.0	17.0	65.0	
Total Split (%)	35.0%	35.0%	35.0%	35.0%	48.0%	48.0%	17.0%	65.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0	
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	None	C-Max	
v/c Ratio	0.82	0.78	1.09	0.78	1.74	0.99	1.48	0.75	
Control Delay	76.7	44.4	136.0	37.5	371.6	33.6	257.4	18.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	76.7	44.4	136.0	37.5	371.6	33.6	257.4	18.6	
Queue Length 50th (m)	20.6	63.3	~35.3	54.3	~57.6	40.4	~106.3	99.4	
Queue Length 95th (m)	#51.6	#106.4	#74.7	#98.5	m#77.1	m#167.0	#165.9	126.5	
Internal Link Dist (m)		102.7		40.9		167.0		298.0	
Turn Bay Length (m)	15.0		25.0		35.0		55.0		
Base Capacity (vph)	139	478	149	501	114	1330	305	1887	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.82	0.78	1.09	0.78	1.74	0.99	1.48	0.75	

Cycle Length: 100

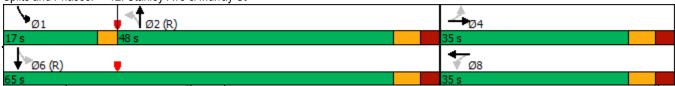
Actuated Cycle Length: 100

Offset: 96 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.


Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 12: Stanley Ave & Murray St

	٦	→	•	•	←	4	4	†	<i>></i>	\	 	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	î.		7	ĵ⇒		*	∱β		ሻ	∱ ⊅	
Traffic Volume (vph)	105	239	106	149	130	228	182	988	228	415	1174	132
Future Volume (vph)	105	239	106	149	130	228	182	988	228	415	1174	132
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	0.90		1.00	0.97		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1651		1644	1565		1644	3196		1644	3238	
Flt Permitted	0.29	1.00		0.31	1.00		0.16	1.00		0.09	1.00	
Satd. Flow (perm)	498	1651		534	1565		280	3196		157	3238	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	114	260	115	162	141	248	198	1074	248	451	1276	143
RTOR Reduction (vph)	0	16	0	0	63	0	0	20	0	0	8	0
Lane Group Flow (vph)	114	359	0	162	326	0	198	1302	0	451	1411	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	28.0	28.0		28.0	28.0		41.0	41.0		58.0	58.0	
Effective Green, g (s)	28.0	28.0		28.0	28.0		41.0	41.0		58.0	58.0	
Actuated g/C Ratio	0.28	0.28		0.28	0.28		0.41	0.41		0.58	0.58	
Clearance Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	139	462		149	438		114	1310		299	1878	
v/s Ratio Prot		0.22			0.21			0.41		c0.21	0.44	
v/s Ratio Perm	0.23			c0.30			c0.71			0.66		
v/c Ratio	0.82	0.78		1.09	0.74		1.74	0.99		1.51	0.75	
Uniform Delay, d1	33.6	33.1		36.0	32.7		29.5	29.4		30.4	15.6	
Progression Factor	1.00	1.00		1.00	1.00		0.52	0.50		1.00	1.00	
Incremental Delay, d2	30.5	8.0		99.0	6.7		351.4	17.3		245.4	2.8	
Delay (s)	64.2	41.2		135.0	39.4		366.6	31.9		275.8	18.5	
Level of Service	Е	D		F	D		F	С		F	В	
Approach Delay (s)		46.5			67.5			75.5			80.5	
Approach LOS		D			Е			Е			F	
Intersection Summary												
HCM 2000 Control Delay			73.4	H	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capac	city ratio		1.47									
Actuated Cycle Length (s)			100.0		um of lost				17.0			
Intersection Capacity Utiliza	tion		113.0%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												


	•	→	•	←	•	1	†	/	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	*	∱ î≽	Ţ	†	7	ሻ	∱ }	7	∱ }	
Traffic Volume (vph)	148	503	137	263	167	119	366	172	562	
Future Volume (vph)	148	503	137	263	167	119	366	172	562	
Lane Group Flow (vph)	161	783	149	286	182	129	701	187	670	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	3	8		5	2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	7	4	3	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	5.5	20.0	7.0	20.0	20.0	5.5	20.0	7.0	20.0	
Minimum Split (s)	10.0	33.3	10.0	33.3	33.3	10.0	42.6	10.0	42.6	
Total Split (s)	10.0	36.9	10.0	36.9	36.9	12.0	43.0	12.0	43.0	
Total Split (%)	9.8%	36.2%	9.8%	36.2%	36.2%	11.8%	42.2%	11.8%	42.2%	
Yellow Time (s)	3.0	4.1	3.0	4.1	4.1	3.0	4.1	3.0	4.1	
All-Red Time (s)	0.0	2.2	0.0	2.2	2.2	0.0	2.5	0.0	2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	3.0	6.3	3.0	6.3	6.3	3.0	6.6	3.0	6.6	
Lead/Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?										
Recall Mode	None	None	None	None	None	None	Max	None	Max	
v/c Ratio	0.46	0.84	0.72	0.59	0.34	0.36	0.55	0.54	0.55	
Control Delay	23.8	40.0	41.0	36.2	6.0	16.0	19.1	19.9	26.8	
Queue Delay	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.8	40.1	41.0	36.2	6.0	16.0	19.1	19.9	26.8	
Queue Length 50th (m)	19.6	68.5	18.0	47.3	0.0	12.8	39.6	19.2	54.2	
Queue Length 95th (m)	33.5	91.2	#36.1	73.2	15.0	23.1	58.1	32.6	72.8	
Internal Link Dist (m)		39.6		70.0			112.9		294.7	
Turn Bay Length (m)	30.0		35.0			10.0		65.0		
Base Capacity (vph)	351	1021	206	537	582	367	1268	349	1217	
Starvation Cap Reductn	0	7	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.46	0.77	0.72	0.53	0.31	0.35	0.55	0.54	0.55	

Cycle Length: 101.9 Actuated Cycle Length: 98.8 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 13: Fallsview Blvd & Murray St

TO. 1 GIIOVIOW BIVG		,										
	•	-	•	•	•	•	1	Ī		-	¥	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ î≽		Ť	†	7	ሻ	∱ ∱		7	∱ ∱	
Traffic Volume (vph)	148	503	217	137	263	167	119	366	279	172	562	54
Future Volume (vph)	148	503	217	137	263	167	119	366	279	172	562	54
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Lane Util. Factor	1.00	0.95		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.94		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	3139		1644	1731	1471	1644	3075		1644	3245	
Flt Permitted	0.43	1.00		0.16	1.00	1.00	0.31	1.00		0.28	1.00	
Satd. Flow (perm)	750	3139		285	1731	1471	535	3075		489	3245	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	161	547	236	149	286	182	129	398	303	187	611	59
RTOR Reduction (vph)	0	49	0	0	0	131	0	133	0	0	7	0
Lane Group Flow (vph)	161	734	0	149	286	51	129	568	0	187	663	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	34.6	27.6		34.6	27.6	27.6	44.8	36.5		45.6	36.9	
Effective Green, g (s)	34.6	27.6		34.6	27.6	27.6	44.8	36.5		45.6	36.9	
Actuated g/C Ratio	0.35	0.28		0.35	0.28	0.28	0.45	0.37		0.46	0.37	
Clearance Time (s)	3.0	6.3		3.0	6.3	6.3	3.0	6.6		3.0	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	326	877		196	484	411	336	1137		327	1213	
v/s Ratio Prot	0.03	c0.23		c0.05	0.17		0.03	0.18		c0.05	0.20	
v/s Ratio Perm	0.14			0.21		0.03	0.14			c0.21		
v/c Ratio	0.49	0.84		0.76	0.59	0.12	0.38	0.50		0.57	0.55	
Uniform Delay, d1	23.4	33.4		24.4	30.7	26.5	16.4	24.0		16.8	24.3	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.2	7.0		15.8	1.9	0.1	0.7	1.6		2.4	1.8	
Delay (s)	24.6	40.4		40.2	32.6	26.7	17.1	25.6		19.2	26.1	
Level of Service	С	D		D	С	С	В	С		В	С	
Approach Delay (s)		37.7			32.7			24.3			24.6	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			29.9	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.68									
Actuated Cycle Length (s)			98.7	S	um of los	time (s)			18.9			
Intersection Capacity Utiliza	ation		79.3%	IC	U Level	of Service	Э		D			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	•	•	4	†	-	ļ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	*	f)	7		7	7	↑ ↑	7	∱ }
Traffic Volume (vph)	265	304	81	394	69	216	854	158	864
Future Volume (vph)	265	304	81	394	69	216	854	158	864
Lane Group Flow (vph)	288	491	88	428	75	235	1081	172	1207
Turn Type	Perm	NA	Perm	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases		4		8			2	1	6
Permitted Phases	4		8		8	2		6	
Detector Phase	4	4	8	8	8	2	2	1	6
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	10.0	10.0	6.0	10.0
Minimum Split (s)	35.0	35.0	35.0	35.0	35.0	32.0	32.0	10.0	32.0
Total Split (s)	39.0	39.0	39.0	39.0	39.0	50.0	50.0	11.0	61.0
Total Split (%)	39.0%	39.0%	39.0%	39.0%	39.0%	50.0%	50.0%	11.0%	61.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	3.0	7.0
Lead/Lag						Lag	Lag	Lead	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max
v/c Ratio	1.83	0.90	0.79	0.77	0.14	1.63	0.77	0.69	0.69
Control Delay	424.1	52.9	76.6	41.8	6.5	337.8	28.4	23.3	21.4
Queue Delay	0.0	0.0	0.0	7.2	0.0	0.0	0.0	0.0	0.0
Total Delay	424.1	52.9	76.6	49.0	6.5	337.8	28.4	23.3	21.4
Queue Length 50th (m)	~84.8	86.3	15.4	74.4	0.0	~66.0	90.1	21.0	112.9
Queue Length 95th (m)	#134.3	#145.8	#43.2	#118.5	9.3	#85.4	115.6	m23.3	m132.6
Internal Link Dist (m)		213.7		94.8			227.1		103.4
Turn Bay Length (m)	75.0		25.0		25.0	25.0		40.0	
Base Capacity (vph)	157	544	112	553	522	144	1399	250	1743
Starvation Cap Reductn	0	0	0	88	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.83	0.90	0.79	0.92	0.14	1.63	0.77	0.69	0.69

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 34 (34%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 15: Stanley Ave & Dunn St

	۶	→	•	•	←	4	1	†	~	/	 	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ		7	ሻ	∱ 1≽		ሻ	∱ }	
Traffic Volume (vph)	265	304	148	81	394	69	216	854	141	158	864	247
Future Volume (vph)	265	304	148	81	394	69	216	854	141	158	864	247
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.95		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1645		1644	1731	1471	1644	3218		1644	3179	
Flt Permitted	0.29	1.00		0.20	1.00	1.00	0.19	1.00		0.14	1.00	
Satd. Flow (perm)	494	1645		353	1731	1471	336	3218		236	3179	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	288	330	161	88	428	75	235	928	153	172	939	268
RTOR Reduction (vph)	0	18	0	0	0	51	0	13	0	0	26	0
Lane Group Flow (vph)	288	473	0	88	428	24	235	1068	0	172	1181	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	32.0	32.0		32.0	32.0	32.0	43.1	43.1		54.0	54.0	
Effective Green, g (s)	32.0	32.0		32.0	32.0	32.0	43.1	43.1		54.0	54.0	
Actuated g/C Ratio	0.32	0.32		0.32	0.32	0.32	0.43	0.43		0.54	0.54	
Clearance Time (s)	7.0	7.0		7.0	7.0	7.0	7.0	7.0		3.0	7.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	158	526		112	553	470	144	1386		238	1716	
v/s Ratio Prot		0.29			0.25			0.33		0.06	c0.37	
v/s Ratio Perm	c0.58			0.25		0.02	c0.70			0.33		
v/c Ratio	1.82	0.90		0.79	0.77	0.05	1.63	0.77		0.72	0.69	
Uniform Delay, d1	34.0	32.5		30.9	30.7	23.5	28.4	24.2		15.8	16.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.26	1.23	
Incremental Delay, d2	394.0	18.1		29.4	6.7	0.0	313.6	4.2		6.1	1.3	
Delay (s)	428.0	50.6		60.3	37.4	23.5	342.1	28.4		26.1	22.0	
Level of Service	F	D		Е	D	С	F	C		С	C	
Approach Delay (s)		190.1			39.1			84.4			22.5	
Approach LOS		F			D			F			C	
Intersection Summary HCM 2000 Control Delay			77.1	Ш	CM 2000	Level of	Convios		E			
HCM 2000 Control Delay	acity ratio		1.61	П	CIVI ZUUU	Level of	Service					
	acity ratio		100.0	C.	ım of loo	t time (a)			17.0			
Actuated Cycle Length (s)	ntion		100.0		um of los	of Service			17.0 H			
Intersection Capacity Utiliza Analysis Period (min)	auUH			IC	O Level (DI SEI VICE			П			
c Critical Lane Group			15									
Contical Lane Group												

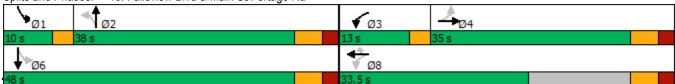
	•	→	•	←	•	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	£	ሻ	†	7	ሻ	f)	ሻ	₽	
Traffic Volume (vph)	262	306	188	425	479	21	434	88	264	
Future Volume (vph)	262	306	188	425	479	21	434	88	264	
Lane Group Flow (vph)	285	429	204	462	521	23	583	96	324	
Turn Type	Perm	NA	pm+pt	NA	Perm	Perm	NA	pm+pt	NA	
Protected Phases		4	3	8			2	1	6	
Permitted Phases	4		8		8	2		6		
Detector Phase	4	4	3	8	8	2	2	1	6	
Switch Phase										
Minimum Initial (s)	10.0	10.0	7.0	10.0	10.0	20.0	20.0	7.0	20.0	
Minimum Split (s)	33.5	33.5	10.0	33.5	33.5	33.5	33.5	10.0	33.5	
Total Split (s)	35.0	35.0	13.0	33.5	33.5	38.0	38.0	10.0	48.0	
Total Split (%)	36.5%	36.5%	13.5%	34.9%	34.9%	39.6%	39.6%	10.4%	50.0%	
Yellow Time (s)	4.1	4.1	3.0	4.1	4.1	4.1	4.1	3.0	4.1	
All-Red Time (s)	2.4	2.4	0.0	2.4	2.4	2.4	2.4	0.0	2.4	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.5	3.0	6.5	6.5	6.5	6.5	3.0	6.5	
_ead/Lag	Lag	Lag	Lead			Lag	Lag	Lead		
_ead-Lag Optimize?										
Recall Mode	None	None	None	None	None	Max	Max	None	Max	
ı/c Ratio	1.11	0.84	0.66	0.62	0.63	0.07	0.98	0.47	0.44	
Control Delay	124.5	47.5	27.1	25.7	11.1	23.1	64.6	22.4	20.8	
Queue Delay	0.0	0.0	0.0	4.2	0.9	0.0	40.7	0.0	0.0	
Total Delay	124.5	47.5	27.1	29.8	12.0	23.1	105.3	22.4	20.8	
Queue Length 50th (m)	~61.2	72.0	22.2	64.5	23.3	2.9	~116.2	9.7	39.7	
Queue Length 95th (m)	#109.7	#123.0	#36.8	96.8	57.3	8.5	#179.7	18.7	62.2	
Internal Link Dist (m)		140.5		63.8			55.6		114.8	
Turn Bay Length (m)			25.0			20.0				
Base Capacity (vph)	256	508	312	750	826	342	596	203	742	
Starvation Cap Reductn	0	0	0	208	112	0	178	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.11	0.84	0.65	0.85	0.73	0.07	1.39	0.47	0.44	

Cycle Length: 96

Actuated Cycle Length: 95.7

Natural Cycle: 130

Control Type: Actuated-Uncoordinated


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 16: Fallsview Blvd & Main St/Portage Rd

01-11-2024

Synchro 11 Report

	۶	→	•	•	←	•	•	†	<i>></i>	\	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.		7	†	7	7	î»		7	ĵ.	
Traffic Volume (vph)	262	306	88	188	425	479	21	434	102	88	264	34
Future Volume (vph)	262	306	88	188	425	479	21	434	102	88	264	34
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.97		1.00	1.00	0.85	1.00	0.97		1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1644	1672		1644	1731	1471	1644	1681		1644	1701	
Flt Permitted	0.50	1.00		0.22	1.00	1.00	0.56	1.00		0.12	1.00	
Satd. Flow (perm)	861	1672		388	1731	1471	977	1681		209	1701	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	285	333	96	204	462	521	23	472	111	96	287	37
RTOR Reduction (vph)	0	11	0	0	0	191	0	8	0	0	5	0
Lane Group Flow (vph)	285	418	0	204	462	330	23	575	0	96	319	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	28.5	28.5		41.2	41.2	41.2	33.5	33.5		42.1	42.1	
Effective Green, g (s)	28.5	28.5		41.2	41.2	41.2	33.5	33.5		42.1	42.1	
Actuated g/C Ratio	0.30	0.30		0.43	0.43	0.43	0.35	0.35		0.44	0.44	
Clearance Time (s)	6.5	6.5		3.0	6.5	6.5	6.5	6.5		3.0	6.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	254	494		292	740	629	339	584		174	743	
v/s Ratio Prot		0.25		c0.07	0.27			c0.34		c0.03	0.19	
v/s Ratio Perm	c0.33			0.23		0.22	0.02			0.21		
v/c Ratio	1.12	0.85		0.70	0.62	0.53	0.07	0.98		0.55	0.43	
Uniform Delay, d1	33.9	31.9		20.1	21.5	20.3	21.0	31.1		20.4	18.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	93.3	12.7		7.1	1.6	0.8	0.4	33.5		3.7	1.8	
Delay (s)	127.2	44.5		27.2	23.2	21.1	21.4	64.6		24.1	20.6	
Level of Service	F	D		С	С	С	С	Е		С	С	
Approach Delay (s)		77.5			23.0			63.0			21.4	
Approach LOS		Е			С			Е			С	
Intersection Summary												
HCM 2000 Control Delay			44.3	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	city ratio		0.97									
Actuated Cycle Length (s)			96.3	Sı	um of los	t time (s)			19.0			
Intersection Capacity Utiliza	tion		97.0%	IC	U Level	of Service	1		F			
Analysis Period (min)			15									
c Critical Lane Group												

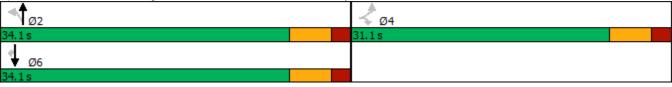
	۶	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	†	†	7
Traffic Volume (vph)	106	284	472	112	141	391
Future Volume (vph)	106	284	472	112	141	391
Lane Group Flow (vph)	115	309	513	122	153	425
Turn Type	Perm	Perm	Perm	NA	NA	Perm
Protected Phases				2	6	
Permitted Phases	4	4	2			6
Detector Phase	4	4	2	2	6	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	31.1	31.1	16.1	16.1	16.1	16.1
Total Split (s)	31.1	31.1	34.1	34.1	34.1	34.1
Total Split (%)	47.7%	47.7%	52.3%	52.3%	52.3%	52.3%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Max	Max	Max	Max
v/c Ratio	0.20	0.43	0.99	0.16	0.19	0.47
Control Delay	14.5	4.1	59.8	12.2	12.4	3.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14.5	4.1	59.8	12.2	12.4	3.4
Queue Length 50th (m)	8.9	0.0	~69.3	8.7	11.1	0.0
Queue Length 95th (m)	18.5	13.2	#120.5	17.6	21.4	13.9
Internal Link Dist (m)	9.1			121.3	66.9	
Turn Bay Length (m)						
Base Capacity (vph)	668	781	519	787	787	901
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.17	0.40	0.99	0.16	0.19	0.47
11000000 1/0 11000	0.11	0.10	0.00	0.10	0.10	0.17

Cycle Length: 65.2

Actuated Cycle Length: 62.2

Natural Cycle: 80

Control Type: Actuated-Uncoordinated


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 17: Portage Rd & Fallsview Casino Rear Driveway

01-11-2024

Synchro 11 Report

	•	•	•	†		✓		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻ	7	ሻ	†	†	7		
Traffic Volume (vph)	106	284	472	112	141	391		
Future Volume (vph)	106	284	472	112	141	391		
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750		
Total Lost time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1644	1471	1644	1731	1731	1471		
Flt Permitted	0.95	1.00	0.66	1.00	1.00	1.00		
Satd. Flow (perm)	1644	1471	1142	1731	1731	1471		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	115	309	513	122	153	425		
RTOR Reduction (vph)	0	202	0	0	0	231		
Lane Group Flow (vph)	115	107	513	122	153	194		
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%		
Turn Type	Perm	Perm	Perm	NA	NA	Perm		
Protected Phases				2	6			
Permitted Phases	4	4	2			6		
Actuated Green, G (s)	21.6	21.6	28.3	28.3	28.3	28.3		
Effective Green, g (s)	21.6	21.6	28.3	28.3	28.3	28.3		
Actuated g/C Ratio	0.35	0.35	0.46	0.46	0.46	0.46		
Clearance Time (s)	6.1	6.1	6.1	6.1	6.1	6.1		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	571	511	520	788	788	670		
v/s Ratio Prot				0.07	0.09			
v/s Ratio Perm	0.07	c0.07	c0.45			0.13		
v/c Ratio	0.20	0.21	0.99	0.15	0.19	0.29		
Uniform Delay, d1	14.2	14.2	16.7	9.9	10.1	10.6		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.2	0.2	36.3	0.4	0.5	1.1		
Delay (s)	14.4	14.5	53.0	10.3	10.6	11.7		
Level of Service	В	В	D	В	В	В		
Approach Delay (s)	14.4			44.8	11.4			
Approach LOS	В			D	В			
Intersection Summary								
HCM 2000 Control Delay			25.1	H	CM 2000	Level of Service	9	
HCM 2000 Volume to Capa	city ratio		0.65					
Actuated Cycle Length (s)			62.1		ım of lost			
Intersection Capacity Utiliza	ation		64.8%	IC	U Level of	of Service		
Analysis Period (min)			15					
c Critical Lane Group								

-	٠	•	•	†	 	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		7		^	† 1>	02.1	
Traffic Volume (veh/h)	0	165	0	1401	1408	40	
Future Volume (Veh/h)	0	165	0	1401	1408	40	
Sign Control	Stop		-	Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0.02	179	0.02	1523	1530	43	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)				110110	110110		
Upstream signal (m)				55	191		
pX, platoon unblocked	0.84	0.69	0.69				
vC, conflicting volume	2313	786	1573				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	574	0	922				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	76	100				
cM capacity (veh/h)	379	749	514				
				OD 4	CD 0		
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	179	762	762	1020	553		
Volume Left	0	0	0	0	0		
Volume Right	179	0	0	0	43		
cSH	749	1700	1700	1700	1700		
Volume to Capacity	0.24	0.45	0.45	0.60	0.33		
Queue Length 95th (m)	7.1	0.0	0.0	0.0	0.0		
Control Delay (s)	11.3	0.0	0.0	0.0	0.0		
Lane LOS	В	0.0		2.0			
Approach Delay (s)	11.3	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.6				
Intersection Capacity Utiliza	ation		61.4%	IC	CU Level o	f Service	
Analysis Period (min)			15				

OZ. Talisview biva	a Dixoi	i Otiri a	IIISVICV	LOI								
	•	→	•	•	←	•	•	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ħβ		7	ħβ	
Traffic Volume (veh/h)	23	5	7	0	0	0	79	549	165	181	483	173
Future Volume (Veh/h)	23	5	7	0	0	0	79	549	165	181	483	173
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	25	5	8	0	0	0	86	597	179	197	525	188
Pedestrians			-	-	-	-						
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)								110110			2	
Upstream signal (m)								139			114	
pX, platoon unblocked	0.94	0.94	0.94	0.94	0.94		0.94	100			117	
vC, conflicting volume	1484	1961	356	1526	1966	388	713			776		
vC1, stage 1 conf vol	1013	1013	000	858	858	000	7 10			110		
vC2, stage 2 conf vol	470	948		667	1107							
vCu, unblocked vol	1387	1895	188	1431	1900	388	567			776		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	6.5	5.5	0.0	6.5	5.5	0.0	7.1			7.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	87	95	99	100	100	100	91			77		
cM capacity (veh/h)	188	107	779	206	139	616	954			849		
										043		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	38	0	86	398	378	197	350	363				
Volume Left	25	0	86	0	0	197	0	0				
Volume Right	8	0	0	0	179	0	0	188				
cSH	200	1700	954	1700	1700	849	1700	1700				
Volume to Capacity	0.19	0.00	0.09	0.23	0.22	0.23	0.21	0.21				
Queue Length 95th (m)	5.2	0.0	2.3	0.0	0.0	6.8	0.0	0.0				
Control Delay (s)	27.1	0.0	9.1	0.0	0.0	10.5	0.0	0.0				
Lane LOS	D	Α	А			В						
Approach Delay (s)	27.1	0.0	0.9			2.3						
Approach LOS	D	Α										
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utiliza	ition		46.4%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
•												

	←	•	4	†	>	ļ
Lane Group	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations	ર્ન	7	ሻ	↑ Ъ	ሻ	↑ ↑
Traffic Volume (vph)	1	120	16	501	200	784
Future Volume (vph)	1	120	16	501	200	784
Lane Group Flow (vph)	46	130	17	641	217	972
Turn Type	NA	Perm	Perm	NA	pm+pt	NA
Protected Phases	8			2	1	6
Permitted Phases		8	2		6	
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	10.0	10.0	20.0	20.0	7.0	20.0
Minimum Split (s)	26.7	26.7	33.4	33.4	10.0	33.4
Total Split (s)	26.7	26.7	37.4	37.4	13.0	50.4
Total Split (%)	34.6%	34.6%	48.5%	48.5%	16.9%	65.4%
Yellow Time (s)	4.1	4.1	4.1	4.1	3.0	4.1
All-Red Time (s)	2.6	2.6	3.3	3.3	0.0	3.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.7	6.7	7.4	7.4	3.0	7.4
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?						
Recall Mode	None	None	None	None	None	None
v/c Ratio	0.14	0.33	0.08	0.49	0.36	0.45
Control Delay	22.7	8.0	13.4	14.4	5.6	7.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	22.7	8.0	13.4	14.4	5.6	7.1
Queue Length 50th (m)	4.0	0.0	1.1	25.5	7.2	26.8
Queue Length 95th (m)	12.5	12.2	4.7	40.2	14.5	40.6
Internal Link Dist (m)	32.2			90.4		112.9
Turn Bay Length (m)	J		20.0		25.0	
Base Capacity (vph)	626	639	311	1972	630	2545
Starvation Cap Reductn	0	0	0	0	0	110
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.20	0.05	0.33	0.34	0.40
	0.01	0.20	0.00	0.00	0.01	0.10
Intersection Summary						
Cycle Length: 77.1						
Actuated Cycle Length: 54.5						

Actuated Cycle Length: 54.5

Natural Cycle: 75

Control Type: Actuated-Uncoordinated

Splits and Phases: 73: Fallsview Blvd & Hilton Lot/Fallsview Lot

01-11-2024 TTW_Hennepin_2024-01-10-v0.2 Mitigated.syn

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR		⋆	~			_	•	_	•		τ.	1	
Lane Configurations			→	*	•	•		7	ı	~	*	+	*
Traffic Volume (yph) 0 0 0 41 1 120 16 501 88 200 784 110 ldeal Flow (yphpl) 1750 1750 1750 1750 1750 1750 1750 1750		EBL	EBT	EBR	WBL					NBR			SBR
Future Volume (vph) 0 0 0 41 1 1 120 16 501 88 200 784 110 (adeal Flow (vphpl) 1750 1750 1750 1750 1750 1750 1750 1750													
Ideal Flow (yphpi) 1750				7		•							
Total Lost time (s)													
Lane Util. Factor		1750	1750	1750	1750					1750			1750
Fit Protected	. ,												
Fit Protected													
Satd. Flow (prot) 1650													
Fit Permitted													
Satid. Flow (perm)	. ,												
Peak-hour factor, PHF 0.92													
Adj. Flow (vph) 0 0 0 45 1 130 17 545 96 217 852 120 RTOR Reduction (vph) 0 0 0 0 112 0 18 0 0 12 0 Lane Group Flow (vph) 0 0 0 46 18 17 623 0 217 960 0 Heavy Vehicles (%) 0%	Satd. Flow (perm)					1650		510				3227	
RTOR Reduction (vph) 0 0 0 0 112 0 18 0 0 12 0 Lane Group Flow (vph) 0 0 0 0 46 18 17 623 0 217 960 0 Heavy Vehicles (%) 0%	Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Lane Group Flow (vph) 0 0 0 46 18 17 623 0 217 960 0 Heavy Vehicles (%) 0%		0	0	0	45	1	130	17	545	96	217	852	120
Heavy Vehicles (%)	RTOR Reduction (vph)	0	0	0	0	0	112	0	18	0	0	12	0
Turn Type	Lane Group Flow (vph)	0	0	0	0	46	18	17	623	0	217	960	0
Protected Phases 8	Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Protected Phases 8	Turn Type				Perm	NA	Perm	Perm	NA		pm+pt	NA	
Actuated Green, G (s) 7.6 7.6 22.1 22.1 34.2 34.2 Effective Green, g (s) 7.6 7.6 22.1 22.1 34.2 34.2 Actuated g/C Ratio 0.14 0.14 0.40 0.40 0.40 0.61 0.61 Clearance Time (s) 6.7 6.7 7.4 7.4 3.0 7.4 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Lane Grp Cap (vph) 224 199 201 1270 541 1974 v/s Ratio Prot 0.19 0.07 c0.30 v/s Ratio Perm 0.03 0.01 0.03 0.01 0.03 0.18 v/c Ratio Perm 0.03 0.01 0.03 0.10 0.03 0.18 v/c Ratio 0.21 0.09 0.08 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 lncremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A A A Approach Delay (s) 0.0 21.6 13.0 6.1 Approach Delay (s) 9.7 HCM 2000 Level of Service A HCM 2000 Control Delay 9.7 HCM 2000 Level of Service C C Analysis Period (min) 15						8			2			6	
Effective Green, g (s) 7.6 7.6 22.1 22.1 34.2 34.2 Actuated g/C Ratio 0.14 0.14 0.40 0.40 0.61 0.61 Clearance Time (s) 6.7 6.7 7.4 7.4 3.0 7.4 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 Lane Gry Cap (vph) 224 199 201 1270 541 1974 Vfs Ratio Prot 0.19 0.03 0.01 0.03 0.19 0.07 c0.30 Vfs Ratio Perm 0.03 0.01 0.03 0.18 0	Permitted Phases				8		8	2			6		
Effective Green, g (s) 7.6 7.6 22.1 22.1 34.2 34.2 Actuated g/C Ratio 0.14 0.14 0.40 0.40 0.61 0.61 Clearance Time (s) 6.7 6.7 7.4 7.4 3.0 7.4 Vehicle Extension (s) 4.0 6.1 1.0	Actuated Green, G (s)					7.6	7.6	22.1	22.1		34.2	34.2	
Actuated g/C Ratito 0.14 0.14 0.40 0.40 0.61 0.61 Clearance Time (s) 6.7 6.7 7.4 7.4 3.0 7.4 Vehicle Extension (s) 4.0 4.0 4.0 4.0 4.0 4.0 Lane Grp Cap (vph) 224 199 201 1270 541 1974 v/s Ratio Prot 0.19 0.03 0.19 0.07 c0.30 v/s Ratio Perm 0.03 0.01 0.03 0.18 v/c Ratio 0.21 0.09 0.08 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 <td> ,</td> <td></td> <td></td> <td></td> <td></td> <td>7.6</td> <td>7.6</td> <td>22.1</td> <td>22.1</td> <td></td> <td>34.2</td> <td>34.2</td> <td></td>	,					7.6	7.6	22.1	22.1		34.2	34.2	
Clearance Time (s) 6.7 6.7 7.4 7.4 7.4 3.0 7.4 7						0.14	0.14	0.40	0.40		0.61	0.61	
Vehicle Extension (s) 4.0 6.0 8.0 6.0 9.0 0.0 0.0 0.0 0.0 1.00						6.7	6.7	7.4	7.4		3.0	7.4	
Lane Grp Cap (vph) 224 199 201 1270 541 1974 v/s Ratio Prot 0.19 0.07 c0.30 v/s Ratio Perm 0.03 0.01 0.03 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach LOS A C B A A Intersection Summary HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU						4.0	4.0	4.0	4.0		4.0	4.0	
v/s Ratio Prot 0.19 0.07 c0.30 v/s Ratio Perm 0.03 0.01 0.03 0.18 v/c Ratio 0.21 0.09 0.08 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach LOS A C B B A Approach LOS A C B A Intersection Summary B A A HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 A A Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization						224	199	201	1270		541	1974	
v/s Ratio Perm 0.03 0.01 0.03 0.18 v/c Ratio 0.21 0.09 0.08 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach LOS A C B B A Approach LOS A C B A Intersection Summary B A A HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 A C Service C Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization To.3% ICU Level of Service C<													
v/c Ratio 0.21 0.09 0.08 0.49 0.40 0.49 Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach Delay (s) 0.0 21.6 13.0 6.1 A Approach LOS A C B A A Intersection Summary HCM 2000 Level of Service A A C A						0.03	0.01	0.03					
Uniform Delay, d1 21.5 21.1 10.6 12.7 5.0 6.0 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.6 0.3 0.2 0.4 0.7 0.3 Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach Delay (s) 0.0 21.6 13.0 6.1 Approach LOS A C B A Intersection Summary HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15									0.49			0.49	
Progression Factor 1.00 2.03 1.00 2.03 1.00 1.00 2.03 1.00 2.03 2.03 2.00 <td></td>													
Incremental Delay, d2							1.00						
Delay (s) 22.1 21.4 10.8 13.1 5.7 6.3 Level of Service C C B B A A Approach Delay (s) 0.0 21.6 13.0 6.1 Approach LOS A C B A Intersection Summary B A A HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15													
Level of Service C C B B A A Approach Delay (s) 0.0 21.6 13.0 6.1 Approach LOS A C B A Intersection Summary B A A HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15	•												
Approach Delay (s) 0.0 21.6 13.0 6.1 Approach LOS A C B A Intersection Summary HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Control Capacity (s) Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15													
Approach LOS A C B A Intersection Summary HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15			0.0			21.6			13.0				
HCM 2000 Control Delay 9.7 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.47 Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15													
HCM 2000 Volume to Capacity ratio O.47 Actuated Cycle Length (s) Intersection Capacity Utilization Analysis Period (min) O.47 Sum of lost time (s) 17.1 ICU Level of Service C	Intersection Summary												
Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15	HCM 2000 Control Delay			9.7	H	CM 2000	Level of	Service		Α			
Actuated Cycle Length (s) 55.9 Sum of lost time (s) 17.1 Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15	•	ratio		0.47									
Intersection Capacity Utilization 70.3% ICU Level of Service C Analysis Period (min) 15				55.9	Sı	um of los	t time (s)			17.1			
Analysis Period (min) 15		1		70.3%)					
	c Critical Lane Group												

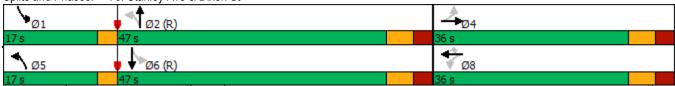
	۶	→	•	←	•	4	†	-	ţ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Configurations		4		ર્ન	7	ň	↑ ↑	¥	↑ ↑
Traffic Volume (vph)	104	111	141	203	359	60	938	352	1133
Future Volume (vph)	104	111	141	203	359	60	938	352	1133
Lane Group Flow (vph)	0	260	0	374	390	65	1092	383	1341
Turn Type	Perm	NA	Perm	NA	Perm	pm+pt	NA	pm+pt	NA
Protected Phases		4		8		5	2	1	6
Permitted Phases	4		8		8	2		6	
Detector Phase	4	4	8	8	8	5	2	1	6
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	6.0	8.0	6.0	8.0
Minimum Split (s)	34.0	34.0	34.0	34.0	34.0	9.0	37.0	9.0	37.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0	17.0	47.0	17.0	47.0
Total Split (%)	36.0%	36.0%	36.0%	36.0%	36.0%	17.0%	47.0%	17.0%	47.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	3.0	4.0	3.0	4.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	0.0	3.0	0.0	3.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.0		7.0	7.0	3.0	7.0	3.0	7.0
Lead/Lag						Lead	Lag	Lead	Lag
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max
v/c Ratio		1.24		1.02	0.60	0.33	0.84	1.19	0.84
Control Delay		175.9		88.0	11.4	8.2	29.8	134.7	22.7
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		175.9		88.0	11.4	8.2	29.8	134.7	22.7
Queue Length 50th (m)		~62.6		~74.4	11.8	4.5	105.0	~71.2	72.9
Queue Length 95th (m)		#111.0		#131.8	40.5	m4.2	m109.2 r	n#117.9 r	n#122.6
Internal Link Dist (m)		100.0		3.9			71.5		31.5
Turn Bay Length (m)						65.0		140.0	
Base Capacity (vph)		209		368	645	316	1307	323	1601
Starvation Cap Reductn		0		0	0	0	0	0	0
Spillback Cap Reductn		0		0	0	0	0	0	0
Storage Cap Reductn		0		0	0	0	0	0	0
Reduced v/c Ratio		1.24		1.02	0.60	0.21	0.84	1.19	0.84

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 85 (85%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90


Control Type: Actuated-Coordinated

- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 76: Stanley Ave & Dixon St

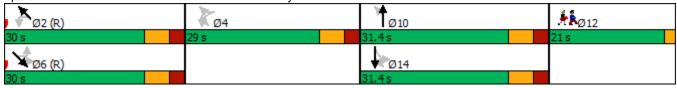
-	٠	→	•	6	+	4	4	†	<i>></i>	\	1	4
Movement	EBL	EBT	EBR	₩BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	LDIT	******	4	7	ሻ	↑ ↑	HOIT	ሻ	†	02.1
Traffic Volume (vph)	104	111	24	141	203	359	60	938	66	352	1133	100
Future Volume (vph)	104	111	24	141	203	359	60	938	66	352	1133	100
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Lane Util. Factor		1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt		0.99			1.00	0.85	1.00	0.99		1.00	0.99	
Flt Protected		0.98			0.98	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1671			1696	1471	1644	3256		1644	3248	
Flt Permitted		0.41			0.73	1.00	0.11	1.00		0.11	1.00	
Satd. Flow (perm)		707			1270	1471	196	3256		198	3248	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	113	121	26	153	221	390	65	1020	72	383	1232	109
RTOR Reduction (vph)	0	4	0	0	0	219	0	5	0	0	6	0
Lane Group Flow (vph)	0	256	0	0	374	171	65	1087	0	383	1335	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)		29.0			29.0	29.0	45.5	40.0		57.0	48.5	
Effective Green, g (s)		29.0			29.0	29.0	45.5	40.0		57.0	48.5	
Actuated g/C Ratio		0.29			0.29	0.29	0.46	0.40		0.57	0.48	
Clearance Time (s)		7.0			7.0	7.0	3.0	7.0		3.0	7.0	
Vehicle Extension (s)		2.3			2.3	2.3	2.3	2.5		2.3	2.5	
Lane Grp Cap (vph)		205			368	426	168	1302		315	1575	
v/s Ratio Prot							0.02	0.33		c0.17	0.41	
v/s Ratio Perm		c0.36			0.29	0.12	0.15			c0.52		
v/c Ratio		1.25			1.02	0.40	0.39	0.83		1.22	0.85	
Uniform Delay, d1		35.5			35.5	28.5	17.4	27.0		26.9	22.5	
Progression Factor		1.00			1.00	1.00	0.76	1.02		1.42	0.80	
Incremental Delay, d2		145.3			51.1	0.4	0.2	1.9		116.3	4.3	
Delay (s)		180.8			86.6	28.9	13.5	29.4		154.6	22.2	
Level of Service		F			F	С	В	С		F	С	
Approach Delay (s)		180.8			57.1			28.6			51.6	
Approach LOS		F			E			С			D	
Intersection Summary			54.5	- 11	014 0000		<u> </u>					
HCM 2000 Control Delay			54.5	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity	ratio		1.26	_	uma afla	1 4ima = /= \			17.0			
Actuated Cycle Length (s)	_		100.0		um of los		_		17.0			
Intersection Capacity Utilization	1		106.7%	IC	CU Level	or Service	9		G			
Analysis Period (min)			15									
c Critical Lane Group												

	~	•	*_	ሻ	†	-	Ļ	ļ	•	\	\mathbf{x}	×
Lane Group	WBL2	WBL	WBR	NBL	NBT	SBL2	SBL	SBT	SEL2	SEL	SET	NWT
Lane Configurations		ă	Ž.		4			4		ă	ĵ»	4
Traffic Volume (vph)	16	5	275	106	32	7	16	17	1	204	208	15
Future Volume (vph)	16	5	275	106	32	7	16	17	1	204	208	15
Lane Group Flow (vph)	0	22	358	0	250	0	0	44	0	223	259	44
Turn Type	Perm	Perm	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	NA
Protected Phases					10			14			6	2
Permitted Phases	4	4	4	10		14	14		6	6		
Minimum Split (s)	14.8	14.8	14.8	14.8	14.8	14.8	14.8	14.8	16.8	16.8	16.8	16.8
Total Split (s)	29.0	29.0	29.0	31.4	31.4	31.4	31.4	31.4	30.0	30.0	30.0	30.0
Total Split (%)	26.0%	26.0%	26.0%	28.2%	28.2%	28.2%	28.2%	28.2%	26.9%	26.9%	26.9%	26.9%
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Lost Time Adjust (s)		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Lost Time (s)		6.8	6.8		6.8			6.8		6.8	6.8	6.8
Lead/Lag												
Lead-Lag Optimize?												
v/c Ratio		0.11	1.25		0.85			0.16		0.87	0.75	0.14
Control Delay		38.1	175.4		68.1			36.2		74.3	56.1	37.4
Queue Delay		0.0	0.0		0.0			0.0		0.0	0.0	0.0
Total Delay		38.1	175.4		68.1			36.2		74.3	56.1	37.4
Queue Length 50th (m)		4.0	~97.2		52.5			7.6		47.3	53.2	7.9
Queue Length 95th (m)		11.0	#153.5		#95.6			17.3		#90.0	#88.4	17.6
Internal Link Dist (m)		102.7			229.8			295.5			298.1	208.5
Turn Bay Length (m)		55.0								30.0		
Base Capacity (vph)		209	287		294			281		257	346	323
Starvation Cap Reductn		0	0		0			0		0	0	0
Spillback Cap Reductn		0	0		0			0		0	0	0
Storage Cap Reductn		0	0		0			0		0	0	0
Reduced v/c Ratio		0.11	1.25		0.85			0.16		0.87	0.75	0.14

Cycle Length: 111.4 Actuated Cycle Length: 111.4

Offset: 0 (0%), Referenced to phase 2:NWTL and 6:SETL, Start of Green

Natural Cycle: 110 Control Type: Pretimed


~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

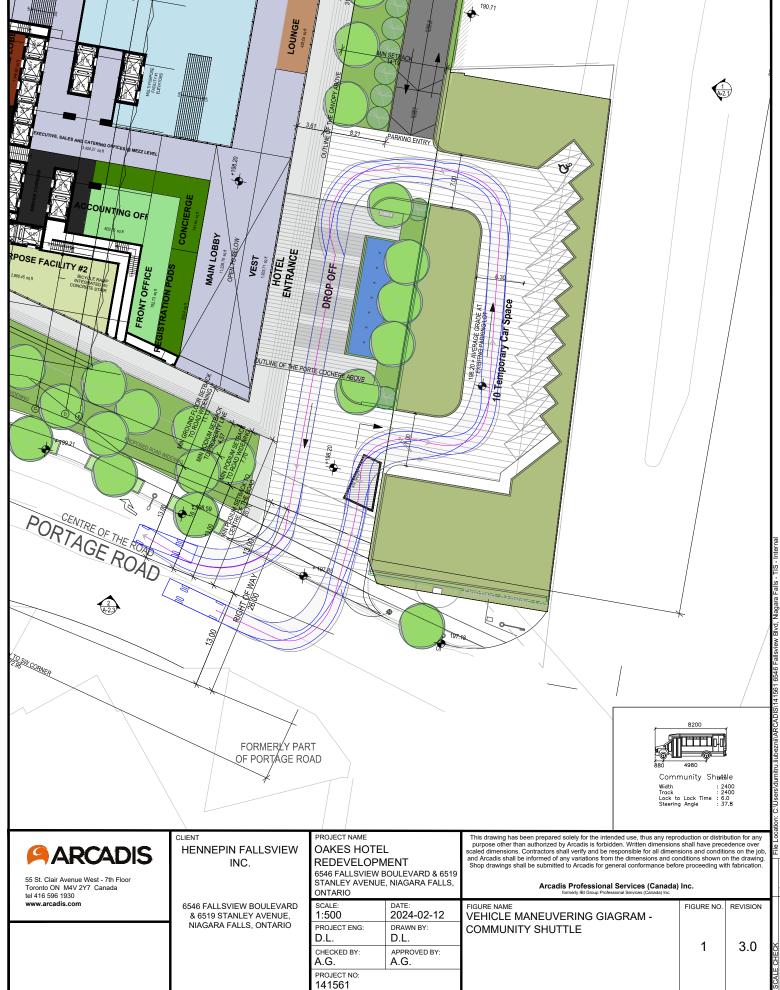
Splits and Phases: 78: Allandale Ave & Main St & Murray St

Lane Group	Ø12
Lanaconfigurations	
Traffic Volume (vph)	
Future Volume (vph)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	12
Permitted Phases	
Minimum Split (s)	21.0
Total Split (s)	21.0
Total Split (%)	19%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	

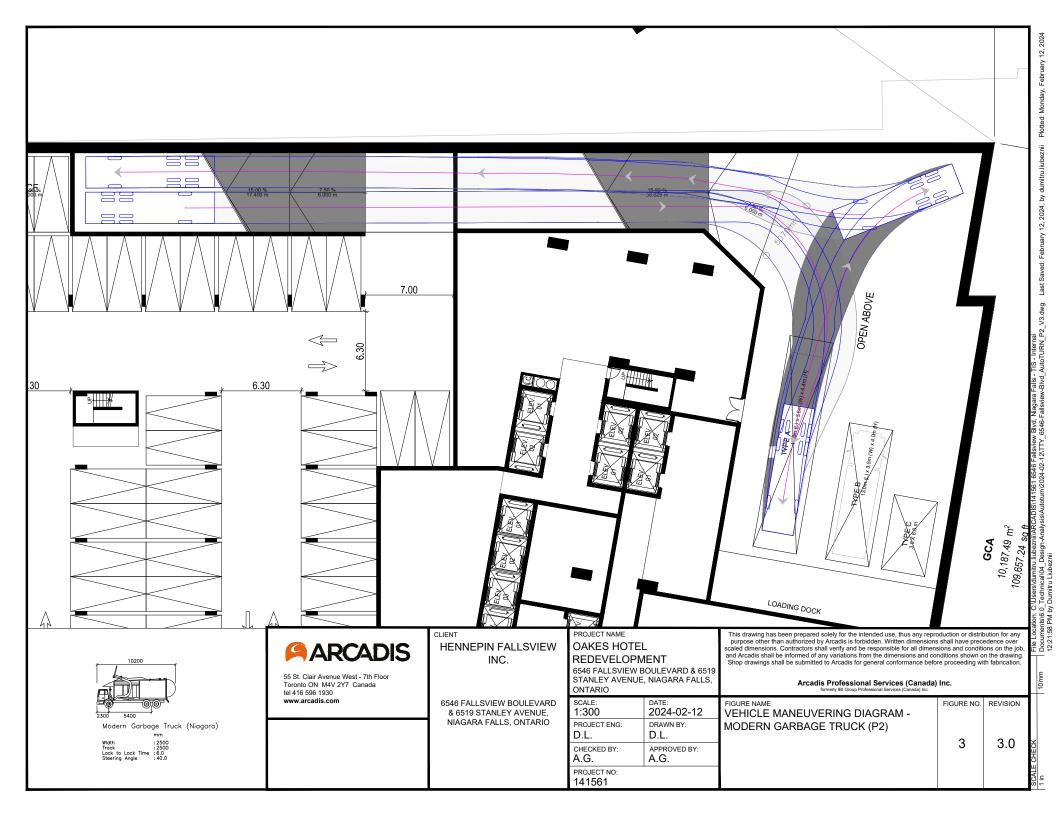
	4	•	*_	•	ኘ	†	/	ſ*	/	Ļ		≱ J
Movement	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		Ä	Ž.			4					4	
Traffic Volume (vph)	16	5	275	54	106	32	87	5	7	16	17	1
Future Volume (vph)	16	5	275	54	106	32	87	5	7	16	17	1
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8			6.8					6.8	
Lane Util. Factor		1.00	1.00			1.00					1.00	
Frt		1.00	0.85			0.95					1.00	
Flt Protected		0.95	1.00			0.98					0.97	
Satd. Flow (prot)		1612	1442			1569					1645	
Flt Permitted		0.62	1.00			0.83					0.75	
Satd. Flow (perm)		1050	1442			1334					1268	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	5	299	59	115	35	95	5	8	17	18	1
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	22	358	0	0	250	0	0	0	0	43	0
Turn Type	Perm	Perm	Perm		Perm	NA			Perm	Perm	NA	
Protected Phases						10					14	
Permitted Phases	4	4	4		10				14	14		
Actuated Green, G (s)		22.2	22.2			24.6					24.6	
Effective Green, g (s)		22.2	22.2			24.6					24.6	
Actuated g/C Ratio		0.20	0.20			0.22					0.22	
Clearance Time (s)		6.8	6.8			6.8					6.8	
Lane Grp Cap (vph)		209	287			294					280	
v/s Ratio Prot												
v/s Ratio Perm		0.02	c0.25			c0.19					0.03	
v/c Ratio		0.11	1.25			0.85					0.15	
Uniform Delay, d1		36.5	44.6			41.6					35.0	
Progression Factor		1.00	1.00			1.00					1.00	
Incremental Delay, d2		1.0	137.0			25.3					1.2	
Delay (s)		37.5	181.6			66.9					36.2	
Level of Service		D	F			Ε					D	
Approach Delay (s)		173.3				66.9					36.2	
Approach LOS		F				Е					D	
Intersection Summary												
HCM 2000 Control Delay			97.0	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ity ratio		0.77									
Actuated Cycle Length (s)			111.4		um of lost				22.4			
Intersection Capacity Utilizati	on		74.5%	IC	CU Level of	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

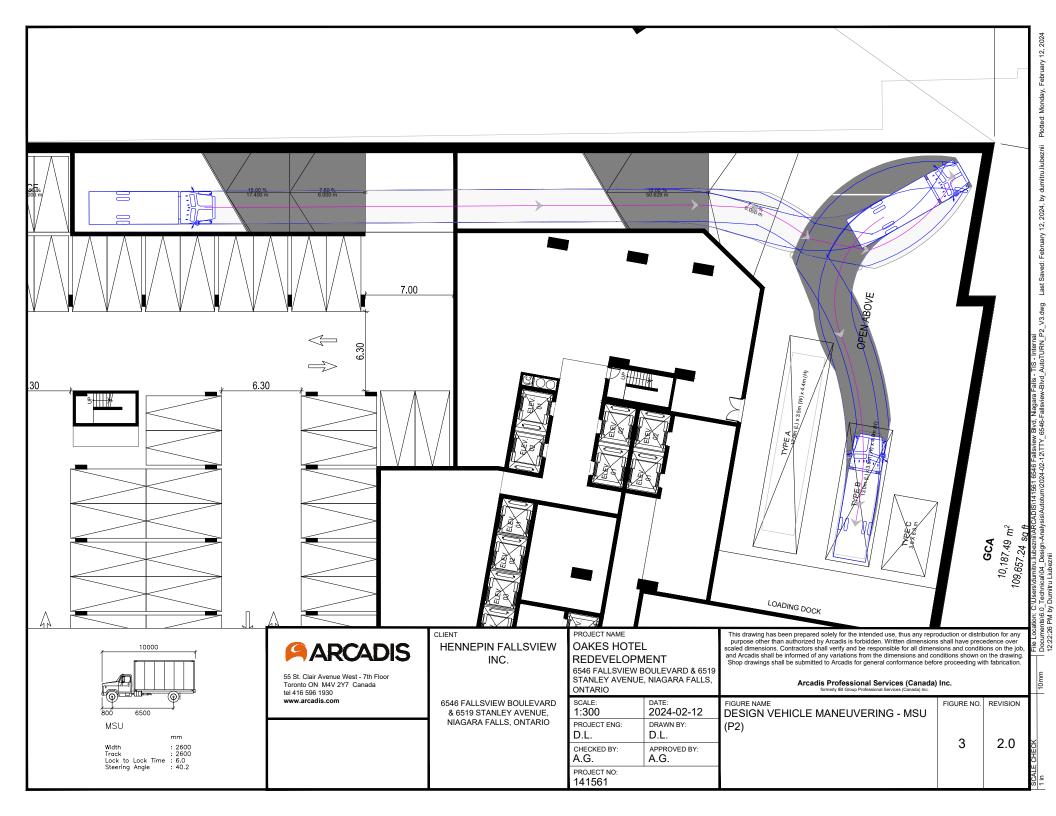
	•	\	×	>	×	*	4
Movement	SEL2	SEL	SET	SER	NWT	NWR	NWR2
Lane Configurations		ă	∱		4		
Traffic Volume (vph)	1	204	208	30	15	11	15
Future Volume (vph)	1	204	208	30	15	11	15
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)		6.8	6.8		6.8		
Lane Util. Factor		1.00	1.00		1.00		
Frt		1.00	0.98		0.91		
Flt Protected		0.95	1.00		1.00		
Satd. Flow (prot)		1612	1664		1551		
Flt Permitted		0.73	1.00		1.00		
Satd. Flow (perm)		1236	1664		1551		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	222	226	33	16	12	16
RTOR Reduction (vph)	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	223	259	0	44	0	0
Turn Type	Perm	Perm	NA		NA		
Protected Phases			6		2		
Permitted Phases	6	6					
Actuated Green, G (s)		23.2	23.2		23.2		
Effective Green, g (s)		23.2	23.2		23.2		
Actuated g/C Ratio		0.21	0.21		0.21		
Clearance Time (s)		6.8	6.8		6.8		
Lane Grp Cap (vph)		257	346		323		
v/s Ratio Prot			0.16		0.03		
v/s Ratio Perm		c0.18					
v/c Ratio		0.87	0.75		0.14		
Uniform Delay, d1		42.6	41.4		35.9		
Progression Factor		1.00	1.00		1.00		
Incremental Delay, d2		30.4	13.8		0.9		
Delay (s)		73.0	55.2		36.8		
Level of Service		Е	Ε		D		
Approach Delay (s)			63.4		36.8		
Approach LOS			Е		D		
Intersection Summary							

01-11-2024 TTW_Hennepin_2024-01-10-v0.2 Mitigated.syn


or: ranking radiity	TT thomas											
	٠	→	•	•	•	•	•	†	<i>></i>	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	1	14	0	198	16	149	0	68	175	50	0	1
Future Volume (Veh/h)	1	14	0	198	16	149	0	68	175	50	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	15	0	215	17	162	0	74	190	54	0	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)					124							
pX, platoon unblocked												
vC, conflicting volume	179			15			546	626	15	772	545	98
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	179			15			546	626	15	772	545	98
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			87			100	79	82	73	100	100
cM capacity (veh/h)	1409			1616			405	349	1070	198	389	963
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	16	394	264	55								
Volume Left	1	215	0	54								
Volume Right	0	162	190	1								
cSH	1409	1616	678	201								
Volume to Capacity	0.00	0.13	0.39	0.27								
Queue Length 95th (m)	0.0	3.5	14.0	8.1								
Control Delay (s)	0.5	4.6	13.7	29.6								
Lane LOS	Α	Α	В	D								_
Approach Delay (s)	0.5	4.6	13.7	29.6								
Approach LOS			В	D								
Intersection Summary												
Average Delay			9.7									
Intersection Capacity Utiliza	ation		58.3%	IC	U Level	of Service			В			
Analysis Period (min)			15									

•	•		•	•	ī	J			
		*	7	ı	*	•			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻ	7	ሻ	^	∱ ∱				
Traffic Volume (veh/h)	0	0	6	1064	1302	104			
Future Volume (Veh/h)	0	0	6	1064	1302	104			
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	0	7	1157	1415	113			
Pedestrians									
ane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type				None	None				
Median storage veh)				110110	110110				
Jpstream signal (m)				127	95				
oX, platoon unblocked	0.77	0.64	0.64	121	30				
C, conflicting volume	2064	764	1528						
C1, stage 1 conf vol	2001	701	1020						
vC2, stage 2 conf vol									
Cu, unblocked vol	320	0	716						
C, single (s)	6.8	6.9	4.1						
C, 2 stage (s)	0.0	0.5	7.1						
F (s)	3.5	3.3	2.2						
o0 queue free %	100	100	99						
cM capacity (veh/h)	497	703	576						
,									
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2		
/olume Total	0	0	7	578	578	943	585		
/olume Left	0	0	7	0	0	0	0		
/olume Right	0	0	0	0	0	0	113		
SH	1700	1700	576	1700	1700	1700	1700		
/olume to Capacity	0.00	0.00	0.01	0.34	0.34	0.55	0.34		
Queue Length 95th (m)	0.0	0.0	0.3	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	11.3	0.0	0.0	0.0	0.0		
Lane LOS	Α	Α	В						
Approach Delay (s)	0.0		0.1			0.0			
Approach LOS	Α								
ntersection Summary									
Average Delay			0.0						
ntersection Capacity Utiliza	ation		46.0%	IC	U Level	of Service		А	
Analysis Period (min)			15						


	•	→	—	•	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	41		WDIX	JDL	7 JUIC
Traffic Volume (veh/h)	160	4T 336	↑ ↑ 850	13	9	161
Future Volume (Veh/h)	160	336	850	13	9	161
Sign Control	100	Free	Free	13	Stop	101
Grade		0%	0%		0%	
	0.00			0.00		0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	174	365	924	14	10	175
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)		88	33			
pX, platoon unblocked						
vC, conflicting volume	938				1462	469
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	938				1462	469
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	76				89	68
cM capacity (veh/h)	739				93	546
	EB 1	EB 2	WB 1	WB 2		SB 2
Direction, Lane # Volume Total	296				SB 1	
		243	616	322	10	175
Volume Left	174	0	0	0	10	0
Volume Right	0	0	0	14	0	175
cSH	739	1700	1700	1700	93	546
Volume to Capacity	0.24	0.14	0.36	0.19	0.11	0.32
Queue Length 95th (m)	6.9	0.0	0.0	0.0	2.7	10.4
Control Delay (s)	7.9	0.0	0.0	0.0	48.2	14.7
Lane LOS	Α				Е	В
Approach Delay (s)	4.3		0.0		16.5	
Approach LOS					С	
Intersection Summary						
Average Delay			3.2			
Intersection Capacity Utiliz	ation		54.4%	IC	U Level o	of Service
Analysis Period (min)			15			


Appendix K

Vehicle Swept Path Analysis

File Location: C:USers/dumitu.JubezniiARCADIS/141561 6546 Fallsview Blvd, Nagara Falls - TIS - Internal Documents/6.0, Technical/04, Design-Analysis/Autotum/2024-02-12/TTY_6546-Fallsview-Blvd_AutoTURN_Ground_V3.dwg Last Saved: February 12, 2024, by dumitru.lubeznii Plotted: Monday, February 12, 2024 12:20:06 PM by Dumitru Lubeznii

