

J.H. COHOON ENGINEERING LIMITED

CONSULTING ENGINEERS 440 Hardy Road, Unit #1, Brantford, ON N3T 5L8 Tel: (519) 753-2656 Fax: (519) 753-4263 www.cohooneng.com

STACKED TOWNHOMES DEVELOPMENT

7301 LUNDY'S LANE

NIAGARA FALLS, ONTARIO

STORMWATER MANAGEMENT REPORT

PREPARED FOR:

RPDS INTEGRATED DESIGN FIRM

PREPARED BY:

J.H. COHOON ENGINEERING LIMITED

440 HARDY ROAD UNIT 1

BRANTFORD, ONTARIO, N3T 5L8

PHONE: 519 - 753-2656 FAX: 519 - 753-4263

PROJECT NO. 16364

OCTOBER 6, 2023

Professional Engineers Ontario

Table of Contents

Та	ble of	Contents	2
1	Intro	oduction	3
	1.1	Site Description	3
	1.2	Objectives	3
	1.3	Guidelines and Background Information	3
2	Pre-	Development Conditions	4
	2.1	Pre-Development Conditions Hydrology	4
3	Prop	posed Stormwater Management Plan	5
	3.1	Design Criteria	5
	3.2	Proposed Conditions Hydrology	5
	3.3	Water Quantity Control	6
	3.4	Major and Minor Flow Conveyance	7
	3.5	Water Quality Control	7
	3.6	Siltation and Erosion Control	8
4	Sun	ımary	9

List of Tables

Table 1: Pre-Development Peak Flow Rate Summary	4
Table 2: Underground Storage System Operating Characteristics	6
Table 3: Post-Development Peak Flow Rate Summary (With Controls)	7

Appendices

Ar	ppendix	A:	Dra	wings
- - P	penan	11.		• •• •• •• •• ••

- Appendix B: Stormwater Management Calculations
- Appendix C: Oil And Grit Separator Sizing

1 Introduction

J.H. Cohoon Engineering Limited has been retained to prepare the following Stormwater Management (SWM) report in support of the proposed stacked townhomes development at 7301 Lundy's Lane in the City of Niagara Falls.

1.1 Site Description

The subject site consists of 0.64 ha of Tourist Commercial zoned land located in the City of Niagara Falls. The site is bounded by Royal Manor Drive to the north, Tourist Commercial zoned property to the east, Lundy's Lane to the south and undeveloped buffer land separating the subject site from Queen Elizabeth Way to the west. The subject site previously functioned as a mini-putt course.

The proposed development consists of four residential stacked townhome buildings and one mixed use (residential and commercial) building. The proposed development includes 68 residential units, 4 commercial units, and surface parking for 73 vehicles. Access to the development will be provided via two driveway entrances at Royal Manor Drive and Lundy's Lane. Details of the proposed development have been provided on the attached Grading Plan (Drawing C-01) and Servicing Plan (Drawing C-02) in Appendix A.

1.2 Objectives

The purpose of this SWM report is to document the preliminary SWM strategy for the site, demonstrating the proposed development will not adversely affect local surface water conditions. The SWM report will evaluate the effect of the proposed development on local drainage conditions and where necessary, provide solutions to mitigate any adverse impacts.

1.3 Guidelines and Background Information

This report was prepared in accordance with the following municipal, provincial and agency guideline documents:

- The Ministry of Transportation Drainage Management Manual (1997)
- The Ministry of the Environment, Conservation and Parks (MECP, formerly known as the Ministry of Environment) SWM Practices Planning and Design Manual (2003);
- The CVC/TRCA Low Impact Development SWM Planning and Design Guide (2010); and
- Niagara Peninsula Conservation Authority Stormwater Management Guidelines (2010).

2 **Pre-Development Conditions**

Information regarding the existing topography, ground cover and drainage patterns was obtained through collection of detailed topographic survey data, record drawings / available plans and confirmed during site visits. Detailed topographic survey data was collected by The Larocque Group in July 2023.

Under pre-development conditions, the subject site consists of 0.64 ha of buildings, asphalt parking lot surface, artificial turf and lawn cover/landscaping. The majority of subject site slopes northwest to the west property line (Outlet #1), while the remaining area drains north to Lundy's Lane (Outlet #2).

2.1 Pre-Development Conditions Hydrology

The Rational Method has been used to generate pre-development peak flow rates for the subject site based on the City of Niagara Falls IDF parameters. Online mapping and aerial photography were used to determine pre-development catchment parameters. The site has been modelled as two catchments (Catchment 1 and Catchment 2) as discussed below:

- Catchment 1 is 0.64 ha in area, 59% impervious, and gently slopes at 1% toward the west property line at Outlet #1; and
- Catchment 2 is 0.01 ha in area, 44% impervious and steeply falls at 15% to Lundy's Lane at Outlet #2.

Peak flow rates have been assessed at each outlet, as shown on the Pre-Development Drainage Plan attached. Runoff coefficients of 0.64 and 0.53 have been assigned to Catchments 1 and 2 respectively based on runoff coefficient values for corresponding land uses provided in the Niagara Peninsula Conservation Authority Stormwater Management and Policies and Guidelines.

Peak flow rates for the 2-year through 100-year storm events have been calculated and summarized in Table 1 below, while detailed calculations are provided in Appendix B.

Design Steam Event	Peak Flow	Rate (m ³ /s)
Design Storm Event	Outlet #1	Outlet #2
2-year	0.075	0.001
5-year	0.096	0.001
10-year	0.121	0.002
25-year	0.139	0.002
100-year	0.190	0.003

Table 1: Pre-Development Peak Flow Rate Summary

3 Proposed Stormwater Management Plan

The proposed SWM Plan has been developed to address any potential adverse impacts from the proposed development to local surface water features and surface water quality.

The majority of the subject site (0.63 ha) will be graded to drain to a combination of underground storm sewer, storm structures, and an underground StormTank module system to provide water quantity controls before discharging to the Royal Manor Drive right of way. The 2-year through 100-year storm runoff will be collected, controlled and conveyed to the Royal Manor Drive storm sewer. An oil and grit separator unit will be implemented to provide quality controls.

The remaining 0.02 ha of the site is proposed to consist of rooftop area and landscaped area and will drain uncontrolled to Outlet #2 at the Lundy's Lane right of way.

In order to ensure that site drainage is not released to the undeveloped buffer land separating the subject site from Queen Elizabeth Way to the west of the site, no drainage will be directed to Outlet #1 in the post-development condition.

While there is no information readily available with respect to the subject site's soil characteristics, it is understood that the City of Niagara Falls encourages the use of Low Impact Development (LID) practices where feasible to manage storm water and minimize the impact of development. The proposed SWM plan will incorporate LID practices to promote infiltration where feasible.

3.1 Design Criteria

This SWM report is subject to the review and approval of the City of Niagara Falls. Applicable SWM design criteria for the proposed development are presented below:

- Water Quantity Control post-development peak flow rates must be controlled to predevelopment rates for rainfall events to ensure no adverse impacts for downstream landowners;
- Water Quality Control controls must be provided to satisfy the MECP SWM Practices Planning and Design Manual. Enhanced water quality control corresponding to 80% total suspended solids (TSS) removal is required; and
- Siltation and Erosion Control recommendations for a siltation and erosion control strategy during construction are required.

3.2 Proposed Conditions Hydrology

Details of the proposed site grading and overall SWM plan are provided on the Grading Plan (Drawing C-01) and Servicing Plan (Drawing C-02) included in Appendix A. A Post-Development Drainage Plan is also enclosed for reference.

The Rational Method has been used to generate anticipated post-development peak flow rates for the subject site based on the City of Niagara Falls IDF parameters. The site has been modelled as three catchments (Catchment 201, Catchment 98 and Catchment 99) for the purpose of determining post-development peak flows as discussed below:

- Catchment 201 consists of the storm sewer drainage areas 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 shown on the Post-Development Drainage Plan, totalling to 0.61 ha in area, 80% impervious, and is collected and controlled via the internal storm sewer and underground storage before discharging to the Royal Manor Drive storm sewer;
- Catchment 99 is 0.02 ha in area, 36% impervious and is released uncontrolled to the Royal Manor Drive right of way; and
- Catchment 98 is 0.02 ha in area, 61% impervious and is released uncontrolled to Lundy's Lane at Outlet #2.

3.3 Water Quantity Control

Water quantity controls for Catchment 201 will be provided via a combination of underground storm sewer, storm structures, and an underground StormTank module system. The total active storage volume provided is 47.22 m³ through the ST-2536 StormTank modules, the 600 mm dia. storm sewer and maintenance hole structure ST-3. The combined underground storage will be controlled by a 290 mm dia. orifice plate at the elevation of 194.61 m in maintenance hole structure ST-3.

The Modified Rational Method was used to determine the required storage volumes in order to maintain post-development peak flow rates to pre-development rates. Operating characteristics of the proposed SWM Facility including discharge rates, storage volumes and equivalent water surface elevations for the 2-year through 100-year design storm events are summarized in Table 2. Detailed supporting calculations and stage-storage-discharge tables are provided in Appendix B for reference.

Design Storm Event	Peak Flow Rate (m ³ /s)	Storage Volume Required (m ³)	Water Elevation (m)
2-year	0.073	10.0	194.91
5-year	0.091	15.2	194.99
10-year	0.110	21.6	195.10
25-year	0.126	27.7	195.21
100-year	0.165	44.1	195.54

Table 2: Underground Storage System Operating Characteristics

As shown, the maximum water surface elevation in the underground SWM Facility is 195.54 m under the 100-year design storm condition, which corresponds to a depth of 0.64 m below the lower patio elevation of proposed Building 'E'. Therefore, the lower patios of building 'E' will not experience ponding as a result of backwater conditions from the underground SWM Facility.

The Rational Method calculations do not account for the anticipated infiltration from the StormTank module system, and therefore the peak flow rates summarized in Table 2 are expected to be conservative.

Post-Development peak flow rates incorporating the proposed SWM controls are summarized in Table 3. Detailed supporting calculations are provided in Appendix B.

Design Storm	Pre-Developmen (m	t Peak Flow Rate ³ /s)	Post-Development (m ³ /	: Peak Flow Rate /s)
Event	Outlet #1	Outlet #2	To Royal Manor Drive	Outlet #2
2-year	0.075	0.001	0.075	0.002
5-year	0.096	0.001	0.094	0.003
10-year	0.121	0.002	0.113	0.004
25-year	0.139	0.002	0.130	0.004
100-year	0.190	0.003	0.169	0.006

Table 3: Post-Development Peak Flow Rate Summary (With Controls)

As shown, post-development peak flows to Royal Manor Drive are anticipated to be controlled to the pre-development peak flow rates released to Outlet #1. Peak flow rates to Outlet #2 are anticipated to increase under post-development, however it is noted that the increase is minimal $(0.003 \text{ m}^3/\text{s} \text{ under the } 100\text{-year storm event})$, which is not significant in the context of the total peak flow to Lundy's Lane.

3.4 Major and Minor Flow Conveyance

Part of the internal storm sewer network has been sized to function as storage in combination with StormTank modules to provide water quantity controls for the proposed development. The system has been designed to collect and control the 100-year design storm event runoff from the proposed development under typical operating conditions.

Under emergency conditions, where catch basin grates or maintenance hole grates are blocked, or the Regional storm event occurs, rooftop and parking lot runoff will be safely conveyed to the municipal ROW via the Royal Manor Drive driveway entrance. The overland flow route capacity was checked at this location, which represents the cross section where the greatest overland peak flow rate is expected to occur. This cross section conveys the 100-year uncontrolled peak flow of 0.23 m³/s from the upstream area at the depth of 0.04 m, which results in a maximum ponding depth of 0.12 m above maintenance hole ST3 located immediately upstream. Therefore, safe access and egress is provided into the parking lot, as the maximum allowable depth for safe vehicle passage is 0.30 m.

Detailed storm sewer design sheet and overland flow route calculations are provided in Appendix B.

3.5 Water Quality Control

Enhanced Level water quality control corresponding to 80% TSS removal is required for the proposed development.

Water quality controls will be provided for the 0.61 ha drainage area contributing to the underground SWM controls via a Canadian Environmental Verified Technology (CA ETV) certified oil and grit separator unit (Stormceptor EFO6 or approved equivalent), which has a corresponding TSS removal rate of up to 62% under the CA ETV particle distribution, and 92% under the fine particle distribution. Water quality controls will not be provided for the remaining 0.04 ha area consisting of Catchment 98 and Catchment 99.

A weighted average of the removal rates has been calculated to ensure that 80% TSS removal is provided for the overall development, per the calculation below:

$$\frac{0.92 \times Controlled Area + 0 \times Uncontrolled Area}{Total Area} = \frac{0.92 \times 0.61 + 0 \times 0.04}{0.65}$$
$$= 86\% Overall TSS Removal$$

As shown, the overall TSS removal for the development area is 86%, and therefore, water quality requirements for the site are satisfied.

3.6 Siltation and Erosion Control

A construction erosion and sediment control plan shall be implemented on this site for all construction activities, including earthworks, material stockpiling, pavement construction and grading operations to ensure no impact on the adjacent lands and or municipal storm sewer. The erosion control measures proposed include:

- Heavy duty siltation control fences to prevent transport of sediment to adjacent properties;
- Stone mud mat at the construction entrance from Royal Manor Drive; and
- Silt sacks installed in catch basin and maintenance hole structures to prevent sediment from entering the municipal storm sewer.

Regular inspection of control measures will be completed during construction and repairs made as necessary. Following the completion of construction, erosion control measures shall remain in place and maintained by the Contractor until vegetation cover is established.

Details of the siltation and erosion control plan are shown on the Siltation and Erosion Control Plan (Drawing C-05).

4 Summary

This SWM report demonstrates that the proposed development at 7301 Lundy's Lane, Niagara Falls will not adversely affect local surface water conditions.

Water quantity controls will be provided via a combination of underground storm sewer, storm structures, and a StormTank module system to provide water quantity controls before discharging to the Royal Manor Drive right of way. The 2-year through 100-year storm runoff will be collected, controlled and conveyed to the Royal Manor Drive storm sewer. An oil and grit separator unit will be implemented to provide quality controls.

The proposed SWM plan demonstrates that the proposed development will not negatively impact landowners adjacent to or downstream of the subject site. Siltation and erosion controls will be provided to mitigate erosion and sedimentation impacts during construction.

We trust this SWM report is sufficient to satisfy the requirements of the City of Niagara Falls.

Report prepared by:

J.H. COHOON ENGINEERING LIMITED

R.W. Phillips, P.Eng.

APPENDIX A: DRAWINGS

PRIMARY CONSULTANT & PROJECT MANAGER PRIMARY CONSULTANT PRIMARY CONSULTANT PRIMARY CONSULTANT	CONSULTING CIVIL ENGINEERS CONSULTING ENGINEERING LIMITED CONSULTING ENGINEERS 440 HARDY ROAD , UNIT #1 , BRANTFORD – ONTARIO , N3T 5L8 TEL. (519) 755–2656 FAX. (519) 755–4263 www.cohooneng.com	Concepter & Instrument of media multi-acceleration of the participation of the mediane multi-acceleration of the multi-acceleration of the multi-	DRAWN BY: K.P.B. DATE: OCT. 5/23 CHECKED BY: R.W.P. SCALE: 1:250 PROJECT NO.: PROJECT NO.: 16364 C-O1
T.B.M. No. 1 ELEV. = 201.63m (GEO) TOP OF SURVEY MONUMENT AT THE S.E. CORNER OF SUBJECT PROPERTY AS SHOWN. TOP OF SURVEY MONUMENT AT THE S.E. CORNER OF SUBJECT (GEO) TOP NUT OF FIRE HYDRANT ON THE NORTH SIDE OF ROYAL MANOR (GEO) TOP NUT OF FIRE HYDRANT ON THE NORTH SIDE OF ROYAL MANOR (GEO) DRIVE AS SHOWN. LECEND: CP NUT OF FIRE HYDRANT ON THE NORTH SIDE OF ROYAL MANOR (GEO) DRIVE AS SHOWN. EXISTING ELEVATIONS	200.00 200.00 PROPOSED ELEVATIONS PROPOSED SWALE ELEVATIONS PROPOSED SWALE ELEVATIONS PROPOSED SWALE ELEVATIONS CENERAL DRAINAGE PROPOSED RAINWATER LEADER PROPOSED HYDRO TRANSFORMER PROPOSED HYDRO TRANSFORMER PROPOSED LIGHT STANDARD PROPOSED OVERLAND FLOW ROUTE		DOLTOS DE LO COLOS
		TONDX'S LEX CONCETTE MEDINI TONDX'S LANDY	
VG BYLAWS TRUCTURES DESTALS E LOCATION. TO BE GOOSE-NECK' D TOWARDS	s are whicipated By The Fed	B SOL COL <	

 ... ALL LLEVATIONS SHOWN ARE METRIC.
 BUILDER/OWNER TO VERIFY COMPLANCE WITH ZONING (ie. SIDEYARDS, SETBACKS, REARYARDS ETC.)
 BUILDER TO VERIFY LOCATION OF ABOVE GROUND STRU (i.e. TRANSFORMERS, STREET LIGHTS, HYDRANTS, PEDES ETC.) DOES NOT CONFLICT WITH DRIVEWAY ENTRANCE L (i.e. TRANSFORMERS, STREET LIGHTS, HYDRANTS, PEDES ETC.) DOES NOT CONFLICT WITH DRIVEWAY ENTRANCE L DISCHARGED TO GRADE VIA A SUMP PUMP C/W A 'GOC STYLE DRAIN. ALL STORM OUTLETS TO BE DIRECTED T LANEWAYS IN FRONT OF UNIT.
 CONTRACTOR TO VERIFY LOCATION/ELEVATION OF EXISTI SEWERS PRIOR TO CONSTRUCTION.
 THE BUILDER/CONTRACTOR IS TO ENSURE FOOTINGS A FOUNDED ON SOIL CAPABLE OF SUPPORTING THE ANTI LOADS.
 BOUNDARY AND TOPO GRAPHIC SURVEY PROVIDED BY LARCOUL GROUP (DWG FILE NS2023-015-02 DATED JULY 11, 2023) NOTES: 1. All elevations shown are metric. 2. Builder/owner to verify complance with zc (i.e. Sideyards, setbacks, rearyards etc.) 3. Builder to verify location of above ground (i.e. transformers, street lights, hydrants, etc.) does not conflict with driveway entra

4

.

WAY ELIZABETH

95.507 V

57.96,

10. 961 ×

8

196.

PRIMARY CONSULTANT & PROJECT MANAGER PRIMARY CONSULTANT & PROJECT MANAGER PRIMARY CONSULTANT & PROJECT MANAGER Dregrad D D <thd< th=""> D D</thd<>	CONSULTING CIVIL ENGINEERS CONSULTING CIVIL ENGINEERS THE COHONON CONSULTING ENGINEERS THE COHONON CONSULTING ENGINEERS THE COHONON CONSULTING ENGINEERS THE COHONON CONSULTING ENGINEERS THE COHONON AND AND AND AND AND AND AND AND AND AN	No. Date Version Dwn. No. Date Version Dwn. PROJECT: T301 Lundy's Lane T301 Lundy's Lane T301 Lundy's Lane T301 Lundy's Lane T301 Lundy's Lane T301 Lundy's Lane T301 Lundy's Lane DEVELOPMENT T301 Lundy's Lane T301 Lundy's Lane T301 Lundy's Lane DRMING TILE: DRMING TILE: TABLERAMENT T301 Lundy's Lane DRAMING TILE: DRAMING TILE: DRAMING TILE: DRAMING TILE:	DRAWN BY: K.P.B. DATE: OCT. 5/23 CHECKED BY: R.W.P. SCALE: 1:250 PROJECT NO.: 16364 C-02
T.B.M. No. 1 ELEV. = 201.63m (GEO) TOP OF SURVEY MONUMENT AT THE S.E. CORNER OF SUBJECT PROPERTY AS SUBJECT PROPERTY AS SHOWN. T.B.M. No. 2 ELEV. = 198.07m (GEO) TOP NUT OF FIRE HYDRANT ON THE NORTH SIDE OF ROYAL MANOR DRIVE AS SHOWN. (GEO)	EX CONCRETE NEDMA	EX. CONCRETE MEDMA	OG/10/23
	ANE	ΓΩΝDΛ. Γ	
	de.589 Constrained A. S.Sommø A. S.S.Sommø A. S.S.Sommø A. S.S.Sommø A. S.S.Sommø A. S.S.Sommø A. S.S.Sommø A. S.S.S.	EX. C.S.W. EX. C.S.W. C.B.	

$ \mathbf{z} $	[TA	RY	SYST	'EM	
ES	RIPTI	No	1/6	Ň	VERTS
J Ø	P/C	ΗM	196.80±	EX. SW	194.00 194.05
лø	P/C	ΗW	196.90	ЧЧ	194.10 194.15
лø Л	P/C	ΗM	198.30	zш	194.32 194.40
лø Л	P/C	ΗW	197.95	×ω	194.48 194.60
20	P/C	ΗW	198.20	z≥v	194.74 194.80 194.80
Ja Ja	P/C	ΗМ	198.30	ш	195.09
лø	P/C	ΗМ	199.40	z≯	195.70 195.97
лø Л	P/C	ΗМ	199.30	шΟ	196.10 196.20
μø	P/C	ΗМ	200.60	۷N	196.90 197.38
а Ц	P/C	НΜ	200.40	ш	198.00

		WATE	RMAIN	CROS	SINGS	
LOCATION	STM. INV.	STM. OBV.	SAN. INV.	SAN. OBV.	W/M INV. AT CROSSING ONLY	W/W OBI CROSSING
F	194.66	195.26			193.90*	194.05
2	194.78	195.16			195.95	196.1(
3	195.61	195.86			196.65	196.8(
4			194.95	195.15	196.65	196.8(
DENOTES	LOCATION	WHERE WAT	ERMAIN IS	TO BE LC	WERED BELOW STO	DRM SEWER

	STORM SYS	TEM	
_	DESCRIPTION	1/C	INVERTS
	1.2mø P/C MH	196.90±	EX. 194.45 SW 194.50
	STORMCEPTOR MODEL EF06	197.05	NE 194.54 SW 194.60
	1.5mø P/C CB/MH	197.02	NE 194.61 NW 194.65 SW 194.70 SE 194.65
	0.6x0.6x1.67m P/C CB	196.20	SE 194.77
	1.2mø P/C CB/MH	197.80	NE 194.80 SW 195.11 S 195.00
	1.2mø P/C CB/MH	198.00	N 195.31 W 195.40 S 195.35
	1.2mø P/C CB/MH	197.95	E 195.51 SW 195.55
	0.6x0.6x1.83m P/C CB	198.65	NE 196.95 S 196.97
	0.6x0.6x1.67m P/C CB	199.00	N 197.48 S 197.50
	0.6x0.6x1.67m P/C CB	199.90	N 198.38
	1.2mø P/C CB/MH	199.10	N 196.02 SW 196.09 S 196.50
	1.2mø P/C CB/MH	199.10	NE 196.15 N 196.18 W 196.30
	0.6x0.6x1.98m P/C CB	200.10	N 198.30

PRIMARY CONSULTANT & PROJECT MANAGER INTEGRATED DESIGN FILAM INTEGRATED INTEGRATED - OKTORO - INTEGRATED INTEGRATED DESIGN FILAM INTEGRATED DESIGN FILAM INTEGRATED DESIGN FILAM INTEGRATED INTEGRATED - OKTORO - INTEGRATED INTE	Consider & fander must chock and worly all dimensions before occurrents for a constance for a constene for a constance for a constance for a co	DRAWN BY: K.P.B. DATE: OCT. 5/23 CHECKED BY: R.W.P. SCALE: AS SHOWN PROJECT NO.: 16364 C-03
 ROADWORKS. I: COMPARS A FILATION OPER SHALL BE DESIDED AND CONSTRUCTED SO AS TO COMPELY WARPELABLE LWAY. TO BE CONSTRUCT OF MAGARA FALLS. I: COMPARA A FILATION OPER SHALL BE CONSTRUCT OF MAGARA FALLS. CONTER ARSN MORTHONDS TO BE TOO STORD PIEC CAN ELERGY OF MAGARA FALLS. CONTER ARSN MORTHONDS TO BE TOO STORD PIEC CAN ELERGY AND DIATOR TO THE CAN FLACK AND STATUS TO THE CAN FLACK AND	 SANTARY & STORM SERVE A RATE proving and the service and the serv	

 WINTERNAINS:
 WINTERNAINS:
 WINTERNAINS:
 WINTERNAINS: DE MERTANACES PAULE DE PSIGNED AND CORFILICED AS TO COMPUT WITH THE CITY OF MUGAS. FALLS STANDARD BADOLOGY FOR 170% BELOW
 WINTERNAIS: DE MERTALID WITH A MINIMU BETH OF CORR OF 1.70% BELOW
 BERDANDS: DE RESTALID IN THE CITY OF MUGAS. FALLS STANDARD BADOLOGY FOR 2. TRENON
 WINTERNAIS: DE MERTALID MIT A MINIMU BETH OF CORR OF 1.70% BELOW
 WINTERNAIS: DE REPOLET-BI NA CORDINACE WITH AND ADDILUCIED UNDER THE PROFILIE
 WINTERNAIS: DE REPOLET-BI NA COLORADOR WITH AND ADDILUCIED UNDER THE STREAM ADDILUCIED TO THE STREAM FOR THE CARACTERIZATION FOR CLASH ADDIL.
 MINIMARE DETECTION
 HANNOWED FOR EXPRANDED TO THE STREAM FOR THAN AND ON LUSPED UNDER THE STREAM ADDILUCIED UNDER STREAM FOR THAN ADDILUCIED UNDER THE STREAM FOR THAN ADDILUCIED UNDER TH CONSTRUCTION OF SERVERS AND RELATED APPURTRANCES SHALL BE UNDERTAKEN AND THE ONTRADUCE WITH THE CURRENT STANDARDS OF THE CITY OF INACCORDANCE WITH THE CURRENT STANDARDS SHALL TAKE PRECEDIAG DRAWIGS COPEN). THE CONTRACTOR DRAWIGS COPEN). THE CURRENT STANDARDS SHALL NEE PROVING LAT THE OWNER AND THE APPOVED ST OF CONSTRUCTION DRAWINGS IS FUNNISHED AS THE PRESE TAVILABLE WITH THE LIDURESTANDING THAT THE OWNER AND THE AREN'S DISCLIMM ALL REPORDIBULTY FOR ITS ACCURACY AND/OR SUFFICIENCY.
 THE DIMENSIONS SHALL BE CHECKED AND VERIFIED IN THE FIELD BY THE CONTRACTOR STERONSIBILITY FOR ITS ACCURACY AND/OR SUFFICIENCY.
 RELOCATION OF EXISTING SERVICES AND/OR UTILITES SHALL BE CONSTRUCTION AND THE DRAWINGS OR AS DIRECTED BY THE ENDIRED.
 RELOCATION OF EXISTING SERVICES AND/OR UTILITES SHALL BE CONSTRUCTION IN THE DRAWINGS OR AS DIRECTED BY THE ENDIRED.
 RELOCATION OF EXISTING SERVICES AND VARIFIED IN THE FIELD BY THE CONTRACTOR STORMANDIAL PERMITS FOR CONSTRUCTION.
 RELOCATION OF EXISTING SERVICES AND/OR UTILITES SHALL BE CONFRUCTED AS SHOWN OT THE DRAWINGS OR AS DIRECTED BY THE ENDIRED.
 RELOCATION OF EXISTING SERVICES AND WITHIN APPROVAL FROM THE CITY OF INE ALL SKERES AND WITHOUT WRITTEN APPROVAL FROM THE CITY OF INCARA ALLS OF THE ENDIRED.
 NO SUBSTITUTIONS WILL BE ALLOWED WITH A APPROVAL FROM THE CITY OF INCARA ALLS OF THE ENDIRED.
 NO SUBSTITUTIONS WILL BE ALLOWED WITH A APPROVAL FROM THE CITY OF INCARA ALLS OF THE ENDIRED.
 NO SUBSTITUTIONS WILL BE ALLOWED WITH A APPROVAL FROM THE CITY OF INCARA ALLS OF THE ENDIRED.
 NO SUBSTITUTIONS WILL BE ALL DROVENTING AND STANDARDS OF ALL SKEWERS AND WITH A SELECT NATIVE MATERIAL APPROVED BY THE OLICINONS AND SERVICES AND NOTICE DS ON STANDAR

20.

- 2 EACH DUMP STRAPS

21.

- EXPANSION RESTRAINT (1/4" NYLON ROPE 2" FLAT WASHERS)

BAG

INSTALLATIO DETAIL

22.

.NIM.

LOTLINE .

SILT

DUMP

3:1 MAX.

<u>3:1 MAX.</u>

SWALE DETAIL

SILT SACK DETAIL

WATER METER CHAMBER NOTES:

GENERAL NOTES:

÷

ы.

ň

- THE WATER METER IS TO BE A NEPTUNE PRODUCT PURCHASED DIRECTLY FROM THE CITY OF WELLAND PUBLIC WORKS. NO BYPASS VALUE IS TO BE INCLUDED IN THE WATER METER CHAMBER ÷ сi
- THE RADIO TRANSMITTER FOR THE WATER METER IS TO BE INSTALLED EXTERNAL TO THE CHAMBER, WITH THE WIRE PASSED THROUGH A 50mm GALVANIZED STEEL CONDUIT, CORED THROUGH THE CHAMBER WALL. THE CONDUIT SHOULD TERMINATE IN THE BOULEVARD DIRECTLY WEST AND AS CLOSE TO THE CHAMBER AS POSSIBLE, MOUNTED TO A 4x4 POST. m

GENERAL LEGEND:

EXISTING ELEVATIONS	EXISTING SANITARY MANHOLE	EXISTING STORM MANHOLE	EXISTING CATCHBASIN	EXISTING HYDRO GUY POLE	EXISTING LIGHT STANDARD	EXISTING BELL PEDESTAL	EXISTING FIRE HYDRANT	EXISTING VALVE & BOX	EXISTING STANDARD IRON BAR	EXISTING MONUMENT	EXISTING DITCH	EXISTING CHAIN LINK FENCE	PROPOSED SANITARY MANHOLE	PROPOSED STORM MANHOLE	PROPOSED CATCHBASIN MANHOLE	PROPOSED CATCHBASIN	PROPOSED RAIN WATER LEADER (CONNECT TO U/G BUILDING STORM	PROPOSED FIRE HYDRANT & VALVE	PROPOSED VALVE & ROX
°°.	O S1	O ST1	CB	О НСР	O LS	🛛 PED	E-	X V&B	□ SIB	\bigtriangleup mon		× ×	● S1	ST1	🔳 ST1	CB	•	ф Н&∨	A&R

<u>1</u>0.

7.

ω

б.

5. 6.

4.

;

12.

75m FIRE HYDRANT COVERAGE

SERVICE)

<u>WATERMAINS:</u>

÷.

PROPOSED HYDRO TRANSFOF STANDARD PROPOSED LIGHT

) 🛛 🗖

ä

ň

4.

ъ.

SUBDRAIN NOTES: 1. PERFORATED CORNUC

- PERFORATED CORRUGATED POLYETHYLENE DRAINAGE PIPE SHALL MEET THE REQUIREMENTS OF O.P.S.S. 1840.

 - E FABRIC CONFORMING TO 0.P.S.S SECTEXTILE CLASS 1 WTH A OPENING SIZE OF 150 to 450 ATLL BE SUPPLIED ON ALL SECTI ATTC PIPF ATTC PIPF PIPE FILTER 1860 FOR (FILTRATION MICRONS SI
- - SNC LAY PERFOF DOWNWARD. ы
 - 4 v.
 - ю.
- Ň

- - BEDDING AND BACKFILL MATERIAL SHALL BE CONCRETE SAND MEETING THE GRADATION REQUIREMENTS OF O.P.S.S. 1002, FINE AGGR

7.

ø

6.

- CAP OPEN UPSTREAM ENDS OF PIPES. SUBDRAIN PIPES TO BE SET ON AT LEAST 0.5% GRADE DRAINING TO A POSITIVE FROST-FREE OUTLET.
- ATED PIPE WITH PERF

ര്

- 10. Ë.

- 12.

- 1. 1. 1.

15.

300

150mm DIA. PERFORATED CORRUGATED POLYETHYLENE DRAINAGE PIPE c/w FILTER B

TYPICAL SUBDRAIN DETAIL

16.

17.

18.

<u>1</u>9.

PRIMARY CONSULTANT & PROJECT MANAGER PRIMARY CONSULTANT PRIMARY CONSULTANT PRIMARY CONSULTANT	CONSULTING CIVIL ENGINEERS CONSULTING CIVIL ENGINEERS U.H. COHOON ENGINEERING CONSULTING ENGINEERS TH. (519) 753-4263 FMX. (519) 755-4263 ww.cohoneng.com	Contractor & trader must check and verify all dimensions before execute the work and must report discrepancies and should not scale or measure the drawings. All drawings, specifications and related documents are the copyright of the designer and must be returned upon request. All the work must be in compliance with ONTARIO BUILDING CODE. Reproduction of drawings, specifications and related documents in part or whole is forbidden without the written consent. This drawing is not to be used for construction until signed and stamped by the designer.	S		No. Date Version No. Date Version No. Date Version PROJECT: Version Dwn. PROJECT: Total Dwn.	DRAWING TITLE: SILTATION AND BILTATION AND EROSION CONTROL PLAN	DRAWN BY: K.P.B. DATE: OCT. 5/23 CHECKED BY: R.W.P. SCALE: 1:250 PROJECT NO.: 16364 C-05
LEGEND: 	 ALL ELEVATIONS & DIMENSIONS SHOWN ARE METRIC. ALL ELEVATIONS & DIMENSIONS SHOWN ARE METRIC. ELEVATIONS MAY VARY PENDING ENGINEERS APPROVAL. WHERE ONLY ONE ELEVATION IS SHOWN, EXISTING AND PROPOSED ELEVATIONS ARE THE SAME. WHERE ONLY ONE ELEVATION IS SHOWN, EXISTING AND PROPOSED ELEVATIONS ARE THE SAME. WHERE ONLY ONE ELEVATION AS RECOMPACING SHOWN ARE AND PROPOSED ILLUSTRATED ON THIS PLAN ARE CONDITIONS MAY REQUIRE MINIMUM REQUIREMENT. SITE CONDITIONS MAY REQUIRE ENDINEER DURING CONSTRUCTION. ALL SEE MEASURES WHICH MILL BE IDENTIFIED BY THE ENDINEER DURING CONSTRUCTION. ALL SACHERED IN PLACE PRIOR TO COMMENCEMENT OF CONSTRUCTION. ALL RAINWARE TO BE IN PLACE PRIOR TO COMMENCEMENT OF THE ENGINEER ARE THE SEC MEASURES TO BE REMOVED. ALL RAINWARE LEDRES RELE ON SONT CONTROL MEASURES RUNCER TO PROVIDE SILT SACKS ON TOP OF ALL EXISTING RUNCER IS ACHERED. CONTRACTOR TO PROVIDE SILT SACKS ON TOP OF ALL EXISTING RUNCER IS ACHERED. CONTRACTOR TO PROVIDE SILT SACKS ON TOP OF ALL EXISTING RUNCER IS ACHERED. CONTRACTOR TO PROVIDE SILT SACKS ON TOP OF ALL EXISTING RUNCER IS ACHERED. CONTRACTOR TO PROVIDE SILT FENCE AROUND PERIMETER OF RUNCER IS ACHERED. CONTRACTOR TO PROVIDE SILT FENCE AROUND PERIMETER OF RUNCER IS ACHERED. CONTRACTOR TO PROVIDE SILT FENCE AROUND PERIMETER OF RUNCER IS ACHERED. CONTRACTOR TO PROVIDE SILT FENCE AROUND PERIMETER OF RUNCER IS ACHERED. CONTRACTOR TO PROVIDE SILT FENCE AROUND PERIMETER OF RUNCER IS ACHERED. CONTRACTOR TO PROVIDE SILT FENCE AROUND PERIMETER OF RUNCER IS ACHERED. 	EX. CONCRETE MEDIAN		MEDIAN	EX. CONCRETE		OCHOSES AND
			2 ΓΥΛΕ	ΓΩΝDΤ			
				ех. с.с., м. ех. с.с., м. ех. с.с., м.	EX. GUARDRAIL	П g	

PRIMARY CONSULTANT & PROJECT MANAGER PRIMARY CONSULTANT & PROJECT MANAGER PRIMARY CONSULTANT & PROJECT MANAGER PRIMARY CONSULTANT PRIMARY CONSULTANT & PROJECT MANAGER PRIMARY CONSULTANT PRIMARY CONSULTANT PRIMARY CONSULTANT PRIMARY CONSULTANT PRIMARY CONSULTANT	CONSULTING CIVIL ENGINEERS Image: State of the state of t	Contractor & trader must check and verify all dimensions before execute the work and must report discrepancies and should not scale or measure the drawings. It drawings, specifications and related documents are the copyright of the designer and must be in compliance with ONTARIO BUILDING CODE. All the work must be in compliance with ONTARIO BUILDING CODE. Religner and must be in compliance with ONTARIO BUILDING CODE. The work must be used for construction until signed and stamped by the designer.	S N N		No. Date Version Dwn. PROJECT: Device	7301 Lundy's Lane City Of Niagara Falls Canada DRAWING TITLE:	PRE DEVELOPMENT STORM DRAINAGE AREAS	DRAWN BY: K.P.B. DATE: OCT. 5/23 CHECKED BY: R.W.P. SCALE: 1:250 PROJECT NO.: DRAWING NO.: 16364 C-06
						COLESSION	OG/10/23 MANUNAL PROPERTY OF/10/23 MANUNAL	LEGEND: STORM DRAINAGE BOUNDARY STORM DRAINAGE BOUNDARY 0.200
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	€1. (2. 102 102 €102 ★ × €102 ★	EX. CONCRETE MEDIAN	50. *00* *00* *			
	EX. 2255mmø EX. 2255mmø EX. 2255mmø EX. 3285mmø EX. 3385mmø EX. 33	NE NE NE NE NE NE NE NE NE NE	EX. C.S. M. S. STATIER C&C. C. C	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 	EX. C.B. 1/G=200.66 S. INV.=200.66 CB —		

PRIMARY CONSULTANT & PROJECT MANAGER PROJECT AND POINT & PROJECT MANAGER INTEGRATED DESIGN FIRM INTEGRATED F	CONSULTING ENGINERS TEL. (519) 753–2656 F.M. (519) 753–4265 ww.cohoonerg.com TEL. (519) 753–2656 F.M. (519) 753–4265 ww.cohoonerg.com TEL. (519) 753–2656 F.M. (519) 753–4265 ww.cohoonerg.com Contractor Strader must check and verify all dimensions before execute the ww.cohoonerg.com Contractor & trader must check and verify all dimensions before execute the work and must report discrepancies and should not scale or measure the drawings. specifications and related documents are the copyright of the drawings. specifications and related documents in part or whole is forbidden without the written consent.		Image: Normal State	City Of Niagara Falls Canada DRAWING TITLE: DRAWING TITLE: POST DEVELOPMENT STORM DRALOPMENT STORM DRALOPMENT AREAS DRAWI BY: K.P.B. DATE: OCT. 5/23	CHECKED BY: R.W.P. SCALE: 1:250 PROJECT NO.: 16364 C-07
				Debu.	STORM DRAINAGE BOUNDARY TORM DRAINAGE NUMBER 0.200 35.0%
	EX. CONCRETE MEDIAN		EX. CONCRETE MEDIAN		
	E Ex. C.B. N. INV.=199.007 W. INV.=199.007 W. INV.=199.007 W. INV.=1999.007 W.	EX. BARRIER C&C		200.66 − − − − − − − − − − − − − − − − − − −	
		EX. C.S.W.		EX. C.B. 17/6=200 S. INVI-1 CB I	

PRIMARY CONSULTANT & FROJECT MANGER PRIMARY CONSULTANT & FROJECT MANGER PRIMARY CONSULTANT & FROJECT MANGER PRIMARY CONSULTANT PRIMARY CONSULTANT PRIMARY CONSULTANT PRIMARY CONSULTANT PRIMARY CONSULTANT	CONSULTING CIVIL ENGINEERSCONSULTING ENGINEERING ENGINEERING ENGINEERING CONSULTING ENGINEERING CONSULTING ENGINEERING40 HRDY ROAD , UNIT #1 , BRANTFORD - ONTARIO , N3T 5LB (519) 753-4263 , www.cohoonang.com	Contractor & trader must check and verify all dimensions before execute the work and must report discrepancies and should not scale or measure the work and must report discrepancies and should not scale or measure the drawings, specifications and related documents are the copyright of the designer and must be in compliance with ONTARIO BUILDING CODE. All the work must be in compliance with ONTARIO BUILDING CODE. Reproduction of drawings, specifications and related documents in part or whole is forbidden without the written consent. This drawing is not to be used for construction until signed and stamped by the designer.		No. Date Version	PROJECT: PROPOSED MIXED USE DEVELOPMENT 7301 Lundy's Lane 7301 Lundy's Lane City Of Niagara Falls Canada DRAWNG TITE:	SANTARY SANTARY DRAINAGE AREAS DRAINAGE AREAS DRAINAGE AREAS DRAINAGE AREAS DRAINAGE AREAS DRAINAGE AREAS DRAIN BY: K.P.B. DRAIN BY: K.P.B. <t< th=""></t<>
						Image: Sector
		EX. CONCRETE MEDIAN	ODA, S LANE	EX. CONCRETE MEDIAN		
				RDRAIL D EX. C.J. F./L EX. C.J.W.	EX. CU	CB

PRIMARY CONSULTANT & PROJECT MANGER PRIMARY CONSULTANT & PROJECT MANGER PRIMARY CONSULTANT & PROJECT MANGER PRIMARY CONSULTANT & PROJECT MANAGER PRIMARY CONSULTANT & PROJECT MANAGER PRIMARY CONSULTANT PRIMARY CONSULTANT & PROJECT MANAGER PRIFE CONSTRUCTION CA, CALL: +1-647-285-7635 MEBSITE: WWW.RPDSTUDIO.CA, CALL: +1-647-285-7635 DELECTRICAL CONSULTION CA	CONSULTING CIVIL ENGINEERS CONSULTING CIVIL ENGINEERS J.H. COHOON ENGINEERING LIMITED CONSULTING ENGINEERS 440 HARDY ROAD , UNIT #1 , BRANTFORD - ONTARIO , N3T 5L8 TEL. (519) 753-2656 FAX. (519) 753-4263 www.cohooneng.com	Contractor & trader must check and verify all dimensions before execute the work and must report discrepancies and should not scale or measure the drawings. All drawings, specifications and related documents are the copyright of the designer and must be in compliance with ONTARIO BUILDING CODE. Reproduction of drawings, specifications and related documents in part or whole is forbidden without the written construction until signed and stamped by the designer.	S		No. Date Version Dwn. PROJECT: PROJECT: PROJECT PROJECT: PROJECT T301 Lundy's Lane 7301 Lundy's Lane 7301 Lundy's Lane City Of Niagara Falls Canada DRAMING TITE: DRAMING TITE:	DETAILS DRAWN BY: K.P.B. DATE: OCT. 5/23 DRAWN BY: K.P.B. DATE: OCT. 5/23 CHECKED BY: R.W.P. SCALE: AS SHOWN PROJECT NO.: DRAWING NO.: 16364 C-09 Constant C-09
						DE/TOFEED
EsiGNED WITH ILL FOR DESIGNED RECORD) MIN. 2-0" (610 mm)	MIN. 11-0" (305 mm) (100mm)	FINILITATION MENTAL CONTAINMENT ENVIRON MENTAL CONTAINMENT ENVIRON MENTAL CONTAINMENT ENVIRON MENTAL CONTAINMENT ENVIRON MENTAL CONTAINMENT MWW.TITANENVIRO.CA B66-327-1957 5 6 7 7 7 7 7 7 7 7 7 7 866-327-1957 866-327-1957 866-327-1957 866-327-1957 866-327-1957 866-327-1957 866-327-1957 866-327-1957 866-327-1957 861 801 802 803 804 804 804 804	CROSS SECTION NTS 20f 4	COLUMN INLET PIPE BY OTHERS) (BY OTHERS) BIPE DETAIL (BY OTHERS) DULE MAX. OPENING (BY OTHERS) SERIES INLET PIPE (BY OTHERS) DULLE MAX. OPENING (BY OTHERS) SERIES IST (BS 10) 30" (762.0) 2536 30" (762.0) 30" (762.0) 2536 30" (762.0) 30" (762.0) 2536 30" (762.0) 30" (762.0)	ENVIRONMENTAL CONTAINMENT 866-327-1957	
GETATED AREA TO BE C EQUATE COMPACTED FI AD RATING SIGN BY ENGINEER OF	VARIES VARIES (305 mm) (305 mm)	6 MM) SIDE PANEL 1'-6" (457.2 MM) [- (457.2 MM) [- (457.2 MM) [- LOCATIONS, LOCATIONS, LOCATIONS, LOCATIONS,	HE INFORMATION AND HE INFORMATION AND S AND REGULATIONS AND URER'S REQUIREMENTS. - SIDE PANEL - INLET PIPE (SEE DETAIL)			E E E E E E E E E E E E E E E E E E E

APPENDIX B: STORMWATER MANAGEMENT CALCULATIONS

J.H. COHOON ENGINEERING LIMITED **PRE-DEVELOPMENT CATCHMENTS** LAND USE BREAKDOWN

PROJECT: PROJECT #: DATE:

7301 Lundy's Lane 16364 October 6, 2023

Coefficient	1	2
		-
0.20	0.264	0.006
0.50		
0.65		
0.75		
0.75		
0.75		
0.90		
0.95	0.375	0.005
otal Area (ha)	0.640	0.011
ff Coefficient	0.64	0.53
	0.20 0.50 0.65 0.75 0.75 0.75 0.90 0.95 tal Area (ha) f Coefficient	0.20 0.264 0.50 0.65 0.75 0.75 0.75 0.75 0.75 0.75 0.90 0.375 tal Area (ha) 0.640 f Coefficient 0.64

Runoff Coefficient vaules per Niagara Peninsula Conservation Authority Stormwater Management Policies and Gudelines

Time of Concentration Calculation Parameters	101	102
Calculation Method	Bransby- Williams	Bransby- Williams
Catchment Area (ha)	0.6395	0.011
Catchment Length (m)	52.4	12.6
Slope (%)	0.076	0.15
Time of Concentration (min)	2.08	0.66

Where Time of Concentration is calculated as less than 10 minutes, 10 minutes has been used in Rational Method Calculations.

J.H. COHOON ENGINEERING LIMITED POST-DEVELOPMENT CATCHMENTS LAND USE BREAKDOWN

PROJECT:7301 Lundy's LanePROJECT #:16364DATE:October 6, 2023

From Post-Development Drainage Plan:

Catchment ID	3	4	5	6	7	8	9	10	11	12	13	98	99
Area	0.093	0.086	0.029	0.069	0.078	0.008	0.037	0.029	0.054	0.068	0.057	0.020	0.023
% Impervious	93%	47%	100%	84%	100%	60%	64%	61%	93%	73%	89%	61%	36%

To simplify the analysis, Catchments 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 have been combined and defined as Catchment 201 for the purpose of determining major peak flows and required SWM Controls.

Area Description	Runoff		Land Use Areas					
Area Description	Coefficient	201	98	99				
Parks/Open Space	0.20	0.119	0.008	0.015				
Low Density Residential	0.50							
Medium Density Residential	0.65							
High Density Residential	0.75							
Institutional	0.75							
Industrial	0.75							
Commercial	0.90							
Paved Areas	0.95	0.489	0.012	0.008				
Т	otal Area (ha)	0.608	0.020	0.023				
Composite Runo	off Coefficient	0.80	0.66	0.47				

Runoff Coefficient vaules per Niagara Peninsula Conservation Authority Stormwater Management Policies and Gudelines

J.H. COHOON ENGINEERING LIMITED MODIFIED RATIONAL CALCULATION

PROJECT: PROJECT #: DATE:

7301 Lundy's Lane 16364 06-Oct-23

CITY OF NIAGARA FALLS IDF PARAMETERS									
Design Storm	2YR	5YR	10YR	25YR	100YR				
A	521.97	719.5	577.93	1020.69	1264.57				
В	5.280	6.340	2.483	7.290	7.720				
C	0.7588	0.7687	0.669	0.779	0.7814				

PRE-DEVELOPMENT ANALYSIS

Catchment ID:	1
Catchment Area (ha):	0.64
Runoff Coefficient:	0.64
Time of Concentration (min):	10

RATIONAL METHOD CALCULATION (Q = CIA/360)

n /s)
)75
)96
121
139
190

POST-DEVELOPMENT ANALYSIS Controlled

201
0.61
0.80
10

RATIONAL METHOD CALCULATION (Q = CIA/360)

olled		i (mm/hr)	С	Q (m³/s)
201	2YR	65.94	0.80	0.089
0.61	5YR	84.02	0.80	0.114
0.80	10YR	106.77	0.80	0.145
10	25YR	110.83	0.88	0.165
	100YR	133.78	1.00	0.226

Unco	ntrolled		i (mm/hr)	С	Q (m³/s)
Catchment ID:	99	2YR	65.94	0.47	0.002
Catchment Area (ha):	0.02	5YR	84.02	0.47	0.003
Runoff Coefficient:	0.47	10YR	106.77	0.47	0.003
Time of Concentration (min):	10	25YR	110.83	0.51	0.004
		100YR	133.78	0.58	0.005

PEAK RUNOFF RATE SUMMARY

Storm	$Q_{EXISTING}$	Q _{NO CONTROLS}	QUNCONTROLLED	Q _{CONTROLLED}	Q_{TOTAL}	
2YR	0.075	0.091	0.002	0.073	0.075	m³/s
5YR	0.096	0.117	0.003	0.091	0.094	m³/s
10YR	0.121	0.148	0.003	0.110	0.113	m³/s
25YR	0.139	0.169	0.004	0.126	0.130	m³/s
100YR	0.190	0.231	0.005	0.165	0.169	m³/s

REQUIRED STORAGE VOLUMES (m^3) - **MODIFIED RATIONAL METHOD CALCULATION** $(V_n = Q_n \times D - Q_n \times ((D + T_n)/2))$

(-pp					
Dur (min)	2YR	5YR	10YR	25YR	100YR
5	3.3	4.3	11.7	8.1	13.8
10	9.7	13.7	20.9	23.7	36.9
15	10.0	15.2	21.6	27.7	44.1
20	7.3	12.7	18.3	25.8	43.1
25	2.9	7.9	12.7	20.3	37.2
30	-2.6	1.6	5.6	12.5	28.0

J.H. COHOON ENGINEERING LIMITED MODIFIED RATIONAL CALCULATION

PROJECT: PROJECT #: DATE:

7301 Lundy's Lane 16364 45205

CITY OF NIAGARA FALLS IDF PARAMETERS

Design Storm	2YR	5YR	10YR	25YR	100YR
A	521.97	719.5	577.93	1020.69	1264.57
В	5.28	6.34	2.483	7.29	7.72
C	0.7588	0.7687	0.669	0.779	0.7814

PRE-DEVELOPMENT ANALYSIS

Catchment ID:	2
Catchment Area (ha):	0.01
Runoff Coefficient:	0.53
Time of Concentration (min):	10.0

RATIONAL METHOD CALCULATION (Q = 0.002778CIA)

r) C	Q (m³/s)
0.53	0.001
0.53	0.001
0.53	0.002
0.58	0.002
0.66	0.003
	r) C 0.53 0.53 0.53 0.58 0.66

POST-DEVELOPMENT ANALYSIS

ntrolled
98
0.02
0.66
10

PEAK RUNOFF RATE SUMMARY

Storm	QEXISTING	Q_{98}	
2YR	0.001	0.002	
5YR	0.001	0.003	
10YR	0.002	0.004	
25YR	0.002	0.004	
100YR	0.003	0.006	

RATIONAL METHOD CALCULATION (Q = 0.002778CIA)

	i (mm/hr)	С	Q (m³/s)
2YR	65.94	0.66	0.002
5YR	84.02	0.66	0.003
10YR	106.77	0.66	0.004
25YR	110.83	0.72	0.004
100YR	133.78	0.82	0.006

m³/s

m³/s

m³/s

m³/s

m³/s

Q_{TOTAL} 0.002

0.003

0.004

0.004

0.006

J.H. COHOON ENGINEERING LIMITED SWM FACILITY VOLUME TABLES

STORMTANK MODULE ST-36

Leveling Stone Bottom Elev (m)	194.5784
Module Invert (m)	194.6800
Top of Module Elev (m)	195.5944
Top of Stone Backfill (m)	195.8992
Clear Stone Void Ratio	0.40
Module Void Ratio	0.97
Outlet Elevation (m)	194.76
Stone Area (m²)	59.179
Module Area (m ²)	48.495

PROJECT:	7301 Lundy's Lane, Niagara Falls
PROJECT #:	16364
DATE:	06-Oct-23

STORM SEWERS

ID	TANK-ST3
Diameter (m)	0.600
U/S INV	194.73
D/S INV	194.65
AVG INV	194.69
Length (m)	19.8

STRUCTURES

ID	ST3
T/G	197.02
INV	194.60
Diameter (m)	1.5
Area (m²)	1.77

		STORMTANK MODULE ST-36					
Elevation	Depth	Stone Area	Module	Incremental	Incremental	Accum.	Accum.
			Area	Stone Vol.	Module Vol.	Stone Vol.	Module Vol.
m	m	m²	m²	m ³	m ³	m³	m ³
194.58	0.00	59.18	0.00	0.00	0.00	0.00	0.00
194.60	0.02	59.18	0.00	0.51	0.00	0.51	0.00
194.68	0.10	59.18	48.50	1.89	0.00	2.41	0.00
194.76	0.18	10.68	48.50	0.33	3.67	2.74	3.67
194.86	0.28	10.68	48.50	0.43	4.70	3.17	8.37
194.96	0.38	10.68	48.50	0.43	4.70	3.59	13.08
195.06	0.48	10.68	48.50	0.43	4.70	4.02	17.78
195.16	0.58	10.68	48.50	0.43	4.70	4.45	22.49
195.26	0.68	10.68	48.50	0.43	4.70	4.88	27.19
195.36	0.78	10.68	48.50	0.43	4.70	5.30	31.89
195.46	0.88	10.68	48.50	0.43	4.70	5.73	36.60
195.56	0.98	10.68	48.50	0.43	4.70	6.16	41.30
195.59	1.02	10.68	48.50	0.16	1.71	6.31	43.01
195.69	1.12	59.18	0.00	2.37	0.00	8.68	43.01
195.79	1.22	59.18	0.00	2.37	0.00	11.05	43.01
195.90	1.32	59.18	0.00	2.48	0.00	13.53	43.01

SEWER & S1		
TANK-ST3	ST3	
m ³	m³	
0.00	0.00	
0.00	0.00	
0.00	0.14	
0.42	0.28	
1.71	0.46	
3.12	0.63	
4.29	0.81	
4.77	0.99	
5.60	1.16	
5.60	1.34	
5.60	1.52	
5.60	1.69	
5.60	1.76	
5.60	1.93	
5.60	2.11	
5.60	2.30	

TOTAL ACTIVE STORAGE m³ 0.00 0.14 0.70 6.87 13.16 19.21 24.58 30.28 35.16 40.04 44.92 46.70 46.88 47.05 47.24

Note: Total Active Storage Volume does not include stone storage to be conservative.

J.H. COHOON ENGINEERING LIMITED SWM FACILITY DISCHARGE TABLE

PROJECT:	7301 Lundy's Lane, Niagara Falls
PROJECT #:	16364
DATE:	06-Oct-23

OUTLET #1					
290 mm Orifice Plate					
Diameter = 290 mm					
Area =	0.066	m ²			
Orifice C = 0.63					
Invert = 194.60 m					

Orifice Equation

 $Q = C \times A \times (2gH)^{0.5}$

where

Q = flow rate (m^3/s)

C = constant

A = area of opening (m^2)

H = net head on the orifice

g = acceleration due to gravity (9.81 m/s²)

Elevation	OUTLET #1		
	Head	Discharge	DISCHARGE
m	m	m³/s	m³/s
194.60	0.00	0.0000	0.0000
194.68	0.00	0.0000	0.0000
194.76	0.01	0.0210	0.0210
194.86	0.11	0.0620	0.0620
194.96	0.21	0.0851	0.0851
195.06	0.31	0.1031	0.1031
195.16	0.41	0.1185	0.1185
195.26	0.51	0.1320	0.1320
195.36	0.61	0.1443	0.1443
195.46	0.71	0.1556	0.1556
195.56	0.81	0.1662	0.1662
195.59	0.85	0.1699	0.1699
195.69	0.95	0.1796	0.1796
195.79	1.05	0.1888	0.1888
195.90	1.15	0.1980	0.1980

J.H. COHOON ENGINEERING LIMITED SWM FACILITY SUMMARY TABLES

PROJECT:	7301 Lundy's Lane, Niagara Falls
PROJECT #:	16364
DATE:	06-Oct-23

STAGE STORAGE DISCHARGE TABLE

Elevation	Active Depth	Total Discharge	Active Storage Volume
m	m	m³/s	m³
194.60	0.00	0.0000	0.00
194.68	0.08	0.0000	0.14
194.76	0.16	0.0210	0.70
194.86	0.26	0.0620	6.87
194.96	0.36	0.0851	13.16
195.06	0.46	0.1031	19.21
195.16	0.56	0.1185	24.58
195.26	0.66	0.1320	30.28
195.36	0.76	0.1443	35.16
195.46	0.86	0.1556	40.04
195.56	0.96	0.1662	44.92
195.59	0.99	0.1699	46.70
195.69	1.09	0.1796	46.88
195.79	1.19	0.1888	47.05
195.90	1.30	0.1980	47.24

SWMF OPERATION CHARACTERISTICS

Storm Event	Peak Flow	Storage Provided	Elevation
	m³/s	m°	m
2-year	0.073	10.0	194.91
5-year	0.091	15.2	194.99
10-year	0.110	21.6	195.10
25-year	0.126	27.7	195.21
100-year	0.165	44.1	195.54

J.H. COHOON ENGINEERING LIMITED STORM SEWER DESIGN SHEET

PROJECT: PROJECT #: DATE:

x runoff Ficient	LATIVE (ha)	_ATIVE AREA JSTED FF :ICIENT	JF ENTRATIO I)	ALL SITY ")	FLOW	ING'S HNESS FICIENT	R LENGTH	R SLOPE	AL SEWER ETER (mm)	FLOW CITY (m/s)	
	100	1.25						100	1264.570	7.720	
	50 1.2				10	mins		50			
	25 1.1				Time of Co	oncentratio	'n	25	1020.690	7.290	
	10	1			PVC	0.013		10	577.930	2.483	
	Year	Adj. F	actor		Concrete 0.013			5	719.500	6.340	
	Runoff Co	pefficient Ad	djustment	-	CSP	0.024		2	521.970	5.280	
	City of Nia	igara Falls			Pipe	Value		Year	A	В	
	Municipal	lity		_	Manning's Coefficient			IDF Curve Coefficients			

STREET NAME	AREA ID	FROM MAINTENANCE HOLE	TO MAINTENANCE HOLE	AREA (ha)	5-YEAR RUNOFF COEFFICIENT	DESIGN STORM (YEAR)	ADJUSTED RUNOFF COEFFICIENT	AREA X RUNOFF COEFFICIENT	CUMULATIVE AREA (ha)	CUMULATIVE AREA x ADJUSTED RUNOFF COEFFICIENT	TIME OF CONCENTRATIO N (min)	RAINFALL INTENSITY (mm/hr)	PEAK FLOW (m ³ /s)	MANNING'S ROUGHNESS COEFFICIENT	SEWER LENGTH (m)	SEWER SLOPE (%)	ACTUAL SEWER DIAMETER (mm)	FULL FLOW VELOCITY (m/s)	FULL FLOW CAPACITY (m ³ /s)	ACTUAL VELOCITY (m/s)	TRAVEL TIME (min)	CALCULATED PIPE DIAMETER (mm)	PERCENTAGE OF FULL FLOW CAPACITY (%)	TOTAL TRAVEL TIME (min)
7301 Lundy's Lane	13	ST13	ST11	0.06	0.87	100	1.00	0.06	0.057	0.06	10.00	133.78	0.021	0.013	25.3	7.1%	250	3.23	0.158	2.13	0.20	118	13%	10.20
7301 Lundy's Lane	12	ST12	ST11	0.07	0.75	100	0.94	0.06	0.07	0.06	10.00	133.78	0.024	0.013	15.9	0.4%	250	0.77	0.038	0.76	0.35	210	63%	10.35
7301 Lundy's Lane	11	ST11	ST6	0.05	0.90	100	1.00	0.05	0.18	0.17	10.20	132.63	0.064	0.013	30.6	2.2%	250	1.80	0.088	1.80	0.28	222	73%	10.48
7301 Lundy's Lane	10	ST10	ST9	0.03	0.66	100	0.83	0.02	0.03	0.02	10.00	133.78	0.009	0.013	25.2	3.5%	250	2.25	0.110	1.29	0.32	97	8%	10.32
7301 Lundy's Lane	9	ST9	ST8	0.04	0.68	100	0.85	0.03	0.07	0.06	10.32	131.89	0.020	0.013	20.7	2.5%	250	1.90	0.093	1.42	0.24	141	22%	10.57
7301 Lundy's Lane	8	ST8	ST7	0.01	0.65	100	0.81	0.01	0.07	0.06	10.57	130.53	0.022	0.013	19.3	7.3%	250	3.26	0.160	2.18	0.15	120	14%	10.71
7301 Lundy's Lane	7	ST7	ST6	0.08	0.95	100	1.00	0.08	0.15	0.14	10.71	129.71	0.050	0.013	21.5	0.5%	300	0.97	0.068	0.97	0.37	267	74%	11.09
7301 Lundy's Lane	6	ST6	ST5	0.07	0.83	100	1.00	0.07	0.40	0.38	10.48	131.01	0.140	0.013	20.4	1.5%	375	1.94	0.215	1.94	0.17	319	65%	10.66
7301 Lundy's Lane	5	ST5	TANK	0.03	0.95	100	1.00	0.03	0.43	0.41	10.66	130.03	0.149	0.013	6.6	1.0%	375	1.59	0.175	1.59	0.07	353	85%	10.73
7301 Lundy's Lane	N/A	TANK	ST3	0.00	0.95	100	1.00	0.00	0.43	0.41	10.73	129.65	0.149	0.013	18.6	0.4%	600	1.37	0.388	1.19	0.26	418	38%	10.99
7301 Lundy's Lane	4	ST4	ST3	0.09	0.56	100	0.70	0.06	0.09	0.06	10.00	133.78	0.022	0.013	30.8	0.4%	250	0.77	0.038	0.75	0.69	206	59%	10.69
7301 Lundy's Lane	3	ST3	ST2	0.09	0.90	100	1.00	0.09	0.61	0.57	10.99	128.24	0.202											
Note: All Storm pipes u	upstream o	f ST3 have	been sized l	to collect ar	nd convey t	he 100-yea	r storm even	t in order to	provide S	WM Controls	s for the sul	oject site. N	laintenance	e hole struct	ure ST3 is i	fitted with a	290 mm dia	a. orifice pla	ate to contro	l peak flow	rates to pre	-developme	nt levels.	

Peak Flow: $Q = \frac{CiA}{360}$

$$i = \frac{A}{(tc+B)^C}$$

В	С
5.280	0.759
6.340	0.769
2.483	0.669
7.290	0.779
7.720	0.781

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

16364 - Overland Flow Route @ Royal Manor Drive Driveway Entrance

User-defined		Highlighted	
Invert Elev (m)	= 197.4800	Depth (m)	= 0.0396
Slope (%)	= 3.0000	Q (cms)	= 0.230
N-Value	= 0.013	Area (sqm)	= 0.2044
		Velocity (m/s)	= 1.1251
Calculations		Wetted Perim (m)	= 6.9394
Compute by:	Known Q	Crit Depth, Yc (m)	= 0.0610
Known Q (cms)	= 0.2300	Top Width (m)	= 6.9000
		EGL (m)	= 0.1042

(Sta, El, n)-(Sta, El, n)...

(0.0000, 197.6500)-(0.1000, 197.6500, 0.013)-(0.1000, 197.5000, 0.013)-(3.5500, 197.4800, 0.013)-(7.0000, 197.5000, 0.013)-(7.0000, 197.6500, 0.013)-(7.1000, 1

Known Q = Uncontrolled 100-year peak flow rate from Catchment 201, calculated using Rational Method

APPENDIX C: OIL AND GRIT SEPARATOR SIZING

City: City of Niagara Falls Project Number: 16364 Nearest Rainfall Station: ST CATHARINES AP Designer Name: Nicole Foris Climate Station Id: 6137287 Designer Company: J.H. Cohoon Engineering Limited Years of Rainfall Data: 33 33 Designer Email: nforis@cohooneng.com Site Name: 7301 Lundy's Lane (CA ETV) Designer Phone: 519-753-2656 EOR Name: Drainage Area (ha): 0.61 EOR Company: EOR Company: EOR Company: Runoff Coefficient 'c': 0.80 EOR Phone: Provided (R) Particle Size Distribution: CA ETV CA ETV Net Annual Sediment (TSS) Load Reduction Sizing Summary Estimated Water Quality Runoff Volume Capture (%): 90.00 Stormceptor TSS Removal Model Oil / Fuel Spill Risk Site? Yes Yes EFO4 55 Upstream Flow Control? Yes EFO6 62 EFO8 65 Influent TSS Concentration (mg/L): 200 EFO10 68 EFO10 68	Province:	Ontario	P	roject Name:	7301 Lundy's Lane		
Nearest Rainfall Station: ST CATHARINES AP Designer Name: Nicole Foris Climate Station Id: 6137287 J.H. Cohoon Engineering Limited Years of Rainfall Data: 33 J.H. Cohoon Engineering Limited Designer Company: J.H. Cohoon Engineering Limited Designer Phone: 519-753-2656 Site Name: 7301 Lundy's Lane (CA ETV) Drainage Area (ha): 0.61 Runoff Coefficient 'c': 0.80 Particle Size Distribution: CA ETV Target TSS Removal (%): 60.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 15.17 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? Yes Upstream Orifice Control Flow Rate to Stormceptor (L/s): 170.00 Peak Conveyance (maximum) Flow Rate (L/s): 170.00 EFO8 65 EFO10 68 EFO10 68	City:	City of Niagara Falls	P	roject Number:	16364		
Climate Station Id: 6137287 Jesigner Company: J.H. Cohoon Engineering Limited Years of Rainfall Data: 33 Jesigner Company: J.H. Cohoon Engineering Limited Designer Email: nforts@cohooneng.com Designer Phone: 519-753-2656 Site Name: 7301 Lundy's Lane (CA ETV) EOR Name: EOR Name: Drainage Area (ha): 0.61 EOR Company: EOR Remail: Runoff Coefficient 'c': 0.80 EOR Email: EOR Phone: Particle Size Distribution: CA ETV CA ETV EOR Phone: Particle Size Distribution: CA ETV Stormceptor Sizing Summary Estimated Water Quality Runoff Volume Capture (%): 90.00 Sizing Summary Estimated Water Quality Flow Rate (L/s): 15.17 Stormceptor TSS Removal Oil / Fuel Spill Risk Site? Yes Ves EFO4 55 Upstream Flow Control? Yes EFO6 62 Peak Conveyance (maximun) Flow Rate (L/s): 170.00 EFO8 65 Influent TSS Concentration (mg/L): 200 EFO10 68 Estimated Average Annual Sediment Load (kg/yr): 428 EFO1	Nearest Rainfall Station:	ST CATHARINES AP		Designer Name:	Nicole Foris		
Years of Rainfall Data: 33 Site Name: 7301 Lundy's Lane (CA ETV) Drainage Area (ha): 0.61 Runoff Coefficient 'c': 0.80 Particle Size Distribution: CA ETV Target TSS Removal (%): 60.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 15.17 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? Yes Upstream Orifice Control Flow Rate to Stormceptor (L/s): 170.00 Peak Conveyance (maximum) Flow Rate (L/s): 170.00 Estimated Average Annual Sediment Load (kg/yr): 428	Climate Station Id:	6137287	C	Designer Company:	J.H. Cohoon Engine	ering Limited	
Designer Phone: 519-753-2656 Site Name: 7301 Lundy's Lane (CA ETV) Drainage Area (ha): 0.61 Runoff Coefficient 'c': 0.80 Particle Size Distribution: CA ETV Target TSS Removal (%): 60.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 15.17 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? Yes Upstream Orifice Control Flow Rate to Stormceptor (L/s): 170.00 Peak Conveyance (maximum) Flow Rate (L/s): 170.00 EFO01 68 Estimated Average Annual Sediment Load (kg/yr): 428	Years of Rainfall Data:	33		Designer Email:	nforis@cohooneng	.com	
Site Name: 7301 Lundy's Lane (CA ETV) Drainage Area (ha): 0.61 Runoff Coefficient 'c': 0.80 Particle Size Distribution: CA ETV Target TSS Removal (%): 60.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 15.17 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? Yes Upstream Orifice Control Flow Rate to Stormceptor (L/s): 170.00 Influent TSS Concentration (mg/L): 200 Estimated Average Annual Sediment Load (kg/vr): 428				Designer Phone:	519-753-2656		
Drainage Area (ha): 0.61 Runoff Coefficient 'c': 0.80 Particle Size Distribution: CA ETV Target TSS Removal (%): 60.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 15.17 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? Yes Upstream Orifice Control Flow Rate to Stormceptor (L/s): 170.00 Influent TSS Concentration (mg/L): 200 Estimated Average Annual Sediment Load (kg/ur): 428	Site Name:	7301 Lundy's Lane (CA ETV)	E	OR Name:			
Runoff Coefficient 'c': 0.80 Particle Size Distribution: CA ETV Target TSS Removal (%): 60.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 15.17 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? Yes Upstream Orifice Control Flow Rate to Stormceptor (L/s): 170.00 Peak Conveyance (maximum) Flow Rate (L/s): 170.00 Influent TSS Concentration (mg/L): 200 Estimated Average Annual Sediment Load (kg/yr): 428	Drainage Area (ha):	0.61	E	OR Company:			
EOR Phone:Particle Size Distribution:CA ETVTarget TSS Removal (%):60.0Required Water Quality Runoff Volume Capture (%):90.00Estimated Water Quality Flow Rate (L/s):15.17Oil / Fuel Spill Risk Site?YesUpstream Flow Control?YesUpstream Orifice Control Flow Rate to Stormceptor (L/s):170.00Peak Conveyance (maximum) Flow Rate (L/s):170.00Influent TSS Concentration (mg/L):200Estimated Average Annual Sediment Load (kg/yr):428	Runoff Coefficient 'c':	0.80	E	OR Email:			
Particle Size Distribution: CA ETV Target TSS Removal (%): 60.0 Required Water Quality Runoff Volume Capture (%): 90.00 Estimated Water Quality Flow Rate (L/s): 15.17 Oil / Fuel Spill Risk Site? Yes Upstream Flow Control? Yes Upstream Orifice Control Flow Rate to Stormceptor (L/s): 170.00 Peak Conveyance (maximum) Flow Rate (L/s): 170.00 EFO10 68 EFO10 68 Estimated Average Annual Sediment Load (kg/yr): 428			E	OR Phone:			
Target TSS Removal (%):60.0Required Water Quality Runoff Volume Capture (%):90.00Estimated Water Quality Flow Rate (L/s):15.17StormceptorOil / Fuel Spill Risk Site?YesModelProvided (%)Upstream Flow Control?YesEFO455Upstream Orifice Control Flow Rate to Stormceptor (L/s):170.00EFO662Peak Conveyance (maximum) Flow Rate (L/s):170.00EFO865Influent TSS Concentration (mg/L):200EFO1068Estimated Average Annual Sediment Load (kg/yr):428EEO1269	Particle Size Distribution:	CA ETV			Net Annua	l Sediment	
Required Water Quality Runoff Volume Capture (%):90.00Estimated Water Quality Flow Rate (L/s):15.17Oil / Fuel Spill Risk Site?YesUpstream Flow Control?YesUpstream Orifice Control Flow Rate to Stormceptor (L/s):170.00Peak Conveyance (maximum) Flow Rate (L/s):170.00Influent TSS Concentration (mg/L):200Estimated Average Annual Sediment Load (kg/yr):428	Target TSS Removal (%):	60.0			(TSS) Load	Reduction	
Integrated Water Quality Runon Volume Capture (x).Estimated Water Quality Flow Rate (L/s):15.17Oil / Fuel Spill Risk Site?YesUpstream Flow Control?YesUpstream Orifice Control Flow Rate to Stormceptor (L/s):170.00Peak Conveyance (maximum) Flow Rate (L/s):170.00Influent TSS Concentration (mg/L):200Estimated Average Annual Sediment Load (kg/yr):428	Required Water Quality Runo	ff Volume Capture (%):	90.00		Sizing S	ummary	
Oil / Fuel Spill Risk Site?YesUpstream Flow Control?YesUpstream Orifice Control Flow Rate to Stormceptor (L/s):170.00Peak Conveyance (maximum) Flow Rate (L/s):170.00Influent TSS Concentration (mg/L):200Estimated Average Annual Sediment Load (kg/yr):428	Estimated Water Quality Flow	Rate (L/s):	15.17		Stormcentor	TSS Removal	
Oil / Puel Spin Risk Site?TesUpstream Flow Control?YesUpstream Orifice Control Flow Rate to Stormceptor (L/s):170.00Peak Conveyance (maximum) Flow Rate (L/s):170.00Influent TSS Concentration (mg/L):200Estimated Average Annual Sediment Load (kg/yr):428	Oil / Eucl Spill Bick Site?		Voc		Model	Provided (%)	
Upstream Flow Control? Yes EFO6 62 Upstream Orifice Control Flow Rate to Stormceptor (L/s): 170.00 EFO6 62 Peak Conveyance (maximum) Flow Rate (L/s): 170.00 EFO8 65 Influent TSS Concentration (mg/L): 200 EFO10 68 Estimated Average Annual Sediment Load (kg/yr): 428 EEO12 69			Tes		FFO4	55	
Upstream Orifice Control Flow Rate to Stormceptor (L/s): 170.00 EFO0 02 Peak Conveyance (maximum) Flow Rate (L/s): 170.00 EFO8 65 Influent TSS Concentration (mg/L): 200 EFO10 68 Estimated Average Annual Sediment Load (kg/yr): 428 EFO12 69	Upstream Flow Control?		170.00		EFOG	62	
Peak Conveyance (maximum) Flow Rate (L/s): 170.00 EFO8 65 Influent TSS Concentration (mg/L): 200 EFO10 68 Estimated Average Appual Sediment Load (kg/yr): 428 EFO12 69	Upstream Orifice Control Flov	V Rate to Stormceptor (L/s):	170.00			02	
Influent TSS Concentration (mg/L): 200 EFO10 68 Estimated Average Annual Sediment Load (kg/yr): 428 EFO12 69	Peak Conveyance (maximum)	Flow Rate (L/s):	170.00		EFU8	65	
Estimated Average Annual Sediment Load (kg/yr): 428 FEO12 69	Influent TSS Concentration (m	ng/L):	200		EFU10 68		
	Estimated Average Annual Se	diment Load (kg/yr):	428		EFO12	69	
Estimated Average Annual Sediment Volume (L/yr): 348	Estimated Average Annual Se	diment Volume (L/yr):	348				
		Estimat	ed Net Anr	nual Sediment (T	SS) Load Reduct	ion (%): 62	
Estimated Net Annual Sediment (TSS) Load Reduction (%):			NA/-		ff)/olumo Cont		
Estimated Net Annual Sediment (TSS) Load Reduction (%):				ιτες υπαπτλ κιμου			

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dercent		
Size (µm)	Than	Fraction (µm)	Percent		
1000	100	500-1000	5		
500	95	250-500	5		
250	90	150-250	15		
150	75	100-150	15		
100	60	75-100	10		
75	50	50-75	5		
50	45	20-50	10		
20	35	8-20	15		
8	20	5-8	10		
5	10	2-5	5		
2	5	<2	5		

Rainfall Intensity	Percent Rainfall	Cumulative Rainfall Volume	Flow Rate	Flow Rate (L/min)	Surface Loading Rate	Removal Efficiency	Incremental Removal (%)	Cumulative Removal
(mm / hr)	Volume (%)	(%)	(L/s)		(L/min/m²)	(%)		(%)
0.50	9.2	9.2	0.68	41.0	15.0	70	6.5	6.5
1.00	20.5	29.7	1.36	81.0	31.0	70	14.4	20.9
2.00	16.5	46.2	2.71	163.0	62.0	67	11.1	32.0
3.00	11.3	57.5	4.07	244.0	93.0	63	7.2	39.2
4.00	9.1	66.7	5.43	326.0	124.0	61	5.5	44.7
5.00	5.5	72.2	6.78	407.0	155.0	58	3.2	47.9
6.00	4.5	76.7	8.14	488.0	186.0	56	2.5	50.4
7.00	4.2	80.9	9.50	570.0	217.0	54	2.3	52.7
8.00	3.5	84.4	10.85	651.0	248.0	53	1.9	54.5
9.00	2.0	86.5	12.21	733.0	279.0	52	1.1	55.6
10.00	1.5	88.0	13.57	814.0	309.0	51	0.7	56.3
11.00	1.8	89.8	14.92	895.0	340.0	50	0.9	57.3
12.00	1.1	90.9	16.28	977.0	371.0	49	0.5	57.8
13.00	1.1	92.0	17.64	1058.0	402.0	48	0.5	58.3
14.00	1.4	93.4	18.99	1140.0	433.0	47	0.7	59.0
15.00	0.8	94.2	20.35	1221.0	464.0	46	0.4	59.4
16.00	0.6	94.8	21.71	1302.0	495.0	45	0.3	59.6
17.00	0.5	95.3	23.06	1384.0	526.0	44	0.2	59.9
18.00	0.3	95.6	24.42	1465.0	557.0	44	0.1	60.0
19.00	0.2	95.9	25.78	1547.0	588.0	43	0.1	60.1
20.00	0.2	96.1	27.13	1628.0	619.0	42	0.1	60.2
21.00	0.5	96.6	28.49	1709.0	650.0	42	0.2	60.4
22.00	0.4	97.0	29.85	1791.0	681.0	42	0.2	60.6
23.00	0.3	97.3	31.20	1872.0	712.0	41	0.1	60.7
24.00	0.0	97.3	32.56	1954.0	743.0	41	0.0	60.7
25.00	0.2	97.4	33.92	2035.0	774.0	41	0.1	60.8
30.00	1.6	99.1	40.70	2442.0	928.0	40	0.7	61.4
35.00	0.6	99.7	47.48	2849.0	1083.0	39	0.3	61.7
40.00	0.0	99.7	54.27	3256.0	1238.0	37	0.0	61.7
45.00	0.3	100.0	61.05	3663.0	1393.0	34	0.1	61.8
			Es	timated Ne	t Annual Sedim	ent (TSS) Loa	ad Reduction =	62 %

Climate Station ID: 6137287 Years of Rainfall Data: 33

Stormceptor[®]

Stormceptor[®]EF Sizing Report

	Maximum Pipe Diameter / Peak Conveyance													
Stormceptor EF / EFO	Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame	et Pipe eter	Max Out Diam	let Pipe eter	Peak Cor Flow	nveyance Rate					
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)					
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15					
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35					
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60					
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100					
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100					

SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor[®] EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor[®] EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

- 0° 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.
- 45° 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

							apaerey					
Stormceptor EF / EFO	ceptor Model EFO Diameter		odel neter Sump Floor)		Oil Volume		Recomi Sedi Maintenar	mended ment Ice Depth *	Maxiı Sediment ^v	num /olume *	Maximum Sediment Mass **	
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

Pollutant Capacity

*Increased sump depth may be added to increase sediment storage capacity ** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,
and retention for EFO version	locations	Site Owner
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results Stormceptor [®] EFO												
SLR (L/min/m²)	TSS % REMOVAL	SLR (L/min/m²)	TSS % REMOVAL	SLR (L/min/m²)	TSS % REMOVAL	SLR (L/min/m²)	TSS % REMOVAL					
1	70	660	42	1320	35	1980	24					
30	70	690	42	1350	35	2010	24					
60	67	720	41	1380	34	2040	23					
90	63	750	41	1410	34	2070	23					
120	61	780	41	1440	33	2100	23					
150	58	810	41	1470	32	2130	22					
180	56	840	41	1500	32	2160	22					
210	54	870	41	1530	31	2190	22					
240	53	900	41	1560	31	2220	21					
270	52	930	40	1590	30	2250	21					
300	51	960	40	1620	29	2280	21					
330	50	990	40	1650	29	2310	21					
360	49	1020	40	1680	28	2340	20					
390	48	1050	39	1710	28	2370	20					
420	47	1080	39	1740	27	2400	20					
450	47	1110	38	1770	27	2430	20					
480	46	1140	38	1800	26	2460	19					
510	45	1170	37	1830	26	2490	19					
540	44	1200	37	1860	26	2520	19					
570	43	1230	37	1890	25	2550	19					
600	42	1260	36	1920	25	2580	18					
630	42	1290	36	1950	24	2600	26					

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

 2.1.1
 4 ft (1219 mm) Diameter OGS Units:
 1.19 m³ s

 6 ft (1829 mm) Diameter OGS Units:
 3.48 m³ s

 8 ft (2438 mm) Diameter OGS Units:
 8.78 m³ s

 10 ft (3048 mm) Diameter OGS Units:
 17.78 m³ s

 12 ft (3657 mm) Diameter OGS Units:
 31.23 m³ s

 $\begin{array}{l} 1.19 \ m^{3} \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^{3} \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^{3} \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^{3} \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^{3} \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 $L/min/m^2$ shall be assumed to be identical to the sediment removal efficiency at 40 $L/min/m^2$. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 $L/min/m^2$.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

ſ

Stormceptor[®]EF Sizing Report

Province:	Ontario		Project Name:	7301 Lundy's Lane					
 City:	City of Niagara Falls		Project Number:	16364	16364				
Nearest Rainfall Station:	ST CATHARINES AP		Designer Name:	Nicole Foris	Nicole Foris				
Climate Station Id:	5137287		Designer Company:	J.H. Cohoon Engine	eering Limited				
Years of Rainfall Data:	33		Designer Email:	nforis@cohooneng	g.com				
			Designer Phone:	519-753-2656					
Site Name: 730	1 Lundy's Lane (Fine)		EOR Name:						
Drainage Area (ha): 0.6	1		EOR Company:						
Runoff Coefficient 'c': 0.8	D		EOR Email:						
			EOR Phone:						
Particle Size Distribution: Fir	e			Net Annua	l Sediment				
Farget TSS Removal (%): 80	.0			(TSS) Load	Reduction				
 Required Water Quality Runoff Vo	lume Capture (%):	90.00		Sizing S	ummary				
Estimated Water Quality Flow Rate	e (L/s):	15.17		Stormceptor	nceptor TSS Removal				
 Oil / Fuel Spill Risk Site?		Yes		Model	Provided (%)				
Instream Flow Control?		Ves		EFO4	83				
Upstream Orifice Control Flow Rat	e to Stormcentor (L/s):	170.00		EFO6	92				
Peak Conveyance (maximum) Flow	v Rate (I /s):	170.00		EFO8	96				
		200		EFO10	98				
nfluent TSS Concentration (mg/L)				LI 010					
nfluent TSS Concentration (mg/L)	nt Load (kg/yr):	573		FEO12	00				
nfluent TSS Concentration (mg/L) Estimated Average Annual Sedime	nt Load (kg/yr):	573		EFO12	99				

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dercent
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

Upstream Flow Controlled Results										
Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	cent Cumulative I nfall Rainfall Volume ne (%) (%)		Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)		
0.50	9.2	9.2	0.68	41.0	34.0	100	100 9.2			
1.00	20.5	29.7	1.36	81.0	68.0	100	20.5	29.7		
2.00	16.5	46.2	2.71	163.0	136.0	92	15.2	44.9		
3.00	11.3	57.5	4.07	244.0	203.0	83	9.4	54.3		
4.00	9.1	66.7	5.43	326.0	271.0	80	7.3	61.6		
5.00	5.5	72.2	6.78	407.0	339.0	77	4.2	65.8		
6.00	4.5	76.7	8.14	488.0	407.0	74	3.3	69.1		
7.00	4.2	80.9	9.50	570.0	475.0	71	3.0	72.1		
8.00	3.5	84.4	10.85	651.0	543.0	67	2.4	74.5		
9.00	2.0	86.5	12.21	733.0	610.0	65	1.3	75.8		
10.00	1.5	88.0	13.57	814.0	678.0	64	0.9	76.8		
11.00	1.8	89.8	14.92	895.0	746.0	64	1.2	77.9		
12.00	1.1	90.9	16.28	977.0	814.0	63	0.7	78.6		
13.00	1.1	92.0	17.64	1058.0	882.0	62	0.7	79.3		
14.00	1.4	93.4	18.99	1140.0	950.0	62	0.9	80.2		
15.00	0.8	94.2	20.35	1221.0	1017.0	61	0.5	80.7		
16.00	0.6	94.8	21.71	1302.0	1085.0	60	0.3	81.0		
17.00	0.5	95.3	23.06	1384.0	1153.0	58	0.3	81.3		
18.00	0.3	95.6	24.42	1465.0	1221.0	56	0.2	81.5		
19.00	0.2	95.9	25.78	1547.0	1289.0	55	0.1	81.6		
20.00	0.2	96.1	27.13	1628.0	1357.0	53	0.1	81.8		
21.00	0.5	96.6	28.49	1709.0	1424.0	52	0.3	82.0		
22.00	0.4	97.0	29.85	1791.0	1492.0	49	0.2	82.2		
23.00	0.3	97.3	31.20	1872.0	1560.0	47	0.1	82.4		
24.00	0.0	97.3	32.56	1954.0	1628.0	45	0.0	82.4		
25.00	0.2	97.4	33.92	2035.0	1696.0	43	0.1	82.4		
30.00	1.6	99.1	40.70	2442.0	2035.0	36	0.6	83.0		
35.00	0.6	99.7	47.48	2849.0	2374.0	31	0.2	83.2		
40.00	0.0	99.7	54.27	3256.0	2713.0	27	0.0	83.2		
45.00	0.3	100.0	61.05	3663.0	3052.0	24	0.1	83.3		
Estimated Net Annual Sediment (TSS) Load Reduction =										

Climate Station ID: 6137287 Years of Rainfall Data: 33

Stormceptor[®]

Maximum Pipe Diameter / Peak Conveyance													
Stormceptor EF / EFO	Model Diameter		Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame	et Pipe eter	Max Out Diam	et Pipe eter	Peak Cor Flow	nveyance Rate
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)				
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15				
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35				
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60				
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100				
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100				

SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor[®] EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor[®] EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

- 0° 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.
- 45° 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

i oliutant capacity												
Stormceptor EF / EFO	Moo Diam	del eter	Depth Pipe In Sump	Outlet vert to Floor)	Oil Vo	Recommended Volume Sediment Maintenance Depth *		commended Maximum Sediment Sediment Volume * enance Depth *		num /olume *	um Dume * Maximum Sediment Mass	
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm) (in)		(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EF012	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

Pollutant Capacity

*Increased sump depth may be added to increase sediment storage capacity ** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To				
Patent-pending enhanced flow treatment	Superior, verified third-party	Regulator, Specifying & Design Engineer				
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	t Regulator, Specifying & Design Engineer				
and retention for EFO version	locations	Site Owner				
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer				
Minimal drop between inlet and outlet	Site installation ease	Contractor				
Large diameter outlet riser for inspection	Easy maintenance access from grade	Maintenance Contractor & Site Owner				

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units: 1.19 m³ sediment / 265 L oil
6 ft (1829 mm) Diameter OGS Units: 3.48 m³ sediment / 609 L oil
8 ft (2438 mm) Diameter OGS Units: 8.78 m³ sediment / 1,071 L oil
10 ft (3048 mm) Diameter OGS Units: 17.78 m³ sediment / 1,673 L oil
12 ft (3657 mm) Diameter OGS Units: 31.23 m³ sediment / 2,476 L oil

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 $L/min/m^2$ shall be assumed to be identical to the sediment removal efficiency at 40 $L/min/m^2$. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 $L/min/m^2$.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

DRAWING NOT TO BE USED FOR CONSTRUCTION

FIELD REVISIONS TO THE SYSTEM LOCATION OR CONNECTION PIPING MAY BE NECESSARY BASED ON AVAILABLE SPACE OR SITE CONFIGURATION REVISIONS. ELEVATIONS SHOULD BE MAINTAINED EXCEPT WHERE NOTED ON BYPASS STRUCTURE (IF REQUIRED).

PER ENGINE

						_										
										The design not information about on the development protection and information about on the development and contraster. My sub-the protection of the development with the development on the development of the development table approximation of the development of the development about the protection of on the development of the protection of the development of the development development of the development of the development development of the development of the development of the development of the development of the development development of the development of the development of the development of the development of the development of the development of the development of the development of the development of the development of the development						
										JSK	JSK	ВΥ				
								# #####	#	OUTLET PLATFORM	INITIAL RELEASE	REVISION DESCRIPTION				
<u>lan vi</u>	<u>ew (S1</u> 4	<u>ANDARD</u>)				#####	#####	#####	6/8/18	05/26/17	DATE				
/	4 4						####	#####	#####	٢	0	MARK				
		ET TOF			() 					- 18		SCALE = NTS				
FCIFI		RFOI	JIRFM	FN	ITS					18-860-86	CHINE PATER					
R MODI		EF	06						Ē	NO LI	Autom Pain					
D					*				5	WHITBY 4800 II	TONE COLUCY					
ON STOP	RAGE REC	<u>ג'</u> D (L)			*		Ó			DRINE 416-860	NUTICIEDE					
ATE /I /	$\frac{VV}{N}$	_/S)			*				Ē	BO1 CA	IN CONTRACTOR Line Contractor					
OD OF PEAK FLOW (vrs) *										407 -						
EA (HA)					*	D.4.T	E .			ľ₽	¥.	1ª 1				
EA IMPE	RVIOUS	NESS (%))		*	10/	=: '13/2	2017	,							
I.E.	MAT'L	DIA *	SLOPE	%	HGL *	DES JS	ignei K	D:			N:					
*	*	*	*	_	*	CHE	CKED):	Â	PPRC	VED:					
*	*	*	*		*	PRO	JECT	No.:	s	EQUE	NCE	No.:				
ER OF R	ECORD					EF She	O6 ET:			~						
								1	I	OF	1					