PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

of

5438 Ferry Street, Niagara Falls, ON

For: 1788618 Ontario Inc.

January 18, 2023 Project: E-22-33-2

4999 Victoria Avenue Niagara Falls, ON, L2E 4C9 Tel: (905) 357-4015 Fax: (905) 353-1105

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

of:

5438 Ferry Street, Niagara Falls, ON

Prepared by Hallex Environmental Ltd. on behalf of:

1788618 Ontario Inc.

Author(s): Madison Calvert, ETFL., Environmental Technician

Nicole Metz, ETPD, ERPC., Project Coordinator

Kevin Christian, M.Sc., P.Geo., QP, Principal Geoscientist

Date: January 18th, 2023

Project #: E-22-33-2

Dist'n: 1788618 Ontario Inc. (pdf)

Hallex Environmental Ltd. (file)

This document has been prepared for the exclusive reliance and use of 1788618 Ontario Inc. and any third party they may so designate via letter of transmittal from Hallex Environmental Ltd.

Kevin Christian, M.Sc., P.Geo. QP

Principal Geoscientist

EXECUTIVE SUMMARY

INTRODUCTION

Hallex Environmental Ltd. was retained by 1788618 Ontario Inc. to conduct a Phase Two Environmental Site Assessment (ESA) at 5438 Ferry Street, Niagara Falls, ON following the Phase One ESA completed by Hallex on August 30th, 2022 that identified the following Potentially Contaminating Activities (PCA)/Areas of Potential Environmental Concern (APEC):

- PCA-1/APEC-1: #30 Importation of Fill Material of Unknown Quality. As identified through the aerial photographs, three (3) single family dwellings were present from 1935 until 1965, when the dwellings were demolished. Fill material of unknown quality may have been placed within areas of the previous structures as well as, throughout the parking area, during subsequent redevelopment of the current site use. Target contaminants of concern to the soil include Metals (by ICP), Petroleum Hydrocarbons (PHCs), Benzene Toluene Ethylbenzene Xylene (BTEX), and Polycyclic Aromatic Hydrocarbons (PAHs).
- PCA-2/APEC-2: #28 Gasoline and Associated Products Storage in Fixed Tanks. One (1) historic and four (4) current Underground Storage Tanks (USTs) were noted in the FIPs and during site reconnaissance, at 5460 Stanley Avenue, west adjacent property to the study site. The presence of the USTs represents a PCA resulting in an on-site APEC. Target contaminants include PHCs, BTEX, and PAHs to have impacted the site's soil and/or groundwater.

The objectives of the Phase Two ESA were to determine the presence/absence of potential contaminants of concern within the soil. The presence of contaminants in the soil, if detected, would determine the need for further sampling and analyses of soil to delineate the extent of impact, and to satisfy the requirements of Ontario Regulation (O. Reg.) 153/04, amended by O. Reg. 511/09.

PHASE TWO ESA METHODS

Soil

Seven (7) boreholes, BH1 to BH7 were advanced on November 18th, 2022 and completed on November 24th, 2022 with BH1 and BH2 being converted to Monitoring Wells. Soil samples were collected at depth intervals of 0.6m or 1.5 m until they reached the maximum depth of 3.66m for BH3, BH4, BH6 and BH7 and maximum depth of 9.14m for BH1, BH2 and BH5.

Fourteen (14) samples were submitted to Paracel Laboratories Ltd. for analyses of PHCs, BTEX, PAHs, Metals (by ICP), EC/SAR/pH and Grain Size Analysis.

Groundwater

Two (2) monitoring wells, MW-1 and MW-2 were installed on November 18th, 2022. Four (4) monitoring wells were previously installed for geotechnical purposes, of which one (1), MW-4, was utilized for environmental purposes. These three (3) monitoring wells were purged and sampled for analyses of PHCs, BTEX, PAHs and Metals (by ICP).

Soil Results

Soil laboratory analytical data was compared with Ministry of the Environment, Conservation and Parks (MECP) Site Condition Standards (2011) Table 3 for Residential Land Use in a Non-Potable Groundwater Condition, fine textured soil. Exceedances were noted from one (1) borehole (BH4) in the material from depth ranges 0–0.61mbgs, for target contaminant group PAHs.

Parameter	O. Reg. 153/04 (2011) Table 3 Residential, fine BH4		
Semi-Volatiles			
Benzo[a] pyrene	0.3 ug/g dry	0.49	
Fluoranthene	0.69ug/g dry	1.16	

Groundwater Results

Groundwater laboratory analytical data was compared with groundwater criteria in the MECP Site Condition Standards (2011) Table 3: Residential/Park, Non-Potable Groundwater condition, fine textured soil. All groundwater samples met applicable site condition standards.

FINDINGS & CONCLUSIONS

The Phase Two Environmental Site Assessment at 5438 Ferry Street, Niagara Falls, ON revealed one (1) soil sample did not meet applicable MECP Site Condition Standards 2011 Table 3 for Residential Land Use in fine texture soil for target contaminants PAHs in BH4. The contaminants identified in the soil were predominantly within the east area of the site, associated with Fill material. Soil/ Fill, variously exhibiting pieces of brick, wood, concrete and asphalt encountered in borehole BH4 in APEC-1 in the south east area of the site, and extending throughout the study site as further evidenced in six (6) out of nine (9) geotechnical boreholes (BH2, BH3, BH4, BH5, BH6 and BH8). The Fill was documented in a depth range of 0 to 3mbgs.

No impact to soil or groundwater was identified on-site in APEC-2 related to off-site underground fuel storage.

Hallex therefore recommends additional Phase Two ESA work be conducted to delineate the extent and volumes of PAHs contamination in FILL at the site in order to develop the remedial plan required to enable site remediation before proceeding to Record of Site Condition filing.

LIST OF ACRONYMS

APEC Area of Potential Environmental Concern

AST Aboveground Storage Tank

BH Borehole

BTEX Benzene, Toluene, Ethylbenzene, Xylene

CO Carbon Monoxide CO₂ Carbon Dioxide

COC Contaminant of Concern CSM Conceptual Site Model

CSVC Combustible Soil Vapour Concentration

EC Electrical Conductivity

EPA Environmental Protection Act ESA Environmental Site Assessment GPR Ground Penetrating Radar

i Hydraulic Gradient
 kh Hydraulic Conductivity
 LEL Lower Explosive Limit
 masl Metres above sea level
 mbgs Metres below ground surface

MECP Ministry of the Environment, Conservation and Parks

MW Monitoring Well

OC/OCP Organochlorine Pesticides

PAH Polycyclic Aromatic Hydrocarbons PCA Potentially Contaminating Activity

PCB Polychlorinated Biphenyl

PCE Perchloroethylene (tetrachloroethylene)

pH Power of Hydrogen PHC Petroleum Hydrocarbons

ppm Parts per million

QA/QC Quality Assurance/Quality Control

QP Qualified Person RA Risk Assessment

RSC Record of Site Condition SAR Specific Absorption Rate SCS Site Condition Standard

SGWSS Soil Groundwater and Sediment Standards

SVOC Semi-Volatile Organic Compounds

TCLP Toxicity Classification Leachate Procedure

UST Underground Storage Tank VOC Volatile Organic Compounds

Potentially Contaminating Activities (PCAs) Schedule D Table 2 of O. Reg 511/09

PCA#	Description	PCA#
1	Acid and Alkali Manufacturing, Processing	31
	and Bulk Storage	
2	Adhesives and Resins Manufacturing,	32
	Processing and Bulk Storage	33
3	Airstrips and Hangars Operation	
4	Antifreeze and De-icing Manufacturing and	34
	Bulk Storage	35
5	Asphalt and Bitumen Manufacturing	
6	Battery Manufacturing, Recycling and Bulk	36
	Storage	37
7	Boat Manufacturing	
8	Chemical Manufacturing, Processing and	38
	Bulk Storage	39
9	Coal Gasification	
10	Commercial Autobody Shops	40
11	Commercial Trucking and Container	
	Terminals	
12	Concrete, Cement and Lime Manufacturing	
13	Cosmetics Manufacturing, Processing and	41
	Bulk Storage	
14	Crude Oil Refining, Processing and Bulk	42
	Storage	
15	Discharge of Brine related to oil and gas	43
	production	
16	Drum and Barrel and Tank Reconditioning	44
	and Recycling	
17	Dye Manufacturing, Processing and Bulk	45
	Storage	
18	Electricity Generation, Transformation and	46
	Power Stations	47
19	Electronic and Computer Equipment	48
	Manufacturing	
20	Explosives and Ammunition Manufacturing,	49
	Production and Bulk Storage	50
21	Explosives and Firing Range	
22	Fertilizer Manufacturing, Processing and	51
	Bulk Storage	7.0
23	Fire Retardant Manufacturing, Processing	52
	and Bulk Storage	
24	Fire Training	
25	Flocculants Manufacturing, Processing and	53
	Bulk Storage	54
26	Foam and Expanded Foam Manufacturing	55
	and Processing	7.0
27	Garages and Maintenance and Repair of	56
	Railcars, Marine Vehicles and Aviation	57
	Vehicles	57
28	Gasoline and Associated Products Storage in	58
	Fixed Tanks	
29	Glass Manufacturing	
	I Importation of Fill Material of Unknown	1 1
30	Importation of Fill Material of Unknown Quality	59

D.C. 1. 11	
PCA#	Description
31	Ink Manufacturing, Processing and Bulk
22	Storage
32	Iron and Steel Manufacturing and Processing
33	Metal Treatment, Coating, Plating and
2.4	Finishing
34	Metal Fabrication
35	Mining, Smelting and Refining; Ore
26	Processing; Tailings Storage
36	Oil Production
37	Operation of Dry-Cleaning Equipment
20	(where chemicals are used)
38	Ordnance Use
39	Paints Manufacturing, Processing and Bulk
40	Storage
40	Pesticides (including Herbicides, Fungicides
	and Anti-Fouling Agents) Manufacturing,
	Processing, Bulk Storage and Large-Scale
4.1	Applications Details and Good Positions
41	Petroleum-derived Gas Refining,
42	Manufacturing, Processing and Bulk Storage
42	Pharmaceutical Manufacturing and
43	Processing Plastics (including Fibraciass) Manufacturing
43	Plastics (including Fibreglass) Manufacturing
4.4	and Processing
44	Port Activities, including Operation and
45	Maintenance of Wharves and Docks
45	Pulp, Paper and Paperboard Manufacturing
46	and Processing Rail Yards, Tracks and Spurs
_	
47	Rubber Manufacturing and Processing Salt Manufacturing, Processing and Bulk
40	Storage
49	Salvage Yard, including automobile wrecking
50	Soap and Detergent Manufacturing,
30	Processing and Bulk Storage
51	Solvent Manufacturing, Processing and Bulk
31	Storage
52	Storage, maintenance, fueling and repair of
32	equipment, vehicles, and material used to
	maintain transportation systems
53	Tannery
54	Textile Manufacturing and Processing
55	Transformer Manufacturing, Processing and
33	Use
56	Treatment of Sewage equal to or greater than
	10,000 litres per day
57	Vehicles and Associated Parts Manufacturing
58	Waste Disposal and Waste Management,
	including thermal treatment, landfilling and
	transfer of waste, other than use of biosoils as
	soil conditioners
59	Wood Treating and Preservative Facility and
	Bulk Storage of Treated and Preserved Wood
	Products
	•

TABLE OF CONTENTS

EXECU	UTIVE SUMMARY	i
	OF ACRONYMS	
LIST C	OF POTENTIALLY CONTAMINATING ACTIVITIES	iv
4.0	INTER OR LICENON	
1.0	INTRODUCTION PROJECT OBJECTIVES	
1.1	LIMITATIONS AND EXCEPTIONS OF ASSESSMENT	
1.2		
1.3	SITE DESCRIPTION	
1.4	CURRENT AND PROPOSED FUTURE USES	
1.5	APPLICABLE SITE CONDITION STANDARD	
1.6	PREVIOUS ENVIRONMENTAL REPORTS	
2.0	INVESTIGATION METHODS	
2.1	BOREHOLE DRILLING	
2.2	SOIL INVESTIGATION	
2.2.1		
2.3	FIELD SCREENING COMBUSTIBLE SOIL VAPOUR SURVEY	
2.4	COMBUSTIBLE SOIL VAPOUR CONCENTRATIONS	
2.5	MONITORING WELLS INSTALLATION	
2.6	GROUNDWATER SAMPLING	
2.7	Free Product Investigation	
2.8	RESIDUE MANAGEMENT PROCEDURES	
2.9	QUALITY ASSURANCE AND QUALITY CONTROL MEASURES	
3.0	REVIEW AND EVALUATION	11
3.1	SOIL CONDITIONS	
3	1.1 Overburden Stratigraphy	11
3.2	SOIL LABORATORY RESULTS	11
3.3	GROUNDWATER CONDITIONS	12
3	3.1 Hydraulic Gradient (i)	12
3	3.2 Hydraulic Conductivity (k)	12
3	3.3 Groundwater Elevation	12
3.4	GROUNDWATER LABORATORY RESULTS	13
3.5	LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL	13
4.0	PHASE TWO CONCEPTUAL SITE MODEL	
5.0	CONTAMINATED SOIL QUANTITY ESTIMATE	
6.0	CONCLUSIONS	15
7.0	AUTHOR	16

FIGURES

Figure 1: PCA/APEC and Borehole & Monitoring Well Locations

Figure 2: Soil Exceedances

Figure 3: Groundwater Exceedances

Figure 4a: Study Site Cross Section Location

Figure 4b: Cross Section A-A', B-B' Figure 5: Groundwater Flow Contours

APPENDICES

Appendix A: Field Logs

Appendix B: Groundwater Calculations
Appendix C: Laboratory Analytical Reports

1.0 INTRODUCTION

1.1 Project Objectives

Hallex Environmental Ltd. was retained by 1788618 Ontario Inc. (hereinafter referred to as the "client") to conduct a Phase Two Environmental Site Assessment (ESA) at 5438 Ferry Street, Niagara Falls, ON (hereinafter referred to as the "study site"). The objectives of the Phase Two ESA were to determine the presence/absence of potential contaminants of concern within the soil associated with possible historic fill material of unknown quality and historic off-site underground storage tanks (USTs). A Potentially Contaminating Activity (PCA) listed in Schedule D, Table 2, of O. Reg. 511/09, thus results in an Areas of Potential Environmental Concern (APEC) triggering the Phase Two ESA.

The presence of contaminants in the soil, if detected, would determine the need for further sampling and analyses to delineate the extent of the impact, and to satisfy the requirements of Ontario Regulation (O. Reg.) 153/04, as amended. The PCAs/APECs, identified in the Phase One ESA (Hallex, 2022) are shown on Figure 1.

1.2 Limitations and Exceptions of Assessment

This report was prepared by Hallex Environmental Ltd. (hereinafter referred to as "Hallex") for the client. The material in it reflects Hallex's best judgment based on the information discovered at the time of preparation and within the scope of work. The investigative procedures, and format of this report, generally follow the guidelines established in: O. Reg. 511/09 per Part XV.1 of the Environmental Protection Act. Any information presented concerning materials at the site is based on information gathered at the bore hole locations only. There may be materials and/or subsurface soil and/or groundwater conditions on-site which are not represented by these investigations. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Hallex Environmental Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

1.3 Site Description

Municipal address:	5438 Ferry Street, Niagara Falls, ON		
Client(s):	1788618 Ontario Inc.		
UTM coordinates:	Zone: 17T, Northing: 4,772,524.17 Easting: 655,933.65		
Elevation:	188 masl		
Approx. site area:	$3,702 \text{ m}^2$		

1.4 Current and Proposed Future Uses

As of November 25th, 2022, the study site was commercial land use. One (1) restaurant, Bravo Pizzeria and Grill, is present on the north-west corner of the study site. Future plans include demolishing current building and developing a residential Condominium.

1.5 Applicable Site Condition Standard

The Soil, Ground Water and Sediment Standards (SGWSS) that would be applicable to the subject site as per O. Reg. 153/04, as amended, are based on site sensitivity analyses. Site sensitivity is determined based on conformance or non-conformance with shallow soil conditions (<2 m to bedrock), soil pH, proximity to an "Area of Natural Significance", the presence of a water body on-site or within 30 meters of the subject property, and the site and adjacent lands groundwater conditions being either potable or non-potable. The 'Full Depth Generic' standards would apply to a 'non-sensitive site', with further distinctions made based on potable or non-potable groundwater conditions, and coarse or fine soil texture. A 'Sensitive Site' would require application of generic standards, other than 'Full Depth', based on the specific sensitivity.

5438 Ferry Street, Niagara Falls, ON – Site Sensitivity Analysis

The rationale for the selection of SGWSS criteria for the subject property included:

- Intended Property Use: Residential Use
- Soil Texture: Medium/Fine (grain size texture by Paracel laboratories Ltd.)
- Adjacent to a designated area of natural significance: No
- Within 30 m of a water body: **No**
- Groundwater condition: **non-potable**
- Depth to bedrock: **Not encountered at maximum borehole depth of 9.14 metres.** Bedrock was encountered at 18.6 mbgs in geotechnical borehole BH.
- Soil pH: **7.68** average, ranged from 7.59-7.87

Applicable Regulatory Criteria

O. Reg. 153/04 Ministry of the Environment, Conservation and Parks (MECP) Site Condition Standards Table 3 for Residential Land Use in a Non-Potable Ground Water Condition, fine textured soil, was applied to the subject site, based on conditions observed at the time of the site assessment.

1.6 Previous Environmental Reports

A Phase One Environmental Site Assessment report drafted by Hallex Environmental, August 30th, 2022. Conclusions are summarized below:

One (1) historic on-site and one (1) off-site PCA resulting in two (2) APECs with the potential to have impacted the study site's soil and groundwater.

- PCA-1/APEC-1: #30 Importation of Fill Material of Unknown Quality. As identified through the aerial photographs, three (3) single family dwellings were present from 1935 until 1965, when the dwellings were demolished. Fill material of unknown quality may have been placed within areas of the previous structures as well as, throughout the parking area, during subsequent redevelopment of the current site use. Target contaminants of concern to the soil include Metals (by ICP), Petroleum Hydrocarbons (PHCs), Benzene Toluene Ethylbenzene Xylene (BTEX), and Polycyclic Aromatic Hydrocarbons (PAHs).
- *PCA-2/APEC-2:* #28 Gasoline and Associated Products Storage in Fixed Tanks. One (1) historical and four (4) current Underground Storage Tanks (USTs) were noted in the FIPs and during site reconnaissance, at 5460 Stanley Avenue, west adjacent property to the study site. The presence of the USTs represents a PCA resulting in an on-site APEC. Target contaminants include PHCs, BTEX, and PAHs to have impacted the site's soil and/or groundwater.

Fifteen (15) additional PCAs were noted within 250 m of the Study Site, however it is unlikely that any contaminants migrating off-site would present an on-site APEC at the study site due to the distance to the site and interpreted groundwater flow direction away from the site.

2.0 INVESTIGATION METHODS

2.1 Borehole Drilling

Davis Drilling utilized a truck mounted CME-75 Direct Push drilling system for borehole sampling and monitoring well installations. Preparation for borehole sampling was initiated via requests for demarcation of underground utilities by Ontario One Call: for Bell, cable, hydro, natural gas, water, sewer and private locates. All services were cleared within the designated work areas.

2.2 Soil Investigation

Seven (7) boreholes, BH1 to BH7 were advanced across the property (within APEC areas) on November 18th, 2022 and November 24th, 2022. Borehole locations are shown in Figure 1 and borehole logs are contained in Appendix A. Soil samples were collected at depth intervals of 0.61 or 1.5m to a maximum depth of 3.66m for BH3, BH4, BH6 and BH7, and maximum depth of 9.14mbgs for BH1, BH2 and BH5.

2.2.1 Soil: Sampling

Each sample was placed in a 250 ml glass jar with a Teflon lined lid, filled to zero head-space, sealed, and placed in a cooler for transportation. Concurrently, a 12 ml soil sample was collected with a disposable syringe and placed inside a 40 ml vial containing methanol for field preservation of Petroleum Hydrocarbons F1-F4 (PHCs) and Benzene, Toluene, Ethylbenzene, Xylene (BTEX). A portion of each sample was placed in a plastic bag and allowed to warm to approximately 20° C for headspace combustible vapour measurement using an E-34102 Portable Multi-Gas Detection Eagle Series (Eagle). Each sample was logged for colour, texture, structure, moisture, and visual and olfactory evidence of contamination. Additionally, textural identification of soil, through hand soil textural techniques, including the 'squeeze test' and 'ribbon test' was conducted on soil from each stratum identified.

2.3 Field Screening Combustible Soil Vapour Survey

On-site field screening measurements were conducted utilizing the Eagle, capable of measuring hydrocarbon Combustible Soil Vapour Concentrations (CSVC's) from 1 part per million (ppm) to 100% Lower Explosive Limit (LEL). The readings from the Eagle were utilized to indicate the presence or absence of Volatile Organic Compounds (VOC's) within the field samples. The samples with the highest combustible vapour concentration readings were chosen, in addition to other select samples, as determined by the QP, for laboratory analyses. The combustible soil vapour readings are indicated on the borehole logs in Appendix A and tabulated in Section 3.2.

2.4 Combustible Soil Vapour Concentrations

The field combustibility soil vapour concentrations are tabulated below, exhibiting a concentration range of 0 to 10 ppm (parts per million). Ten (10) worst case samples were chosen for laboratory submission to Paracel Laboratories Ltd. under chain of custodies #67790, 67791, 67792, 136523 & 136525 on November 25th, 2022 for analyses of PHCs (F1-F4), BTEX, PAHs, EC/SAR/pH, Metals (by ICP) and Grain Size Texture. All other samples were stored at the laboratory for later analyses, if required, for delineation of contaminants.

	hole #/	Date	Depth	CSVC	APEC-#	Parameters Analyzed
1	D	Sampled	(m bgs)	(PPM)	2	•
	SS1		0-0.6	0.9	2	
	SS2		0.76-1.37	0.7		
	SS3		1.53-2.13	1.4	2	
	SS4		2.29-2.89	1.1	2	
	SS5		3.05-3.66	1.1	2	
	SS6		3.81-4.42	0.9	2	
BH1	SS7		4.57-5.18	0.6	2	
	SS8		5.33-5.94	1.1	2	PHC/BTEX, PAH, Metals and pH
	SS8a		5.33-5.94	1.1	2	PHC/BTEX, PAH, Metals and pH
	SS9		6.1-6.71	0.4	2	
	SS10		6.85-7.46	0.8	2	
	SS11		7.62- 8.23	0.6	2	
	SS12		8.38-8.99	0.7	2	
	SS1	November	0-0.6	0.6	2	
	SS2	18 th , 2022	0.76-1.37	1.2	2	
	SS3		1.53-2.13	0.5	2	Grain Size Analysis
	SS4		2.29-2.89	1.1	2	
	SS5		3.05-3.66	0.5	2	
DIIO	SS6		3.81-4.42	0.6	2	
BH2	SS7		4.57-5.18	0.5	2	
	SS8		5.33-5.94	0.9	2	
	SS9		6.1-6.71	0.9	2	PHC/BTEX, PAH, Metals and pH
	SS10		6.85-7.46	0.8	2	
	SS11		7.62-8.23	0.7	2	
	SS12		8.38-8.99	0.8	2	
	SS1		0-0.6	0.8	1	
ВН3	SS2		1.53-2.13	1.0	1	PHC/BTEX, PAHs, Metals and pH
	SS3		2.29-2.89	0.5	1	
BH4	SS1		0-0.6	0.7	1	PHC/BTEX, PAHs, Metals ands pH

Borehole #/ ID		Date Sampled	Depth (m bgs)	CSVC (PPM)	APEC-#	Parameters Analyzed
	SS2		1.53-2.13	0.5	1	PAHs
	SS3		2.29-2.89	0.8	1	рН
	SS1		0-0.6	10	2	
	SS2		1.53-2.13	25	2	pH, EC, SAR and Grain Size Analysis
	SS3	November	3.05-3.66	20	2	
BH5	SS4	24 th , 2022	4.57-5.18	70	2	Grain Size Analysis
	SS5		6.1-6.71	15	2	PHC/BTEX, PAH, Metals and pH
	SS6		7.62-3.23	40	2	
	SS7		8.38-8.99	45	2	PHC/BTEX, PAH and Metals
	-1		0-0.6	15	1	pН
BH6	-2		1.53-2.13	10	1	
	-3	November	2.43-3.05	5	1	PHC/BTEX, PAH and Metals
	-1	24 th , 2022	0-0.6	20		
BH7	-2		1.53-2.13	25		
	-3	,	2.43-3.05	25		

Highlighted sample ID's above depict the samples chosen for submission to the lab.

2.5 Monitoring Wells Installation

Two (2) monitoring wells MW-1 and MW-2, were installed into designated boreholes on November 18th, 2022 to a depth of 9.144 mbgs for MW-1 and MW-2, respectively. The monitoring well locations are shown on Figure 1 and the field logs are in Appendix A.

The wells were constructed to MECP recognized industry standards and as required by O. Reg. 903, consisted of a 2-inch diameter slotted PVC screen surrounded by silica sand, attached beneath a solid 2-inch diameter PVC riser, surrounded by bentonite grout to ensure a seal between ground surface and the well screen. Each well was fitted with a metal protective flush-mount casing. A waterra manual lift pump was installed into each well to allow for purging and development, rising head hydraulic conductivity tests, and subsequent groundwater sample collection.

2.5.1 Existing Monitoring Wells

Three (3) monitoring wells were previously installed by another Environmental Consulting company prior to the current owner purchasing the property. The three (3) wells were installed to a depth of 5.515 mbgs. However, the groundwater was below this depth, therefore all three (3) wells were dry, therefore was included as part of this investigation.

Four (4) monitoring wells were installed for Geotechnical purposes by Terraprobe, of which only one (1), MW-4, was utilized for environmental purposes. MW-4 was installed to a depth of 9.6mbgs with groundwater levels at 5.9 mbgs.

2.6 Groundwater Sampling

Groundwater samples were collected with a low-flow peristaltic pump with new low-flow tubing, silicone, and metal filters for each monitoring well. Groundwater samples were collected in standard sized amber glass jars, vials and plastic jars as per analytical protocol (O. Reg. 153/04), filled to zero head-space, sealed, and placed in a cooler for transportation.

Sample ID	Dates	Laboratory Analyses
MW-1	Sampled and submitted on	PHCs (F1-F4), BTEX, PAHs and Metals
MW-2	December 1 st , 2022	PHCs (F1-F4), BTEX, PAHs and Metals
MW-4	chain of custody number #67803	PHCs (F1-F4), BTEX, PAHs and Metals

2.7 Free Product Investigation

Free product was not monitored in any of the wells during the Phase Two investigation.

2.8 Residue Management Procedures

Soil cuttings and purged water, as well as all fluids used for equipment cleaning were temporarily stored on-site in sealed 55-gallon steel drums.

2.9 Quality Assurance and Quality Control Measures

Hallex conducted Quality Assurance/Quality Control (QA/QC) measures throughout all stages of the assessment to verify sampling procedures and results, including blind duplicate groundwater samples to verify sampling procedures and results. Davis Drilling pre-cleaned the set of augers and hollow stem spoons prior to arriving on-site. The split spoon sampler was decontaminated prior to and in between taking samples by scrubbing with a wire brush and washing in a water solution.

Decontamination of equipment and sampling tools was carried out during field work, as well as appropriate precautions, including new nitrile gloves, to minimize potential cross-contamination between samples and boreholes.

Soil sampling was implemented according to *Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act* (March 9, 2004 as amended as of July 1, 2011). Chain of Custody reports were completed for all samples submitted for analyses to keep track of

samples collected and to ensure that all parties involved were properly informed as to the nature of the samples.

Instruments and all their associated components are checked daily prior to field use, and annual equipment servicing and maintenance is conducted by Enviro Measure Inc. to ensure the equipment remains properly calibrated and functioning.

3.0 REVIEW AND EVALUATION

3.1 Soil Conditions

Soil conditions were determined through field investigative measures including the use of analytical equipment, determination of stratigraphy including analysis of moisture, odours, colour, texture, etc. and combustible soil vapor concentration results.

3.1.1 Overburden Stratigraphy

The general overburden stratigraphy observed in boreholes BH1 to BH7 consisted of:

Depth (avg.) Description
0 - 0.05 mbgs Asphalt

0.05- 0.91 mbgs Sandy Gravel FILL

0.91 – 3.045 mbgs Reworked Red/Brown SILTY SAND with trace Gravel

3.045 – 9.144mbgs Red/Brown SILTY SAND with trace Clay

Notes:

- Bedrock was not encountered at borehole maximum depth of 9.144 mbgs. Bedrock is at 18.6mbgs, as per the geotechnical boreholes, within the study site.
- Moisture increased at 5.13 to 8.99 mbgs increasing with depth.
- Colour changed gradually from brown to red/brown at 0.76 2.13 mbgs.
- No Petroleum odour was noted in soil samples from any of the boreholes.

3.2 Soil Laboratory Results

Soil laboratory analytical data was compared with MECP site condition standards (2011) Table 3 Residential land use in a Non-Potable Groundwater situation, with fine textured soil. All soil samples met applicable site condition standards for Metals (by ICP), PHCs, and BTEX. The table below highlight the soil exceedances with complete laboratory analytical reports provided in Appendix C. Figure 2 illustrates the soil exceedances and Figure 4a and 4b depict the cross sections of the study site.

Polycyclic Aromatic Hydrocarbons (PAHs)

Soil laboratory analytical data was compared with MECP Site Condition Standards (2011) Table 3: Residential land use, fine textured soil. Exceedances were noted in samples from one (1) borehole (BH4 SS1) in the fill material from depth ranges 0–0.61 mbgs, for target contaminant group PAHs.

Parameter	O. Reg. 153/04 (2011) Table 3 Residential, fine	BH4 SS1
Semi-Volatiles		
Benzo[a]pyrene	0.3 ug/g dry	0.49
Fluoranthene	0.69 ug/g dry	1.16

ND: Not Detected, N/A: Not Applicable, Highlights indicate exceedance to applicable regulation

3.3 Groundwater Conditions

Groundwater physical conditions were determined through field data collection, and subsequent calculations, including: hydraulic gradient, hydraulic conductivity/groundwater velocity, and groundwater elevations.

3.3.1 Hydraulic Gradient (i)

The hydraulic gradient was calculated between MW-1, MW-2, and MW-4 with the average across the site being i = 0.020, northeast.

Monitoring Well	<i>i</i> (m/m)
MW-2 to MW-1	0.009
MW-2 to MW-4	0.045
MW-1 to MW-4	0.008

3.3.2 Hydraulic Conductivity (k)

A rising-head hydraulic conductivity test was conducted in monitoring well MW-1 and MW-2 after purging, for calculations of hydraulic conductivity using the Bouwer-Rice method with results indicating MW-1 resulted in k = 6.242E-07 cm/sec and MW-2 resulted in k = 1.401E-07 cm/sec. See Appendix B for groundwater Calculations.

3.3.3 Groundwater Elevation

The groundwater levels in monitoring wells MW-1 to MW-4 were measured and recorded with a Solinst water-level meter before initial purging and monitoring after a recovery period to allow the wells to return to static level.

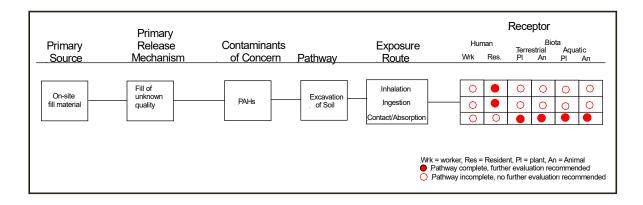
Monitoring Well	mbgs	masl
MW-1	6.493	183.01
MW-2	6.87	183.33
MW-4	6.78	182.80

mbgs= metres below ground surface, masl = metres above sea level

Groundwater elevation contours are plotted on Figure 5.

3.4 Groundwater Laboratory Results

Groundwater laboratory analytical data was compared with groundwater criteria in the MECP Site Condition Standards (2011) Table 3: Residential, Non-Potable Groundwater condition, fine textured soil. All samples met the MECP Site Condition Standards. The groundwater laboratory analytical report is provided in Appendix C.


3.5 Laboratory Quality Assurance and Quality Control

Laboratory QA/QC measures adhering to the Ministry of the Environment's "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 2010" are standard procedure for Paracel Laboratories (accredited to the ISO/IEC 17025 Standard by CALA) in order to ensure that the standards of quality were met within the expected level of confidence.

4.0 PHASE TWO CONCEPTUAL SITE MODEL

The Conceptual Site Model (CSM) qualitatively considers the interaction of identified contaminants of concern, and the pathway(s) and exposure route(s) to receptors. Target contaminants PAHs were identified within the soil medium with potential migration pathways to human and/or biota receptors as follows.

6.0 CONCLUSIONS

The Phase Two Environmental Site Assessment at 5438 Ferry Street, Niagara Falls, ON revealed one (1) soil sample did not meet applicable MECP Site Condition Standards 2011 Table 3 for Residential Land Use in fine texture soil for target contaminants PAHs in BH4. The contaminants identified in the soil were predominantly within the east area of the site, associated with Fill material. Soil/ Fill, variously exhibiting pieces of brick, wood, concrete and asphalt encountered in borehole BH4 in APEC-1 in the south east area of the site, and extending throughout the study site as further evidenced in six (6) out of nine (9) geotechnical boreholes (BH2, BH3, BH4, BH5, BH6 and BH8). The Fill was documented in a depth range of 0 to 3mbgs.

No impact to soil or groundwater was identified on-site in APEC-2 related to off-site underground fuel storage.

Hallex therefore recommends additional Phase Two ESA work be conducted to delineate the extent and volumes of PAHs contamination in FILL at the site in order to develop the remedial plan required to enable site remediation before proceeding to Record of Site Condition filing.

7.0 <u>AUTHOR</u>

Hallex Environmental Ltd. has conducted this Phase Two Environmental Site Assessment as permitted by Hallex Certificate of Authorization (#90252). The following employees authored the report:

Madison Calvert- Mr. Madison Calvert, ETFL, was the Environmental Technician for the project with approximately one year of experience in the environmental geoscience consulting field. Related project work includes Phase One & Phase Two ESAs, Remediation Planning & Supervision, D.S.&H.M. Surveys, Hydrogeological Assessments, Geotechnical Investigations

Nicole Metz - Ms. Nicole Metz, ETPD, ERPC, was the Project Coordinator for the project with over eight years of experience in the environmental consulting field. Some projects Mrs. Metz have worked on included: Phase One & Two Environmental Site Assessments, Site Remediation, groundwater and surface water sampling, underground or aboveground storage tank decommissioning, Designated Substance Surveys, Records of Site Condition Filing, Environmental Compliance Approvals, National Pollutant Release Inventory, and Hazardous Waste Information Network training.

Kevin Christian - Mr. Kevin Christian, M.Sc., P.Geo., a Professional Geoscientist (#0387) registered with the Association of Professional Geoscientists of Ontario, and a Qualified Person (Environmental Site Assessment & Risk Assessment) as per Ontario Regulations 153/04 and 511/09, has thirty years of experience in the environmental geoscience consulting industry conducting Phase One and Two ESA's, remedial planning, and site remediation supervision.

FIGURES

Figure 1: PCA/ APEC Areas and Borehole & Monitoring Well Locations

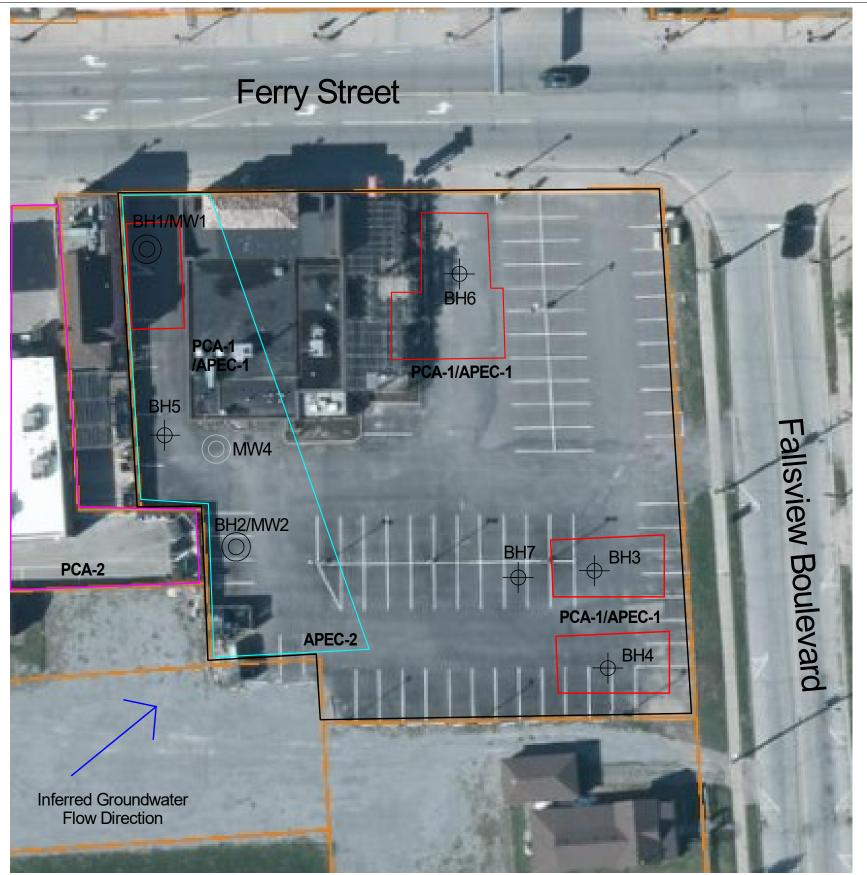

Figure 2: Soil Exceedances

Figure 3: Groundwater Exceedances

Figure 4a: Study Site Cross Section Location

Figure 4b: Cross Section A-A', B-B'

Figure 5: Groundwater Flow Contours

PCA-1/APEC-1:

#30 Importation of Fill Material of Unknown Quality **PCA-2/APEC-2**:

#28 Gasoline and Associated Products Storage in Fixed Tanks

Legend

Phase Two Property

Hallex Borehole Locations

Hallex Monitoring Well Locations

> Existing Monitoring Well Locations

PCA-1/APEC-1

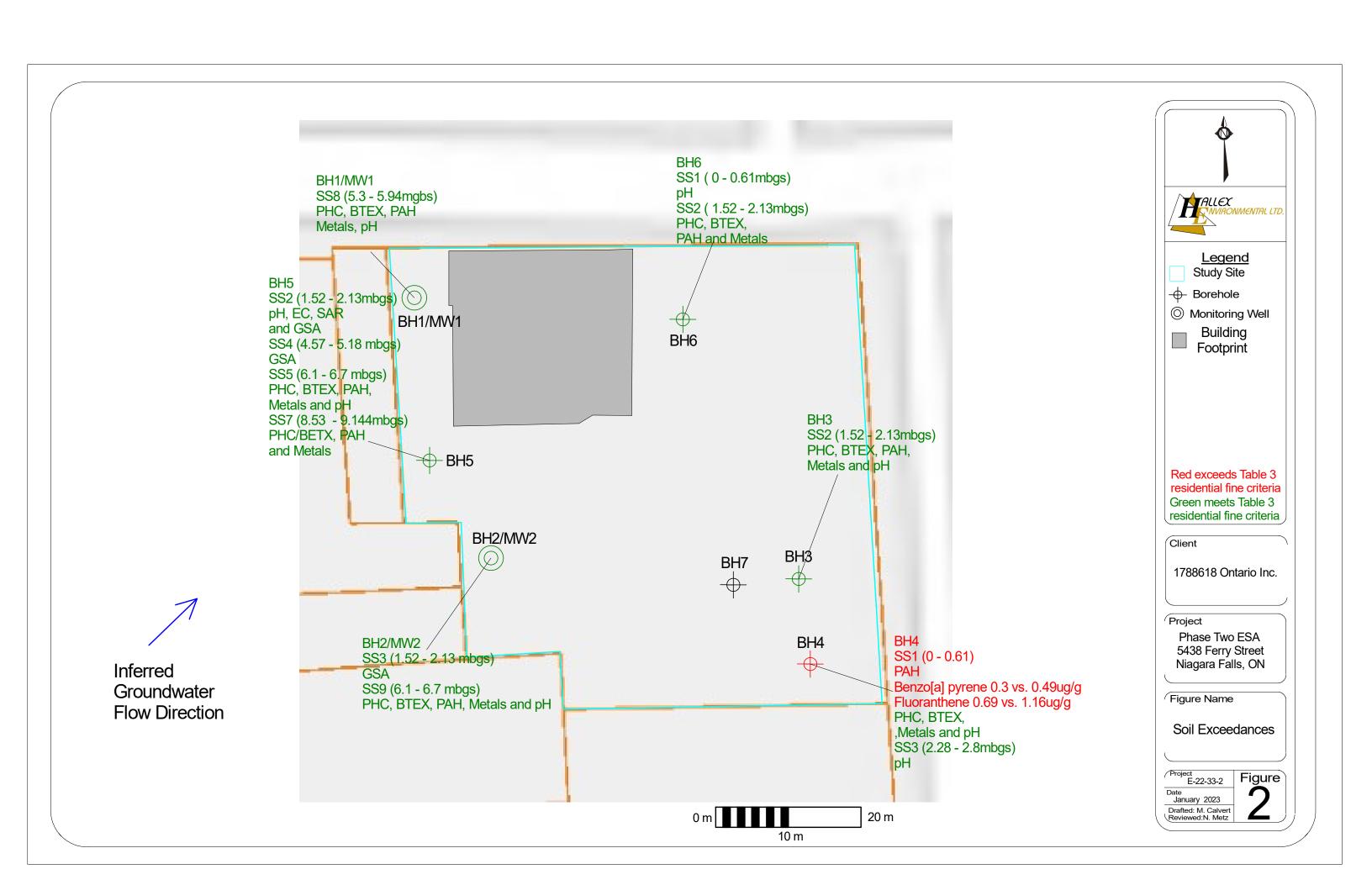
PCA-2

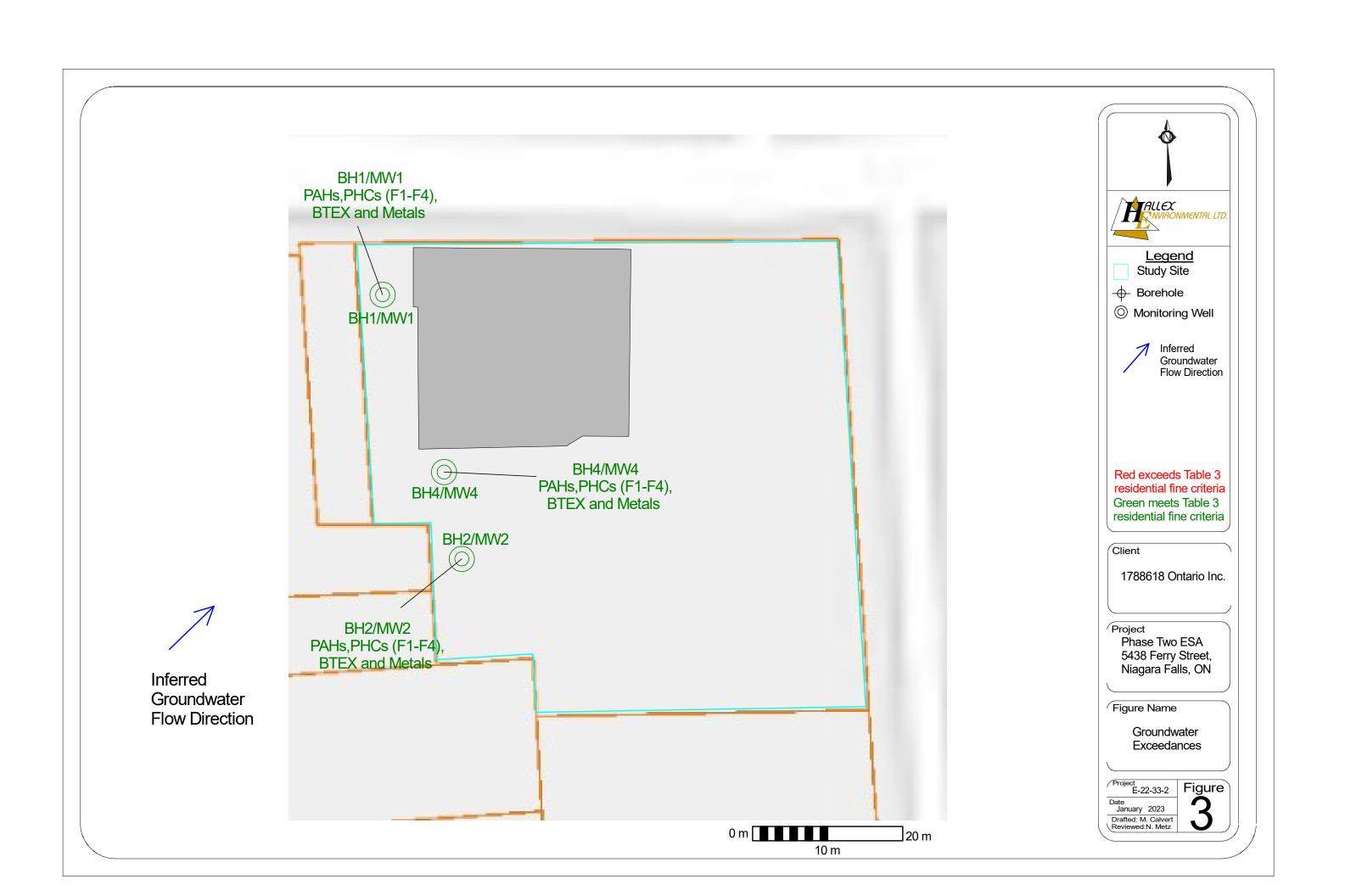
APEC-2

Client

1788618 Ontario Inc.

Project


Phase Two ESA 5438 Ferry Street, Niagara Falls, ON


Figure Name PCA/APEC and Borehole & Monitoring Well Locations

Figure

Project E-22-33-2 Date January 2023

Drafted: M. Calvert Reviewed: N. Metz

<u>Legend</u>

Study Site

+ Borehole

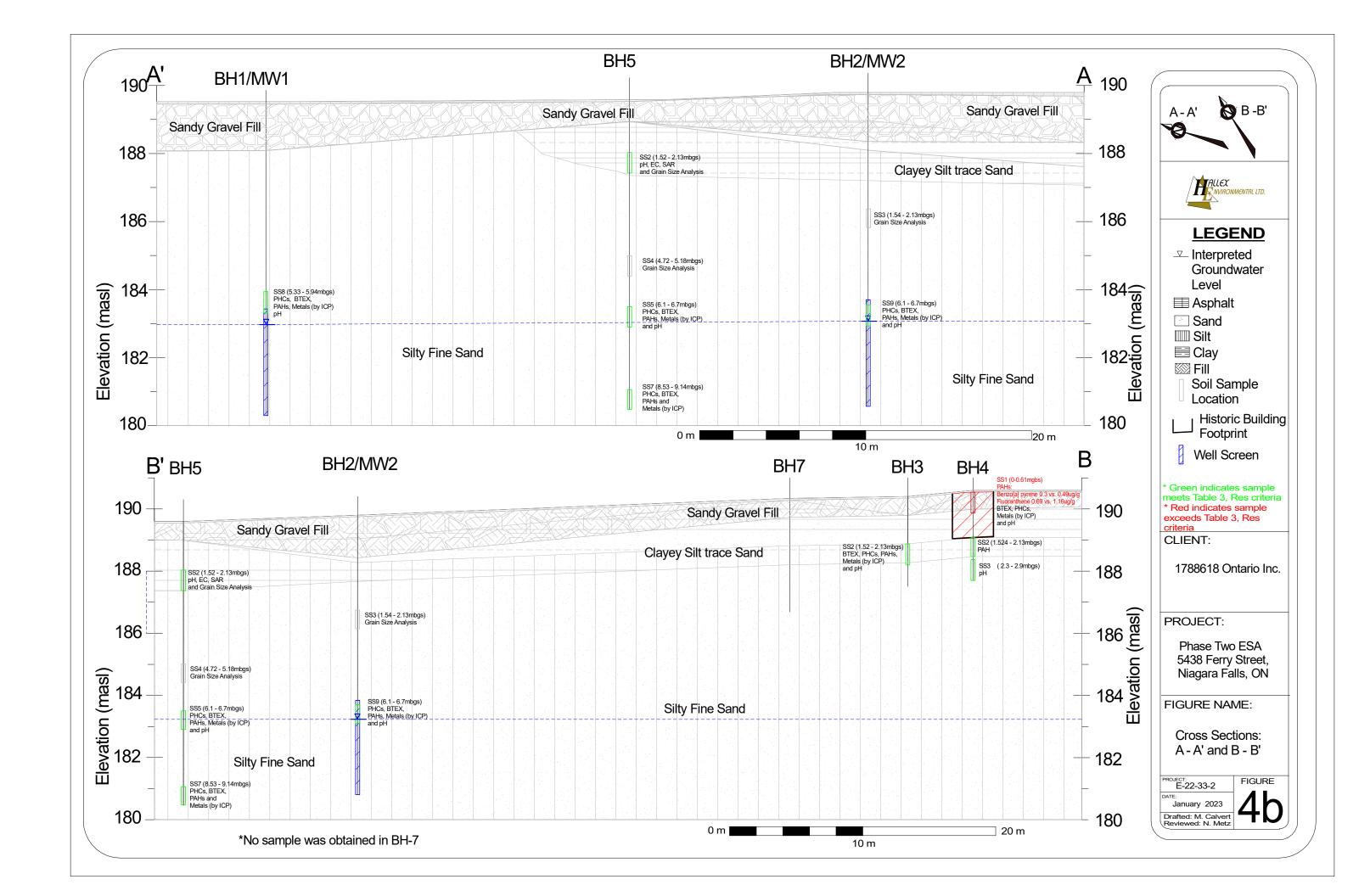
Monitoring Well

A - A'

B - B'

Client

1788618 Ontario Inc.


Project

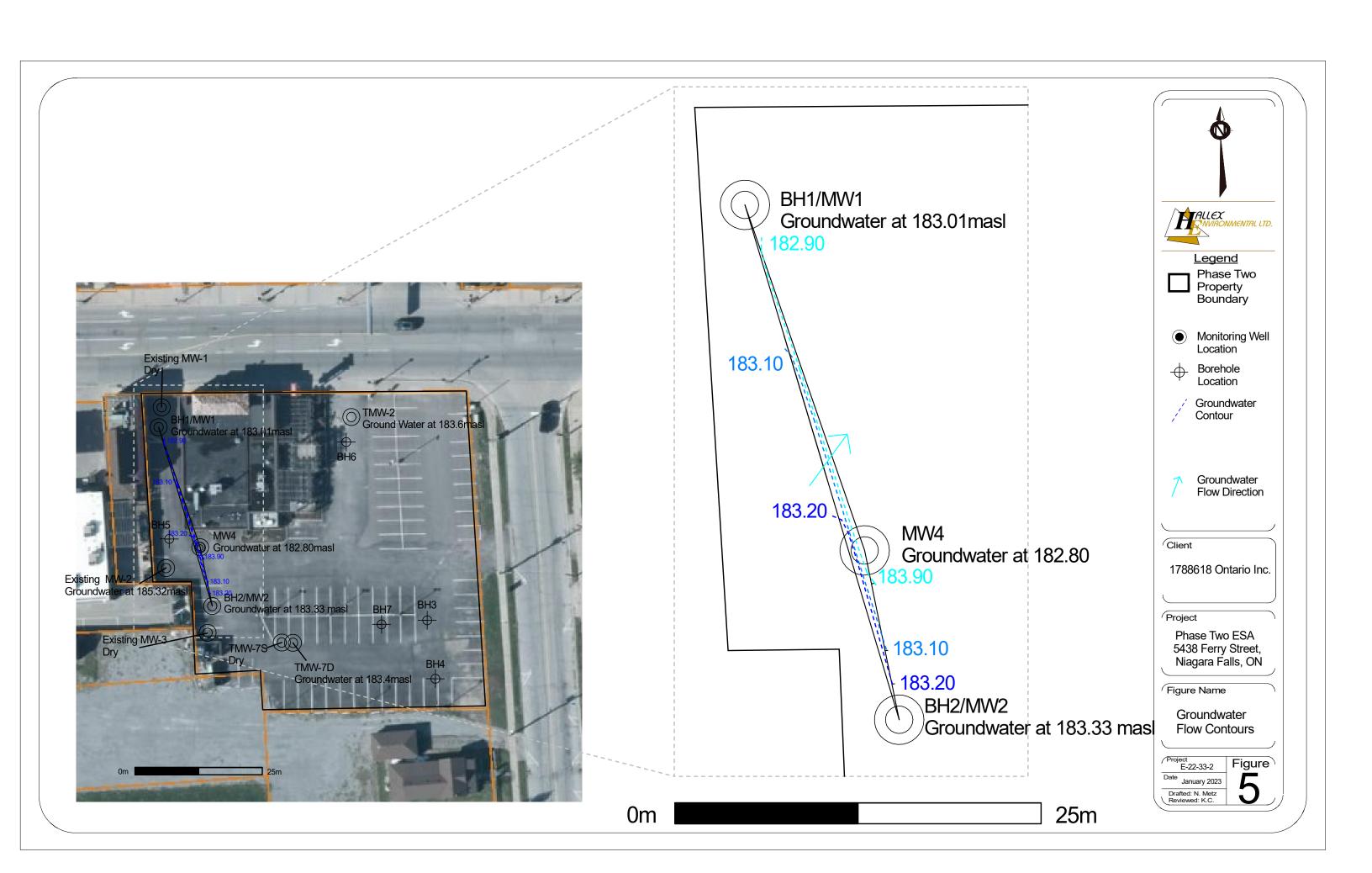

Phase Two ESA 5438 Ferry Street, Niagara Falls, ON

Figure Name Study Site Cross Section Locations (A-A', B-B')

Project E-22-33-2 Date January 2023
Drafted:M. Calvert Reviewed:N. Metz

Figure

Appendix A:

Field Logs

BOREHOLE LOG BH/MW-1-22

 Project Number:
 E-22-32-2
 Drill date:
 November 18th, 2022

 Project:
 Phase Two ESA
 Total depth:
 9.114mbgs

Client: 1788618 Ontario Inc Drilling contractor: Davis Drilling
Address: 5438 Ferry Street, Niagara Falls ON Drill rig: CME75 Truck Mount

Surface Elevation: 189.5 masl

Well Tag No.: A369540

Comments:	Logged by: Connor Dodsworth
	Reviewed by: K. Christian

Comi	ments:						-	Connor Dodsworth : K. Christian	
Depth (m)	Samples	Graphic Log	Grade to 0.61mbgs		Analysed	Water Level	Well Diagram	Elevation (m)	
0	SS1		40% Recovery					Concrete and Flush Mount	100
0.5			62mm of ASHPALT PAVEMENT, underlain by SAND and GRAVEL - FILL, brown, dry, very dense (N=100 for 50 blows for 75mm), non-plastic, non-cohesive, trace						99.5
1	SS2		lasphalt debris 0.76mbgs to 1.37mbgs 40% Recovery SAND and GRAVEL - FILL, brown, dry, medium dense (N=18), non-plastic, non-cohesive						99
1.5	SS3		1.52mbgs to 2.13mbgs 100% Recovery, SANDY SILT.						98.5
2			brown, dry, medium dense (N= 15), non-plastic, non-cohesive, trace gravel						98
2.5	SS4		2.29mbgs to 2.90mbgs 100% Recovery SANDY SILT, brown, dry, dense medium dense (N=19), non-plastic, non-cohesive, trace gravel	•				−Bentonite	97.5
3	SS5		3.05mbgs to 3.66mbgs 100% Recovery SANDY SILT, brown, dry, medium dense						97
3.5			(N=20), non-plastic, non-cohesive, trace gravel						96.5
4	SS6		3.81mbgs to 4.42mbgs 100% Recovery SILTY FINE SAND, brown, dry, dense (N=46), non-plastic, non-cohesive, trace gravel, no odour						96
4.5									95.5
5	SS7		4.57mbgs - 5.18mbgs 100% Recovery SILTY FINE SAND, brown, dry, dense (N=43), non-plastic, non-cohesive, no odour						95
5.5	SS8		5.33mbgs to 5.94mbgs 100% Recovery SILTY FINE SAND, brown, moist, dense (N=45), non-plastic, non-cohesive, no odour		•	PHC/BTEX, PAH, Metals, pH		#3 Silica	94.5

BOREHOLE LOG BH/MW-1-22

				8			I	<u> </u>	
Depth (m)	Samples	Graphic Log	Material Description	"N" Resistance	Soil Vapour CSVC (ppm)	Analysed	Water Level	Well Diagram	Elevation (m)
6									94
6.5	SS9		6.10mbgs to 6.71mbgs 100% Recovery SILTY FINE SAND, brown, moist, dense (N=38), non-plastic, non-cohesive, no odour, mottling				፟፟፟		93.5
7	SS10		6.86mbgs to 7.47mbgs 60% Recovery FINE SAND and SILT, brown, wet, dense (N=31), non-plastic, non-cohesive, no odour	•	•			#3 Silica	93
7.5	SS11		7.62mbgs to 8.23mbgs 60% Recovery					Sand	92.5
8			FINE SAND and SILT, brown, saturated , medium dense (N=24), non-plastic, non-cohesive, no odour		•				92
8.5	SS12		8.38mbgs to 8.99mbgs 60% Recovery FINE SAND AND SILT, brown, saturated, medium dense(N=18), non-plastic, non-cohesive, no odour	•					91.5
9		i i di	Borehole terminated at 8.99mbgs, installed 51mm x 1524mm screen from					<u>, · · · · · · · · · · · · · · · · · · ·</u>	91
9.5			6.10mbgs to 9.14mbgs, followed by sand to 5.49mbgs, followed by bentonite to 3.96mbgs, followed by cuttings to 1.52mbgs Followed by Bentonite to 0.305mbgs. Fitted with 51mm J-Plug and well fitted						90.5
10			with protective flush mount						90
10.5									89.5
11									89
11.5									88.5
12									88
12.5									87.5
13									87

BOREHOLE LOG BH/MW-2-22

Project Number: E-22-32-2Drill date: November 18th, 2022Surface Elevation: 190.2 maslProject: Phase Two ESATotal depth: 9.114mbgsWell Tag No.: A369540

Client: 1788618 Ontario Inc Drilling contractor: Davis Drilling
Address: 5438 Ferry Street, Niagara Falls ON Drill rig: CME75 Truck Mount

Comi	ments:	Weathe	er Conditions: Clear, 2°C				-	onnor Dodsworth K. Christian	
Depth (m)	Samples	Graphic Log	Material Description	20 40 "N" Resistance 60 88 100	1 2 Soil Vapour 3 CSVC (ppm) 6	Analysed	Water Level	Well Diagram	Elevation (m)
0	SS1		Grade to 0.61mbgs 5% Recovery 50mm of ASPHALT PAVEMENT, underlain by	- - •	 - 			Concrete -and Flush Mount	100
0.5			SAND and GRAVEL - FILL, grey, dry, loose (N=10), non-plastic, non-cohesive, \trace asphalt debris, no odour						99.5
_ _ _ 1 _ _	SS2		0.76mbgs to 1.37mbgs >5% Recovery SAND and GRAVEL FILL, brown, dry, loose(N=5), non-plastic, non-cohesive, trace clay						99
1.5	SS3		1.52mbgs to 2.13mbgs 100% Recovery SILTY MEDIUM SAND, some FINE SAND, some Gravel, grey to brown, dry, medium dense (N=	-		GSA			98.5
2			13), non-plastic, non-cohesive, some gravel, no odour	-					98
2.5	SS4		2.29mbgs to 2.90mbgs 100% Recovery SILTY MEDIUM SAND some FINE SAND, reddish brown, dry, medium dense (N=30), non-plastic, non-cohesive, trace gravel, no odour					–Bentonite	97.5
3	SS5		/3.05mbgs to 3.66mbgs 100% Recovery SILTEY MEDIUM SAND some FINE SAND						97
3.5			, reddish brown, dry, very dense(N=55), non-plastic, non-cohesive, some gravel, no odour						96.5
4 4	SS6		3.81mbgs to 4.42mbgs 100% Recovery SILTY MEDIUM SAND / SANDY SILT, brown, dry, very dense (N=63), non-plastic, non-cohesive no odour		•				96
4.5] \					95.5
5	SS7		4.57mbgs - 5.18mbgs 100% Recovery SILTY FINE SAND, brown, dry, dense (N=43), non-plastic, non-cohesive, no odour						95
5.5	SS8		5.33mbgs to 5.94mbgs 70% Recovery SILTY FINE SAND, brownish red, moist, dense (N=45), non-plastic, non-cohesive, no odour	.				#3 Silica Sand	94.5

BOREHOLE LOG BH/MW-2-22

				9				Γ	
Depth (m)	Samples	Graphic Log	Material Description	"N" Resistance	Soil Vapour CSVC (ppm)	Analysed	Water Level	Well Diagram	Elevation (m)
6									94
6.5	SS9		6.10mbgs to 6.71mbgs 80% Recovery SILTY FINE SAND, brownish red, wet, dense(N=38), non-plastic, non-cohesive, no odour, mottling	•		PHCs/BTEX PAHs, Metals, pH	፟፟፟፟፟፟፟		93.5
7	SS10		6.86mbgs to 7.47mbgs 60% Recovery FINE SAND and SILT, brownish red, wet, dense(N=31), non-plastic, non-cohesive, no odour						93
7.5	SS11		7.62mbgs to 8.23mbgs 60% Recovery					#3 Silica Sand	92.5
8			FINE SAND and SILT, brown, very wet, dense (N=34), non-plastic, non-cohesive, no odour						92
8.5	SS12		8.38mbgs to 8.99mbgs 60% Recovery FINE SAND and SILT, brown, saturated, dense (N=48) non-plastic, non-cohesive, no odour						91.5
9			Borehole terminated at 8.99mbgs,						91
9.5			installed 51mm x 1524mm screen from 6.10mbgs to 9.14mbgs, followed by sand to 5.49mbgs, followed by bentonite to 3.96mbgs, followed by cuttings to 1.52mbgs Followed by Bentonite to 0.305mbgs. Fitted with 51mm J-Plug and well fitted						90.5
10			with protective flush mount						90
10.5									89.5
11									89
11.5									88.5
12									88
12.5									87.5
13									87

BOREHOLE LOG BH-3-22

PROJECT NUMBER: E-22-33-2 DRILLING DATE: November 18, 2022 Surface Elevation: 190.4masl

PROJECT NAME: PHASE II ESA TOTAL DEPTH (mbgs): 3

DRILLING CONTARTOR: Davis Drilling CLIENT: 1788618 Ontario inc. ADDRESS: 5438 Ferry Street, Niagara Falls, ON TYPE OF DRILLING: Environmental

DRILLING RIG: CME 75 Truck mounted

COMMENTS Weather Conditions: Clear, 2°C LOGGED BY AC **CHECKED BY** KC

				CHECKED BY NO											
Depth (m)	Samples	Graphic Log	Material Description	10	15 "N" Resistance		25	30	20	40 Soil Vapour			100	Analysed	Elevation (m)
	SS1		Grade to 0.6mbgs 90% Recovery												
0.2		\bowtie	89mm of ASPHALT PAVMENT, underlain by FINE SAND - FILL, brown, dry, loose (N=6), non-plastic, non-cohesive, no odour	•											99.8
0.4															99.6
0.6		\bigotimes													99.4
0.8		\bowtie													99.2
1															99
1.2															98.8
1.4															98.6
1.6	SS2		1.424 to 2.13mbgs 100% Recovery CLAYEY SILT - FILL, brown, dry, medium stiff (N=7),											PHCs (F1-F4) + BTEX, PAH, Metals (by ICP),	98.4
_ _ 1.8			slight plasticity, slightly cohesive, trace sand	Į				•						pH	98.2
2					\setminus										98
2.2						\setminus									97.8
2.4	SS3		2.3 to 2.9mbgs 100% Recovery SANDY SILT, redish brown, dry, medium dense (N=27),				\setminus								97.6
2.6			non-plastic, non-cohesive, no odour				}	•							97.4
2.8															97.2
_ _ 3			Borehole terminated at 2.9mbgs												97
3.2															96.8
3.4															96.6
3.6															96.4
3.8															96.2

BOREHOLE LOG BH-4-22

PROJECT NUMBER: E-22-33-2 DRILLING DATE: November 18, 2022 Grade Elevation 190.6masl

PROJECT NAME: PHASE II ESA TOTAL DEPTH (mbgs): 3

CLIENT: 1788618 Ontario inc.

ADDRESS: 5438 Ferry Street, Niagara Falls, ON

TYPE OF DRILLING: Environmental

DRILLING RIG: CME 75 Truck mounted

COMMENTS Weather Conditions: Clear, 2°C LOGGED BY AC CHECKED BY KC

(£	<u>ω</u>	: Log	Material Description	"N"	' Re	sist	anc	e		Vapour	n) or CSVC		<u>.</u>	(m) nı
Depth (m)	Samples	Graphic Log	•		"N" Resistance				20 Soil Vapour (ppm) or CSVC (ppm) or CSVC (ppm) 100 (ppm) (ppm) (ppm) or CSVC (ppm)			-80 100	Analysed	Elevation (m)
- - 0.2	SS1		Grade to 0.61mbgs >5% Recovery 51mm if ASPHALT PAVEMENT underlain by SAND - FILL, brown, dry, loose (N=7), non-plastic, non-cohesive, trace clay, no odour										PHCs/BTEX, PAHs, Metals, pH	- - - 99.8 -
0.4					\bigvee									99.6
0.6														99.4
- 0.8 - - - - 1					\	\setminus								99.2 99
- - - - 1.2						\setminus								- - - - 98.8
1.4						\								98.6
_ _ 1.6	SS2		1.524 to 2.13mbgs 90% Recovery GRAVEL to SANDY SILT - FILL, redish brown, dry,										PHCs/BTEX, PAHS, Metals, pH	98.4
_ _ 1.8 _			medium dense (N=24), non-plastic, non-cohesive, trace clay, brick fragments, no odour				}						ρπ	98.2
2							V							98
2.2														97.8
2.4 	SS3		2.3 to 2.9mbgs 100% Recovery SANDY SILT with FINE SAND, redish brown, dry, slighly moist, medium dense (N=16), non-plastic,			$\left \right $							рН	97.6
2.6			non-cohesive, trace asphalt debris, no odour			•								97.4
2.8														97.2
- - 3 -			Borehole Terminated at 2.9mbgs											97 -
3.2														96.8
3.4														96.6
3.6														96.4
3.8 														96.2

BOREHOLE LOG BH-5-22

Project Number: E-22-33-2 **Drill date:** November 24th, 2022 **Grade Elevation:** 189.8 masl

 Project:
 Phase Two ESA
 Total depth:
 9.14 mbgs

 Client:
 1788618 Ontario Inc.
 Drilling contractor:
 Davis Drilling

Client: 1788618 Ontario Inc.

Address: 5438 Ferry Street, Niagara Falls, ON

Drilling contractor: Davis Drilling

Drill rig: Truck Mounted CME-75

Com	ments:	Weath	er Conditions: 4°, Sunny		by: M. Calvert ed by: K. Christian	n	
Depth (m)	Samples	Graphic Log	Material Description	20 40 "N" Resistance 50 "N" Resistance 100	10 20 30 Soil Vapour 40 CSVC (ppm) 60 70	Analysed	Elevation (m)
0.5	SS1		Grade to 0.61mbgs 5% recovery 51mm of ASPHALT PAVEMENT underlain by GRAVEL and SAND FILL grey, dry, very loose (N=3), non-plastic, non-cohesive, no odour				189.5
1							189
1.5	SS2		1.52 to 2.13mbgs 50% recovery SILTY CLAY, brown, dry, loose (N=8),non-plastic, non-cohesive, trace fine sand, trace asphalt, no odour	-	•	pH, EC, SAR and GSA	188.5 188
2.5							187.5 — 187
3 3.5	SS3		3.05 to 3.66mbgs 50% recovery SILTY FINE SAND, brown, dry, very dense (N=57), non-plastic, non-cohesive, trace gravel, no odour				186.5
4							186
4.5	SS4		4.57 to 5.18mbgs 90% recovery REFUSAL in SILTY MEDIUM SAND - UNWORKED, brown/red, dry, (N=85 for 50 blows for 139.7mm),non-plastic,			GSA	185.5 - 185
5.5			non-cohesive , no odour refusal at 5.015mgbs				184.5
							184

BOREHOLE LOG BH-5-22

order Depth (m)	Samples	Graphic Log	Material Description	"N" Resistance	Soil Vapour CSVC (ppm)	Analysed	Elevation (m)
6.5	SS5		6.10 to 6.71mbgs 70% recovery SILTY MEDIUM SAND reddish brown, slightly moist, very dense (N=85 for 50 blows 101.6mm),non-plastic, non-cohesive, trace gravel, no odour			PHC (F1-F4)/ BTEX, PAHS, Metals and pH	183.5
7.5							183 - - - - - - - - - - - - - - - - - - -
8	SS6		7.62 to 8.23mbgs 80%recovery SILTY SAND to SANDY SILT, brown, moist, very dense (N=51), non-plastic, non-cohesive, no odour		•		182
8.5	SS7		8.53 to 9.14mbgs 80% recovery SANDY SILT, brown, wet, medium dense (N=28),non-plastic, non-cohesive, no odour			PHC (F1-F4)/BTEX, PAHs and Metals	181.5 181
9.5			Borehole terminated at 9.14mbgs				180.5
10							180
10.5							179
11.5							178.5
12							178 177.5
12.5							177

BOREHOLE LOG BH-6-22

Project Number: E-22-33-2 Drill date: November 24th, 2022 Grade Elevation: 189.5masl

Project: Phase Two ESA Total depth: 3.66 mbgs Client: 1788618 Ontario Inc. Drilling contractor: Davis Drilling Address: 5438 Ferry Street, Niagara Falls, ON Drill rig: Truck Mounted CME-75

Comments: Weather Conditions: 4°. Sunny Logged by: M. Calvert

Com	ments:	Weathe	er Conditions: 4°, Sunny		Reviewe	by: M. Calv ed by: K. Ch		
Depth (m)	Samples	Graphic Log	Material Description	20	40 "N" Resistance 60 80 100	5 10 Soil Vapour 15 CSVC (ppm)		Elevation (m)
-	SS1		Grade to 0.61mbgs 50% recovery 76mm of ASPHALT PAVEMENT underlain by				pH	189.4
0.2			GRAVEL and SAND - FILL, grey, dry, medium dense (N=10), non-plastic, non-cohesive, no odour	•		•		189.2
0.4								189
- 0.6								188.8
- 0.8 - - -								188.6
- 1 - - -								188.4
1.2								188.2
- 1.4 - -	SS2		1.52 to 2.13mbgs					188
- 1.6			70% recovery CLAYEY SILT grey/brown, dry, medium dense (N=13), slight plasticity, slightly				PHC(F1-F4 BTEX, PAHs and	4)/ 187.8
1.8 			cohesive, trace sand , trace gravel, no odour.				Metals	187.6
- 2 - -								187.4
- 2.2 - -								_ 187.2
- 2.4 - -								- 187
- 2.6								186.8
- 2.8 -								186.6
- 3 - -	SS3		3.05 to 3.66mbgs 80% recovery					186.4
- 3.2 - -			CLAYEY SILT and SAND to GRANULAR reworked material brown to grey, dry, dense (N=40), non-plastic, non-cohesive trace cobble, no odour		•			- - 186.2
3.4								_ 186
3.6			Borehole terminated at 3.66mbgs					185.8
- 3.8 - -								_ 185.6

BOREHOLE LOG BH-7-22

Project Number: E-22-33-2 Drill date: November 24th, 2022 Grade Elevation: 190.3masl

Project: Phase Two ESA Total depth: 3.66mbgs Client: 1788618 Ontario Inc. Drilling contractor: Davis Drilling

Address: 5438 Ferry Street, Niagara Falls, ON Drill rig: Truck Mounted CME-75

Comments: Weather Conditions: 4°. Sunny Logged by: M. Calvert

Comi	ments:	Weathe	er Conditions: 4°, Sunny				gged viewe					an		
Depth (m)	Samples	Graphic Log	Material Description		50	10 "N" Resistance	- 80 100	2		15 CSVC (ppm)	25	30	Analysed	Elevation (m)
	SS1	///	Grade to 0.61mbgs				1	Ť	Ť	ĪÏ	Ì			190.2
- - 0.2 - -			50% recovery 64mm of ASPHALT PAVEMENT underlain by GRAVEL and SAND - FILL, grey, dry, medium dense (N=10), non-plastic, non-cohesive, trace clay, trace asphalt debris, no odour	•										190.2
- 0.4 -														1000
0.6														189.8
- 0.0														189.6
- - 0.8														-
		//												189.4
_ 1														
_														189.2
— 1.2 -		//												400
_ 1.4		//												189
- 1.7														188.8
_ _ 1.6 _	SS2		1.52 to 2.13mbgs 60% recovery CLAYEY SILT, brown, dry, medium dense (N=11),medium plasticity,											188.6
1.8			cohesive, trace fine sand, no odour								1			
											Ĭ			188.4
- 2 -				11										
-				- '										- 188.2 -
- 2.2 -					1									188
_ 2.4														100
														187.8
- - 2.6					$\ $									
														187.6
- 2.8 -														
_														187.4
— 3 	SS3		3.05 to 3.66mbgs	\dashv										187.2
_ _ 3.2	550		100% recovery SILTY SAND, brown, dry, dense (N=40), non-plastci, non-cohesive,											107.2
-			trace gravel, no odour								•			187
_ _ 3.4														F
														186.8
3.6				\perp	L	Ц	Ш		\perp	Ш	\perp	\perp		<u> </u>
			Borehole terminated at 3.66mbgs											— 186.6 —
- 3.8 -														186.4
														- 100.4

Appendix B:

Groundwater Calculations

<u>Hydraulic Conductivity (K) Calculation</u> <u>Project: E-22-33-2</u>

MW-1

m

Well radius	r =	0.025
Borehole radius	R =	0.05
Length of screen	L =	3.05
Initial depth to gw	H =	6.493
Pumped depth, t=0	Ho =	6.8
Final depth to gw	h =	6.505
Time (min)	dt=	1346

mine (min)	uı-				
Time (min)	Water Level (m)				
0	6.8				
1	6.76				
2	6.76				
3	6.74				
4	6.73				
5	6.71				
10	6.69				
117	6.62				
1346	6.505				

r, radius of well =	2.500E-02	
dh =	2.950E-01	
dt =	1.346E+03	
q(t), rate of inflow =	4.303E-07	
V, volume removed	2.952E-04	0.000
To, time lag =	6.860E+02	
L, length of screen	3.000E+00	
r2 =	6.250E-04	
L/R =	6.100E+01	
In I/r =	4.111E+00	
r2 x ln l/r =	2.569E-03	
K =	6.242E-07	cm/s
K =	5.393E-02	cm/day
K =	5.393E-04	m/day
K =	1.968E-01	m/yr

Hvorslev method	To=(pi)r ² /FK			
	$K=(r^2ln(L/R))/2LTo$			
v=ki/n				
v=	1.87261E-08	cm/s	1.61793E-05	m/d
k=	6.24203E-07		5.39311E-04	
n=	2.00000E-01			
I=	6.00000E-03			
		v=	5.90546E-03	m/yr

Hydraulic Conductivity (K) Calculation Project: E-22-33-2

<u>MW-2</u>

Well radius	r =	0.025
Borehole radius	R =	0.05
Length of screen	L =	3.05
Initial depth to gw	H =	6.87
Pumped depth, t=0	Ho =	7.1
Final depth to gw	h =	6.621
Time (min)	dt=	1300

rime (min)	at=
Time (min)	Water Level (m)
0	7.1
1	7.1
2	7.094
3	7.09
4	7.07
5	7.05
10	7.02
17	6.995
40	6.91
1300	6.621

2.500E-02	
4.790E-01	
1.300E+03	
7.235E-07	
2.212E-04	0.000
3.057E+02	
3.000E+00	
6.250E-04	
6.100E+01	
4.111E+00	
2.569E-03	
1.401E-06	cm/s
1.210E-01	cm/day
1.210E-03	m/day
4.417E-01	m/yr
	4.790E-01 1.300E+03 7.235E-07 2.212E-04 3.057E+02 3.000E+00 6.250E-04 6.100E+01 4.111E+00 2.569E-03 1.401E-06 1.210E-01 1.210E-01

		v=	1.32519E-02	m/yr
I=	6.00000E-03			
n=	2.00000E-01			
k=	1.40072E-06		1.21022E-03	
v=	4.20216E-08	cm/s	3.63067E-05	m/d
v=ki/n				
	$K=(r^2ln(L/R))/2LTo$			
Hvorslev method	To=(pi)r ² /FK			

Appendix C:

Laboratory Analytical Reports

351 Nash Road North, unit 9B Hamilton, ON L8H 7P4 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Hallex Environmental Ltd.

4999 Victoria Ave

Niagara Falls, ON L2E 4C9

Attn: Kevin Christian

Client PO:

Project: E-22-33-2

Custody: 136523,25,67790,92,91

Report Date: 2-Dec-2022 Order Date: 25-Nov-2022

Order #: 2249037

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2249037-01	BH1/MW1 SS8
2249037-03	BH1/MW1 SS8-A
2249037-04	BH2/MW2 SS9
2249037-05	BH2/MW2 SS3
2249037-07	BH3 SS2
2249037-08	BH4 SS1
2249037-09	BH4 SS3
2249037-10	BH5 SS2
2249037-11	BH5 SS4
2249037-12	BH5 SS5
2249037-13	BH5 SS7
2249037-14	BH6 SS1
2249037-15	BH6 SS2

Approved By:

Milan Ralitsch, PhD

Report Date: 02-Dec-2022

Order Date: 25-Nov-2022

Project Description: E-22-33-2

Certificate of Analysis

Client: Hallex Environmental Ltd.

Client PO:

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	28-Nov-22	29-Nov-22
Conductivity	MOE E3138 - probe @25 °C, water ext	1-Dec-22	1-Dec-22
PHC F1	CWS Tier 1 - P&T GC-FID	28-Nov-22	29-Nov-22
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	30-Nov-22	1-Dec-22
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	1-Dec-22	2-Dec-22
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	29-Nov-22	1-Dec-22
REG 153: pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	28-Nov-22	29-Nov-22
SAR	Calculated	1-Dec-22	2-Dec-22
Solids, %	CWS Tier 1 - Gravimetric	28-Nov-22	29-Nov-22
Texture - Coarse Med/Fine	Based on ASTM D2487	29-Nov-22	30-Nov-22

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022

Project Description: E-22-33-2

Client PO:

Summary of Criteria Exceedances

(If this page is blank then there are no exceedances)
Only those criteria that a sample exceeds will be highlighted in red

Regulatory Comparison:

Paracel Laboratories has provided regulatory guidelines on this report for informational purposes only and makes no representations or warranties that the data is accurate or reflects the current regulatory values. The user is advised to consult with the appropriate official regulations to evaluate compliance. Sample results that are highlighted have exceeded the selected regulatory limit. Calculated uncertainty estimations have not been applied for determining regulatory exceedances.

Sample	Analyte	MDL / Units	Result	Reg 153/04 -T2 Res/Park, coarse	Reg 153/04 -T2 Res/Park, fine
BH4 SS1	Benzo [a] pyrene	0.02 ug/g	0.49	0.3 ug/g	0.3 ug/g
BH4 SS1	Fluoranthene	0.02 ug/g	1.16	0.69 ug/g	0.69 ug/g

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022 Project Description: E-22-33-2

Client PO:

Client ID: BH1/MW1 SS8 BH1/MW1 SS8-A BH2/MW2 SS9 BH2/MW2 SS3 Criteria: 18-Nov-22 09:00 Sample Date 18-Nov-22 09:00 18-Nov-22 09:00 18-Nov-22 09:00 Reg 153/04 -T2 Reg 153/04 -T2 Sample ID: 2249037-01 2249037-03 2249037-04 2249037-05 Res/Park, coarse Res/Park, fine Soil Soil Soil Soil Matrix: MDL/Units **Physical Characteristics** % Solids 0.1 % by Wt. 82.6 82.2 82.5 85.7 0.1 % >75 um 29.6 0.1 % <75 um 70.4 0.1 % Med/Fine Texture General Inorganics 0.05 pH Units рH 7.66 7.78 5.00 - 9.00 pH Units 5.00 - 9.00 pH Units Metals 1 ug/g <1.0 Antimony <1.0 <1.0 7.5 ug/g 7.5 ug/g Arsenic 1 ug/g 2.2 2.0 1.8 18 ug/g 18 ug/g Barium 1 ug/g 112 390 ug/g 390 ug/g 94.9 187 0.5 ug/g < 0.5 < 0.5 < 0.5 Beryllium 4 ug/g 5 ug/g Boron 5 ug/g < 5.0 < 5.0 < 5.0 120 ug/g 120 ug/g Cadmium 0.5 ug/g < 0.5 < 0.5 <0.5 1.2 ug/g 1.2 ug/g Chromium 5 ug/g 9.9 9.3 8.9 160 ug/g 160 ug/g Cobalt 1 ug/g 5.7 5.0 4.8 22 ug/g 22 ug/g 5 ug/g 6.2 5.6 6.0 Copper 140 ug/g 180 ug/g 3.8 Lead 1 ug/g 3.4 3.4 120 ug/g 120 ug/g 1 ug/g <1.0 <1.0 Molybdenum <1.0 6.9 ug/g 6.9 ug/g Nickel 5 ug/g 10.0 8.5 8.3 100 ug/g 130 ug/g 1 ug/g <1.0 <1.0 <1.0 Selenium 2.4 ug/g 2.4 ug/g 0.3 ug/g < 0.3 < 0.3 < 0.3 Silver 20 ug/g 25 ug/g Thallium 1 ug/g <1.0 <1.0 <1.0 1 ug/g 1 ug/g 1 ug/g <1.0 <1.0 <1.0 Uranium 23 ug/g 23 ug/g Vanadium 10 ug/g 15.7 16.2 14.6 86 ug/g 86 ug/g Zinc 20 ug/g 23.7 <20.0 <20.0 340 ug/g 340 ug/g

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022

Client PO:

Project Description: E-22-33-2

	Client ID:	BH1/MW1 SS8	BH1/MW1 SS8-A	BH2/MW2 SS9	BH2/MW2 SS3	Crite	Criteria:	
	Sample Date: Sample ID: Matrix:	18-Nov-22 09:00 2249037-01 Soil	18-Nov-22 09:00 2249037-03 Soil	18-Nov-22 09:00 2249037-04 Soil	18-Nov-22 09:00 2249037-05 Soil	Reg 153/04 -T2 Res/Park, coarse	Reg 153/04 -T2 Res/Park, fine	
	MDL/Units							
Volatiles	L		<u>I</u>		Į.			
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.21 ug/g	0.17 ug/g	
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	-	1.1 ug/g	1.6 ug/g	
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	-	2.3 ug/g	6 ug/g	
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	-	-	-	
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	-	-	-	
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	-	3.1 ug/g	25 ug/g	
Toluene-d8	Surrogate	107%	107%	107%	-	-	-	
Hydrocarbons								
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	-	55 ug/g	65 ug/g	
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	-	98 ug/g	150 ug/g	
F3 PHCs (C16-C34)	8 ug/g	<8	<8	<8	-	300 ug/g	1300 ug/g	
F4 PHCs (C34-C50)	6 ug/g	<6	<6	<6	-	2800 ug/g	5600 ug/g	
Semi-Volatiles			-					
Acenaphthene	0.02 ug/g	<0.02	<0.02	<0.02	-	7.9 ug/g	29 ug/g	
Acenaphthylene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.15 ug/g	0.17 ug/g	
Anthracene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.67 ug/g	0.74 ug/g	
Benzo [a] anthracene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.5 ug/g	0.63 ug/g	
Benzo [a] pyrene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.3 ug/g	0.3 ug/g	
Benzo [b] fluoranthene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.78 ug/g	0.78 ug/g	
Benzo [g,h,i] perylene	0.02 ug/g	<0.02	<0.02	<0.02	-	6.6 ug/g	7.8 ug/g	
Benzo [k] fluoranthene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.78 ug/g	0.78 ug/g	
Chrysene	0.02 ug/g	<0.02	<0.02	<0.02	-	7 ug/g	7.8 ug/g	
Dibenzo [a,h] anthracene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.1 ug/g	0.1 ug/g	
Fluoranthene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.69 ug/g	0.69 ug/g	
Fluorene	0.02 ug/g	<0.02	<0.02	<0.02	-	62 ug/g	69 ug/g	

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022

Client PO:

Project Description: E-22-33-2

	Client ID:	BH1/MW1 SS8	BH1/MW1 SS8-A	BH2/MW2 SS9	BH2/MW2 SS3	Criteria:	
	Sample Date:	18-Nov-22 09:00	18-Nov-22 09:00	18-Nov-22 09:00	18-Nov-22 09:00	Reg 153/04 -T2	Reg 153/04 -T2
	Sample ID:	2249037-01	2249037-03	2249037-04	2249037-05	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Semi-Volatiles					•		
Indeno [1,2,3-cd] pyrene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.38 ug/g	0.48 ug/g
1-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.99 ug/g	3.4 ug/g
2-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	<0.02	-	0.99 ug/g	3.4 ug/g
Methylnaphthalene (1&2)	0.03 ug/g	<0.03	<0.03	<0.03	-	0.99 ug/g	3.4 ug/g
Naphthalene	0.01 ug/g	<0.01	<0.01	<0.01	-	0.6 ug/g	0.75 ug/g
Phenanthrene	0.02 ug/g	<0.02	<0.02	<0.02	-	6.2 ug/g	7.8 ug/g
Pyrene	0.02 ug/g	<0.02	<0.02	<0.02	-	78 ug/g	78 ug/g
2-Fluorobiphenyl	Surrogate	73.4%	71.9%	63.1%	•	-	-
Terphenyl-d14	Surrogate	64.9%	58.1%	62.0%	-	-	-

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022

Client PO: Project Description: E-22-33-2 Client ID: BH3 SS2 BH4 SS1 BH4 SS3 BH5 SS2 Criteria: Sample Date: 18-Nov-22 09:00 18-Nov-22 09:00 18-Nov-22 09:00 24-Nov-22 09:00 Reg 153/04 -T2 Reg 153/04 -T2 Res/Park, fine Sample ID: 2249037-07 2249037-08 2249037-09 2249037-10 Res/Park, coarse Soil Soil Soil Soil

	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics							
% Solids	0.1 % by Wt.	82.1	89.7	87.7	85.0	-	-
>75 um	0.1 %	-	-	-	9.3	-	-
<75 um	0.1 %	-	-	-	90.7	-	-
Texture	0.1 %	-	-	-	Med/Fine	-	-
General Inorganics			•	•			
SAR	0.01 N/A	-	-	-	1.33	5 N/A	5 N/A
Conductivity	5 uS/cm	-	-	-	178	0.7 mS/cm	0.7 mS/cm
рН	0.05 pH Units	7.68	7.62	7.66	7.59	5.00 - 9.00 pH Units	5.00 - 9.00 pH Units
Metals	· · · · · · · · · · · · · · · · · · ·				•	<u>.</u>	
Antimony	1 ug/g	<1.0	<1.0	-	-	7.5 ug/g	7.5 ug/g
Arsenic	1 ug/g	6.2	4.9	-	-	18 ug/g	18 ug/g
Barium	1 ug/g	129	54.7	-	-	390 ug/g	390 ug/g
Beryllium	0.5 ug/g	0.8	<0.5	-	-	4 ug/g	5 ug/g
Boron	5 ug/g	13.2	8.1	-	-	120 ug/g	120 ug/g
Cadmium	0.5 ug/g	<0.5	<0.5	-	-	1.2 ug/g	1.2 ug/g
Chromium	5 ug/g	28.1	11.2	-	-	160 ug/g	160 ug/g
Cobalt	1 ug/g	15.5	3.8	-	-	22 ug/g	22 ug/g
Copper	5 ug/g	22.9	13.7	-	-	140 ug/g	180 ug/g
Lead	1 ug/g	14.1	73.9	-	-	120 ug/g	120 ug/g
Molybdenum	1 ug/g	<1.0	<1.0	-	-	6.9 ug/g	6.9 ug/g
Nickel	5 ug/g	32.5	9.0	-	-	100 ug/g	130 ug/g
Selenium	1 ug/g	<1.0	<1.0	-	-	2.4 ug/g	2.4 ug/g
Silver	0.3 ug/g	<0.3	<0.3	-	-	20 ug/g	25 ug/g
Thallium	1 ug/g	<1.0	<1.0	-	-	1 ug/g	1 ug/g
Uranium	1 ug/g	<1.0	<1.0	-	-	23 ug/g	23 ug/g

Certificate of Analysis

Client: Hallex Environmental Ltd.

Order Date: 25-Nov-2022

Project Description: E-22-33-2

Report Date: 02-Dec-2022

Client PO:

	он Г	BH3 SS2	DUA CCA	BH4 SS3	DUE CCO	1 0.11	
	Client ID:		BH4 SS1	-	BH5 SS2	Crite	
	Sample Date:	18-Nov-22 09:00 2249037-07	18-Nov-22 09:00 2249037-08	18-Nov-22 09:00 2249037-09	24-Nov-22 09:00 2249037-10	Reg 153/04 -T2 Res/Park, coarse	Reg 153/04 -T2 Res/Park, fine
	Sample ID: Matrix:	2249037-07 Soil	Soil	2249037-09 Soil	Soil	Nes/Faik, Coaise	Nes/Faik, iiile
	MDL/Units	COII	0011	3011	0011		
Metals	WDL/OIIItS						
Vanadium	10 ug/g	40.1	14.6		_	86 ug/g	86 ug/g
Zinc	20 ug/g	75.2	116				340 ug/g
Volatiles	20 ug/g	75.2	110	-	-	340 ug/g	340 ug/g
Benzene	0.02 ug/g	<0.02	<0.02			0.21 ug/g	0.17 ug/g
Ethylbenzene	0.05 ug/g	<0.02	<0.05		-	1.1 ug/g	1.6 ug/g
Toluene	0.05 ug/g				-		
		<0.05	<0.05	-	-	2.3 ug/g	6 ug/g
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	-	-	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	-	-	3.1 ug/g	25 ug/g
Toluene-d8	Surrogate	106%	107%	-	-	-	-
Hydrocarbons	-		•		•	•	
F1 PHCs (C6-C10)	7 ug/g	<7	<7	-	-	55 ug/g	65 ug/g
F2 PHCs (C10-C16)	4 ug/g	<4	<4	-	-	98 ug/g	150 ug/g
F3 PHCs (C16-C34)	8 ug/g	<8	73	-	-	300 ug/g	1300 ug/g
F4 PHCs (C34-C50)	6 ug/g	<6	244	-	-	2800 ug/g	5600 ug/g
Semi-Volatiles	•					•	
Acenaphthene	0.02 ug/g	<0.02	0.09	-	-	7.9 ug/g	29 ug/g
Acenaphthylene	0.02 ug/g	<0.02	<0.02	-	-	0.15 ug/g	0.17 ug/g
Anthracene	0.02 ug/g	<0.02	0.23	-	-	0.67 ug/g	0.74 ug/g
Benzo [a] anthracene	0.02 ug/g	<0.02	0.45	-	-	0.5 ug/g	0.63 ug/g
Benzo [a] pyrene	0.02 ug/g	<0.02	0.49	-	-	0.3 ug/g	0.3 ug/g
Benzo [b] fluoranthene	0.02 ug/g	<0.02	0.42	-	-	0.78 ug/g	0.78 ug/g
Benzo [g,h,i] perylene	0.02 ug/g	<0.02	0.37	-	-	6.6 ug/g	7.8 ug/g
Benzo [k] fluoranthene	0.02 ug/g	<0.02	0.22	-	-	0.78 ug/g	0.78 ug/g
Chrysene	0.02 ug/g	<0.02	0.38	-	-	7 ug/g	7.8 ug/g

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022

Client PO:

Project Description: E-22-33-2

	Client ID:	BH3 SS2	BH4 SS1	BH4 SS3	BH5 SS2	Crite	eria:
	Sample Date:	18-Nov-22 09:00	18-Nov-22 09:00	18-Nov-22 09:00	24-Nov-22 09:00	Reg 153/04 -T2	Reg 153/04 -T2
	Sample ID:	2249037-07	2249037-08	2249037-09	2249037-10	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Semi-Volatiles	•				•		•
Dibenzo [a,h] anthracene	0.02 ug/g	<0.02	0.09	-	-	0.1 ug/g	0.1 ug/g
Fluoranthene	0.02 ug/g	<0.02	1.16	-	-	0.69 ug/g	0.69 ug/g
Fluorene	0.02 ug/g	<0.02	0.10	-	-	62 ug/g	69 ug/g
Indeno [1,2,3-cd] pyrene	0.02 ug/g	<0.02	0.35	-	-	0.38 ug/g	0.48 ug/g
1-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	-	-	0.99 ug/g	3.4 ug/g
2-Methylnaphthalene	0.02 ug/g	<0.02	0.03	-	-	0.99 ug/g	3.4 ug/g
Methylnaphthalene (1&2)	0.03 ug/g	<0.03	0.04	-	-	0.99 ug/g	3.4 ug/g
Naphthalene	0.01 ug/g	<0.01	0.08	-	-	0.6 ug/g	0.75 ug/g
Phenanthrene	0.02 ug/g	<0.02	0.89	-	-	6.2 ug/g	7.8 ug/g
Pyrene	0.02 ug/g	<0.02	0.91	-	-	78 ug/g	78 ug/g
2-Fluorobiphenyl	Surrogate	76.5%	74.3%	-	-	-	-
Terphenyl-d14	Surrogate	70.4%	81.2%	-	-	-	-

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022 Project Description: E-22-33-2

Client PO:

Client ID: BH5 SS4 BH5 SS5 BH5 SS7 **BH6 SS1** Criteria: 24-Nov-22 09:00 24-Nov-22 09:00 24-Nov-22 09:00 24-Nov-22 09:00 Sample Date Reg 153/04 -T2 Reg 153/04 -T2 Sample ID: 2249037-11 2249037-12 2249037-13 2249037-14 Res/Park, coarse Res/Park, fine Soil Soil Soil Soil Matrix: MDL/Units **Physical Characteristics** % Solids 0.1 % by Wt. 86.8 84.0 80.9 87.7 0.1 % >75 um 21.5 0.1 % <75 um 78.5 0.1 % Med/Fine Texture **General Inorganics** 0.05 pH Units рH 7.65 7.66 7.87 5.00 - 9.00 pH Units 5.00 - 9.00 pH Units Metals 1 ug/g <1.0 Antimony <1.0 7.5 ug/g 7.5 ug/g Arsenic 1 ug/g 2.1 2.2 18 ug/g 18 ug/g Barium 1 ug/g 42.6 390 ug/g 390 ug/g 33.6 0.5 ug/g < 0.5 < 0.5 Beryllium 4 ug/g 5 ug/g Boron 5 ug/g < 5.0 < 5.0 120 ug/g 120 ug/g Cadmium 0.5 ug/g < 0.5 <0.5 1.2 ug/g 1.2 ug/g Chromium 5 ug/g 7.3 7.6 160 ug/g 160 ug/g Cobalt 4.2 1 ug/g 4.8 22 ug/g 22 ug/g 5 ug/g 5.3 6.2 Copper 140 ug/g 180 ug/g 120 ug/g Lead 1 ug/g 3.2 2.8 120 ug/g 1 ug/g <1.0 Molybdenum <1.0 6.9 ug/g 6.9 ug/g Nickel 5 ug/g 6.8 7.5 100 ug/g 130 ug/g 1 ug/g <1.0 Selenium <1.0 2.4 ug/g 2.4 ug/g 0.3 ug/g < 0.3 < 0.3 Silver 20 ug/g 25 ug/g Thallium 1 ug/g <1.0 <1.0 1 ug/g 1 ug/g 1 ug/g <1.0 <1.0 Uranium 23 ug/g 23 ug/g Vanadium 10 ug/g 14.0 12.5 86 ug/g 86 ug/g Zinc 20 ug/g <20.0 <20.0 340 ug/g 340 ug/g

Certificate of Analysis

Client: Hallex Environmental Ltd.

Order Date: 25-Nov-2022

Project Description: E-22-33-2

Report Date: 02-Dec-2022

Client PO:

Client ID: BH5 SS4 BH5 SS5 BH5 SS7 **BH6 SS1** Criteria: 24-Nov-22 09:00 24-Nov-22 09:00 24-Nov-22 09:00 24-Nov-22 09:00 Sample Date Reg 153/04 -T2 Reg 153/04 -T2 Sample ID: 2249037-11 2249037-12 2249037-13 2249037-14 Res/Park, coarse Res/Park, fine Soil Soil Soil Soil Matrix: MDL/Units **Volatiles** 0.02 ug/g Benzene < 0.02 < 0.02 0.21 ug/g 0.17 ug/g Ethylbenzene 0.05 ug/g < 0.05 < 0.05 1.1 ug/g 1.6 ug/g Toluene 0.05 ug/g < 0.05 < 0.05 2.3 ug/g 6 ug/g m,p-Xylenes 0.05 ug/g < 0.05 < 0.05 o-Xylene 0.05 ug/g < 0.05 < 0.05 0.05 ug/g < 0.05 < 0.05 Xylenes, total 3.1 ug/g 25 ug/g Toluene-d8 108% 106% Surrogate **Hydrocarbons** <7 <7 F1 PHCs (C6-C10) 7 ug/g 55 ug/g 65 ug/g <4 <4 F2 PHCs (C10-C16) 4 ug/g 98 ug/g 150 ug/g F3 PHCs (C16-C34) 8 ug/g <8 <8 300 ug/g 1300 ug/g F4 PHCs (C34-C50) 6 ug/g <6 <6 2800 ug/g 5600 ug/g Semi-Volatiles Acenaphthene 0.02 ug/g < 0.02 < 0.02 29 ug/g 7.9 ug/g Acenaphthylene 0.02 ug/g < 0.02 < 0.02 0.15 ug/g 0.17 ug/g 0.02 ug/g < 0.02 < 0.02 Anthracene 0.67 ug/g 0.74 ug/g 0.02 ug/g < 0.02 < 0.02 Benzo [a] anthracene 0.5 ug/g 0.63 ug/g Benzo [a] pyrene 0.02 ug/g < 0.02 < 0.02 0.3 ug/g 0.3 ug/g 0.02 ug/g < 0.02 < 0.02 Benzo [b] fluoranthene 0.78 ug/g 0.78 ug/g 0.02 ug/g < 0.02 < 0.02 Benzo [g,h,i] perylene 6.6 ug/g 7.8 ug/g Benzo [k] fluoranthene 0.02 ug/g < 0.02 < 0.02 0.78 ug/g 0.78 ug/g 0.02 ug/g <0.02 < 0.02 7.8 ug/g Chrysene 7 ug/g 0.02 ug/g < 0.02 < 0.02 Dibenzo [a,h] anthracene 0.1 ug/g 0.1 ug/g Fluoranthene 0.02 ug/g < 0.02 < 0.02 0.69 ug/g 0.69 ug/g 0.02 ug/g < 0.02 < 0.02 Fluorene 62 ug/g 69 ug/g

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022

Client PO:

Project Description: E-22-33-2

	Client ID:	BH5 SS4	BH5 SS5	BH5 SS7	BH6 SS1	Crite	eria:
	Sample Date:	24-Nov-22 09:00	24-Nov-22 09:00	24-Nov-22 09:00	24-Nov-22 09:00	Reg 153/04 -T2	Reg 153/04 -T2
	Sample ID:	2249037-11	2249037-12	2249037-13	2249037-14	Res/Park, coarse	Res/Park, fine
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Semi-Volatiles	-				•		
Indeno [1,2,3-cd] pyrene	0.02 ug/g	-	<0.02	<0.02	-	0.38 ug/g	0.48 ug/g
1-Methylnaphthalene	0.02 ug/g	-	<0.02	<0.02	-	0.99 ug/g	3.4 ug/g
2-Methylnaphthalene	0.02 ug/g	-	<0.02	<0.02	-	0.99 ug/g	3.4 ug/g
Methylnaphthalene (1&2)	0.03 ug/g	-	<0.03	<0.03	-	0.99 ug/g	3.4 ug/g
Naphthalene	0.01 ug/g	-	<0.01	<0.01	-	0.6 ug/g	0.75 ug/g
Phenanthrene	0.02 ug/g	-	<0.02	<0.02	-	6.2 ug/g	7.8 ug/g
Pyrene	0.02 ug/g	-	<0.02	<0.02	-	78 ug/g	78 ug/g
2-Fluorobiphenyl	Surrogate	-	68.2%	70.8%	-	-	-
Terphenyl-d14	Surrogate	-	65.1%	63.1%	-	-	-

Certificate of Analysis

Client: Hallex Environmental Ltd.

Order Date: 25-Nov-2022

Project Description: E-22-33-2

Report Date: 02-Dec-2022

Client PO:

	Client ID:	BH6 SS2				Crite	eria:
	Sample Date:	24-Nov-22 09:00				Reg 153/04 -T2	Reg 153/04 -T2
	Sample ID:	2249037-15				Res/Park, coarse	Res/Park, fine
	Matrix:	Soil					
	MDL/Units						
Physical Characteristics				•			
% Solids	0.1 % by Wt.	81.9	-	-	-	-	-
Metals	<u> </u>				·	<u>.</u>	
Antimony	1 ug/g	<1.0	-	-	-	7.5 ug/g	7.5 ug/g
Arsenic	1 ug/g	4.3	-	-	-	18 ug/g	18 ug/g
Barium	1 ug/g	132	-	-	-	390 ug/g	390 ug/g
Beryllium	0.5 ug/g	0.7	-	-	-	4 ug/g	5 ug/g
Boron	5 ug/g	9.3	-	-	-	120 ug/g	120 ug/g
Cadmium	0.5 ug/g	<0.5	-	-	-	1.2 ug/g	1.2 ug/g
Chromium	5 ug/g	20.8	-	-	-	160 ug/g	160 ug/g
Cobalt	1 ug/g	10.1	-	-	-	22 ug/g	22 ug/g
Copper	5 ug/g	16.7	-	-	-	140 ug/g	180 ug/g
Lead	1 ug/g	9.2	-	-	-	120 ug/g	120 ug/g
Molybdenum	1 ug/g	<1.0	-	-	-	6.9 ug/g	6.9 ug/g
Nickel	5 ug/g	21.3	-	-	-	100 ug/g	130 ug/g
Selenium	1 ug/g	<1.0	-	-	-	2.4 ug/g	2.4 ug/g
Silver	0.3 ug/g	<0.3	-	-	-	20 ug/g	25 ug/g
Thallium	1 ug/g	<1.0	-	-	-	1 ug/g	1 ug/g
Uranium	1 ug/g	<1.0	-	-	-	23 ug/g	23 ug/g
Vanadium	10 ug/g	27.9	-	-	-	86 ug/g	86 ug/g
Zinc	20 ug/g	48.5	-	-	-	340 ug/g	340 ug/g
Volatiles	++			+	+	+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3 3
Benzene	0.02 ug/g	<0.02	-	-	-	0.21 ug/g	0.17 ug/g
Ethylbenzene	0.05 ug/g	<0.05	-	-	-	1.1 ug/g	1.6 ug/g
Toluene	0.05 ug/g	<0.05	-	-	-	2.3 ug/g	6 ug/g
m,p-Xylenes	0.05 ug/g	<0.05	-	-	_	-	-

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022 Project Description: E-22-33-2

Client PO:

Client ID: BH6 SS2 Criteria: 24-Nov-22 09:00 Sample Date Reg 153/04 -T2 Reg 153/04 -T2 Sample ID: 2249037-15 Res/Park, coarse Res/Park, fine Soil Matrix: MDL/Units **Volatiles** 0.05 ug/g o-Xylene < 0.05 Xylenes, total 0.05 ug/g < 0.05 3.1 ug/g 25 ug/g Toluene-d8 107% Surrogate -_ _ Hydrocarbons F1 PHCs (C6-C10) 7 ug/g <7 55 ug/g 65 ug/g F2 PHCs (C10-C16) 4 ug/g <4 98 ug/g 150 ug/g <8 F3 PHCs (C16-C34) 8 ug/g 300 ug/g 1300 ug/g F4 PHCs (C34-C50) 6 ug/g <6 2800 ug/g 5600 ug/g Semi-Volatiles Acenaphthene 0.02 ug/g < 0.02 7.9 ug/g 29 ug/g < 0.02 Acenaphthylene 0.02 ug/g 0.17 ug/g 0.15 ug/g _ Anthracene 0.02 ug/g < 0.02 0.67 ug/g 0.74 ug/g Benzo [a] anthracene 0.02 ug/g < 0.02 0.5 ug/g 0.63 ug/g 0.02 ug/g < 0.02 Benzo [a] pyrene _ 0.3 ug/g 0.3 ug/g Benzo [b] fluoranthene 0.02 ug/g < 0.02 0.78 ug/g 0.78 ug/g 0.02 ug/g < 0.02 Benzo [g,h,i] perylene 6.6 ug/g 7.8 ug/g 0.02 ug/g < 0.02 Benzo [k] fluoranthene 0.78 ug/g 0.78 ug/g Chrysene 0.02 ug/g < 0.02 7 ug/g 7.8 ug/g 0.02 ug/g < 0.02 Dibenzo [a,h] anthracene 0.1 ug/g 0.1 ug/g Fluoranthene 0.02 ug/g < 0.02 0.69 ug/g 0.69 ug/g Fluorene 0.02 ug/g < 0.02 62 ug/g 69 ug/g 0.02 ug/g < 0.02 Indeno [1,2,3-cd] pyrene 0.48 ug/g 0.38 ug/g 0.02 ug/g 1-Methylnaphthalene < 0.02 0.99 ug/g 3.4 ug/g 2-Methylnaphthalene 0.02 ug/g < 0.02 0.99 ug/g 3.4 ug/g 0.03 ug/g < 0.03 Methylnaphthalene (1&2) 0.99 ug/g 3.4 ug/g

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022

Client PO:

Project Description: E-22-33-2

	Client ID:	BH6 SS2				Crite	eria:
	Sample Date:	24-Nov-22 09:00				Reg 153/04 -T2	Reg 153/04 -T2
	Sample ID:					Res/Park, coarse	Res/Park, fine
	Matrix:	Soil					
	MDL/Units						
Semi-Volatiles				•	•		
Naphthalene	0.01 ug/g	<0.01	-	-	-	0.6 ug/g	0.75 ug/g
Phenanthrene	0.02 ug/g	<0.02	-	-	-	6.2 ug/g	7.8 ug/g
Pyrene	0.02 ug/g	<0.02	-	-	-	78 ug/g	78 ug/g
2-Fluorobiphenyl	Surrogate	70.3%	-	-	-	-	-
Terphenyl-d14	Surrogate	60.2%	-	-	-	-	-

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022

Client PO:

Project Description: E-22-33-2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics								
SAR	ND	0.01	N/A					
Conductivity	ND	5	uS/cm					
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
Metals								
Antimony	ND	1.0	ug/g					
Arsenic	ND	1.0	ug/g					
Barium	ND	1.0	ug/g					
Beryllium	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium	ND	5.0	ug/g					
Cobalt	ND	1.0	ug/g					
Copper	ND	5.0	ug/g					
Lead	ND	1.0	ug/g					
Molybdenum	ND	1.0	ug/g					
Nickel	ND	5.0	ug/g					
Selenium	ND	1.0	ug/g					
Silver	ND	0.3	ug/g					
Thallium	ND	1.0	ug/g					
Uranium	ND	1.0	ug/g					
Vanadium	ND	10.0	ug/g					
Zinc	ND	20.0	ug/g					
Semi-Volatiles	110		-9.9					
Acenaphthene	ND	0.02	ug/g					
Acenaphthylene	ND	0.02	ug/g					
Anthracene	ND	0.02	ug/g					
Benzo [a] anthracene	ND	0.02	ug/g					
Benzo [a] pyrene	ND	0.02	ug/g					

Client: Hallex Environmental Ltd.

Client PO:

Order #: 2249037

Certificate of Analysis

Report Date: 02-Dec-2022

Order Date: 25-Nov-2022

Project Description: E-22-33-2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [b] fluoranthene	ND	0.02	ug/g					
Benzo [g,h,i] perylene	ND	0.02	ug/g					
Benzo [k] fluoranthene	ND	0.02	ug/g					
Chrysene	ND	0.02	ug/g					
Dibenzo [a,h] anthracene	ND	0.02	ug/g					
Fluoranthene	ND	0.02	ug/g					
Fluorene	ND	0.02	ug/g					
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g					
1-Methylnaphthalene	ND	0.02	ug/g					
2-Methylnaphthalene	ND	0.02	ug/g					
Methylnaphthalene (1&2)	ND	0.03	ug/g					
Naphthalene	ND	0.01	ug/g					
Phenanthrene	ND	0.02	ug/g					
Pyrene	ND	0.02	ug/g					
Surrogate: 2-Fluorobiphenyl	0.430		ug/g	86.0	50-140			
Surrogate: Terphenyl-d14	0.335		ug/g	67.1	50-140			
Volatiles								
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					
Xylenes, total	ND	0.05	ug/g					
Surrogate: Toluene-d8	8.22		ug/g	103	50-140			

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022

Client PO:

Project Description: E-22-33-2

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
SAR	11.9	0.01	N/A	11.5			3.3	30	
Conductivity	2950	5	uS/cm	2960			0.2	5	
рН	7.65	0.05	pH Units	ND			NC	10	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g	ND			NC	30	
Metals									
Antimony	ND	1.0	ug/g	ND			NC	30	
Arsenic	6.0	1.0	ug/g	4.4			30.0	30	
Barium	162	1.0	ug/g	138			16.0	30	
Beryllium	1.2	0.5	ug/g	1.0			26.2	30	
Boron	26.8	5.0	ug/g	14.8			NC	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium	36.9	5.0	ug/g	26.7			NC	30	
Cobalt	15.0	1.0	ug/g	12.5			18.2	30	
Copper	25.5	5.0	ug/g	20.8			20.2	30	
Lead	11.9	1.0	ug/g	9.2			25.3	30	
Molybdenum	1.2	1.0	ug/g	ND			NC	30	
Nickel	34.5	5.0	ug/g	28.2			20.2	30	
Selenium	2.2	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	1.3	1.0	ug/g	ND			NC	30	
Uranium	1.1	1.0	ug/g	ND			NC	30	
Vanadium	45.3	10.0	ug/g	36.5			21.6	30	
Zinc	68.1	20.0	ug/g	54.4			22.4	30	
Physical Characteristics % Solids	84.1	0.1	% by Wt.	82.6			1.7	25	
Semi-Volatiles									

Certificate of Analysis

Surrogate: Toluene-d8

9.70

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022 Project Description: E-22-33-2

Client PO:

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Acenaphthene	ND	0.02	ug/g	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g	ND			NC	40	
Anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Chrysene	ND	0.02	ug/g	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g	ND			NC	40	
Fluoranthene	ND	0.02	ug/g	ND			NC	40	
Fluorene	ND	0.02	ug/g	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g	ND			NC	40	
1-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
2-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
Naphthalene	ND	0.01	ug/g	ND			NC	40	
Phenanthrene	ND	0.02	ug/g	ND			NC	40	
Pyrene	ND	0.02	ug/g	ND			NC	40	
Surrogate: 2-Fluorobiphenyl	0.432		ug/g		71.4	50-140			
Surrogate: Terphenyl-d14	0.365		ug/g		60.4	50-140			
Volatiles									
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	

107

50-140

ug/g

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022

Client PO:

Project Description: E-22-33-2

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	80	7	ug/g	ND	113	80-120			
F2 PHCs (C10-C16)	90	4	ug/g	ND	90.5	60-140			
F3 PHCs (C16-C34)	189	8	ug/g	ND	84.0	60-140			
F4 PHCs (C34-C50)	158	6	ug/g	ND	98.0	60-140			
Metals									
Antimony	140	1.0	ug/g	ND	112	70-130			
Arsenic	128	1.0	ug/g	4.4	98.5	70-130			
Barium	275	1.0	ug/g	138	109	70-130			
Beryllium	121	0.5	ug/g	1.0	96.2	70-130			
Boron	145	5.0	ug/g	14.8	104	70-130			
Cadmium	121	0.5	ug/g	ND	97.2	70-130			
Chromium	152	5.0	ug/g	26.7	100	70-130			
Cobalt	131	1.0	ug/g	12.5	94.9	70-130			
Copper	140	5.0	ug/g	20.8	95.1	70-130			
Lead	140	1.0	ug/g	9.2	104	70-130			
Molybdenum	131	1.0	ug/g	ND	104	70-130			
Nickel	152	5.0	ug/g	28.2	98.9	70-130			
Selenium	128	1.0	ug/g	ND	102	70-130			
Silver	97.8	0.3	ug/g	ND	78.3	70-130			
Thallium	133	1.0	ug/g	ND	106	70-130			
Uranium	121	1.0	ug/g	ND	96.6	70-130			
Vanadium	163	10.0	ug/g	36.5	101	70-130			
Zinc	179	20.0	ug/g	54.4	99.5	70-130			
Semi-Volatiles									
Acenaphthene	0.462	0.02	ug/g	ND	76.3	50-140			
Acenaphthylene	0.468	0.02	ug/g	ND	77.4	50-140			
Anthracene	0.438	0.02	ug/g	ND	72.4	50-140			
Benzo [a] anthracene	0.461	0.02	ug/g	ND	76.2	50-140			
Benzo [a] pyrene	0.456	0.02	ug/g	ND	75.4	50-140			
Benzo [b] fluoranthene	0.477	0.02	ug/g	ND	78.8	50-140			

Certificate of Analysis

Client: Hallex Environmental Ltd.

Report Date: 02-Dec-2022 Order Date: 25-Nov-2022 Project Description: E-22-33-2

Client PO:

Method Quality Control: Spike

Reporting Source %REC ___ RPD

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [g,h,i] perylene	0.476	0.02	ug/g	ND	78.7	50-140			
Benzo [k] fluoranthene	0.493	0.02	ug/g	ND	81.5	50-140			
Chrysene	0.465	0.02	ug/g	ND	76.8	50-140			
Dibenzo [a,h] anthracene	0.504	0.02	ug/g	ND	83.3	50-140			
Fluoranthene	0.494	0.02	ug/g	ND	81.7	50-140			
Fluorene	0.486	0.02	ug/g	ND	80.4	50-140			
Indeno [1,2,3-cd] pyrene	0.486	0.02	ug/g	ND	80.3	50-140			
1-Methylnaphthalene	0.496	0.02	ug/g	ND	82.0	50-140			
2-Methylnaphthalene	0.483	0.02	ug/g	ND	79.8	50-140			
Naphthalene	0.429	0.01	ug/g	ND	70.9	50-140			
Phenanthrene	0.472	0.02	ug/g	ND	78.1	50-140			
Pyrene	0.419	0.02	ug/g	ND	69.3	50-140			
Surrogate: 2-Fluorobiphenyl	0.435		ug/g		71.9	50-140			
Surrogate: Terphenyl-d14	0.409		ug/g		67.6	50-140			
Volatiles			,		407				
Benzene	4.28	0.02	ug/g	ND	107	60-130			
Ethylbenzene	4.48	0.05	ug/g	ND	112	60-130			
Toluene	4.52	0.05	ug/g	ND	113	60-130			
m,p-Xylenes	8.92	0.05	ug/g	ND	111	60-130			
o-Xylene	4.56	0.05	ug/g	ND	114	60-130			
Surrogate: Toluene-d8	7.84		ug/g		98.0	50-140			

Client: Hallex Environmental Ltd.

Order #: 2249037

Certificate of Analysis

Report Date: 02-Dec-2022

Order Date: 25-Nov-2022

Client PO: Project Description: E-22-33-2

Qualifier Notes:

Sample Qualifiers :

QC Qualifiers:

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Paracel ID: 2249037

Chain Of Custody

(Lab Use Only)

Nº 136523

Client Name: 11 11 Connacatal		Project	Ref: C.	-22-33-2						1	N.	Page	of 🗟	
Client Name: Hollex En Monmontal	ì	Quote		7	1	T.	6 4	5.7	: -		Tu	rnarour	nd Time	3
Contact Name: Keyin Christian	,	PO.#:			7 7			1	,		1 day		. [□ 3 day
4999 Victoria Ave, Niagara Falls, ON		E-mail:	'nΜ	etz@hallex.c	Ω						2 day		[Regular
Telephone: 905 357 4015			Kdh	nstian@balle	x.Ca					Date	Require	ed:		
REG 153/04 REG 406/19 Other Regulation		Aatrix T		(Soil/Seg) GW (Gro		1.5		300	Red	guired	Analy:	sis		
☐ Table 1		SW (Su	rface W	/ater) SS (Storm/Sanir	tary Sewer)					,	,	-		
□ Table 2 □ Ind/Comm □ Coarse □ CCME □ MISA			P (P	aint) A (Air) O (Othe	r)	BTEX						ن الم	2	
☐ Table 3 ☐ Agri/Other ☐ SU-Sani ☐ SU-St	orm		ers			4+B		CP				25		1
☐ Table Mun:		me	ntain	Sample T	aken	F1-F4+		s by			(S)	, S	10	8
For RSC: ✓ Yes □ No □ Other:	Matrix	Air Volume	of Containers		Torre	PHCs	VOCS	Metals by ICP	Hg	CrVI	B (HWS)	WH EminSize	Hold	EC SAR
Sample ID/Location Name		- Š	11:	Date	Time		> _	Ź		-		V	7	
1 BHILMWI 558	5	-	1	Nov.18,202			+	\sim			1		M	· 2
2 BHI/MWI 5511	-	1 (0.1	2	and the second				\ /	17.		3.7	1 1500	M	4 1
3 RHI/MWI 558-a	9	ļ	ļ	ga. 4	<u> </u>			\Rightarrow					+-	1.0
4 BHA/MWA 559	1		3	1			-	$ \wedge $	-		+	\wedge	+	- 1
5 RHA/MWA 553	1	_	2		· ·	Author	Koh	u Liva		-		N/M	\forall	
6 RH2/MW2 5512		_	2							-			\wedge	1.5
7 843 552			9			\sim	- $<$	\times			\vdash	\rightarrow	+-+	
8 8H4 991						\perp	\nearrow	\checkmark	_			\rightarrow	+-	. A
9 844 552			2	V				-			 	\mathcal{L}	\dashv	
10 845 552		J. 1	2	Nov212002				_				XV	lacksquare	ΔX
Comments:									Metho	\wedge	elivery:	L 21	Tolal.	1/1
			<u> </u>	CARA	Received at Lab			-	Verifie		(Op	-00	c Mal	KID
Relings 1948 By (Sigh):	d By Driver/	Depot:	NI.	EKILOT	C-1	W			1,1					
Why privaluent Date/Ti	me: 55	YA	VA	2	Date/Time:	V28	100 8	: 28	Date/		028	control	然 石	of the second
16 0000 Temper	ature:		, ,	°C	Temperature:	6.6	°C		pH Ve	erified:		By:		. 13 20
dy (Env) xlsx				Revision 4.0										

Chain Of Custody (Lab Use Only)

Nº 136525

Client Name: Hallex Environ	mental			Project Ref. E-22-33-2											Pa	ge a	of 👼	
Contact Name: Kevin Christian	1			Quote	e #:			S.	1		- V	6		٠,	Turna	round	Time	
		U. ON		PO #:	Š.	Land Section 1	4		T	-	7	-		1 day				3 day
4999 Victoria Ave,	1/1/odbucy to	NIC, DIV		E-mail	E-mail: MMETZ@Mallex.ca Kuhristian@hallex.ca									2 day			L	Regular
Telephone: 905 357 401	5			1	Kul	nristion@halle	(.ca						Date	Requ	ired:			
REG 153/04 REG 406/19	Other R	legulation	T	Aatrix 1	Type:	S (Soil/Sed.) 6W (Gr	ound Water)		1			D-				(2)		N. Sq.
☐ Table 1 🗹 Res/Park ☐ Med/Fine	REG 558	☐ PWQO			ırface V	Vater) SS (Storm/San	itary Sewer)					Re	quirec	d Anal	ysis	slane)		
☑ Table 2 ☐ Ind/Comm ☐ Coarse	☐ CCME	☐ MISA			P (P	aint) A (Air) O (Othe	er)	Ĕ								رگ	T	
☐ Table 3 ☐ Agri/Other	☐ SU - Sani	☐ SU-Storm			ers			F1-F4+BTEX			点					ize		
□ Table	Mun:			me.	Containers	Sample 1	Taken	1-F			by IC			·		25	-6	
For RSC: Ves No	Other:		Matrix	Air Volume	of Co			PHCs F	VOCs	PAHs	Metals by ICP		5	B (HWS)	-	Grain	Hold	1.
Sample ID/Location	on Name			Ą	22	Date	Time	₫.	>	₽.	ž	Ŋ	CrV	B	HO	9	-	-
1 845 554			5		2	Nov 24,2023										X	_	- 1
5 RHP 222		e e e	Ш	1.19	2			X	y 70	X	X	4.			X	v p	- 7	
3 BH5 557		(-			a	1. The state of th		X		X	X				\boxtimes			1
4 BH6 551		Þ	1		2	* * 4	70 ° -	,							X			
5 BH6 55a					2			\times		\times	X				1			L ·
6 BH7 551					2										焩		X	
7 BH7 552			V		2	V					娰						X	
8								"""		7.7	"							7
9																		7
10																4.3		
Comments:		,										Method					7	1
												W	Αl	JK	1	()		"I
Relinguisfied By (Figh):		eiyed By Dr	iver/De	pot	1/X	MAN 1	eceived at Lab	111	<u> </u>	: 1-2	4.19	Verified	By:	وبإساء	NIK.	red v	and hard	Jan 18
Religional Bring Muser		Date/Time: (5	10	100	10	ate/Time:	120	122	8:	28	Date/Ti	me:	-			- 4s	n4.
Date TIRELOS ONGO		Temperature:			V O	°C I	emperature: /	VOD	°C	0.	_	pH Veri	fied: [By:			
1 400 0000						De dele de	C	0.6				K.,	9				_	

0	PAI	RA	CE	L
	LABORA	ATORI	ES L	TD.

TRUSTED.

Chain Of Custody (Lab Use Only)

LABORATORIES LTD.	RELIA	BLE	-1								Nō	6779	30
Client Name: Hallex Environmental		1	Project	Ref:	-22-32-2	1			-1	J.	Page	3 of 5	
Contact Name: Kevin Christian	,		Quote #	t:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					27	Turnarou	nd Time	
H999 Victoria Ave, Niagoma Falls, C Telephone: 905 357 4015)N		PO#: E-mail:	۷\r	netz@ h jalex.ca dnistion@hollex.c	a				□ 1 da □ 2 da Date Requ	1		3 day Regular
□ REG 153/04 □ REG 406/19 Other Regulation □ Table 1 □ Res/Park □ Med/Fine □ REG 558 □ PWC □ Table 2 □ Ind/Comm □ Coarse □ CCME □ MIS	00	Ma	i trix Ty V (Surf	ace V	(Soil/Sed.) GW (Gro Vater) SS (Storm/Sani vaint) A (Air) O (Othe	tary Sewer)			Requ	uired Ana	lysis		
□ Table 3 □ Agri/Other □ SU - Sani □ SU - Sani □ Table Mun: For RSC: ✓ Yes □ No □ Other:		Matrix	Air Volume	of Containers	Sample T	aken	Hold	, <u>.</u>					
Sample ID/Location Name	_	_	Air	#	Date .	Time		-	-				
1 BHI/MWI 551		2		1	Nov 18,0000		X	/	1	-		-	
2 BHIMWI 558	1 3	\vdash	-1	١			++-	-	-	_		-	1
בנג שוויקווע		+	+	2		-	+++-		-	-	-		2
		+	+	+			+	+	+	-		-	+
DITTY WWI COO		+	+	-			++-		++	-		-	-
6 BHYMWI 556 7 RUI/MMI 567		+	+	+			++-	+	-	-		++	+-
7 BHI/MN 557 8 RHI/MWI 550	-+	+	\dashv	+			+		-	_		-	+
	-+	+	+	+	,		+	-	-			-	-
9 BHI/MWI SS10	1	/	+	1			11/					-	+
10 BHI/MWI SS1A				V.	W		V			1.1.		X	
										of Delivery:	IN		
Refinad In A Si ni Recaive	ed By Driver	/Depo	1 / /	JII.	19724	eceived at Lab:	Plu	1	Verified E		14		7 2
Party Date/T	ime: 25	N	OV	2	2 0		N 23/	D-8:28	Date/Tim	e;	171 1 100 - 10	7 - 1	1 0
Dat/17/09 25, 2022						emperature:	6.6	°C	pH Verific	ed: 🗆	Bys		
Chain of Custody (Blank) xisx					Revision 4.0			11000			- 10		

Paracel ID: 2249037

TRUSTED.
RESPONSIVE.

Chain Of Custody (Lab Use Only)

ent Name: Hallex Environmental	-		Proje	ct Ref:	E-22-33-2	1	. j	e .	n å	Page 4	1 of 5
ontact Name: Yevin Unistim			Quote	: #:			1 . /		į.	Turnarou	nd Time
1999 Victoria Ave, Niagarafalls, ON	7.		PO #:						☐ 1 day	/	☐ 3 day
lephone:		. Unj - 1	E-mai	no k	retz@frateahallex.ca christian@hallex.ca				☐ 2 day		Regula
REG 153/04 REG 406/19 Other Regu	ulation		Antely 1		S (Soil/Sed) GW (Ground Water)	27,48		186/71			
Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558	□ PWQ0		SW (Su	rface \	Nater) SS (Storm/Sanitary Sewer)			Red	quired Ana	lysis	
Table 2 Ind/Comm Coarse CCME	☐ MISA			P (F	Paint) A (Air) O (Other)				1 1		
Table 3 ☐ Agri/Other ☐ SU - Sani	□ SU - Storm			2		\dashv					
Table Mun:			e e	Containers	Sample Taken	-					
For RSC: Ves No Other:	,	ĕ	Air Volume			Por					1 2
Sample ID/Location Name	!	Matrix	Air	# of	Date Time	7-1					
BH2/MW2 551		S		1	Nov 18 43000	X	3	-		1 1	
BHa/MWa 55a	and the later of the	1	viet i i i vi	1	1			1 1 1 1			
BH2/MW2 554				2		11		+		-	
BHQ/MWQ 555				1		+++-	+	-			
BHa/MWa SS6				+		+++-	+ -	+			- 1
BH2/MW2 556 BH2/MW2 557		+						+		_	
BH2/MW8 558		+		+		+	+-+	+			
BHa/MWA 5510		+	-	+		++-	-	-			
BH3/MW3 5510 BH3/MW3 5511	1			V				-			
DHAMMA JOH		V	-	V	V	1	-				
ments:						V					4
									of Delivery:		
Jufings B (Sign):	Received By Driv	er/Der	oot: 1	VA	5AD D			W	ALK	10	
What.	BHO	ME	-10	EX	Necessed at Lab:	11/4		Verified	By:		
loddie Calvert	Date/Time	51	VOV	20	1530 Date/Time No.	98/99	8:28	Date/Tim	ie:	77 100	1 A
101725, 2088	Temperature:			1.7	°C Temperature:	66	O. H)	pH Verifi	ed: []	By:	

0	PΑ	RA	C	ΕL
		ATORI		

TRUSTED.
RESPONSIVE

Chain Of Custody (Lab Use Only)

Nº 67791

ENDORNIONI		KELI	ADL											
Client Name: Hallex Environmental				Project Ref: E-22-33-2							Page <u>5</u> of <u>5</u>			
Contact Name: Kevin Christian					Quote #:						Turnaround Time			
LAddress:	C. li	. 00		PO#:							D 10	day		☐ 3 day
4999 Victoria Ave, N	nagara tari	SIUN		E-mail		ctz@Mallex.ca	r			74	- 2 c	day		Regular
Telephone:	c. v. contro			100	Kd	nation@hollex.c	0		nga si i		Date Re	quired:	and the	
REG 153/04 REG 406/19 Other Regulation			Matrix Type: (Soil/Sed) GW (Ground Water)											
☐ Table 1 ☐ Res/Park ☐ Med/Fine	☐ REG 558	☐ PWQ0	SW (Surface Water) SS (Storm/Sanitary Sewer)				Required Analysis							
	☐ CCME	☐ MISA	-	P (Paint) A (Air) O (Other)				*	,			1		1
☐ Table 3 ☐ Agri/Other	☐ SU - Sani	ani 🗆 SU - Storm			Containers	,						,		1 ,
□ Table □	Mun:			a B		Sample Taken			Hold					
For RSC: U Yes U No Sample ID/Location	For RSC: Yes No Other:		Matrix	Air Volume	of o	Data I	#	工			1		1	
	Tivame		5	4	2	No. 10 0000	Time	Et.	1		-	-		
	וכס כחס		7	11.70	a	Nov 18, 2022	A	4 (Proper)	17 4 3 bel/8" je		acarpor pro-			
2 BH3 553 3 BH4 552			\vdash	1	140. 11. pt	V		77,		-	-	-	-	
4 BH5 551				-		11		-						
5 BH5 553)		\vdash		+	Nova 1,2003		+-				-	-	1
					+							+	-	
שוכני ביות	2			-	+			-	3			+	-	
010 000		V		W	N/			1			++	+		
8 BH W SS	5		V		W	V			V			+-+		-
10								-				-	_	
Comments:		,												
. /											d of Deliver	y: 		
Relingryfsyldag (Sen)		Received By Dri	iver/De	pot: X	MIC	SARA R	ecgived at Laby	1/0		Verifie			0_	
MI MWM		Date/Time:	ne	N	EK	0.0	(4)	/	de la C		A. A. A.		<u>, 11.11, 1</u>	
MODIFICATION OF		Temperature:	25	JNU 00 110 0.28					-8	te/Time:				
NOV YOU, SUDY		Temperature.		-		Revision 4.0	imperature.	5.6	T.	pH Ver	ified:	By:		

TABLE 1		CLIENT	T: Hallex Environmental Ltd.				
PARACEL LABORATORIES LTD.			ITION: Kevin Christian				
WORKORDER: 2249411			CT: E-22-33-2				
REPORT DATE: 12/08/2022		REFER	ENCE: #22-139 Standing Offer				
Parameter	Units	MDL	Regulation			nple	
				MW-1	MW-1a	MW-2	MW-4
				2249411-01	2249411-02	2249411-03	2249411-04
Sample Date (m/d/y)			Reg 153/04 (2011)-Table 3 Non-Potable Groundwater, fine	12/01/2022 09:00 AM	12/01/2022 09:00 AM	12/01/2022 09:00 AM	12/01/2022 09:00 AM
Metals							
Antimony	ug/L	0.5	20000 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Arsenic	ug/L	1.0	1900 ug/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Barium	ug/L	1.0	29000 ug/L	72.8	76.7	81.3	139
Beryllium	ug/L	0.5	67 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Boron	ug/L	10.0	45000 ug/L	189	169	178	127
Cadmium	ug/L	0.2	2.7 ug/L	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Chromium	ug/L	1.0	810 ug/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Cobalt	ug/L	0.5	66 ug/L	0.5	ND (0.5)	0.6	3.8
Copper	ug/L	0.5	87 ug/L	1.5	1.9	1.4	3.2
Lead	ug/L	0.2	25 ug/L	0.3	0.3	0.4	0.5
Molybdenum	ug/L	0.5	9200 ug/L	4.5	3.4	1.4	0.7
Nickel	ug/L	1.0	490 ug/L	ND (1.0)	ND (1.0)	2.0	6.2
Selenium	ug/L	1.0	63 ug/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Silver	ug/L	0.2	1.5 ug/L	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Sodium	ug/L	200	2300000 ug/L	125000	126000	153000	164000
Thallium	ug/L	0.5	510 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Uranium	ug/L	0.2	420 ug/L	5.1	5.3	3.4	6.2
Vanadium	ug/L	0.5	250 ug/L	1.0	1.1	1.8	0.5
Zinc	ug/L	5.0	1100 ug/L	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Volatiles							
Benzene	ug/L	0.5	430 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Ethylbenzene	ug/L	0.5	2300 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Toluene	ug/L	0.5	18000 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
m/p-Xylene	ug/L	0.5		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
o-Xylene	ug/L	0.5		ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Xylenes, total	ug/L	0.5	4200 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Hydrocarbons							
F1 PHCs (C6-C10)	ug/L	25	750 ug/L	ND (25)	ND (25)	ND (25)	ND (25)
F2 PHCs (C10-C16)	ug/L	100	150 ug/L	ND (100)	ND (100)	ND (100)	ND (100)
F3 PHCs (C16-C34)	ug/L	100	500 ug/L	ND (100)	ND (100)	ND (100)	ND (100)
F4 PHCs (C34-C50)	ug/L	100	500 ug/L	ND (100)	ND (100)	ND (100)	ND (100)
Semi-Volatiles							
Acenaphthene	ug/L	0.05	1700 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Acenaphthylene	ug/L	0.05	1.8 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Anthracene	ug/L	0.01	2.4 ug/L	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Benzo[a]anthracene	ug/L	0.01	4.7 ug/L	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Benzo[a]pyrene	ug/L	0.01	0.81 ug/L	0.03	ND (0.01)	ND (0.01)	ND (0.01)
Benzo[b]fluoranthene	ug/L	0.05	0.75 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Benzo[g,h,i]perylene	ug/L	0.05	0.2 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Benzo[k]fluoranthene	ug/L	0.05	0.4 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Chrysene	ug/L	0.05	1 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Dibenzo[a,h]anthracene	ug/L	0.05	0.52 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Fluoranthene	ug/L	0.01	130 ug/L	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Fluorene	ug/L	0.05	400 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Indeno [1,2,3-cd] pyrene	ug/L	0.05	0.2 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1-Methylnaphthalene	ug/L	0.05	1800 ug/L	ND (0.05)	ND (0.05)	0.52	ND (0.05)
2-Methylnaphthalene	ug/L	0.05	1800 ug/L	ND (0.05)	ND (0.05)	1.21	ND (0.05)
Methylnaphthalene (1&2)	ug/L	0.10	1800 ug/L	ND (0.10)	ND (0.10)	1.73	ND (0.10)
Naphthalene	ug/L	0.05	6400 ug/L	ND (0.05)	ND (0.05)	5.51	ND (0.05)
Phenanthrene	ug/L	0.05	580 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Pyrene	ug/L	0.01	68 ug/L	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)

0	PARACEI	
	LABORATORIES LTD.	

RESPONSIVE.

Chain Of Custody (Lab Use Only)

ontact Name: Halex Environmental Address: 4999 Victoria Ave, Niago	Quote #: PO #:						Turnaround Time			
TREG 152004 TO THE STATE OF THE		10	E-mail:	Ametzogr ad Kehristian@	a mail o kd	vetz@hill ncistion@	exea hallex.co	Date Re	day	☐ 3 day
Table 1 Res/Park Med/Fine REG 558 Table 2 Ind/Comm Coarse COME Table 3 Agri/Other SU-Sani	PWQO MISA SU-Storn	S	W (Surfa	e: S (Soil/Sed.) GW te Water) SS (Storm/ P (Paint) A (Air) O (C	Sanitary Sewer)	1 2		Required A	nalysis	
Table Mun: For RSC: ✓ Yes □ No □ Other: Sample ID/Location Name	□ 50 - Storn	1 1	Air Volume	Samp	le Taken	PAHS PHC(F-F)/RT	Metalsta			
MW-10 MW-10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GW GW	5	Dec 15t, 2000	Time	XX	X			
MW-4		GW	5				X			
nts:										
trof offisient	Received By Driv	/er/Depot:	NIF	EXMA	Received at Lab:		Me	thod of Delivery	KIN	N